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Abstract
 These proceedings report invited presentations and contributions to the 2008  Biennial 
Forest Inventory and Analysis (FIA) Symposia, which was hosted by the Research and 
Development branch of the United States Forest Service. As the only comprehensive and 
 continuous census of the forests in the USA, FIA provides strategic information needed 
to evaluate sustainability of current forest management practices across all ownerships. 
Symposium papers cover high priority and timely issue-based topics, including climate 
change, wildlife, fire, bio-energy, geo-spatial extensions, monitoring over time, integrat-
ing remote sensing and GIS applications, statistical and related quantitative solutions 
to emerging needs, and many others. 

Keywords: climate change, fire, disturbance, environmental monitoring, national forest 
 inventory (NFI), assessments, remote sensing
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 It’s great to announce the proceedings of the FIA Symposium 2008!  The Sym-
posium has a long and rich history.  Looking back to the 1980s, attendees were 
mostly mathematicians and statisticians boiling down a lot of ideas to compare 
designs for an annual forest inventory system.  Those were exciting times as these 
meetings morphed into the FIA Symposium and the ideas harmonized.  The 
amount of brain time that went into the annual system must be astronomical--far 
too many folks to mention here.
 This latest Symposium was an international forum where we could discuss 
how FIA informs policy, make connections between our issue-focused analyses, 
exchange science and techniques development, showcase collaborative projects, 
foster partner-centric ventures, display the latest FIA science and tools, and 
communicate to the broader forest inventory community. In addition, a series of 
high priority, contemporary issue-based sessions were held concurrently.  Some 
examples include climate change, wildlife, fire, bio-energy, geo-spatial extensions, 
monitoring over time, integrating remote sensing and GIS applications, statistical 
and related quantitative solutions to emerging needs, and many others.  
 The Organizing Board would like to thank all participants for taking the time to 
advance our FIA science!  The Board also thanks those that traveled far, including 
the delegations from Canada and Mexico.  Perhaps a theme for next time would 
be “monitoring across boundaries”?

Will McWilliams
Vicki Berrett
Ken Brewer
Renate Bush
Sally Campbell
Ray Czaplewski
Gretchen Moisen
Greg Reams
Paul Van Deusen
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Fire, Disturbance, and Other Remote Sensing 
Applications to Support Large-Scale 
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Joint simulation of regional areas burned in 
Canadian forest fires: A Markov Chain Monte 

Carlo approach 
 
 

Steen Magnussen1 
 
 

Abstract: Areas burned annually in 29 Canadian forest fire regions show a 
patchy and irregular correlation structure that significantly influences the 
distribution of annual totals for Canada and for groups of regions. A binary Monte 
Carlo Markov Chain (MCMC) is constructed for the purpose of joint simulation of 
regional areas burned in forest fires. For each year the MCMC prediction is a 
binary vector with regions classified to a large fire year (LF) or a small fire year 
(SF). The regional area burned is then obtained from empirical quantile functions; 
separately for LF and SF years. The MCMC results were unbiased with respect 
to: the annual number of LF regions, national totals, and variances of area 
burned.  Approximately 65% of the observed regional covariance was captured in 
the results. 
 
 
 
Keywords: binary correlation, multivariate simulation, marginal distribution, transition 
kernel. 
 
 

 

Introduction 
 
 
Forest fires affect forest resources and the global cycling of carbon and 

greenhouse gasses (Amiro et al. 2001, Bergeron et al. 2004, Gillett et al. 2004). 
They are a dominant driver in Canada’s boreal forest carbon balance (Bond-
Lamberty et al. 2007). Forecasting areas burned annually in forest fires (BA) at a 
regional and a combined regional scale is therefore important to predicting future 
greenhouse gas emissions (Kurz and Apps 2006, Kurz et al. 2008). 

 
In Canada BA varies dramatically between years and regions. Large fires tend 

to occur during periods of stable high pressure (Skinner et al. 1999, Skinner et al. 
2008). These atmospheric patterns are sub-continental in scale and may impose 
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some regional synchronization in BA. Yet snow-cover or rain during the winter 
prevents the emergence of a strong temporal autocorrelation by saturating the 
forest fire fuels. 

 
The simplest approach to forecasting BA is by recasting historic records. 

Recasting is attractive on grounds of expediency, simplicity, low costs, and 
transparency; however, this approach must take into account any interregional 
correlation structure. In Canada regional BA from 1955 to 1999 show an irregular 
pattern of weak and strong interregional correlations that exert a significant effect 
on the variance, and thus the shape, of distributions of sums of regional BA-
values. 

 
This study demonstrates a Markov Chain Monte Carlo (MCMC) procedure for 

joint forecasting of BA in 29 Canadian forest fire regions. The 29 regions account 
for about two-thirds of the areas burned in Canada. The rationale for the MCMC 
procedure rests with the fact that interregional correlations of BA are - to a large 
degree - shaped by a few years favorable to large fires. 

 
 

Material and Methods 
 

Data 
 
Estimates of annual areas burned in forest fires (BA) from 1959 to 1999 in 

Canada’s 29 forest fire regions were used as data for forecasting purposes 
(Magnussen 2008, Kurz and Apps 2006, Stocks et al. 2002). 

 
 

Forecasting objectives 
 

The objective is to forecast a sequence of BA-values for each of the 29 fire 
regions consistent with historic data from 1959-1999. Forecasted data should also 
conserve the regional correlations pattern so that the distribution of sums of 
regional BA-values matches the historic distribution of these sums. 

 
 

Model premise 
 

Regional correlations reflect the number of concurrent large values of BA. 
Consequently, a binary classification of region years to a large fire year (LF = 1) 
or a small fire year (SF = 0) is used to capture the regional correlations. To 
simplify the correlation structure it was decided to: i) form 29 balanced five-
member !-cliques by maximizing the average within-clique correlation, and ii) 
assume that the LF-status of a region is only influenced by regions in the same !-
clique. Accordingly, a two-stage process for the joint forecasting of BA is 
formulated: In stage one, the total number and regional allocation of LF years is 

 2
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determined in a MCMC step (Robert and Casella 1999). In stage two, regional 
BA-values are drawn from empirical quantile functions, separately for LF and SF 
years. 

 
Classification of region-years to LF or SF 

 
The classification of region-years to either LF (1) or SF (0) was done by a k-

means clustering (k = 2) routine.  Following the classification, the probability ! "i#  
that a LF year occurs in region i was estimated as: 

 
41

1
29 41

1 1

ˆ
ij

j
i

ij
i j

LF

LF
# $

$ $

$
%

%%
     [1] 

 
 

The MCMC (stage I) 
 
Every forecast begins with a random draw of the number of regions with 

a LF = 1 status.  The draw is from a zero-truncated beta-binomial (Griffiths 1973) 
of fitted to the classified data. An initial random allocation of the nLF* is 
done with probability proportional to the regional probability of a LF year  

*nLF

nLF

& '1̂,..., 29
ˆ# # and modified in a sequence of switches ! "  of LF status 

between two regions with opposite LF-status. The sequence maximizes the 
conditional likelihood of the allocation. Let  denote the binary vector of the 
initial random allocation of regional LF-years. A switch involves two regions (i 
and j) for which and LF
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here *

1sU *

",6 6
w  is a random draw from a uniform distribution on the unit interval [0,1] 
and !K  is defined in Equation 3 
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where  denotes a likelihood and  a pseudolikelihood and 
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" p" i i8 !  denotes 

regions ! "i8  in the same !-clique as region i. Likelihoods  ! "*
~ ,| i i newL LF 8" were 

ated from maximum likelihood estimates (MLE) of clique-specific 

autologistic functions. Conversely, *
,LF 8

9 :
< =%"  were estimated from ML

clique-specific probability mass fun ial, zero-inflated-binomial, or 
beta-binomial). Finally ! "* *

, ,, 1 , {1,0}i s j sLF LF@ @ @$ $ + $"  was estimated from
the classified data as out
 

After approximately 1000 accepted switches the Markov Chain reached a 

*
,i newF

estim

f a 

 
lined in Congdon (2006, p 395). 

te

ed.  

t a tem

egion i the associated BA was determined as 

~
i new

i i8> ?
tion (binom

E o

c

s ady state so that the current value of the vector LF  could be viewed as 
sampled from the joint distribution of regional LF- us (Robert and Casella 
1999). As a safeguard, the vector *

SLF after 3000 accepted switches was retain
A total of 41×100 random replicat *

SLF  were generated, representing 100 
replications of  41-year forecasts. Withou poral autocorrelation, years and 
replicates are interchangable. 

 
Forecasting BA (Stage II) 

stat

es of 

 
For a given LF forecast for r
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where 1

îF + is the empirical quantile function of BA for region i (i.e. the inverse to 
e empirical distribution function),  is a random draw from a uniform 

 
SF ion.  A 

th *u
distribution from a specified interval, and ˆSFiu  is the MLE estimate of the regional
cut-off quantile between LF = 1 and  = 0 on the empirical quantile funct
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simulation study (Magnussen 2008) sugges
quantile functions: ! "

ted the following endpoints for the 
! "1ˆ 0 0.54 Mini iF BA+ $ 7 , and ! " ! "1ˆ 1 1.35 Mi iF ax BA+ $ 7 . 

 

 
Regional co

Results 

rrelations of BA averaged
(5% level) at a rate of 0.14. Only five 

rrelated with at lea
d that significant correlati

 of 0.05 in PQ4
 classifying a BA%-valu

-year period was positively co
ure 2). There is a tendency to overestim

 0.06 but were statistically significan
regions (NB1, NF1, PQ1, PQ2, SK4) were 

 region. A bootstrap simu
ost always due to a few 

a high of 0.39 in SK2. The 
e to LF was 0.7% (range: 0.04% 

e

rrelated (0.77) with the ob
ate nLF  in regions with 

t 

not significantly co lation 
study confirme ons were alm
co

 to 
average cut-off point for
in , on 

 

 
 

served 
number (Fig

 

st one other

ncurrent years of large BA. 
 
Examples of the classification of BA to LF (1) and SF (0) by the k-means 

procedure are in Figure 1. The average regional relative frequency of LF years 
was 0.19 but varied from a low

AB4 to 3.3% in AB3). Regional correlations of BA in shared SF years wer
average, about 84% below the correlations for the entire period of 41 years and 
the rate of significant correlations was consistent with the null hypothesis of a
zero correlation.  

 
In the MCMC forecasts the average rate of LF years was 2% below the rate in

the classified data (P = 0.12, bootstrap t-test). The number of regional LF years
forecasted for a 41

i

lower frequencies of LF years and to underestimate in regions with higher rates. A
bootstrap t-test with 36 degrees of freedom identified three regions (BC2, NS1, 
NWT1) with a significant difference ! "0.018 0.026P1 1 between the classified 
and the forecasted number of LF-events during a period of 41 years.  
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Figure 1: Percent of forested area burned annually (BA%) in six randomly chosen regions. Year 1 
= 1959, year 41 = 1999. The classification of BA% to LF (large fire) or SF (small fire) is indicated by 
squares (SF) and circles (LF). 

 
 
The bias pattern in Figure 2 carries over to regional correlations of LF years in 

the MCMC results (Figure 3) and created an inflation in cliques with a below 
average interregional correlation and vice versa. Across all regions, the average 
correlation of LF years was 0.04 in the forecasts and 0.05 in the data, and the 
relationship between the two sets of correlation coefficients was consistent with a 
slope of 1.0 and a zero intercept (P = 0.16).  
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Figure 2:  Forecasted total number of regional LF years during a period of 41 years (nLFMCMC), 
plotted against the number in the classified data (nLFDATA). 
 

 

 
Figure 3: Forecasted average inter-regional correlation of LF years ! "LF MCMCD + plotted against 

the average correlation in the data ! "LF DATAD + . The average is over regions in a D -clique. 

 
 
The mean and variance of forecasted regional BA matched fairly closely their 

historic values. Scatter plots in Figures 4 and 5 convey a strong correlation (0.98) 
between forecasted and historic values. A linear relationship with a slope of 1.08 

and an intercept not significantly different from zero (P = 0.31) captures 
the relationship. For all regions combined the average BA in the forecasts was 
886 976 ha versus 817 308 ha in the data. The bias is attributed to the asymmetric 
capping of the empirical quantile functions. The standard deviation of the regional 
totals of BA was 849 596 ha but only 742 973 ha (-14%) in the MCMC forecasts. 

! 0.02E  "
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The conversion to a binary variable (LF) and the ensuing attenuation of the 
regional correlations is the main factor behind the bias. Regarding regions as
independent would generate a standard deviation of 486 990 ha (-43%). In oth
words, the MCMC procedure captured 65% of the regional covariance of BA. 

 

 
er 

 
! "MCMCBAFigure 4: Forecasts of average annual regional BA-values  plotted on a garithmic lo

scale against historic values ! "DATABA . 

 
 
 

 
 

Figure 5: Forecasts of variance of annual regional BA-values ! "MCMCvBA  plotted o  a logarithmic 

scale against historic values

n

! "DATAvBA .  
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Discussion and conclusions 

A joint forecast of regional BA must take the apparent correlation structure into 
account or the variation of sums of regional values will be biased downward. 
Without a suitable mul  a joint forecast 
becomes a complex challenge (Aalo 
Di

 
mmon environmental factors in region-years classified as LF 

ma  be identified. Modeling at the binary level also facilitates an integration of 
ex l 2003, 

ts in some defined neighbourhood (!-cliques) composed of 
interdependent regions, usually a group of first-order spatial neighbours (Gilliland 
an

e been considerably more 
complicated (Smith and Smith 2006). We surmise that our MCMC results reflect 
the ution 

-

Piboongungon, T. 2005. On the multivariate generalized gamma distribution 
ith exponential correlation. In: Global telecommunications conference IEEE 3(28): 

1229-1233. 
Am Wotton, B.M annigan, M.D.; Stocks, B.J.; 

Be
est 

Be  

tivariate distribution function, the task of
and Piboongungon 2005, Carpenter and 

awara 2007).  
 
A binary classification of BA as either large or small facilitates an 

interpretation of the regional correlation structure as it changes the focus from
areas to years. Co

y
pected trends in LF years (Bergeron et al. 2004, Beverly and Martel

Larsen 2007). 
  
Modeling a regional distribution of correlated binary variables is commonly 

done by formulating the probability of an event in a region conditional on the 
number of even

d Schabenberger 2001, Sherman et al. 2006). 
 
The proposed MCMC procedure was simplified by conditioning on the 

marginal distribution of the total number of LF events in a year. Without this 
simplifying step, the transition kernel would hav

 constraints on the covariance structure inherent in all multivariate distrib
functions (Johnson 1987). A restriction of first-order regional interactions to !
cliques limited our ability to capture the observed interregional correlation 
structure. The proposed MCMC approach is capable of reproducing the main 
features of observed marginal distributions and an irregular and patchy correlation 
structure.  
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Rapid Assessment of Wildfi re Damage Using 
Forest Inventory Data: A Case in Georgia

Richard A. Harper1

John W. Coulston2

Jeffery A. Turner3

Abstract: The rapid assessment of damage caused by natural disasters is essential for 
planning the appropriate amount of disaster relief funds and public communication. 
Annual Forest Inventory and Analysis (FIA) data provided initial estimates of damage 
to timberland in a timely manner to State leaders during the 2007 Georgia Bay Complex 
Wildfi re in southeast Georgia. FIA plots were selected from within the shape fi le (a 
polygon outline of the fi re perimeter) of the burn area and processed with the National 
Information Management System. Forest area and total volume by stumpage products 
were compiled for the wildfi re area. A mortality factor determined by the Georgia 
Forestry Commission was used to estimate the volume of damaged timber, and the value 
of damaged timber was assessed using Timber Mart-South stumpage prices. 

Keywords: FIA, forest disturbance, inventory, Mapmaker, stratifi cation, wildfi re. 

Introduction

 Large wildfi res have been documented in southeast Georgia for more 
than 100 years. Climatic conditions create droughts that foster conditions for 
large wildfi res in and around the Okefenokee National Wildlife Refuge and 
Wilderness Area. Wildfi res, associated with droughts, were documented in 1844, 
1860, 1910, 1932, 1954-1955, and 2007. The fi re of 1932 began when a young 
boy started a fi re to warm his hands. The intensity of the fi re created gale force 
winds that worsened the damage. The drought occurring in the 1950s was severe, 
and the fi res of 1954-1955 were peat fi res that burned underground and therefore 
impossible to control. Analysis of peat samples back in the 1890s found it to be 85 
percent combustible (Izlar 2007). In 2007, 9,500 wildfi res burned about 504,000 
acres in Georgia. Of particular note was the Georgia Bay Complex Wildfi re which 

USDA Forest Service Proceedings – RMRS-P-56 2.

In: McWilliams, Will; Moisen, Gretchen; Czaplewski, Ray, comps. 2009. 2008 Forest Inventory and Analysis (FIA) 
Symposium; October 21-23, 2008: Park City, UT. Proc. RMRS-P-56CD. Fort Collins, CO: U.S. Department of  
Agriculture, Forest Service, Rocky Mountain Research Station. 1 CD. 



2

burned 441,705 acres in southeast Georgia and destroyed nine homes (Georgia 
Forestry Commission 2007a). This fi re started when a tree fell on a power line 
creating sparks that ignited dry, woody fuels. 

The Forest Inventory and Analysis (FIA) program plays an important role in 
quantifying losses from broad-scale disturbances, and FIA personnel have several 
options available to perform rapid assessments of these disturbances. The options 
include Mapmaker analysis, analysis based on FIA database (the FIA public 
database), and analysis based on the National Information Management Systems 
(NIMS)—using estimation procedures documented in Bechtold and Patterson 
(2005). Each of these analytical methods requires different levels of effort and 
requires different turn-times. The key to rapid assessment is to provide required 
information for disaster relief in a timely fashion, which helps quantify losses and 
aid in recovery decisions.

The objective of this paper is to describe the assessment techniques used to 
quantify potential timber losses from the Georgia Bay Complex Wildfi re. 

Methods

 On Memorial Day weekend 2007, the Georgia Forestry Commission 
(GFC) requested help in assessing damage from what was discovered to be the 
largest recorded wildfi re in Georgia history (and the Southeastern United States). 
The GFC needed this information to respond to inquires from the media, State 
and Congressional representatives, and there were reports that the President of 
the United States would visit Georgia to view the damage. The fi rst option was to 
use Mapmaker (Miles 2007), the FIA online database retrieval system tool, which 
would provide fi rst-line estimate of the timber resource within the known burn 
area. GFC needed some assurance that their initial estimates were reasonable. A 
shape fi le was sent via email from the USDA Forest Service, Region 8, Southern 
Area Coordination Center, a key player in the National Incident Management 
System. The shape fi le had been constructed by fi refi ghters through global 
positioning system (GPS) receivers. From the shape fi le, coordinates outlining the 
burn area were digitized using Arc Map and copied into the Mapmaker custom 
table retrieval polygon window. The polygon captured the plots from the Georgia 
2004 annual inventory and provided the fi rst estimate of total timber volume 
within the early extent of the burn area (fi g 1).

Mapmaker queries separated volume into the major species groups of 
softwood and hardwood, sawtimber and poletimber, ownership class, age class, 
and stand origin. From these queries, tables were developed for forest stumpage 
products by softwood and hardwood. From young age classes, a table was 
developed to estimate the area of precommercial stands. Assumptions were 
made that precommercial planted pine stands ranged from 1 to 10 years old and 
precommercial natural stands ranged from 1 to 15 years old.
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Once these tables were developed, a value by stumpage product was 
incorporated to assess timber value. These values were derived from Timber 
Mart-South, 1st Quarter 2007 average stumpage value estimates for south Georgia. 
Stumpage products assessed were pine sawtimber, mixed hardwood sawtimber, 
and pulpwood for both softwood and hardwood. Total volume by product was 
multiplied by the timber value for each product to compute values by product and 
total value. While stumpage values cannot be applied to precommercial timber, 
a per-acre value was estimated based on general establishment costs. This is 
the allowable value that may be recorded on a landowner’s tax return regarding 
investment loss. Federal lands contained the majority of precommercial natural 
stands, while private and State lands contained mostly precommercial planted 
stands.

Large area wildfi res create a mosaic of burn intensities across the landscape 
intermixed with areas that did not burn (fi g. 2). It is diffi cult to assess the degree 
of tree damage and mortality percent in a timely manner. Because time was of the 
essence, the GFC conducted a ground survey along travel corridors to estimate 
the level of mortality supported by aerial reconnaissance (Georgia Forestry 
Commission 2007b). Mortality was expressed in percent. Development of the 
tables using FIA data provided the total volume and value of timber within the 
burn area. The GFC applied the assessment of tree mortality within the burn 
area to reduce the total volume, and applied Timber Mart-South values for 
timber stumpage products to produce an estimate of timber losses. The FIA data 
assessment was compared to ground estimates by GFC, as well as landowner 
estimates reporting damage.
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Figure 1: One of the fi rst shape fi les received from the USDA Forest Service, Region 8, Southern 
Area Coordination Center of the burn area. Coordinates were imported into Mapmaker to select 
plots (small dots within the polygon) used to calculate volume and create a map.
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Figure 2: Aerial views showing the mosaic pattern of burn intensities across the landscape helped 
estimate areas of mortality. (Courtesy of the Georgia Forestry Commission). 

It should be noted that this method assumes that timber was valued at “pre-
fi re” stumpage prices to estimate market value loss. However, post-fi re stumpage 
value is discounted because of fi re-caused timber damage, and due to increased 
volume introduced to the market (increased supply), which required salvage in 
a timely manner—regardless of fl uctuating markets. It also is diffi cult for local 
industry to manufacture and market a dramatically increased supply. 

 The assessment using Mapmaker complemented the initial estimate of losses 
caused by the wildfi re. The actual area of wildfi re-affected stands grew beyond 
initial estimates, and because more time was available, a refi ned estimate was 
provided based on the expanded boundary and using the NIMS compilation 
system. Working with the raw data allowed fl exibility needed to produce the best 
assessment with FIA plot data. The fi nal shape fi le of the burn area was used to 
select actual plots from the Southern Research Station database (not fuzzed and 
swapped plots as is the normal procedure to comply with privacy laws) within 
the boundary of the burn area. The area estimation unit was established to the 
shape fi le allowing the expansion factors to directly represent the burn area. 
National Land Cover Data were used to stratify the FIA plots by forest/nonforest 
and the Okefenokee area to allow further refi nement of the estimation unit and 
expansion factors for the area of interest. The data were compiled in NIMS to 
calculate forest volume of softwood and hardwood by ownerships, forest products 
categories, and precommercial forest area. 
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Results

Softwood and hardwood tables were developed by ownership classes and types 
of forest products. The detailed private ownership could be developed to compare 
with estimates reported by forest industry and individuals. The unadjusted value 
for all forest land within the burn area was estimated to be $284 million (table 1). 
Because the Okefenokee is by statute reserved forest land (not available for timber 
harvest), the timber volume and value were removed from the estimate leaving a 

Table 1: Detailed breakout of total volume and value by ownership and 
forest products

Pulpwood Volume Unit valuea Total value
cords - - - - - - - - - - dollars - - - - - - -

Softwood
Okefenokee  1,302,821 $   19.40 $    25,274,731 
Other federal     181,783 $   19.40 $      3,526,590 
State       14,781 $   19.40 $         286,753 
Industry     779,542 $   19.40 $    15,123,113 
NIPF     166,750 $   19.40 $      3,234,948 

Total  2,445,677 $   19.40 $    47,446,134 

Hardwood
Okefenokee  1,686,307 $   21.07 $    35,530,487 
Other federal     370,864 $   21.07 $      7,814,105 
State        7,179 $   21.07 $         151,271 
 Industry       88,451 $   21.07 $      1,863,659 
NIPF           852 $   21.07 $           17,957 

Total  2,153,654 $   21.07 $    45,377,479 

Sawtimber Volume Unit valuea Total value
 million board feet 

b - - - - - - - - - - dollars - - - - - - -

Softwood
Okefenokee     493,968 $ 262.00 $  129,419,512 
Other federal       93,015 $ 262.00 $    24,369,861 
State        9,887 $ 262.00 $      2,590,488 
Industry       83,864 $ 262.00 $    21,972,402 
NIPF        9,994 $ 262.00 $      2,618,329 

Total     690,727 $ 262.00 $ 180,970,592 

Hardwood
Okefenokee       37,902 $ 131.00 $      4,965,221 
Other federal 30,258 $ 131.00 $      3,963,735 
State           940 $ 131.00 $         123,096 
Industry        6,367 $ 131.00 $         834,054 
NIPF  — $ 131.00 $                  —   

Total       75,466 $ 131.00 $      9,886,107 

Georgia Total $  283,680,312 

a Timber Mart-South (2007).
b Thousand board feet, International log rule.
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total value of $88 million. Softwood sawtimber made up the largest component 
($52 million). Forest industry and other Federal lands had the largest total value, 
each totaling almost $40 million. GFC considered these total values and adjusted 
them based on estimated mortality factors to report the value of timber lost from 
fi re damage. After the fi nal analysis of the Georgia Bay Complex Wildfi re, GFC 
reported the timber loss at $54 million. 

Discussion

The initial assessment using Mapmaker had limits in the estimation. A large 
portion of the burn area was in the Okefenokee National Wildlife Refuge and 
Wilderness Area. By statute, the Okefenokee is reserved forest land and has no 
commercial timber value, i.e., it is not available for timber harvesting. Because 
of the hazards to fi eld crews penetrating the Okefenokee area during recent data 
collection, there were a limited number of plots that accurately would facilitate a 
true assessment of timber volume within its boundary. The Okefenokee reserved 
forest land area was separated from other ownerships to allow fl exibility in 
assessing damage for reporting.

The area estimation unit used to develop plot expansion factors by Mapmaker 
was the Southeast Survey Unit for Georgia. This somewhat skewed expansion 
factors for plots within the burn area. Because privacy laws require plots to be 
“fuzzed and swapped,” there were possibilities that plots on the edge of the burn 
area do not represent the timber resource within the burn area—an introduced 
bias. Most timberland outside the Okefenokee is private ownership, and there 
could be no stratifi cation of ownership types within the private group (privacy 
laws) using Mapmaker.

Conclusion

 The initial response to the Georgia Bay Complex Wildfi re using 
Mapmaker gave a quick comparison to on-the-ground estimates before reporting 
to policy makers and the media. As the wildfi re continued to expand, FIA staff 
was able to refi ne estimates, and use plot data directly from the NIMS compilation 
system. Area stratifi cation allowed segregation of tree volume estimates within 
the Okefenokee National Wildlife Refuge and Wilderness Area, where limited 
plot data were available, therefore, limiting the focus of the study to commercial 
timberland and a break-out of private ownerships. Even though some estimates 
had high sampling errors, the data offered a comparison to general volume per 
acre ground estimates.

 Responses to the Georgia Bay Complex Wildfi re provided insight for 
improvement of future rapid response to catastrophic events. Flexibility of 
annual FIA data compilation coupled with online tools, continue to improve and 
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provide better assessment of rapid response, which are suitable in a variety of 
applications. As awareness gains momentum among the growing and diverse FIA 
user groups and more public tools are developed, the FIA data offer opportunities  
for a variety of assessments that deal with the complexity of forest resources and 
their management.
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Using FIA Data in the Forest Vegetation 
Simulator 

 
John D. Shaw1 

 
 
ABSTRACT:  The Forest Vegetation Simulator (FVS) is a national system of forest 
growth models maintained by the USDA Forest Service.  It is the official tool for stand 
growth projection on National Forest lands, but it is also used widely on other 
ownerships.  Model extensions and post-processors permit FVS users to perform a broad 
range of functions, including silvicultural manipulations, wildlife habitat analyses, and 
fuel treatment evaluations.  Because FIA data were made available in FVS-ready format 
through the FIA Mapmaker interface, an increasing number of users have been using 
FVS as their tool of choice for compilation of FIA data at the plot level.  With the 
transition from Mapmaker to FIDO, users who have built analysis systems around this 
data availability have lost access to new data.  Due to the need to update FIA-FVS data 
translation, there is an opportunity to re-design the system to eliminate prior limitations 
and take advantage of recent developments in FIA and FVS.  Select capabilities of FVS, 
and potential modifications and enhancements to the FIA-FVS linkage are discussed. 
 
Keywords: Forest Vegetation Simulator, FVS, FIA Mapmaker, database, data 
access, ODBC 
 

Introduction 
 

Open access to Forest Inventory and Analysis (FIA) data has resulted in a 
greatly increased user base in recent years.  As the number and diversity of users 
has increased, so has the demand for access to the data in different forms.  
Currently, FIA data are served through Forest Inventory Data Online (FIDO; 
http://fia.fs.fed.us/tools-data/), which allows users to generate reports using pre-
defined and customized queries, and through the FIA datamart, which provides 
field-measured and computed data for inventory plots in download files (see 
http://fiatools.fs.fed.us/fiadb-downloads/datamart.html).  Access to these data is 
critical to users who wish to conduct analyses that are beyond the scope of FIDO.  
Among these users are those who desire to project FIA plot conditions forward 
using forest growth simulators or other models. 

 
The Forest Vegetation Simulator (FVS) is a national system of forest growth 

models maintained by the USDA Forest Service (Johnson 1997, Dixon 2002).  It 
is the official tool for stand growth projection on National Forest lands, but can be 
used on land of any ownership.  Model extensions and post-processors permit 
FVS users to perform a broad range of functions, including silvicultural 

                                                 
1 Rocky Mountain Research Station, Forest Inventory and Analysis, 507 25th 
Street, Ogden, UT 84401. Ph. +001-801-598-5902  Email: jdshaw@fs.fed.us 
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manipulations, wildlife habitat analyses, and fuel treatment evaluations.  A 
flexible programming environment also allows users to produce customized 
variables and output tables.  This allows users to extract summary information 
from inventory data without having to manipulate the data directly. 

 
FIA data were originally made available in FVS-ready format through the FIA 

Mapmaker interface until Mapmaker version 2.1.  With the availability FIA data 
in FVS-ready format, an increasing number of users have been using FVS as their 
tool of choice for compilation of FIA data at the plot level.  Many of these users 
were already familiar with FVS capabilities, and had an interest in using FIA data.  
The access to data in FVS-ready format facilitated their use of the data by 
eliminating the need to develop their own compilation methods.  This 
accessibility led to a substantial amount of use; Miles (2008) reported that there 
were 2,386 downloads of FVS-ready data over a 4-year period. 

 
In the Mapmaker release, FIA data are provided in the file formats introduced 

with the Suppose interface (Crookston 1997):  a location file (.LOC) that contains 
information about the stands in an inventory location or project (i.e., those 
included in the Mapmaker download), a stand list file (.SLF) that contains stand-
level data and refers to the files containing tree-level data, and one or more tree 
data files (.FVS), each of which contains the data from an individual stand (Dixon 
2002).  In the case of FIA data, each .FVS file contains data for all trees recorded 
on an individual FIA plot.  In the data coding, FIA subplots may be treated as 
FVS plots, and the FIA plot is considered a “stand”. 

 
With the transition from Mapmaker to FIDO, users who built analysis systems 

around this data availability have lost access to newer FIA data.  The most recent 
available data are from 2005, and there have been many user requests for the most 
current data.  Because of this demand, there is a need to update the FIA-FVS data 
translation process.  There is also an opportunity to re-design the translation 
process to eliminate prior limitations and take advantage of recent developments 
in FIA and FVS.   

 
One of the most important FVS developments, and one that is key to the FIA-

FVS data link, is the implementation of Version 2.0 of the FVS Database 
Extension (Forest Vegetation Simulator Staff 2003).  The new database version 
eliminates the need for multiple input files, replacing the SLF and FVS files with 
three tables that can be accessed using Open Database Connectivity (ODBC).  
These tables may be contained in Microsoft Access, Microsoft Excel, or SQL-
based relational databases such as Oracle (Forest Vegetation Simulator Staff 
2003).  One important advantage of this structure is that the database can include 
fields that are not used by FVS, but which may be important to the user for other 
purposes (e.g., last treatment dates or local cover type designations). 

 
Taking advantage of additional data and new program features can be 

accomplished with relative ease, but there are several issues that should be 
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recognized by FIA developers and FVS users.  Once these issues have been 
addressed, the necessary enhancements to the FIA-FVS linkage can be developed. 

 
 

What FIA Developers Need to Know about 
FVS and FVS Users 

 
FVS is the nationally supported forest growth modeling framework for the 

USDA Forest Service.  It is maintained by the Forest Service Forest Management 
Service Center (http://www.fs.fed.us/fmsc/), and the program and source code is 
freely available.  FVS is actually a collection of forest growth models, known as 
FVS variants, that are run under a common interface called Suppose (Johnston 
1997, Crookston 1997).  Many of these variants trace their lineage to the Stand 
Prognosis Model (Stage 1973, Wykoff and others 1982), but other models such as 
TWIGS and ORGANON are the growth engines of some variants.  Variants 
typically cover specific geographic areas, with limited overlap (Figure 1).  There 
are variants for all U.S. forests, with the exceptions of interior Alaska, Hawaii, 
and U.S. territories.  However, not all species, or even all common species within 
a given geographic area may be included in the local variant.  Model updates are 
frequent and ongoing; new variants for interior Alaska and Maine are in 
development, and Prognosis-based variants are being developed to replace some 
that are currently TWIGS-based. 

 
FVS requires only species, diameter, and the number of trees per acre as 

minimum data.  Unmeasured tree characteristics, such as height and crown ratio, 
are estimated with dubbing submodels.  However, if variables such as height and 
crown ratio are measured, they are used in various submodels.  These and other 
variables, such as periodic increment, may also be used to calibrate specific 
submodels if certain criteria, such as a minimum number of observations, are met.  
Internally, all variants include single-tree, distance-independent growth models.  
Stand density and tree rank affect growth and mortality.  Although inter-tree 
distance is not used explicitly, diameter growth models and the mortality routines 
are sensitive to within-stand variability as represented by varying density among 
plots in the stand.   

 
What sets FVS apart from other growth models is its capability to simulate 

silvicultural operations and their effect on future stand development.  Through the 
use of keywords and custom scripts, users can implement a wide range of 
silvicultural operations spanning simulation periods of up to 300 years.  One of 
the most common uses is to evaluate growth and yield implications of multiple 
management options through a series of “what if” simulations.  In addition to 
modeling growth responses, model extensions for insect, disease, and fire permit 
users to model stand resistance and resilience in the face of anticipated 
disturbances.   
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FIGURE 1: Map of FVS variant coverage in the coterminous 48 states and Alaska from the FMSC 
web site (http://www.fs.fed.us/fmsc).  AK = Southeast Alaska/Coastal British Columbia, BM = Blue 
Mountain, CA = Inland California/Southern Cascades, CI = Central Idaho, CR = Central Rockies, 
CS = Central States, EC = East Cascades, EM = Eastern Montana, KT = Kootenai/Kaniksu/Tally 
Lake, LS = Lake States, NC = Klamath Mountains, NE = Northeast, NI = Northern Idaho/Inland 
Empire, PN = Pacific Northwest Coast, SE = Southeastern (superceded by SN), SN = Southern, 
SO = South Central Oregon/Northeast California, TT = Tetons, UT = Utah, WC = Westside 
Cascades, WS = Western Sierra Nevada. 

 
 

The core FVS user base is primarily made up of silviculturists and vegetation 
management planners, but the user base has greatly expanded since the 
introduction of the Suppose interface.  Suppose eliminated the need for the 
manual scripting and file management that was necessary in earlier versions of 
FVS, allowing users with little or no programming experience to run relatively 
complex simulations.  The Fire and Fuels Extension (Reinhardt and Crookston 
2003) has been used not only as a treatment evaluation tool, but also as an 
educational tool that managers have used to demonstrate the effects of proposed 
fuel treatments.  Other important user groups include wildlife managers, 
economists, remote sensing specialists, and educators.  Entry-level skills in FVS 
are now part of many university forestry curricula (Shaw and Long 2002).   
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Connections Between FIA and FVS 
 
Currently there are no formal connections between the FIA and FVS programs, 

but there is ample opportunity to expand on informal connections that have been 
developed though various projects.  As noted earlier, FVS is used as a 
compilation tool by some users of FIA data.  Conversely, the data produced by the 
FIA program can be used to enhance the use and development of FVS.  For 
example, Donnelly and others (2001) relied heavily on FIA data for development 
of the Southern variant of FVS.  For variants that have already been developed, 
FIA data may be used for calibration or validation (figure 2).  For example, since 
the initial data-gathering effort for the Southern variant, there have been as many 
as two full remeasurement cycles in some southern states.  These data could be 
valuable for calibration and validation of the submodels developed for the first 
version of the variant.  Validation applications may become extremely important 
for the next generation of FVS variants, which are to be climate sensitive.  Certain 
submodels may require periodic adjustment as the effects of climate change 
become better known. 

 
 

 
 
FIGURE 2:  Generalized process for development of an FVS variant, and stages in the process 
where FIA data may be used. 
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FVS model validation is a current topic of interest among FVS users and 
researchers, so it would be beneficial to make the FIA database available to FVS 
users in the fullest extent possible.  There are many variables in FIA data that are 
not usable by FVS directly, but which may be useful to users.  Some of these 
variables may be used for data stratification, or as auxiliary variables during 
model testing.  Because of the large number of FIA variables, it is impossible to 
comprehensively address all of the possibilities here.  However, it is possible to 
discuss the variables that are used by all FVS base variants and discuss the 
feasibility of cross-walking them with FIA variables. 

 
The remainder of this paper will describe the variables used in the base FVS 

variants, the corresponding FIA variables, and the issues and possible solutions 
that have been identified in cases where direct variable transfer is not possible.  
The list of variables includes all of those that are included in the StandInit and 
TreeInit tables in the database version of FVS input files (Forest Vegetation 
Simulator Staff 2008).  Due to the large number of variables involved, they are 
listed in a table format with the FVS variable in the first column, the 
corresponding FIA variable(s) in the second column, and a description of the 
variable(s) and related notes in the last column.  In the description column, the 
original FVS description appears in normal text.  Additional text that describes 
the relationship between the FVS and FIA variables appears in bold. 

 
 

TABLE 1:  Variables in the predefined FVS_StandInit table structure, their corresponding FIA 
variables, and descriptions. 

FVS variable  FIA variable  Description and notes 

Stand_CN  PLOT.CN or 
COND.CN 

Database control number. Required by Suppose 2.0 when 
populating stand lists.  FIA uses several control numbers 
as linkages between tables.  Some may be usable in 
FVS. 

Stand_ID  Possible 
composite of 
INVYEAR, 
STATE, 
COUNTYCD, 
and LOC 

Stand identification code. Required by Suppose 2.0 when 
populating stand lists.  The original translation of FIA 
data to FVS uses a composite stand ID that included 
the state, county, plot, and inventory year of the FIA 
plot.  This variable was useful to users, because the 
general location of plots could be quickly identified 
during simulations. 

Variant  No FIA variable  The two character variant identification code. Required by 
Suppose 2.0 when populating stand lists.  In the original 
Mapmaker release, users were prompted to supply the 
name of the variant that would be used with the FIA 
data.  It is possible that this step can be made 
transparent to the user by mapping variant coverage 
areas (see Discussion below). 

Inv_Year  MEASYEAR The stand’s inventory year corresponding to IY(1) in FVS. 
Required by Suppose 2.0 when populating stand lists.  FIA 
uses an inventory year variable (INVYR) in the PLOT 
table, but this represents the panel or subpanel to 
which the plot belongs.  The actual year in which the 
data were collected is recorded in MEASYEAR.  The 
latter is the most appropriate variable for use as FVS 
Inv_Year. 
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TABLE 1:  Variables in the predefined FVS_StandInit table structure, their corresponding FIA 
variables, and descriptions. 

FVS variable FIA Variable Description and notes 

Groups  Many possible  A list of Grouping codes, also separated by spaces, tabs, 
carriage returns, or newlines. Used by Suppose 2.0 when 
populating stand lists.  In the Mapmaker release, users 
were allowed to pick from a limited list of group codes 
that were populated from FIA variables.  It would be 
possible to expand this list and increase users’ 
flexibility (see Discussion below). 

AddFiles  n/a  A list of Addfile names (.kcp), separated by tabs, carriage 
returns, or newlines, which will be inserted into simulation 
file as one or more components. Used by Suppose 2.0 
when stands are added to simulations.  Not applicable to 
FIA data at this time. 

FVSKeywords  n/a  A list of FVS keywords, separated by spaces, tabs, 
carriage returns, or newlines, which define the FVS run. 
Used by Suppose 2.0 when stands are added to 
simulations.  Some keywords may be used to override 
FVS default values with the values of certain variables 
that are stored in the FIA database. 

Latitude  LATITUDE Latitude in degrees of the stands location.  The FIA 
program is prohibited by law from releasing precise 
plot coordinates to the public.  In most cases, the 
coordinates in the public database are within one mile 
of the true location.  These are referred to as “fuzzed” 
coordinates. 

Longitude  LONGITUDE Longitude in degrees of the stands location.  See Latitude 
for treatment of FIA coordinates.  

Region  ADFORCD  USDA-FS (National Forest) Region code.  The first two 
places in the FIA variable ADFORCD specify the 
National Forest region.  

Forest  ADFORCD USDA-FS National Forest code.  The last two places in 
the FIA variable ADFORCD specify the National Forest. 

District  No FIA variable  USDA-FS District code.  Not used by FIA, but mappable 
from FIA coordinates.  

Compartment  No FIA variable USDA-FS Compartment code.  Not used by FIA, but 
mappable from FIA coordinates.  Compartment size 
may limit accuracy when fuzzed coordinates are used. 

Location  See notes  Location Code representing the 
Region/Forest/District/Compartment codes and 
corresponds to KODFOR in FVS. When specified, Location 
takes precedence over Region, Forest, District, and 
Compartment.  See notes on component variables 
above. 

Ecoregion  ECOSUBCD  Bailey’s Ecoregion code (not yet used by FVS).  FIA 
records the Bailey’s Ecoregion subsection code 
(ECOSUBCD) according to the map update by Cleland 
and others (2005).  These codes may be truncated to 
the Ecoregion level, depending on FVS needs at the 
time of implementation. 

PV_Code or 
Habitat Type 

HABTYPCD1, 
HABTYPCD2  

PV_Code identifies the potential vegetation. It is often the 
Habitat type or Plant association code. The two names 
shown are synonymous.  The FIA database includes 
thousands of Habitat Type and Plant Association 
codes, but many are represented by few or no plots in 
the database.  These codes used by FIA are under 
review and may require extensive review before cross-
walking.   
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TABLE 1:  Variables in the predefined FVS_StandInit table structure, their corresponding FIA 
variables, and descriptions. 

FVS variable FIA Variable Description and notes 

PV_Ref_Code  See notes Potential vegetation reference code for the PV_Code.  See 
notes on PV_Code / Habitat Type above. 

Age  STDAGE, 
BHAGE, 
TOTAGE  

Stand age in years.  FIA uses STDAGE to store stand 
age, but the methods used to populate this variable 
vary regionally and for periodic vs annual inventories.  
Age data for individual trees may be found in the 
BHAGE or TOTAGE variables in the TREE or SITETREE 
tables, depending on the species and FIA work unit.  

Aspect  ASPECT  Aspect in degrees.  FIA records ASPECT at the 
Condition and Subplot level.  

Slope  SLOPE Slope in percent.  FIA records SLOPE at the Condition 
and Subplot level.   

Elevation  See ElevFt Stand elevation represented in 100’s of feet for all variants 
except AK were it is elevation in 10’s of feet. (see ElevFt 
below) 

ElevFt  ELEV Elevation in feet. When specified, ElevFt takes precedence 
over Elevation.  The FIA variable ELEV is recorded in 
feet, and corresponds to the FVS ElevFt variable. 

Basal_Area_ 
Factor  

DESIGNCD Basal area factor corresponding to BAF in FVS.  FIA uses 
a design code (DESIGNCD) variable, located in the 
PLOT table, that defines fixed vs variable-radius 
design, diameter breakpoints, and the number of 
subplots in the design.  For single-condition plots, FVS 
plot design variables can be populated directly.  For 
multi-condition plots, translation is more complex (see 
Discussion).   

Inv_Plot_Size  DESIGNCD  The inverse of the fixed plot size in acres.  See notes for 
Basal_Area_Factor.  

Brk_DBH  DESIGNCD  Breakpoint DBH in inches.  See notes for 
Basal_Area_Factor. 

Num_Plots  DESIGNCD  Number of plots represented in FVS.  See notes for 
Basal_Area_Factor. 

NonStk_Plots  STATUSCD 
(SUBPLOT) 

Number of non-stockable plots.  Some FIA subplots may 
not have tree data associated with them because they 
were not sampled or because they sampled non-forest 
conditions.  Non-sampled subplots are identified with a 
status code (STATUSCD) in the SUBPLOT table.  
Depending on how users desire to treat FIA data in 
FVS, the FVS NonStk_Plots variable may be used. 

Sam_Wt  EXPNS or 
derived variables  

Sampling Weight used to compute the average yield tables 
and other weighted averages.  For users who are 
interested in population estimates, FVS sampling 
weight could be used to store the appropriate 
expansion factor for an FIA plot, given the area of 
interest.  These factors may have to be calculated on 
the fly and populated for each data query. 

Stk_Pcnt  STATUSCD 
(SUBPLOT) 

Stockable percent.  See notes above for NonStk_Plots, 
and discussion on treatment of conditions.  

DG_Trans  No FIA variable Diameter growth translation code.  Code 0 for increment 
cores and code 1 for remeasurement data.  DG_Trans can 
be coded appropriately according to the FIA data 
source. 

DG_Measure  REMPER Diameter growth measurement period.  The number of 
years between remeasurements of FIA plots is 
recorded in the REMPER variable in the PLOT table.   
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TABLE 1:  Variables in the predefined FVS_StandInit table structure, their corresponding FIA 
variables, and descriptions. 

FVS variable FIA Variable Description and notes 

HTG_Trans  No FIA variable Height growth translation code.  Code 0 for height growth 
and code 1 for remeasurement data.  HTG_Trans can be 
coded appropriately according to the FIA data source. 

HTG_Measure  REMPER Height growth measurement period.  See description for 
DG_Measure.  

Mort_Measure  REMPER Mortality measurement period.  See description for 
DG_Measure.   

Max_BA  No FIA variable  Maximum basal area.  Max_BA is used as part of the 
mortality routine in FVS, so there is no comparable 
variable in FIA data.  FIA uses STOCKING variables in 
the TREE and SEEDLING tables that may be used to 
compute stocking on an area basis.  Stand density 
index (SDI) is also used (see below). 

Max_SDI  SDIMAX  Maximum stand density index.  FIA uses maximum SDI 
values that are consistent with FIA computation 
methods and FIA forest types.  These may or may not 
be the same maximum values that would be used for 
growth simulations or silvicultural objectives.  The 
consistent definition and use of maximum SDI is being 
coordinated between FIA and the FVS staff. 

Site_Species  SISP  Site species code.  Site species codes are compatible 
with FIA species codes in SISP.   

Site_Index  SI  Site index.  FIA records site index in feet at a specified 
base age (SIBASE).  These base ages are different than 
the base ages assumed by FVS in some variants.  It 
may be necessary to cross-walk site index values 
because FVS base ages are fixed.  

Model_Type  n/a Model type code. Only applies to CR and SE variants.  

Physio_Region  n/a Physiographic region code. Only applies to SE variant. 

Forest_Type  FORTYPCD Forest type code.  FVS forest type codes may or may 
not be compatible with FIA forest types.  These will 
need to be cross-walked by variant.  

State  STATECD FIA state code  

County  COUNTYCD FIA county code  

Fuel_Model  * Fire behavior fuel model  

Fuel_0_25  * Initial tons per acre of 0 to 0.25 inch fuel  

Fuel_25_1  * Initial tons per acre of 0.25 to 1 inch fuel  

Fuel_0_1  * Initial tons per acre of 0 to 1 inch fuel, if not using previous 
two fields  

Fuel_1_3  * Initial tons per acre of 1 to 3 inch fuel  

Fuel_3_6  * Initial tons per acre of 3 to 6 inch fuel  

Fuel_6_12  * Initial tons per acre of 6 to 12 inch fuel  

Fuel_gt_12  * Initial tons per acre of greater than 12 inch fuel.  

Fuel_Litter  * Initial tons per acre of litter  

Fuel_Duff  * Initial tons per acre of duff  

Photo_Ref  * Photo series reference number (1 – 32, see FFE 
documentation)  

Photo_Code  * Photo code (appropriate character strings depend on the 
photo series reference number, see FFE documentation)  

* Fuel data are available only for Phase 3 FIA plots at this time.  Phase 3 data were not included in 
the Mapmaker release, but it may be possible to include them in future translation programs.  
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Inclusion of these data will require a cross-walk process, based on the requirements of the FVS 
Fire and Fuels Extension. 
 
 
Table 2.  Variables in the predefined FVS_TreeInit table structure, their corresponding FIA 
variables, and descriptions. 

FVS Variable  FIA Variable  Description and notes  

Stand_CN  PLOT.CN or 
COND.CN  

Same as Stand_CN in FVS_StandInit table. Not read by FVS, 
but may be used for querying purposes.  FIA uses several 
control numbers as linkages between tables.  Some may 
be usable in FVS. 

Stand_ID  Possible 
composite of 
INVYEAR, 
STATE, 
COUNTYCD, 
and LOC 

Same as Stand_ID in FVS_StandInit table. Not read by FVS, 
but may be used for querying purposes.  The original 
translation of FIA data to FVS uses a composite stand ID 
that included the state, county, plot, and inventory year 
of the FIA plot.  This variable was useful to users, 
because the general location of plots could be quickly 
identified during simulations. 

Tree_ID  TREE  Unique tree identifier within FVS plot.  Because the FIA 
subplot is the equivalent of the FVS plot, FIA trees are 
uniquely identified by tree number within subplots.  See 
Plot_ID note below. 

Plot_ID  SUBPLOT  Plot number in the FVS data.  FVS uniquely identifies plots 
within stands.  Because the area represented by an FIA 
plot or condition is considered to be a “stand”, the FIA 
subplot is the equivalent of the FVS plot.  

Tree_Count  TPA_UNADJ 
or 1  

Number of trees represented by this data tree.  When plot 
data are reported on a per-acre basis (i.e., 
Basal_Area_Factor = -1 and Inv_Plot_Size = 1 in the 
FVS_StandInit table), Tree_Count is the per-acre 
expansion factor associated with the tree.  When plot 
design data are supplied, Tree_Count is generally set to 1 
(meaning that one tree of this species, diameter, height, 
etc was tallied on the plot).   

History  STATUSCD  In FVS, History Code 0-5 are live trees, 6 and 7 died during 
mortality observation, 8 and 9 died before mortality 
observation period.  The FIA variable STATUSCD 
distinguishes between live and dead trees, but other 
variables, such as MORTYR, may be used to assign the 
appropriate History code. 

Species  SPCD  Tree Species Code, can be the FVS alpha code, FIA numeric 
code or USDA plant symbol.  The FIA variable SPCD can be 
used without modification. 

DBH or 
Diameter  

DIA  Diameter in inches. Diameter is an alias for DBH in the FVS 
tables. For woodland trees, diameter is measured at the root 
collar (DRC).  The FIA variable DIA can be used without 
modification. 

DG  No FIA 
variable  

Diameter growth in inches (not tenths of inches).  The FVS 
DG variable may be calculated using the FIA variables 
DIA, TREE.PREV_DIA (previous diameter), and 
PLOT.REMPER (remeasurement period). 

Ht  HT  Height in feet.  In the case of trees with broken or missing 
tops, the FIA height variable includes the broken or 
missing portion.  See HtTopK / ACTUALHT below. 
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Table 2.  Variables in the predefined FVS_TreeInit table structure, their corresponding FIA 
variables, and descriptions. 

FVS Variable FIA Variable Description and notes 

HtG  Float  Height Growth in feet.  FIA does not currently 
report height growth or provide both current and 
previous heights as national variables, partly 
because height measurements were not 
collected by some FIA work units in the past.  
However, height should become a national core 
variable in the future. 

HtTopK  ACTUALHT  Height to top kill is the height to the point of top kill 
of the tree in feet.  In FIA data, if ACTUALHT = HT, 
then the tree does not have a broken top. If 
ACTUALHT < HT, then the tree does have a 
broken or missing top. 

CrRatio  Float  If the number is 0-9 then it is considered a crown 
ratio code, according to the FVS documentation.  If 
the number is 10-99 the value is considered a 
percent live crown.  In the past, the FIA variable 
for compacted crown ration (CR) has also 
contained a mixture of the coded and 
percentage crown ratios.  At the time of the 
Mapmaker release, FVS appeared to not handle 
this situation correctly.  

Damage1  DAMTYP1  Damage Code, see the FVS documentation for 
details.  Although there are existing FIA damage 
variables, damage and severity codes are 
currently undergoing substantial revision within 
the FIA program.  The new national coding 
scheme is anticipated to be implemented no 
sooner than 2011. 

Severity1  DAMSEV1 Severity Code corresponding to damage code 1.  
See notes on Damage1  

Damage2  DAMTYP2 Second damage code.  See notes on Damage1 

Severity2  DAMSEV2 Second severity code.  See notes on Damage1 

Damage3  DAMTYP3 Third damage code.  See notes on Damage1 

Severity3  DAMSEV3  Third severity code.  See notes on Damage1 

TreeValue  Float  Tree Value Class Code 1 for desirable, 2 for 
acceptable, 8 for non-stockable and any other 
number represents a live cull.  FIA cull and 
growing stock variables are currently 
undergoing revision.  It should be possible to 
develop a rule set for converting certain 
combinations of FIA cull variables into FVS 
codes.  

Prescription  No FIA variable. Prescription code.  Prescription codes are used in 
FVS to describe trees that may be candidates for 
silvicultural manipulation.  The FIA program 
does not assign similar identifiers to individual 
trees, so there is no corresponding variable. 

Age  BHAGE or TOTAGE Age of the tree record.  In FIA data, individual tree 
ages can be found in the BHAGE or TOTAGE 
variables in the TREE and SITETREE tables.  

Slope  SLOPE (SUBPLOT)  Slope percentage on the plot where the tree was 
located.  The slope measured on the FIA subplot 
is comparable to plot-level slope in FVS. 
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Table 2.  Variables in the predefined FVS_TreeInit table structure, their corresponding FIA 
variables, and descriptions. 

FVS Variable FIA Variable Description and notes 

Aspect  ASPECT (SUBPLOT) Aspect in degrees on the plot where the tree was 
located.  The aspect measured on the FIA 
subplot is comparable to plot-level aspect in 
FVS. 

PV_Code or 
Habitat Type 

See PV_Code entry in 
Stand_Init table. 

The potential vegetation code on the plot where the 
tree was located.  FIA habitat type and potential 
vegetation codes are recorded in the condition 
table, so they are more appropriately used in the 
Stand_Init table. 

PV_Ref_Code  See PV_Ref_Code in 
the Stand_Init table. 

Potential vegetation reference code for the 
PV_Code  

TopoCode  TOPO_POSITION_PNW Topography Code 1=bottom, 2=lower, 3=mid slope, 
4=upper slope, and 5=ridge top, on the plot where 
the tree was located.  Only the Pacific Northwest 
(PNW) FIA program uses a topographic position 
code that it comparable to the FVS TopoCode. 

SitePrep  TRTCD1, -2, and -3  Site Preparation code 1=none, 2=mechanical, 
3=burn, and 4=road cuts/road fills/stockable road 
beds, on the plot where the tree was located  

 
 

Tables 1 and 2 provide a general framework for translation of FIA variables 
into FVS-ready format.  In some cases, there are several options for translation 
that may be user-defined or may be pre-set for ease of use, depending on users 
needs.  However, some of these options are not yet common knowledge to users, 
so they will be introduced briefly here. 

 
Choice of Plot and Tree Data Formats 

 
FIA mapped (annual) design plots have four 1/24-acre subplots design for a 

total surface area of approximately 1/6 acre, resulting in an expansion factor of 
6.02 trees per acres for tally trees > 5.0 inches in diameter.  Seedlings and 
saplings are measured on 1/300-acre microplots that are nested within each 
subplot, resulting in a per-acre expansion factor of 74.97.  There are two ways to 
code this information in FVS: 

 
A) Basal_Area_Factor = -24, Inv_Plot_Size = 300, Brk_DBH = 5.0, and 

Tree_Count = 1 
 
B) Basal_Area_Factor = -1, Inv_Plot_Size = 1, Brk_DBH = null, and 

Tree_Count = 6.02 (trees >5.0 inches) or Tree_Count = 74.97 (trees <5.0 
inches) 

 
In example (A), the FVS-formatted data utilize the FIA plot design information 

and expansion factors are computed by FVS.  The negative sign in front of the 
Basal_Area_Factor value indicates that the value is for a fixed-plot area, and not a 
basal area factor.  In example (B), all trees are represented by their per-acre 
expansion factors and the FIA plot design specifics are ignored. 
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In terms of the computation of stand structure, volume, and other 

characteristics in FVS, both approaches produce identical results.  However, in 
terms of growth, mortality, and other submodel functions, there may be 
differences between the two.  The reason for this is that FVS uses both stand-level 
and plot-level variables in some submodels.  In other words, a 10-inch tree that 
was recorded on a dense subplot may be grown slower than a 10-inch tree 
recorded on a sparse subplot.  Although the magnitude of difference is unknown 
and will vary on every plot, preserving the information from intra-plot (subplot) 
variability may be desirable to some users.  In addition, FVS preserves the 
subplot-level tally and passes that information to the Stand Visualization System 
(SVS; McGaughey 1997), allowing users to compare compositional and structural 
differences among subplots. 

 
It is possible to make data available in either format (A) or format (B), 

depending on user needs.  On single-condition, mapped-design plots, the 
preference for one format or the other makes little difference, except for the 
possible growth and mortality differences mentioned above.  However, there are 
certain circumstances under which one format or the other may be preferable, or 
even necessary.  The most important of these involves the treatment of multiple 
conditions that might occur on a single FIA plot.   

 
 

Treatment of Multiple Conditions  
 
Briefly described, conditions are delineated on FIA plots when part of the plot 

is occupied by forest and another part is occupied by nonforest land, water, or 
some situation exists that precludes sampling part of the plot (figure 3).  Forested 
conditions are further divisible by reserved status, owner group, forest type, stand 
size class, regeneration status, or tree density.  In some cases, these divisions 
equate to what would typically be called separate stands, but in other cases they 
are not. 

 
Depending on user needs, the division of a plot by condition may or may not 

be important.  If the objective of a simulation is to evaluate silvicultural options 
on a landscape, it may be important to exclude reserved lands from treatment 
options.  The consideration of multiple-condition plots as a single condition that 
includes mixtures of forest and nonforest or different types of forest may 
misrepresent composition, structure, or growth potential at the plot level. 
 
 
Other Considerations 

 
It is not possible to anticipate all user needs, or even to consider all of the 

possibilities, given the complexity of the FIA database, the FVS base system, and 
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all of the FVS extensions.  Undoubtedly, users who are intimately familiar with 
one of more of the programs will be able to identify issues not covered here.  

 
FIGURE 3:  The FIA annual plot design (A) and example of mapping multiple conditions on the plot 
footprint (B). 

 
 

Conclusion 
 
In summary, the work that needs to be done on the next generation of FIA to 

FVS data translation can be described in three groups: opportunities, data needs, 
and open questions.  Issues belonging each of these groups have been described, 
to some degree, in this paper, but the list is not exhaustive.  The opportunities may 
be taken advantage of in one step, or may be implemented gradually.  The data 
needs are relatively easily identified, and can be satisfied through further 
investigation.  It is possible for FIA developers to begin to address these issues 
right away.  The open questions will require solicitation of user input and priority 
ranking, because some answers may have important implications for data delivery 
and use.  Once the open questions have been answered and addressed, the result 
should be a greatly enhanced outlet for FIA data. 
 

Opportunities 
! Export FIA data to FVS input files as a database 
! Utilize the existing FVS map to assign default geographic variant 

 
Data Needs 
! Site index species and site index values must conform with FVS variant 
! Stockable area should be computed consistently 
! Damage and severity codes should be translated to FVS specifications 
where possible 
! FIA habitat and community types need to be cross-walked to FVS types 
! Diameter and height growth data should be provided when available 
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! Work toward allowing NFS volume equation computation for tree records  
! Include tree defect data where available 
! Include stem count for woodland species 
! Include access to older periodic data 
! Export seedling data when available 
! Export dwarf mistletoe data when available 
! Include fuel loading data from Phase 3 plots 

 
Open Questions 
! How to deal with multiple conditions? 
! When to incorporate plot design codes? 

 
Miles (2008) noted that “FVS users of FIA data make up a small but extremely 

important part of the overall FIA user community. It is important to maintain the 
delivery of FIA data to this user group.”  This paper is a first step toward restoring 
access to the most current FIA data for this user group.  As this effort proceeds, 
input from all interested parties is welcome. 
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EVALIDatorReports: Reporting Beyond the FIADB 

 

Patrick D. Miles1 

 

Abstract: Tools for analyzing data collected by the U.S. Forest Service’s Forest Inventory and 

Analysis (FIA) program are available in Microsoft Access© format. Databases have been created 

for every state, except Hawaii, and are available for downloading. EVALIDatorReports is a 

Visual Basic Application that is stored within each Microsoft Access© database containing FIA 

data for each state. EVALIDatorReports can generate reports for over 40 different types of 

estimates including forest area, number of trees, growing-stock volume, growth, removals, and 

mortality. The code for this Visual Basic Application can be viewed, modified, and extended. This 

approach provides advantages for users interested in creating customized data summaries 

utilizing external data and/or programs. The system does not require Internet access after the 

databases are downloaded to a personal computer. This paper contains one simple and three 

complex examples illustrating how items can be added to the list of classification variables or to 

the list of estimates within the EVALIDatorReports program.  

 

KEYWORDS: Forest inventory, database, reporting tool, forest statistics 

 

Background 

The needs of most customers of the U.S. Forest Service’s Forest Inventory and Analysis (FIA) 
program can be met by Web applications such as the Forest Inventory Mapmaker program 
(Miles 2002) and more recently Forest Inventory Data Online (FIDO) (Wilson and Ibes 
2008). The reporting capabilities of these tools are continually being improved but they 
will never be able to meet all the needs of power users. Power users – biometricians, 
statisticians, and analysts - will always require access to the underlying data. 
 
FIA began providing FIA downloadable datasets in 1996. Initially, datasets for the 
eastern states were available in Eastwide database format (Hansen et al. 1992) while 
datasets for the western states were available in Westwide database format (Woudenberg 
and Farrenkopf 1995). In 2001 a standardized national format for all datasets became 
available and is known as the FIADB (Forest Inventory and Analysis Program 2008).  
 

                                                 
 

USDA Forest Service Proceedings – RMRS-P-56 4.

In: McWilliams, Will; Moisen, Gretchen; Czaplewski, Ray, comps. 2009. 2008 Forest Inventory and Analysis (FIA) 
Symposium; October 21-23, 2008: Park City, UT. Proc. RMRS-P-56CD. Fort Collins, CO: U.S. Department of  
Agriculture, Forest Service, Rocky Mountain Research Station. 1 CD. 



 2  

Comma separated values (CSV) has been the standard format for dataset delivery. Users 
wrote scripts to read data from these CSV files into their programs or databases. Mistakes 
were frequent, such as loading a real number as an integer thereby inadvertently 
truncating or rounding the real number. 
 
Beginning in February of 2008, FIA datasets became available in Microsoft Access© 
2003 format in addition to CSV format. Microsoft Access© is available on most Forest 
Service computers and is used widely in the academic and research communities. Many 
databases and software programs can read and correctly interpret data from Microsoft 
Access© databases, thereby eliminating the formatting problem so often encountered 
with CSV files. 
 
Microsoft Access© databases containing FIA data and reporting tools have been created 
for every state except Hawaii and are available for download from 
http://www.fia.fs.fed.us/tools-data/datamart.html. Each of these state databases also 
includes a form (i.e., a database tool) that allows users to import CSV data for additional 
states and create a multi-state database. Unfortunately, due to the two-gigabyte size limit 
for Microsoft Access© files, multi-state databases are typically limited to two or three 
states. 
 
Data delivery in Microsoft Access© format creates an opportunity to ensure that results 
provided by the Forest Inventory Mapmaker and FIDO programs can be duplicated. To 
that end, a number of Structured Query Language (SQL) scripts were written and stored 
in the Microsoft Access© databases. These SQL scripts are useful to Microsoft Access© 
database users and help to verify that both the program used to create the CSV files and 
the import specifications used to load the data from the CSV files into the Microsoft 
Access© databases were working correctly. 
 
While the delivery of FIA data in Microsoft Access© format was initially intended solely 
as a method of data transfer, it soon became apparent that there are additional 
opportunities to meet customer needs that could not be met by existing Web applications. 
The FIA program can provide personal open-ended databases with a reporting tool based 
on peer reviewed estimation protocols (Bechtold and Patterson 2005). 
 

Advantages to having FIA data in personal database 
 
There are several advantages to having FIA data in Microsoft Access©: 

1) Archiving – data does not change  
2) Availability – data is always available 
3) Transparency – data and programs in one place 
4) Scalability and flexibility – opportunity to add data and programs to the database 

 
Archiving – A common complaint from users is that the numbers coming out of the 
Forest Inventory Mapmaker or FIDO have changed since the last time they ran a report. 
Mapmaker and FIDO use data stored in FIA’s corporate Oracle database. The corporate 
database is not static. Corrections to field data or changes to compilation procedures 
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result in different answers from the reporting tools. A researcher with a personal copy of 
the database could choose when or if to update the information. 
 
Availability – Network outages, denial of service attacks, funding cuts, and other 
unforeseen circumstances can limit access to FIA Web applications. Researchers can 
download and retain a static copy of the database to use in their research and 
publications. 
 
Transparency – The code for the reporting tool (EVALIDatorReports) is stored inside the 
database and can be viewed and modified by the user. The code, data, and reporting tool 
are all located in a single Microsoft Access© file that can easily be copied and 
transferred. 
 
Scalability – Users can add to the list of classification variables and the list of estimates. 
Three examples of extending the reporting capabilities of the database and reporting tools 
are provided here. 
 

The EVALIDatorReports Reporting Tool 
 

EVALIDatorReports has inputs and outputs that are essentially equivalent to those of the 
Forest Inventory Mapmaker and FIDO. 
 
The user inputs the following information:  

1) Geographic area of interest 
2) Optional filters (for restricting the query to a specific ownership, species, etc.) 
3) Attribute of interest (timberland area, number of trees, volume, etc.) 
4) Classification variables to be used for page, column, and row headings 
 

EVALIDatorReports outputs: 
1) Table of population estimates 
2) Corresponding table of sampling errors 

 
EVALIDatorReports differs from the Forest Inventory Mapmaker and FIDO in that the 
user can add to the list of classification variables and to the list of attributes of interest.  
 
Simple EVALIDatorReports Examples 
  
To start EVALIDatorReports, open the Microsoft Access© database and click on the 
“Forms” object and then double-click on the “EVALIDatorReports” name (Fig. 1). 
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Figure 1: Starting EVALIDatorReports. 

 

The user must first specify the variable to be estimated (Fig.2). In this example the 
estimate selected is “3 Area of timberland (acres)”. Once the user specifies this variable, 
a list of inventories available in the database for this estimate appears in the EvalID 
listbox. In this example, inventories of Illinois and Indiana for the year 2006 were 
selected from the available list. The retrieval can be further limited to national forest 
lands by placing the filtering clause “and cond.owncd=11” in the filtering textbox. The 
user must also specify the three classification variables for page, row, and column. Here a 
single page report is specified by picking “None” for the page classification variable. 
This single page report will have “Basal area live tree” classes for the row headings and 
“Stand-size” classes for the column headings. 
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Figure 2: EVALIDatorReports input screen. 

 

The resulting tabular reports (Tables 1 and 2) show that in 2006 there were 449,928 acres 
of national forest timberland in Indiana and Illinois plus or minus 3.85 percent (one 
standard deviation). 
 

Table 1. National Forest timberland acres by basal area and stand-size, Illinois and Indiana, 2006. 

  Stand-size 

Basal 

area Total 

Large 

diameter 

Medium 

diameter 

Small 

diameter 

Total 449,928 368,894 64,532 16,502 

0-40 

sqft/ac 12,156 156 5,604 6,395 

41-80 

sqft/ac 74,137 44,740 19,290 10,107 

81-120 211,918 181,456 30,462 - 
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sqft/ac 

120+ 

sqft/ac 151,718 142,542 9,176 - 

 

Table 2: Sampling error percent for estimates in Table 1. 

  Stand-size 

Basal 

area Total 

Large 

diameter 

Medium 

diameter 

Small 

diameter 

Total 3.85 5.17 19.84 36.82 

0-40 

sqft/ac 42.78 101.38 67.74 56.24 

41-80 

sqft/ac 17.63 24.22 33.84 49.66 

81-120 

sqft/ac 9.62 10.52 32.95 - 

120+ 

sqft/ac 10.78 11.2 49.43 - 

 

Example 1: Adding a Runtime Classification Variable: Classification variables 
are stored in the table REF_PRC. To open the REF_PRC table in Microsoft Access© 
(Fig. 3) click on the “Tables” object and then double-click on the “REF_PRC” name. 
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Figure 3: Opening the REF_PRC table in Microsoft Access©. 

 

The values in the Page, Row, and Column lists in the EVALIDatorReports program are 
drawn from the column CLASSNM in the REF_PRC table (Table 3). In the simple 
example “Basal area live tree” and “Stand-size” were selected as the classification 
variables. In the Microsoft Access© table REF_PRC these are just 2 of the 54 
classification variables available to the EVALIDatorReports program. A new item can be 
added to the classification variable list in EVALIDatorReports by adding a new record to 
the REF_PRC table.  
 

Table 3: A subset of records in REF_PRC table. 

CLASS

NBR 

COND 

TREE 

SEED CLASSNM FUNCTIONNM 

PAGE 

CLASS 

ROW 

CLASS 

COL 

CLASS 

3 COND Stand-size 

stdszcdLabel(cond.s

tdszcd) Y Y Y 

11 COND 

Basal area 

live tree 

baliveLabel(cond.ba

live) Y Y Y 

 

Basal area is commonly used for describing stands in the east. In the west, forest 
managers often prefer to use stand-density index (SDI).  SDI (Long and Daniel 1990) is 
not currently available in EVALIDatorReports. But it can be added in two simple steps: 
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• Step 1 - Add the record in Table 4 to the REF_PRC table. 

• Step 2 - Add function sdiLabel (appendix A) to the “Functions module” in the 
Microsoft Access© database (Fig. 4). To open the Functions module click on the 
“Modules” object and then double-click on the name “Functions module”. Then 
copy the sdiLabel function code from Appendix A into the module. This sdiLabel 
function generates the classification variable at runtime. For each CONDITION 
record, all of the trees are selected and an SDI value is calculated for the 
condition. The resulting SDI is then assigned an SDI class. 

 

 

Figure 4: Opening the Functions module in Microsoft Access©. 

 

 

Table 4: SDI classification variable record to be added to REF_PRC table 

CLASS

NBR 

COND 

TREE 

SEED CLASSNM FUNCTIONNM 

PAGE 

CLASS 

ROW 

CLASS 

COL 

CLASS 

55 COND SDI 

sdiLabel(cond.plt_cn, 

cond.condid, 

cond.condprop_unadj) 

Y Y Y 
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Now when the simple example is rerun using SDI as the row classification variable 
instead of “Basal area all live”, the output tables provide a slightly different perspective 
to the land manager (Tables 5 and 6). 
 

Table 5. National forest timberland acres by basal area and stand-size, Illinois and Indiana, 2006. 

  Stand-size 

SDI Total 

Large 

diameter 

Medium 

diameter 

Small 

diameter 

Total 449,928 368,894 64,532 16,502 

less 

than 

100 SDI 15,300 5,771 5,604 3,925 

100 to 

199 SDI 203,310 153,153 40,487 9,671 

200 to 

299 SDI 196,777 181,205 12,665 2,907 

300 to 

399 SDI 28,891 23,115 5,776 - 

400 to 

499 SDI 5,032 5,032 - - 

500 to 

599 SDI 618 618 - - 

 

 

Table 6: Sampling error percent for estimates in Table 5. 

  Stand-size 
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SDI Total 

Large 

diameter 

Medium 

diameter 

Small 

diameter 

SDI 3.85 5.17 19.84 36.82 

less than 

100 SDI 38.78 65.78 67.74 65.83 

100 to 

199 SDI 9.65 11.6 26.72 51.55 

200 to 

299 SDI 9.18 9.86 41.26 88.47 

300 to 

399 SDI 29.2 32.97 66.97 - 

400 to 

499 SDI 55.86 55.86 - - 

500 to 

599 SDI 101.38 101.38 - - 

 

 

Example 2: Adding a User-Provided Classification Variable to the 
FIADB:The state of Minnesota often reports information by Department of Natural 
Resources (DNR) administrative boundaries. Within the Microsoft Access© database for 
Minnesota (MN.mdb) a new column can be permanently added to the PLOT table. In this 
case the new column is called AREA_NAME. By overlaying the plot coordinates (LAT 
and LON) on an administrative boundary shapefile (Fig. 5) provided by the Minnesota 
DNR, each plot can be assigned to an administrative unit. The resulting administrative 
boundary codes are then assigned to the AREA_NAME column of the PLOT table. 
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Figure 5: Minnesota DNR Administrative boundaries as viewed in ArcGIS. 

 

Two additional steps are required before the EVALIDatorReports program can report 
information by administrative boundary. First a record must be added to the REF_PRC 
table. In this example the record in Table 7 is added to the REF_PRC table. 
 

Table 7: AREA_NAME classification variable record to be added to REF_PRC table. 

CLASS 

NBR 

COND 

TREE 

SEED CLASSNM FUNCTIONNM 

PAGE 

CLASS 

ROW 

CLASS 

COL 

CLASS 

56 COND AREA_NAME area_nameLabel(plot.area_name) Y Y Y 

 

Then the function area_nameLabel (Appendix b) must be added to the “Functions 
module”. Note that in this case the function simply assigns the area name class. A portion 
of the resulting output from this retrieval is displayed in Table 8. 
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Table 8: Area of timberland by DNR administrative area and stand-size, Minnesota, 2006. 

  Stand-size 

Large 

diameter 

Medium 

diameter 

Small 

diameter Nonstocked 

Total 15,112,725 4,115,614 5,564,086 5,193,133 239,892 

Aitkin 

Area 757,616 214,109 303,031 229,298 11,178 

Backus 

Area 865,762 284,596 333,551 237,369 10,246 

Baudette 

Area 548,271 66,092 220,576 252,656 8,947 

… …. … … … … 
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Example 3: Adding a Runtime Estimate: There is a difference between adding 
a classification variable and adding an estimate. In both cases a function must be added to 
the “Functions module” However, when adding a classification variable a record must be 
inserted into the REF_PRC table, while when adding an estimate a record must be 
inserted into the REF_ATTRIBUTE_ACCESS table. 
 
The REF_ATTRIBUTE_ACCESS table has four columns. A single record of this table is 
presented in TABLE 9. The first column in the table is ATTRIBUTE_NBR. Currently 
there are 46 rows in the REF_ATTRIBUTE_ACCESS table so the rows are numbered 1 
through 46. The second column is ATTRIBUTE_DESCR. The ATTRIBUTE_DESCR 
for the row depicted in Table 9 is “All live biomass on forestland oven-dry(tons)”. The 
third column, VBA_SUMFROMWHERE, contains a segment of SQL code used by the 
EVALIDatorReports program to query the database. The fourth column, 
PEA_SURROGATE, is blank for all 46 rows that have been predefined. When adding a 
new row to the REF_ATTRIBUTE_ACCESS table the PEA_SURROGATE column 
should be filled with the ATTRIBUTE_NBR for the row that most closely reflects what 
is being estimated. The program will then use the surrogate’s PEA records to identify the 
inventories that can be queried for the new estimate.  
 

Table 9: A single record from the REF_ATTRIBUTE_ACCESS table. 

ATTRIBUTE 

_NBR 

ATTRIBUTE_ 

DESCR VBA_SUMFROMWHERE 

PEA_ 

SURROGATE 

10 All live biomass 

on forestland 

oven-dry(tons) 

SUM(tree.TPA_UNADJ*tree.drybiot*  

      IIf(IsNull(tree.dia),PPP.adj_factor_subp, 

IIf(tree.dia<5,PPP.adj_factor_micr,  

      IIf(IsNull(MACRO_BREAKPOINT_DIA), 

PPP.adj_factor_subp,  

      IIf(dia<MACRO_BREAKPOINT_DIA, 

PPP.adj_factor_subp,adj_factor_macr)))))/2000   

   AS ESTIMATED_VALUE  

 FROM  

 TREE INNER JOIN (  

 COND INNER JOIN ((  

 POP_PLOT_STRATUM_ASSGN   
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 INNER JOIN  

 POP_STRATUM as PPP ON  

POP_PLOT_STRATUM_ASSGN.STRATUM_CN = PPP.CN)  

 INNER JOIN  

 PLOT ON POP_PLOT_STRATUM_ASSGN.PLT_CN =  

PLOT.CN) ON COND.PLT_CN = PLOT.CN)  

ON TREE.PLT_CN = PLOT.CN  

 WHERE ((TREE.STATUSCD)=1) AND  

((COND.COND_STATUS_CD)=1) and  

TREE.CONDID=COND.CONDID AND  

 tree.TPA_UNADJ is not null  

and tree.drybiot is not null and 

 

The EVALIDatorReports program only allows the user to query those state inventories 
for a particular estimate where the FIA program says it is appropriate. It is not 
appropriate, for example, to estimate growth on forest land for inventories conducted 
prior to 1998 because trees were not always measured on unproductive and reserved 
forest land. For inventories conducted prior to 1998, it may only be appropriate to 
estimate growth on timberland. The POP_EVAL_ATTRIBUTE (PEA) table identifies 
which estimates can be computed for each state inventory. When new estimates are added 
either new rows must be added to the PEA table or an ATTRIBUTE_NBR for an 
estimate that has entries in the PEA table must be entered in the PEA_SURROGATE 
column of the REF_ATTRIBUTE_ACCESS table. 
 
In this example, a user wants to compute all live aboveground tree biomass using Jenkins 
biomass equations rather than using the stored biomass values that were developed from 
FIA regional biomass equations. To use the stored biomass values, the researcher would 
select “10 All live biomass on forest land oven-dry(tons)” from the estimate list in 
EVALIDatorReports. The program would then use the tree biomass number stored in the 
DRYBIOT column of the TREE table. 
 
To replace DRYBIOT with a value calculated using the Jenkins biomass equations the 
user would add a new row to the REF_ATTRIBUTE_ACCESS table (Table 10).  The 
value of ATTRIBUTE_NBR would be 47. The value in ATTRIBUTE_DESCR would be 
“Jenkins All live biomass on forestland oven-dry(tons)”. The value in 
VBA_SUMFROMWHERE would be identical to the value from Table 9 with the 
exception that “tree.drybiot” would be replaced with the function call 
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“JenkinsBiomass(tree.spcd, tree.dia, tree.diahtcd, 0)”. The value of PEA_SURROGATE 
would be 10. 
 

Table 10: Jenkins biomass estimate in the REF_ATTRIBUTE_ACCESS table. 

ATTRIBUTE 

_NBR 

ATTRIBUTE_ 

DESCR VBA_SUMFROMWHERE 

PEA_ 

SURROGATE 

47 Jenkins All live 

biomass on 

forestland 

oven-dry(tons) 

SUM(tree.TPA_UNADJ*JenkinsBiomass(tree.spcd, 

tree.dia, tree.diahtcd, 0)*  

      IIf(IsNull(tree.dia),PPP.adj_factor_subp, 

IIf(tree.dia<5,PPP.adj_factor_micr,  

      IIf(IsNull(MACRO_BREAKPOINT_DIA), 

PPP.adj_factor_subp,  

      IIf(dia<MACRO_BREAKPOINT_DIA, 

PPP.adj_factor_subp,adj_factor_macr)))))/2000   

   AS ESTIMATED_VALUE  

 FROM  

 TREE INNER JOIN (  

 COND INNER JOIN ((  

 POP_PLOT_STRATUM_ASSGN  

 INNER JOIN  

 POP_STRATUM as PPP ON  

POP_PLOT_STRATUM_ASSGN.STRATUM_CN = PPP.CN)  

 INNER JOIN  

 PLOT ON POP_PLOT_STRATUM_ASSGN.PLT_CN =  

PLOT.CN) ON COND.PLT_CN = PLOT.CN)  

ON TREE.PLT_CN = PLOT.CN  

 WHERE ((TREE.STATUSCD)=1) AND  

((COND.COND_STATUS_CD)=1) and  

10 
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TREE.CONDID=COND.CONDID AND  

 tree.TPA_UNADJ is not null  

and tree.drybiot is not null and 

 

The researcher could then run EVALIDatorReports to generate biomass estimates based 
on either Jenkins (Table 11) or based on the regional biomass numbers (Table 12). 
 

Table 11: Jenkins  all-live biomass (oven-dry tons) on timberland Illinois and Indiana, 2006.  

  Species group major 

State Total Softwoods Hardwoods 

Total 591,296,419 13,460,746 577,835,673 

IL 292,274,945 5,790,358 286,484,587 

IN 299,021,473 7,670,388 291,351,086 

 

Table 12: Regional all-live biomass (oven-dry tons) on timberland Illinois and Indiana, 2006.  

  Species group major 

State Total Softwoods Hardwoods 

Total 486,143,719 11,234,641 474,909,078 

IL 234,606,405 4,812,103 229,794,301 

IN 251,537,314 6,422,538 245,114,776 

 

Future Developments 
 
 
New permanent meaningful partnering opportunities may arise from providing FIA data 
and tools in a completely transparent and open-ended system. Microsoft Access© 
databases containing FIADB data and the EVALIDatorReports program were 
downloaded 543 times from the FIA website in the first 5 months. Interest has already 
been expressed by this small user community in developing a mechanism for sharing 
code for new classification and attribute variables. Usually future development is driven 
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by customer demand. In the case of the EVALIDatorReports program, future 
development may be driven by customer supply.  
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Appendix A – sdiLabel Function 
Public Function sdiLabel(cn, condid, condprop_unadj) 
Dim sSQL As String 
Dim sdi As Double 
    sSQL = "SELECT sum(nz(tpa_unadj,0)/ " & Str(condprop_unadj) & 
"*(nz(dia,0)/10)^1.6)" 
    sSQL = sSQL + " FROM tree where plt_cn=""" & cn & """ and condid=" & 
Str(condid) 
     
    Dim cnn As ADODB.Connection 
    Set cnn = CurrentProject.Connection 
    Dim rs As New ADODB.Recordset 
    rs.Open sSQL, CurrentProject.Connection 
        Do Until rs.EOF 
            If IsNull(rs.Fields(0)) Then 
                sdi = 0 
            Else 
                sdi = rs.Fields(0) 
            End If 
            rs.MoveNext 
        Loop 
    rs.Close 
    cnn.Close 
    Debug.Print sdi 
    If (sdi < 100) Then 
    sdiLabel = "0001 less than 100 SDI" 
    ElseIf (sdi < 200) Then 
    sdiLabel = "0002 100 to 199 SDI" 
    ElseIf (sdi < 300) Then 
    sdiLabel = "0003 200 to 299 SDI" 
    ElseIf (sdi < 400) Then 
    sdiLabel = "0004 300 to 399 SDI" 
    ElseIf (sdi < 500) Then 
    sdiLabel = "0005 400 to 499 SDI" 
    ElseIf (sdi < 600) Then 
    sdiLabel = "0006 500 to 599 SDI" 
    ElseIf (sdi < 700) Then 
    sdiLabel = "0007 600 to 699 SDI" 
    ElseIf (sdi < 800) Then 
    sdiLabel = "0008 700 to 799 SDI" 
    ElseIf (sdi < 900) Then 
    sdiLabel = "0009 800 to 899 SDI" 
    ElseIf (sdi < 1000) Then 
    sdiLabel = "0010 900 to 999 SDI" 
    ElseIf (sdi < 1100) Then 
    sdiclass = "0011 1000 to 1099 SDI" 
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    Else 
    sdiLabel = "0012 1100+ SDI" 
    End If 
End Function 
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Appendix B – Area_nameLabel Function 
Public Function area_nameLabel(area_name) 
   Select Case area_name 
Case "Aitkin Area" 
area_nameLabel = "0001 Aitkin Area" 
Case "Backus Area" 
area_nameLabel = "0002 Backus Area" 
Case "Baudette Area" 
area_nameLabel = "0003 Baudette Area" 
Case "Bemidji Area" 
area_nameLabel = "0004 Bemidji Area" 
Case "Blackduck Area" 
area_nameLabel = "0005 Blackduck Area" 
Case "Cambridge Area" 
area_nameLabel = "0006 Cambridge Area" 
Case "Cloquet Area" 
area_nameLabel = "0007 Cloquet Area" 
Case "Deer River Area" 
area_nameLabel = "0008 Deer River Area" 
Case "Detroit Lakes Area" 
area_nameLabel = "0009 Detroit Lakes Area" 
Case "Hibbing Area" 
area_nameLabel = "0010 Hibbing Area" 
Case "Lake City Area" 
area_nameLabel = "0011 Lake City Area" 
Case "Little Falls Area" 
area_nameLabel = "0012 Little Falls Area" 
Case "Littlefork Area" 
area_nameLabel = "0013 Littlefork Area" 
Case "New Ulm Area" 
area_nameLabel = "0014 New Ulm Area" 
Case "Orr Area" 
area_nameLabel = "0015 Orr Area" 
Case "Park Rapids Area" 
area_nameLabel = "0016 Park Rapids Area" 
Case "Red Lake Reservation" 
area_nameLabel = "0017 Red Lake Reservation" 
Case "Rochester Area" 
area_nameLabel = "0018 Rochester Area" 
Case "Sandstone Area" 
area_nameLabel = "0019 Sandstone Area" 
Case "Tower Area" 
area_nameLabel = "0020 Tower Area" 
Case "Two Harbors Area" 
area_nameLabel = "0021 Two Harbors Area" 
Case "Warroad Area" 
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area_nameLabel = "0022 Warroad Area" 
Case Else 
 area_nameLabel = "0023 Other " 
End Select 
End Function 
 

USDA Forest Service Proceedings – RMRS-P-56 4.



 22  

Appendix C – JenkinsBiomass function 
 Public Function JenkinsBiomass(p_spcd, p_dbh, p_diahtcd, p_wdldstem) 
    Dim v_sppgrp     As String 
    Dim v_b0, v_b1, v_bm, v_dbh, v_live_aboveground        As Double 
    Dim pied, drcp, quga,drcq, stm             As Double 
  
   v_dbh = 2.54 * p_dbh                    ‘Convert diameter from inches to cm 
‘-------------------------------------------------------------------------------- 
‘Adjust diameter for woodland species that are measured at diameter root collar not dbh 
    If (p_diahtcd = 2) Then 
      pied = 0 
      drcp = 0 
      quga = 0 
      drcq = 0 
      If (p_wdldstem <= 1) Then 
        stm = 1 
      Else 
        stm = 0 
      End If 
      If (p_spcd < 300) Then 
        pied = 1 
        drcp = v_dbh 
      Else 
        quga = 1 
        drcq = v_dbh 
      End If 
      v_dbh = -6.818 + (1.0222 * v_dbh) + (1.8879 * stm) + (1.8971 * pied) - (0.0399 * 
drcp) + (3.11 * quga) - (0.0689 * drcq) 
      If (v_dbh < 2.54) Then 
        v_dbh = 2.54 
      End If 
    End If 
‘------------------------------------------------------------------------------------ 
‘Assign FIA species codes (spcd) to Jenkins species group codes (v_sppgrp)     
Select Case p_spcd 
    Case 350, 351, 352, 353, 354, 355, 740, 741, 742, 743, 744, 745, 746, 747, 748, _ 
                   749, 752, 753, 754, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929 
      v_sppgrp = "aa" 
    Case 40, 41, 42, 43, 57, 60, 67, 68, 70, 71, 72, 73, 81, 211, 212, 220, 221, 222, 240, 
241, 242 
      v_sppgrp = "cl" 
    Case 200, 201, 202 
      v_sppgrp = "df" 
    Case 310, 311, 312, 313, 315, 316, 317, 319, 320, 370, 371, 372, 373, 374, 375, 376, 
377, 378, 379 
      v_sppgrp = "mb" 
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    Case 323, 330, 331, 332, 333, 334, 336, 337, 341, 345, 356, 357, 358, 360, 361, 362, 
367, 381, 391, _ 
                420, 421, 422, 423, 424, 430, 431, 450, 451, 452, 460, 461, 462, 463, 471, 481, 
490, 491, 492, _ 
                500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 520, 
521, 522, 540, _ 
                541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 555, 561, 571, 580, 
581, 582, 583, _ 
                590, 591, 600, 601, 602, 603, 604, 605, 606, 611, 621, 631, 641, 650, 651, 652, 
653, 654, 655, _ 
                657, 658, 660, 661, 662, 663, 664, 680, 681, 682, 683, 684, 690, 691, 692, 693, 
694, 701, 711, _ 
                712, 720, 721, 722, 729, 730, 731, 732, 760, 761, 762, 763, 764, 765, 766, 769, 
770, 771, 772, _ 
                773, 774, 852, 853, 854, 855, 856, 857, 858, 859, 860, 863, 864, 865, 866, 873, 
874, 876, 877, _ 
                882, 883, 884, 885, 886, 887, 888, 890, 891, 895, 896, 897, 901, 906, 907, 908, 
909, 910, 912, _ 
                913, 914, 915, 919, 931, 934, 935, 936, 937, 940, 950, 951, 952, 953, 970, 971, 
972, 973, 974, _ 
                975, 976, 977, 981, 982, 986, 987, 988, 989, 991, 992, 993, 994, 995, 996, 997, 
998, 999, 5091, 5092, 5093, 7211 
      v_sppgrp = "mh" 
    Case 314, 318, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 
531, 800, 801, 802, _ 
          804, 805, 806, 807, 808, 809, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 
822, 823, 824, 825, _ 
          826, 827, 828, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 
844, 845, 846, 847, 850 
      v_sppgrp = "mo" 
    Case 0, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 
116, 117, 118, _ 
    119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 
136, 137, 138, 139, 140, 142, 143, 144, 298, 299 
      v_sppgrp = "pi" 
     
    Case 90, 91, 92, 93, 94, 95, 96, 97, 98 
      v_sppgrp = "sp" 
     
    Case 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 230, 231, 232, 250, 251, 252, 260, 
261, 262, 263, 264 
      v_sppgrp = "tf" 
     
    Case 50, 51, 52, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 65, 66, 69, 300, 303, 304, 321, 
322, 475, 755, _ 
                756, 757, 758, 768, 803, 810, 814, 829, 843, 902, 990 
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      v_sppgrp = "wo" 
    Case Else 
      v_sppgrp = "xx" 
    End Select 
‘--------------------------------------------------------------------------------- 
‘Assign coefficients based on Jenkins species group   
    If (v_sppgrp = "aa") Then 
      v_b0 = -2.2094 
      v_b1 = 2.3867 
    ElseIf (v_sppgrp = "mb") Then 
      v_b0 = -1.9123 
      v_b1 = 2.3651 
    ElseIf (v_sppgrp = "mh") Then 
      v_b0 = -2.48 
      v_b1 = 2.4835 
    ElseIf (v_sppgrp = "mo") Then 
      v_b0 = -2.0127 
      v_b1 = 2.4342 
    ElseIf (v_sppgrp = "cl") Then 
      v_b0 = -2.0336 
      v_b1 = 2.2592 
    ElseIf (v_sppgrp = "df") Then 
      v_b0 = -2.2304 
      v_b1 = 2.4435 
    ElseIf (v_sppgrp = "tf") Then 
      v_b0 = -2.5384 
      v_b1 = 2.4814 
    ElseIf (v_sppgrp = "pi") Then 
      v_b0 = -2.5356 
      v_b1 = 2.4349 
    ElseIf (v_sppgrp = "sp") Then 
      v_b0 = -2.0773 
      v_b1 = 2.3323 
    ElseIf (v_sppgrp = "wo") Then 
      v_b0 = -0.7152 
      v_b1 = 1.7029 
    End If 
    v_bm = Exp(v_b0 + v_b1 * Log(v_dbh)) 
‘------------------------------------------------------------------------------------------ 
‘Calculate biomass 
    v_live_aboveground = v_bm 
    JenkinsBiomass = v_live_aboveground * 2.046 ' Convert kg to pounds 
 
End Function 
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Long Term Ecological Monitoring Program on the 
Kenai National Wildlife Refuge, Alaska:   

An FIA Adjunct Inventory 
 
 

John M. Morton1, Matthew Bowser1,2, Edward Berg1, Dawn 
Magness1,2 , and Todd Eskelin1 

 

 
ABSTRACT:  Kenai National Wildlife Refuge (KENWR) has a legislative mandate “to conserve 
fish and wildlife populations and habitats in their natural diversity”. To improve our 
understanding of spatial and temporal variation at the landscape level, we are developing the 
Long Term Ecological Monitoring Program (LTEMP) to assess change in biota on the sample 
frame used by the USDA Forest Inventory and Analysis program (FIA). Through a formal 
agreement with the FIA, we completed our baseline inventory of 259 permanent terrestrial plots 
systematically distributed at 5-km intervals across the 805,000-ha KENWR in 2004 and 2006. In 
addition to the forested vegetation sampled by the FIA, we sampled vascular and nonvascular 
plants on non-forested plots, and breeding landbirds, arthropods, and noise on all plots. All 
sampling methods are passive, nondestructive (to habitat), relatively inexpensive, and require ≤ 2 
visits to a plot in a given sampling year. To date, we have recorded 647 species including one 
insect family and five insect species new to Alaska, two new sedges for KENWR, and a range 
expansion for Hammond’s flycatcher. In collaboration with the FIA, we plan to resample 20% of 
plots every other year over a 10-year monitoring window. However, implementation of the 
monitoring phase was delayed as we complete species identification, develop novel ways of 
estimating species-specific detection probabilities, evaluate statistical power to detect change, 
and consider modifications to the proposed rotating panel design. Our approach provides a 
statistically-rigorous framework for landscape monitoring and modeling, yet maintains a great 
deal of design flexibility. Integration with the FIA ensures that LTEMP is cost effective, and the 
collocation of floral and faunal sampling permits additional species-habitat modeling and other 
explanatory spatial modeling. We believe LTEMP can serve as a template for agencies that are 
developing long-term monitoring programs of biodiversity at the landscape level. 
 
 
KEYWORDS:  Kenai, National Wildlife Refuge System, Forest Inventory and Analysis, 
inventory, monitoring, occupancy modeling, Long Term Ecological Monitoring Program, 
diversity, arthropod, bird, plant  
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4;%+#-!)*!-#)#;)!;B%$1#4!&$!.+*7%'!.%0$%'!%$-!*)B#7!5#)7&;4!%)!)B#!7#1&*$%+!%$-a*7!$%)&*$%+!
+#9#+F!>B&4!<7*17%5!V*0+-!;*$4&4)!*.!<#75%$#$)!4%5<+&$1!4&)#4'!&-#%++3!&$)#17%)#-!%$-!
;*4)W4B%7#-!V&)B!#I&4)&$1!$%)&*$%+!5*$&)*7&$1!<7*17%54!40;B!%4!)B#!E2N:!6*7#4)!
8$9#$)*73!b!:$%+34&4!R68:S!<7*17%5Y!Rc*B$4*$!#)!%+F!JUUTS.  !!
!
]#7#!V#!4B*V!B*V!%!.*75%++3W-#4&1$%)#-!%-_0$;)!&$9#$)*73!)*!)B#!68:'!)B#!=*$1!

>#75!?;*+*1&;%+!@*$&)*7&$1!A7*17%5!R=>?@AS!*$!)B#!"#$%&!(%)&*$%+!,&+-+&.#!/#.01#!
R"?(,/S'!;%$!C#!%!9&%C+#!%<<7*%;B!.*7!&$9#$)*73&$1!C&*-&9#74&)3!%)!B&#7%7;B&;%+!4;%+#4F!!
>B#!<7*17%55%)&;!1*%+4!*.!)B#!=>?@A!%7#!)*!-#)#75&$#!)B#!*;;077#$;#!%$-!-&4)7&C0)&*$!
*.!4#+#;)#-!.+*7%+!%$-!.%0$%+!%44#5C+%1#4!*$!"?(,/!%$-!V&)B&$!4#+#;)#-!B%C&)%)4Z!
-#9#+*<!#I<+%$%)*73!4)%)&4)&;%+!5*-#+4!)*!%44#44!)B#!#..#;)4!*.!1#*+*1&;%+'!C&*+*1&;%+'!%$-!
%$)B7*<*1#$&;!.%;)*74!*$!.+*7%+!%$-!.%0$%+!-&4)7&C0)&*$4Z!%$-!%44#44!)7#$-4!&$!)B#!
*;;077#$;#!%$-!-&4)7&C0)&*$!*.!4#+#;)#-!.+*7%+!%$-!.%0$%+!%44#5C+%1#4!*$!"?(,/F!8$!)B&4!
<%<#7'!V#!<7#4#$)!<7#+&5&$%73!7#40+)4!.7*5!*07!&$&)&%+!&$9#$)*73!*.!4<#;&#4!7&;B$#44!*$!)B#!
"?(,/F!!!!!!
!
!

Study area 
 
 
>B#!TUQ'UUUWB%!"?(,/!&4!&$!4*0)BW;#$)7%+!:+%4O%!*$!)B#!"#$%&!A#$&$40+%'!VB&;B!&4!

.*75#-!C3!)B#!\**O!8$+#)!%$-!A7&$;#!,&++&%5!2*0$-!R6&1FDSF!>B#!"?(,/!4B%7#4!
C*0$-%7&#4!V&)B!\B01%;B!(%)&*$%+!6*7#4)!%$-!"#$%&!6_*7-4!(%)&*$%+!A%7OF!>B#!"?(,/!
V%4!#4)%C+&4B#-!&$!DLdD!%4!)B#!"#$%&!(%)&*$%+!@**4#!/%$1#!C0)!V%4!7#$%5#-!0$-#7!)B#!
:+%4O%!(%)&*$%+!8$)#7#4)!=%$-4!\*$4#79%)&*$!:;)!R:(8=\:S!&$!DLTUF!>B&4!%;)!%+4*!1%9#!
"?(,/!&)4!5%$-%)#4'!*.!VB&;B!)B#!<7&5%73!<07<*4#!&4!to conserve fish and wildlife 
populations and habitats in their natural diversity.!607)B#75*7#'!:(8=\:!%+4*!-#.&$#-!
.&4B!%$-!V&+-+&.#!%4!any member of the animal kingdom including without limitation any 
mammal, fish, bird, amphibian, reptile, mollusk, crustacean, arthropod or other 
invertebrate.!
!
H&*-&9#74&)3!&4!0$040%++3!B&1B!.*7!)B&4!+%)&)0-#!RQLeJQfW!MDeS!C#;%04#!*.!)B#!

_0I)%<*4&)&*$!*.!)V*!C&*5#4!*$!)B#!"#$%&!A#$&$40+%g!)B#!$*7)B#7$!.7&$1#!*.!)B#!2&)O%!
4<70;#W-*5&$%)#-!RPicea sitchensisS!;*%4)%+!7%&$.*7#4)!*$!)B#!#%4)#7$!.+%$O!*.!)B#!"#$%&!
@*0$)%&$4'!%$-!)B#!V#4)#7$W5*4)!7#%;B!*.!C*7#%+!.*7#4)!&$!(*7)B!:5#7&;%!*$!)B#!V#4)#7$!
4&-#!*.!)B#!"#$%&!@*0$)%&$4F!6*7#4)4!*$!"?(,/!%7#!-*5&$%)#-!C3!VB&)#!RP. glaucaS'!
=0)^f4!RP. x lutziiS'!%$-!C+%;O!4<70;#!RP. marianaS!V&)B!%$!%-5&I)07#!*.!%4<#$!RPopulus 
tremuloidesS!%$-!C&7;B!RBetula neoalaskanaSF!?I)#$4&9#!<#%)+%$-4!%7#!&$)#74<#74#-!%5*$1!
4<70;#!&$!)B#!"#$%&!=*V+%$-4F!!=&;B#$W-*5&$%)#-!)0$-7%!7#<+%;#4!5*0$)%&$!B#5+*;O!
RTsuga mertensianaS!%$-!40CW%+<&$#!4B70C!R<7&5%7&+3 Alnus!4<<FS!%C*9#!)7##+&$#!&$!)B#!
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"#$%&!@*0$)%&$4!%$-!\%7&C*0!]&++4F!!>*<*17%<B&;!7#+&#.!9%7&#4!.7*5!4#%!+#9#+!%)!
\B&;O%+**$!6+%)4'!%!)&-%+!#4)0%73!#I)#$-&$1!&$)*!)B#!\**O!8$+#)'!)*!DTUU!5!%C*9#!4#%!+#9#+!
&$!)B#!"#$%&!@*0$)%&$4F!>B#!DTUUWO5J!]%7-&$1!8;#.&#+-!4)7%--+#4!)B#!"#$%&!@*0$)%&$4!
%+*$1!)B#!C*0$-%73!)B%)!4#<%7%)#4!"#$%&!6_*7-4!(%)&*$%+!A%7O!%$-!"?(,/F!
!

!

>B#!&5<%;)4!*.!%!V%75&$1!%$-!-73&$1!;+&5%)#!%7#!V#++!-*;05#$)#-!*$!)B#!"?(,/F!!
>B#!"#$%&!A#$&$40+%!V%4!)B#!#<&;#$)#7!*.!%!4<70;#!C%7O!C##)+#!RDendroctonus rufipennisS!
*0)C7#%O!)B%)!+%4)#-!*9#7!%!-#;%-#!%$-!;%04#-!B&1B!5*7)%+&)3!*.!2&)O%'!=0)^'!%$-!VB&)#!
4<70;#!*$!DFM!5&++&*$!B%!&$!4*0)BW;#$)7%+!:+%4O%F!:!70$!*.!V%75!4055#74!4&$;#!DLTP!4#)!
)B#!4)%1#!.*7!)B&4!*0)C7#%O!*.!0$<7#;#-#$)#-!4;%+#'!4011#4)&$1!)B%)!V&)B!%!.0)07#!V%75#7!
;+&5%)#'!.&7#!%$-!C##)+#!O&++!5%3!C#!5*7#!;+*4#+3!%44*;&%)#-!)B%$!&$!)B#!<%4)!RH#71!#)!%+F!
JUUMSF!\+*4#-WC%4&$!+%O#!+#9#+4!B%9#!-#;+&$#-!C3!%4!50;B!%4!D!5!%$-!5%$3!<*$-4!4B*V$!
*$!DLQU!5%<4!%$-!%#7&%+!<B*)*4!%7#!$*V!17%443!<%$4!V&)B!9%7&*04!-#17##4!*.!C+%;O!4<70;#!

Figure 1: Distribution of 342 systematically distributed at 4.8 km intervals 
on the 805,000 ha Kenai National Wildlife Refuge. 
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%$-!B%7-V**-!&$9%4&*$!R"+#&$!#)!%+F!JUUQSF!>B#!]%7-&$1!8;#.&#+-!B%4!+*4)!JD!5!&$!
#+#9%)&*$!R:-%1#&74-*))&7!#)!%+F!DLLTS!%$-!Qh!&$!407.%;#!%7#%!R/&;#!DLTPS!-07&$1!DLQU!W!
DLLU4F!G9#7!)B&4!4%5#!<#7&*-'!)7##+&$#!&$!)B#!"#$%&!@*0$)%&$4!B%4!7&4#$'!*$!%9#7%1#'!D!5!
<#7!3#%7!RN&%+!#)!%+F!JUUPSF!!!

 
 

Methods 
 
 
 
Forest Inventory and Analysis Program (FIA)  
 
 
>B#!68:!;*$4&4)4!*.!%!$%)&*$%++3W;*$4&4)#$)!;*7#!<7*17%5!)*!X5%O#!%$-!O##<!;077#$)!%!

;*5<7#B#$4&9#!&$9#$)*73!%$-!%$%+34&4!*.!)B#!<7#4#$)!%$-!<7*4<#;)&9#!;*$-&)&*$4!%$-!
7#[0&7#5#$)4!*.!)B#!7#$#V%C+#!7#4*07;#4!*.!)B#!.*7#4)!%$-!7%$1#+%$-4!*.!)B#!E$&)#-!
2)%)#4YF!>B#!68:!;%$!C#!#$B%$;#-!%)!)B#!7#1&*$%+'!4)%)#!*7!+*;%+!+#9#+!)*!%--7#44!4<#;&%+!
&$)#7#4)4!RB))<gaaVVVF.&%F.4F.#-F04aSF!i#1#)%)&*$!-%)%!%7#!4)*7#-!&$!%!V#++W-#.&$#-!-%)%C%4#!
R@&+#4!#)!%+F!JUUDS!%$-!%7#!%9%&+%C+#!.*7!<0C+&;!-&44#5&$%)&*$!.7*5!)B#!(%)&*$%+!68:!
N%)%C%4#!/#)7&#9%+!234)#5!RB))<gaaVVVF474.&%F04.4F544)%)#F#-0a4;7&<)4a#VFB)5SF!!!
]*V#9#7'!;**7-&$%)#4!.*7!68:!<+*)!+*;%)&*$4!%7#!$*)!%9%&+%C+#!%$-!%7#!<7*)#;)#-!.7*5!
67##-*5!*.!8$.*75%)&*$!:;)!7#[0#4)4!0$-#7!)B#!:17&;0+)07#!/#4#%7;B'!?I)#$4&*$'!%$-!
?-0;%)&*$!/#.*75!:;)!*.!DLLT!RDM!E2\!DMdJR#SSF!>B#!$%)&*$%+!68:!;*7#!;*$4&4)4!*.!)B7##!
<B%4#4g!
!
AB%4#!D!04#4!7#5*)#W4#$4&$1!-%)%!)*!;+%44&.3!+%$-!&$)*!.*7#4)!%$-!$*$W.*7#4)'!%$-!)%O#!
4<%)&%+!5#%407#5#$)4!40;B!%4!.7%15#$)%)&*$'!07C%$&^%)&*$'!%$-!-&4)%$;#!9%7&%C+#4F!>B&4!
<B%4#!B%4!B&4)*7&;%++3!C##$!-*$#!04&$1!%#7&%+!<B*)*17%<B3'!C0)!&4!;B%$1&$1!)*!%!434)#5!
C%4#-!*$!4%)#++&)#!&5%1#73F!
!
AB%4#!J!;*$4&4)4!*.!%!4#)!*.!.&#+-!4%5<+#!<*&$)4!-&4)7&C0)#-!%;7*44!)B#!+%$-4;%<#!&$!%!
434)#5%)&;!17&-!*.!)#44#++%)#-!B#I%1*$4'!#%;B!;*$)%&$&$1!J'KMU!B%F!G$#!68:!<+*)!&4!
+*;%)#-!V&)B&$!#%;B!B#I%1*$!*$!VB&;B!9#1#)%)&*$!4)70;)07#!%$-!;*5<*4&)&*$!%7#!7#W
4%5<+#-!#9#73!DU!W!DQ!3#%74!R/*#4;B!%$-!/#%54!DLLLSF!(*$W.*7#4)!+*;%)&*$4!5%3!%+4*!
C#!9&4&)#-!)*![0%$)&.3!7%)#4!*.!+%$-!04#!;B%$1#F!
!
AB%4#!K!;*$4&4)4!*.!%!45%++!40C4#)!RjMhS!*.!)B#!AB%4#!J!<+*)4!VB&;B!%7#!9&4&)#-!-07&$1!
)B#!17*V&$1!4#%4*$!&$!*7-#7!)*!;*++#;)!%$!#I)#$-#-!40&)#!*.!#;*+*1&;%+!-%)%!&$;+0-&$1!
.0++!9#1#)%)&*$!&$9#$)*73'!)7##!%$-!;7*V$!;*$-&)&*$'!4*&+!-%)%'!+&;B#$!-&9#74&)3'!;*%74#!
V**-3!-#C7&4'!%$-!*^*$#!-%5%1#F!A7&*7!)*!JUUU'!)B#4#!<+*)4!V#7#!<%7)!*.!)B#!6*7#4)!
]#%+)B!@*$&)*7&$1!<7*17%5F!!
!
:4!<%7)!*.!)B#!&5<+#5#$)%)&*$!*.!)B#!:+%4O%!\*%4)%+!8$9#$)*73!&$!4*0)BW;#$)7%+!:+%4O%'!

)B#!A%;&.&;!(*7)BV#4)!/#4#%7;B!2)%)&*$!RA(,/2S!#4)%C+&4B#-!DPM!68:!<+*)4!*$!"?(,/!
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&$!DLLL!R6&1FDSF!\*$4&4)#$)!V&)B!AB%4#!J'!)B#4#!<+*)4!V#7#!-&4)7&C0)#-!%;7*44!)B#!.*7#4)#-!
<*7)&*$!*.!"?(,/!%)!%!7#4*+0)&*$!*.!D!<+*)!<#7!J'KMU!B%F!H3!JUUK'!)B#!A(,/2!B%-!
;*5<+#)#-!)B#!.&74)!&$9#$)*73!*.!)B#4#!<+*)4!.*++*V&$1!.&#+-!<7*)*;*+4!*.!)B#!\*%4)%+!
:+%4O%!8$9#$)*73!RE262!JUUJ%SF!!!!!!
!
]*V#9#7'!)B#!\*%4)%+!:+%4O%!8$9#$)*73!V%4!&5<+#5#$)#-!C#.*7#!)B#!68:!$%)&*$%+!

<7*)*;*+4!V#7#!.0++3!-#9#+*<#-F!:+4*'!0$-#7!%!JUUd!@#5*7%$-05!*.!E$-#74)%$-&$1'!)B#!
A(,/2!%17##-!)*!7#-0;#!)B#!.7#[0#$;3!*.!7#W4%5<+&$1!)*!#$407#!)B#!&$)#17&)3!*.!QJQ'UUU!
B%!*.!\*$17#44&*$%++3W-#4&1$%)#-!,&+-#7$#44!*$!"?(,/F!\*$4#[0#$)+3'!)B#7#!%7#!
4#9#7%+!4&1$&.&;%$)!-&..#7#$;#4!C#)V##$!VB%)!B%4!C##$!-*$#!*$!"?(,/!)B%$!&$!*)B#7!
<%7)4!*.!)B#!EF2!&$;+0-&$1!434)#5%)&;%++3W-&4)7&C0)#-!<+*)4!%)!7#10+%7!&$)#79%+4!R9#7404!
7%$-*5+3!<+%;#-!V&)B&$!)#44#++%)#-!B#I%1*$4SZ!&$9#$)*73!*.!9%4;0+%7!%$-!$*$9%4;0+%7!
.+*7%!&$!%!QFMdW5!7%-&04!;*+05$!*$!#%;B!;#$)#7!40C<+*)Z!%$-!%!5*$&)*7&$1!-#4&1$!)B%)!
4<#;&.&#4!7#W4%5<+&$1!JUh!*.!<+*)4!#9#73!*)B#7!3#%7!.*7!DU!3#%74!R&F#F'!7*)%)&$1!<%$#+!
-#4&1$SF!
!
!
Sample Frame 
!
!
>*!)%O#!%-9%$)%1#!*.!&$9#$)*73&$1!%$-!5*$&)*7&$1!C3!)B#!68:'!V#!%-*<)#-!)B#&7!

4%5<+#!.7%5#!C3!#I)#$-&$1!)B#!#I&4)&$1!68:!17&-!*9#7!)B#!7#5%&$&$1!$*$W.*7#4)#-!
<*7)&*$4!*.!"?(,/!%$-!*9#7+%&-!%--&)&*$%+!4%5<+&$1!)*!&$9#$)*73!4#+#;)#-!.%0$%+!
%44#5C+%1#4!*$!%++!<*&$)4!7#1%7-+#44!*.!9#1#)%)&*$F!>B&4!.0++!4%5<+#!.7%5#'!B#7#%.)#7!
;*$4&-#7#-!)B#!=>?@A!4%5<+#!.7%5#'!&4!;*5<7&4#-!*.!KdJ!<+*)4!434)#5%)&;%++3!
-&4)7&C0)#-!%)!dFTWO5!&$)#79%+4!%;7*44!)B#!TUQ'UUUWB%!"?(,/!R6&1F!DSF!:)!)B&4!4<%)&%+!
7#4*+0)&*$'!)B#!-&4)7&C0)&*$!*.!)B#4#!<+*)4!&4!<7*<*7)&*$%+!)*!)B#!%9%&+%C&+&)3!*.!5%;7*W
B%C&)%)!)3<#4!R>%C+#!DSF!>B&4!&4!%$!&5<*7)%$)!%))7&C0)#!%4!-%)%!-#7&9#-!.7*5!)B#!=>?@A!
4%5<+#!.7%5#!%7#!7#<7#4#$)%)&9#!*.!)B#!"?(,/F!!!
 
Table1:  Comparison of the proportional distributions of LTEMP plots with macro-habitats on the Kenai 
National Wildlife Refuge. 

Habitat Plots (%) Hectares (%) 

Forest 161   (47)    382,790   (48) 
Conifer 105   (31)    222,980   (28) 

Deciduous   12     (4)        29,463     (4) 
Mixed   44   (13)    130,347   (16) 

Shrub/grass   26     (7)      57,392     (7) 
Barren/sparsely vegetated   60   (18)    133,260   (17) 
Wetlands   20     (6)       49,489    (6) 
Snow/ice   51   (15)     117,348  (15) 
Water   24     (7)       64,442     (8) 
! 342 (101)     804,721 (101) 
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Vegetation Sampling of Forested Sites by FIA  
 
 

Figure 2:  Sampling schematic at FIA grid point. 

>B#!A(,/2!4%5<+#-!9#1#)%)&*$!
*$!DPM!.*7#4)#-!<+*)4!.*++*V&$1!.&#+-!
<7*)*;*+4!04#-!&$!)B#!\*%4)%+!:+%4O%!
8$9#$)*73!RE262!JUUJ%SF!\*$4&4)#$)!
V&)B!$%)&*$%+!AB%4#!J!<7*)*;*+4'!#%;B!
68:!4&)#!;*$4&4)4!*.!.*07!40C<+*)4!)*!
5#%407#!V&)B&$W4&)#!9%7&%$;#!R6&1F!JSF!!
?%;B!40C<+*)!;*$4&4)4!*.!)B7##!$#4)#-!
.&I#-W7%-&04!;&7;0+%7!<+*)4g!PFKW5!)7##!
<+*)'!QFMdW5!B*7&^*$)%+W9#7)&;%+!R]iS!
9#1#)%)&*$!<7*.&+#'!%$-!%!JW5!
4##-+&$1a4%<+&$1!<+*)F!>B7##!DDFJTW5!
)7%$4#;)4!&$)#74#;)!)B#!;#$)#7!40C<+*)!
)*!#4)&5%)#!-*V$#-!V**-!R4##!E262!
JUUJ%SF!(%)&*$%+!%$-!7#1&*$%+!68:!
.&#+-!<7*)*;*+4!V#7#!1#$#7%++3!4&5&+%7!
#I;#<)!.*7!7#+%)&9#+3!5&$*7!
-&..#7#$;#4!&$!5#%407#5#$)!0$&)4!%$-!
+*;%)&*$!*.!40C<+*)!4%5<+&$1F!>B#!*$#!
*C9&*04!%$-!4&1$&.&;%$)!-&4;7#<%$;3!
V%4!)B#!#I;+04&9#!4%5<+&$1!*.!]i!
<+*)4!%4!<%7)!*.!)B#!\*%4)%+!:+%4O%!
8$9#$)*73F!!!!!
!

Horizontal-Vertical (HV) Plot: :!QFMdW5!7%-&04!RB*7&^*$)%+!-&4)%$;#S!;&7;0+%7!<+*)!
V%4!#4)%C+&4B#-!%)!<*&$)!;#$)#7F!>B#!]i!<+*)!V%4!04#-!)*!-#)#75&$#!)B#!B*7&^*$)%+!%$-!
9#7)&;%+!-&4)7&C0)&*$'!-#$4&)3'!-&9#74&)3'!%$-!;*5<*4&)&*$!*.!<+%$)4!%$-!$*$W+&9&$1!5%)#7&%+F!!
i#1#)%)&*$!V%4!;+%44&.&#-!&$)*!4)7%)%!*7!+%3#74!4)%7)&$1!%)!17*0$-!+#9#+!40;B!)B%)!)B&4!<+*)!
7#<7#4#$)#-!%!;*+05$!V&)B!%!C%4#!*.!DUU!5JF!i#7)&;%+!-&5#$4&*$4!V#7#!#4)&5%)#-!04&$1!
)B#!$%)07%+!+%3#7!C7#%O4!*C4#79#-!*$!)B#!<+*)F!G$#!]i!<7*.&+#!<+*)!V%4!#4)%C+&4B#-!.*7!
#%;B!<*+31*$!)3<#!)B%)!B%-!%!<*&$)!5##)&$1!)B#!.*++*V&$1!;7&)#7&%g!!)B#!<*+31*$!)3<#!%)!
<*&$)!;#$)#7!&4!9#1#)%)#-!R&F#F'!4B70C'!B#7C%;#*04'!.*7#4)SZ!)B#!]i!<+*)!.%++4!#$)&7#+3!V&)B&$!
)B#!<*+31*$!%)!<*&$)!;#$)#7!R&F#F'!-*#4!$*)!4)7%--+#!<*+31*$!)3<#4SZ!)B#!<*+31*$!)3<#!%)!
<*&$)!;#$)#7!;*9#74!!!LUh!*.!)B#!%7#%Z!%$-!)B#!<*&$)!;#$)#7!-*#4!$*)!.%++!&$!%$!&$;+04&*$F!
!
N%)%!;*++#;)#-!*$!]i!<+*)4!&$;+0-#!4B70C4'!17%44#4'!.*7C4'!+&;B#$4'!5*44#4'!)7##!

4##-+&$14!R)7##4!k!JFQ!;5!NH]S'!%$-!&$!4*5#!;%4#4!4B70CW+&O#!)7##4!$*)!7#;*7-#-!*$!)B#!
)7##!<+*)F!6*7!#I%5<+#'!"7055B*+z!%$-!*)B#7!4)%$-4!VB#7#!)7##4!V#7#!17*V&$1!&$!%!
)V&4)#-a4)0$)#-!4B70CW+&O#!.*75'!V#7#!)7#%)#-!%4!4B70C!+%$-F!>B#!]i!7#;*7-!%+4*!&$;+0-#-!
%7C*7#%+!+&;B#$4'!5*44#4'!.*7C4!%$-!4B70C4!7#1%7-+#44!*.!)B#&7!40C4)7%)#F!!!
!
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Adjunct Inventory Field Methods 
!
!

Vegetation Sampling of Non-forested Sites by KENWR:  ,#!-&-!$*)!04#!)B#!68:!
;+04)#7!4%5<+&$1!-#4&1$'!VB#7#!.*07!40C<+*)4!%7#!4079#3#-!%)!%!4&)#!R6&1F!JSF!!8$4)#%-'!V#!
4%5<+#-!*$#!<+*)'!;#$)#7#-!*$!)B#!<+*)!;#$)#7!%$-!04#-!4%5<+&$1!5#)B*-4!VB&;B!C#))#7!
;B%7%;)#7&^#!$*$W.*7#4)#-!9#1#)%)&*$!R6&1F!KSF!G07!*C_#;)&9#4!V#7#!)*![0%$)&.3!)B#!7#+%)&9#!
.7#[0#$;3!*.!17*0$-!;*9#7!%$-!4<#;&#4!V&)B&$!-&..#7#$)!B#&1B)!4)7%)%!%)!#%;B!4&)#F!!2&5&+%7!
)*!)B#!]i!<+*)!4%5<+#-!C3!)B#!68:'!V#!%+4*!7#;*7-#-!%++!9%4;0+%7!%$-!$*$9%4;0+%7!.+*7%!
*$!%!DUUW5J!;&7;0+%7!<+*)!V&)B!%!QFMd!5!7%-&04!.7*5!<+*)!;#$)#7F!i*0;B#7!4<#;&5#$4!*7!
0$O$*V$!<+%$)!5%)#7&%+!V#7#!;*++#;)#-!%)!)B#!4&)#'!C0)!.7*5!+*;%)&*$4!l!DU!5!.7*5!<+*)!
;#$)#7F!,#!%+4*!)**O!)V*!4)#7#*!-&1&)%+!<B*)*17%<B4!*$!)B#!$*7)BW4*0)B!%I&4!*.!#%;B!<+*)!
4&5&+%7!)*!A(,/2!<7*)*;*+4!.*7!)B#!]i!<+*)F!!!
!
]#7C%;#*04!%$-!V**-3!9#1#)%)&9#!;*9#7!V&)B&$!)B#!.&74)!J!5!%C*9#!17*0$-!V#7#!

4%5<+#-!04&$1!%!5*-&.&#-!<*&$)W&$)#7;#<)!)#;B$&[0#!RN0$$!DLLJSF!!:!9#74&*$!*.!)B&4!

Figure 3:  Sampling alpine tundra using a modified line-intercept method in the Kenai Mountains.  Ecologist 
Ed Berg kneels near the permanent monument that marks the center of a 5.64-m radius circular plot and 
four 10-m transects that radiate in the cardinal directions from plot center. 
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4%5<+&$1!%<<7*%;B!B%4!C##$!%-*<)#-!C3!N#$%+&!(%)&*$%+!A%7OF!6*07!DUW5!+*$1!)7%$4#;)4!
V#7#!+%&-!*0)!&$!)B#!;%7-&$%+!-&7#;)&*$4!.7*5!<+*)!;#$)#7!04&$1!)&1B)+3WV*9#$'!C7%&-#-!
$3+*$!;*7-!5%7O#-!%)!UFQW5!&$)#79%+4!R$!m!JU!<*&$)4!<#7!)7%$4#;)SF!:!JW5!+*$1'!DKW55!
-&%5#)#7!4)##+!7*-'!5%7O#-!%)!D!5!)*!4#<%7%)#!)B#!9#7)&;%+!;*+05$!&$)*!)V*!4)7%)%'!V%4!
04#-!%4!%!4%5<+&$1!<&$!)B%)!&4!B#+-!9#7)&;%++3!%)!#%;B!4%5<+&$1!<*&$)F!?%;B!<+%$)!)%I*$!)B%)!
)*0;B#4!)B#!4%5<+&$1!<&$!!!D!)&5#!V%4!7#;*7-#-!V&)B&$!4)7%)05!%)!#%;B!<*&$)F!G$+3!*$#!
B&)!<#7!<*&$)!<#7!4)7%)05!<#7!)%I*$!V%4!7#;*7-#-!%)!#%;B!*.!)B#!TU!4%5<+&$1!<*&$)4F!
\*$4#[0#$)+3'!%!5&$&505!*.!dU!)%++&#4!V#7#!7#;*7-#-!<#7!4)7%)05Z!)B#!$05C#7!*.!)%++&#4!
7#;*7-#-!;%$!#I;##-!)B&4!9%+0#!;*$4&-#7%C+3!-#<#$-&$1!*$!4<#;&#4!7&;B$#44F!!!
!
20C4)7%)#!;%)#1*7&#4!V#7#!H:/?!n/GE(N'!/G\"'!=8>>?/'!N?:N!,GGN!Rl!JQ!

55!-&%5#)#7S'!,:>?/'!2(G,a8\?'!:2]a\]:/\G:='!%$-!=8i?!i?n?>:>8G(F!8.!
%!-#%-!V**-!.7%15#$)a4)&;O!V%4!k!JQ!55!&$!-&%5#)#7!*7!V&-)B'!)B#$!&)!V%4!7#;*7-#-!%4!
=8>>?/F!/*;O!<%7)&;+#4!k!DK!55!&$!+*$1#4)!-&5#$4&*$!V#7#!7#;*7-#-!%4!H:/?!
n/GE(NZ!"!DK55!V#7#!7#;*7-#-!%4!/G\"F!:$3!+&9#!9#1#)%)&*$!7#;*7-#-!%4!%!40C4)7%)#!
V%4!%+4*!7#;*7-#-!C3!4<#;&#4!&$!)B#!DW5!4)7%)05F!>B#!)*)%+!$05C#7!*.!40C4)7%)#4!7#;*7-#-!
%+V%34!#[0%+#-!JU!<#7!)7%$4#;)F!!!!!!
!
Arthropods:!!,#!4%5<+#-!%7)B7*<*-!*;;077#$;#!%$-!7#+%)&9#!%C0$-%$;#!V&)B&$!)B#!

QFMdW5!7%-&04!;&7;0+%7!<+*)!04&$1!%!KU!;5!RDJ!&$;BS!-&%5#)#7!4V##<!$#)!RH&*o0&<#!5*-#+!
PDDJ\A!V&)B!KU!;5!#I)#$4&*$!B%$-+#SF!,#!4V#<)!)B#!#$)&7#!<+*)!.*7!!!Q!5&$'!#$407&$1!
)B%)!%++!40C4)7%)#4!%$-!5&;7*B%C&)%)4!V&)B&$!7#%;B!R&$;+0-&$1!*9#7B#%-S!V#7#!4%5<+#-F!:++!
4<#;&5#$4!V#7#!<+%;#-!&$!%!4&$1+#!(%+1#$#$!V&-#W5*0)B!JQU!5+!C*))+#!;*$)%&$&$1!
40..&;&#$)!LQh!-#$%)07#-!#)B%$*+!)*!;*9#7!)B#!4%5<+#F!!!
!
Birds:!!,#!4%5<+#-!+%$-C&7-!%C0$-%$;#!%$-!*;;077#$;#!04&$1!9%7&%C+#!;&7;0+%7!<+*)!

5#)B*-4!-07&$1!)B#!+%4)!)B7##!V##O4!&$!c0$#F!,#!%-*<)#-!RV&)B!4*5#!5*-&.&;%)&*$4S!)B#!
<7*)*;*+4!04#-!&$!)B#!:+%4O%!=%$-C&7-!@*$&)*7&$1!2079#3!R]%$-#+!#)!%+FDLLTS'!VB#7#!
B*7&^*$)%+!-&4)%$;#4!)*!#%;B!C&7-!V#7#!#4)&5%)#-!%)!DW5&$!&$;7#5#$)4!-07&$1!%!DUW5&$!
4%5<+&$1!&$)#79%+!04&$1!%0-&)*73!*7!9&40%+!;0#4F!2079#34!V#7#!;*$-0;)#-!KU!5&$!%.)#7!
40$7&4#!-07&$1!)B#!.&74)!d!W!Q!B74!*.!)B#!5*7$&$1'!C0)!*$+3!0$-#7!4<#;&.&#-!;*$-&)&*$4!*.!
1**-!9&4&C&+&)3'!+&))+#!*7!$*!<7#;&<&)%)&*$'!%$-!+&1B)!*7!$*!V&$-4F!,#!04#-!%!+%4#7!7%$1#!
.&$-#7!)*!B#+<!V&)B!-&4)%$;#!#4)&5%)&*$!%$-!7#;*7-#-!0$O$*V$!*7![0#4)&*$%C+#!4*$14a;%++4!
V&)B!%!2*$3!-&1&)%+!,%+O5%$p!@qW(DU!5&$&-&4;!7#;*7-#7!%$-!%!2%0+!@&$#7*..!
?+#;)7*$&;4p'!8$;F'!:>/QQ!5&$&W5&;7*<B*$#!C**5F!!!
!
Weather and noise:!,#!5#%407#-!V&$-!4<##-!R5a4#;!%9#7%1#-!*9#7!KU!4#;S'!

)#5<#7%)07#!Re\S'!%$-!7#+%)&9#!B05&-&)3!V&)B!%!"#4)7#+!KUUU!A*;O#)!,#%)B#7p!5#)#7!%)!
17*0$-!+#9#+F!,#!04#-!)B#!H#%0.*7-!V&$-!4;%+#!)*!7#;*7-!V&$-!4<##-!%)!;%$*<3!+#9#+F!!,#!
04#-!)B#!=%74*$!N%9&4!@*-#+!PJU!4*0$-!5#)#7!)*!5#%407#!4*0$-!+#9#+4!R=#['!=5%I!%$-!
=<#%OS!*9#7!%!QW5&$!&$)#79%+!VB&+#!C&7-4!V#7#!C#&$1!;*0$)#-F!>B#!4*0$-!5#)#7!V%4!
5*0$)#-!*$!%!)7&<*-'!*7&#$)#-!V&)B!)B#!5&;7*<B*$#!<*&$)#-!4O3V%7-4'!%$-!<+%;#-!!!K!5!
.7*5!#&)B#7!*C4#79#7!)*!7#-0;#!7#;*7-&$1!*.!&$;&-#$)%+!$*&4#F!! 
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Curation and Species Identification:  8$!)B#!+%C'!9%4;0+%7!<+%$)4!V#7#!<7#44#-'!%$-!
+&;B#$4!%$-!5*44#4!V#7#!4)*7#-!&$!<%<#7!C%14F!A+%$)!4<#;&5#$4!V#7#!-7&#-!&$!%!;*$9#;)&*$!
*9#$!%)!MUe!\!0$)&+!-73'!)3<&;%++3!D!W!K!-%34F!:7)B7*<*-!4<#;&5#$4!V#7#!<7*;#44#-!%$-!
%7;B&9#-!04&$1!%<<7*<7&%)#!;07%)&*$!5#)B*-4F!:++!%7)B7*<*-4!<7#4#$)!&$!)B#!4%5<+#4!V#7#!
4*7)#-!&$)*!*7-#74!%$-!5*4)!V#7#!4*7)#-!)*!.%5&+&#4F!2<#;&#4!&-#$)&.&;%)&*$4!.*7!C*)B!<+%$)4!
%$-!%7)B7*<*-4!V#7#!5%-#!VB#$#9#7!<*44&C+#!C0)!5%$3!4<#;&5#$4!V#7#!4B&<<#-!)*!ldU!
4<#;&%+&4)4!.*7!#I<#7)!-#)#75&$%)&*$4F!,&)B!)B#!#I;#<)&*$!*.!45%++!%5*0$)4!*.!5%)#7&%+!
+#$)!)*!9%7&*04!434)#5%)&4)4'!%++!4<#;&5#$4!7#5%&$!&$!)B#!;*++#;)&*$!*.!)B#!"?(,/!
R&$)#7$%)&*$%+!;*++#;)&*$!;*-#$g!"(,/SF!

 
 

Results 
 
 
Overview of Field Sampling Approach 
!
!
G.!KdJ!<+*)4!*$!)B#!=>?@A!4%5<+#!.7%5#'!*$+3!JQL!<+*)4!V#7#!-##5#-!)#77#4)7&%+!%$-!

%;;#44&C+#Z!QL!<+*)4!V#7#!;*$4&-#7#-!&$%;;#44&C+#!%$-!Jd!<+*)4!V#7#!+*;%)#-!*$!V%)#7F!!G.!
)B#4#!JQL!)#77#4)7&%+!<+*)4'!9#1#)%)&*$!V%4!4%5<+#-!*$!DPM!%$-!TK!C3!68:!%$-!"?(,/!
4)%..'!7#4<#;)&9#+3F!>B#!.*7#4)!9#1#)%)&*$!V%4!4%5<+#-!%4!<%7)!*.!)B#!\*%4)%+!:+%4O%!
8$9#$)*73!-07&$1!DLLL!r!JUUJF!,#!4%5<+#-!)B#!$*$W.*7#4)#-!9#1#)%)&*$'!<7&5%7&+3!%+<&$#!
)0$-7%!%$-!+*V+%$-!V#)+%$-4'!&$!c0+3!W!:0104)!*.!JUUd!%$-!JUUMF!:!JW<#74*$!)#%5!
)3<&;%++3!4<#$)!j!J!B74!4%5<+&$1!9#1#)%)&*$!*$!<+*)F!!!!
! !
,#!&$9#$)*7&#-!C7##-&$1!+%$-C&7-4'!%7)B7*<*-4'!%$-!$*&4#!*$!JQQ!)#77#4)7&%+!<+*)4!

-07&$1!)B#!+%))#7!)B7##!V##O4!&$!c0$#!*.!JUUd!R$!m!DQJS!%$-!JUUM!R$!m!DUKSZ!-%)%!.7*5!
.*07!<+*)4!V#7#!-&4;%7-#-!.*7!9%7&*04!7#%4*$4F!G07!4%5<+&$1!V&$-*V!V%4!*<)&5&^#-!)*!
-#)#;)!5*4)!C7##-&$1!+%$-C&7-!4<#;&#4!%)!)B&4!+%)&)0-#'!%$-!%7)B7*<*-!%$-!$*&4#!4%5<+&$1!
V#7#!;*$4&-#7#-!+#44#7!<7&*7&)&#4F!,#!04#-!%!7%<&-!%<<7*%;B'!4<#$-&$1!j!dU!5&$!*$!#%;B!
<+*)F!:!JW<#74*$!)#%5!)3<&;%++3!-&9&-#-!-0)&#4!40;B!)B%)!)B#!<7&5%73!C&7-!*C4#79#7!
;*$-0;)#-!)B#!DUW5&$!C&7-!4079#3!VB&+#!)B#!*)B#7!*C4#79#7!5#%407#-!4*0$-!%$-!V#%)B#7!
<%7%5#)#74F!,B&+#!*$#!<#74*$!4%5<+#-!.*7!%7)B7*<*-4'!)B#!*)B#7!V*0+-!)%O#!<+*)!
<B*)*17%<B4'!7#;*7-!&$;&-#$)%+!V&+-+&.#!4&1$'!%$-!)%O#!*)B#7!$*)#4F!H#;%04#!)B#!<+*)!%$-!
<*)#$)&%+!+%$-&$1!4&)#!V#7#!$*)!%)!)B#!4%5#!+*;%)&*$'!7*0$-W)7&<!)7%9#+!)&5#!C#)V##$!)B#!
B#+&;*<)#7!%$-!<+*)!V%4!)3<&;%++3!JU!5&$!40;B!)B%)!%!)#%5!;*0+-!;*5<+#)#!%!<+*)!#9#73!
B*07F!!!!!!!!
!
,&)B!%!.#V!#I;#<)&*$4'!<+*)4!V#7#!%;;#44#-!C3!B#+&;*<)#7F!,#!04#-!%!H#++!JUM!c#)!

/%$1#7!-07&$1!V&+-+&.#!4079#34'!XB*<W4;*);B&$1Y!)V*!JW<#74*$!)#%54!.7*5!<*&$)!)*!<*&$)F!
,#!;*5<+#)#-!d!r!M!<+*)4!<#7!)#%5!<#7!-%3'!V&)B!B*074!*.!*<#7%)&*$!)3<&;%++3!7#4)7&;)#-!)*!
UdUU!r!DUUU!-0#!)*!;*$4)7%&$)4!&5<*4#-!C3!%9&%$!C7##-&$1!%;)&9&)&#4F!H#;%04#!V#!V#7#!
;*$;#7$#-!%C*0)!<*)#$)&%+!+%)&)0-&$%+!RQLeJQfW!MDeS!%$-!#+#9%)&*$%+!RU!r!DTUU!5!%C*9#!4#%!
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+#9#+S!C&%4!&$!C7##-&$1!<B#$*+*13!*9#7!%!KWV##O!4%5<+&$1!&$)#79%+'!V#!%+)#7$%)#-!4)%7)&$1!
<*&$)4!&$!)B#!5*7$&$1!C#)V##$!)B#!$*7)B#7$!%$-!4*0)B#7$!<%7)!*.!!"?(,/!%$-!)B#!
V#4)#7$!%$-!#%4)#7$!<%7)4!*.!"?(,/!%+)B*01B!)B&4!<7*)*;*+!V%4!;*$)&$1#$)!*$!V#%)B#7!
;*$4)7%&$)4F!,#!%+4*!4B%7#-!%$!:W2)%7!_#)!B#+&;*<)#7!V&)B!A(,/2!4)%..!+%)#7!&$!*$#!
4055#7!)*!B#+<!;*5<+#)#!4%5<+&$1!*.!$*$W.*7#4)#-!<+*)4F   

 
68:!<+*)4!V#7#!<7#9&*04+3!5*$05#$)#-!.*++*V&$1!<7*)*;*+4!*0)+&$#-!&$!)B#!\*%4)%+!

:+%4O%!8$9#$)*73!RE262!JUUJ%SF!,#!5*$05#$)#-!$*$W.*7#4)#-!<+*)4!*$!)B#!=>?@A!
4%5<+#!.7%5#!R$!m!TKS!V&)B!H#7$4)#$s!%+05&$05!4079#3!;%<4!*$!TUW;5!+*$1!%+05&$05!
C7#%OW%V%3!4B%.)4!)B%)!V#7#!<*0$-#-!&$!4*!%4!)*!%4!.+04B!%4!<*44&C+#!V&)B!)B#!17*0$-!
407.%;#F!H*)B!)B#!;%<!%$-!4B%.)!B%9#!5%1$#)4!&$4#7)#-!)*!.%;&+&)%)#!7#W.&$-&$1!)B#4#!<+*)4!
V&)B!%!5#)%+!-#)#;)*7!-07&$1!40C4#[0#$)!9&4&)4F!!!!!!!
!
!
Data Derived from Adjunct Inventory 

 
 
>*!-#)#75&$#!4<#;&#4!*;;077#$;#!*.!9%4;0+%7!%$-!$*$9%4;0+%7!.+*7%'!%$-!%7)B7*<*-4'!

V#!;*$4&-#7#-!*$+3!)B*4#!4<#;&#4!-#)#;)#-!&$!)B#!QFMdW5J!7%-&04!;&7;0+%7!<+*)F!>*!
-#)#75&$#!)B#!*;;077#$;#!*.!%9&.%0$%'!V#!04#-!*$+3!)B*4#!C&7-!4<#;&#4!VB&;B!V#7#!
-#)#;)#-!V&)B&$!JUU!5!*.!<+*)!;#$)#7F!
!
>*!-%)#'!V#!B%9#!&-#$)&.&#-!MdP!4<#;&#4!&$;+0-&$1!TM!C&7-4'!KKK!9%4;0+%7!<+%$)4'!PT!

$*$9%4;0+%7!<+%$)4'!dd!+&;B#$4!%$-!.0$1&'!%$-!DUM!%7)B7*<*-4!%4!<%7)!*.!=>?@AF!!:4!
5%$3!%4!Qd!4<#;&#4!V#7#!7#;*7-#-!.*7!%!4&$1+#!=>?@A!<+*)'!C0)!)B&4!9%+0#!V&++!;#7)%&$+3!
&$;7#%4#!%4!*0)4)%$-&$1!)%I*$*5&;!V*7O!&4!;*5<+#)#-F!>B#!40C4#)!*.!.*7#4)#-!]i!<+*)4!
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Table 2:  Proposed rotating panel design for the Long Term Ecological Monitoring Program on the Kenai 
National Wildlife Refuge in which a panel of 51 plots is jointly re-sampled by both FIA and KENWR every 
decade.  

PANEL N SAMPLING YEAR 

 FIA KENWR 2004/2006 2010 2012 2014 2016 2018 
   FLORA FAUNA ALL ALL ALL ALL ALL 

1 35   X X     

2 35   X  X    

3 35   X   X   

4 35   X    X  

5 35   X     X 

! 175   X      

    X      

1  16 X X X     

2  16 X X  X    

3  16 X X   X   

4  16 X X    X  

5  16 X X     X 

!   80 X X      
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Monitoring and Modeling Terrestrial 
Arthropod Diversity on the 

Kenai National Wildlife Refuge

Matthew L. Bowser1,2,3 and John M. Morton1,2,4

ABSTRACT: The primary purpose of the Kenai National Wildlife Refuge (KENWR) is  
to “conserve fish and wildlife populations in their natural diversity,” where “fish and 
wildlife” explicitly includes arthropods. To this end, we developed a Long Term 
Ecological Monitoring Program (LTEMP), a collaborative effort with the USDA Forest  
Inventory and Analysis (FIA) Program. In 2004 and 2006, we sweep-netted terrestrial  
arthropods on 255 100m2 circular plots systematically distributed at 5-km intervals over  
the 805,000 ha KENWR. These samples yielded 15,136 specimens, which were sorted to  
families and to species when possible. The comprehensive spatial coverage of the  
LTEMP sampling design provided spatial data suitable for species distribution modeling,  
but we sought to improve upon this design by explicitly accounting for imperfect  
detection. We proposed a rotating panel design where each site would be visited once 
every ten years.  Imperfect detection would be accounted for by spatial sub-sampling 
within plots. Using Monte-Carlo simulation, we assessed the proposed design of LTEMP 
for accurately monitoring changes in arthropod species distributions over time. Our  
simulations demonstrated that, for species that are likely to be collected in a single 50m2 

sweep net sample where they are present, the proposed LTEMP sampling design should  
provide accurate estimates of species distributions and local rates of colonization and 
extinction over the long-term. In order to document the landscape-scale patterns of  
arthropod diversity over the KENWR, we modeled arthropod family richness using 
random forest regression.  Arthropod family richness data were obtained from LTEMP 
and topographic, temporal, and productivity variables were obtained from GIS datasets.  
The resulting map explained 22% of variation of diversity of sweep net samples. Highest  
diversity was predicted on the margins of coastal wetlands and in productive hardwood 
and mixed forests; lowest diversity was predicted at barren alpine sites.

KEYWORDS:  occupancy  modeling,  species  distribution  modeling,  random  forest 
regression, interpenetrating panel design, Monte-Carlo simulation.

1United States Fish & Wildlife Service; Kenai National Wildlife Refuge; PO Box 2139; 
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'11%*,+"2#"4,"53,,"53#*"3.1N"#5",I2.($2.#("%(-,11"$#(23'3)",A.+,($,",I.121"'(+"YK["

2>,)"'3,"2>#%/>2"2#"4,"&3#>.4.2.A,-)"+.55.$%-2"2#"-,'3("'4#%2"#3"$#(1,3A,9""

J
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@$':&+(A7'!"A'+W'#$%'Y%2":'Q%2:2,M;"',$+&:2X'#$%'Y%2":'Z"#:+2";'9:;3;:W%'C%WMX%'"23'(S[!Q'
,"<A;:2X';+8"#:+2,)

X>,"#4A.#%1"5.312"12,&".1"'(".(A,(2#3)0"'"1%3A,)"#5"2>,"'32>3#&#+"1&,$.,1"2>'2"'3,"

&3,1,(2"#("2>,"CZD@E9"e#T,A,30"'"12'2.$".(A,(2#3)".1".('+,d%'2,"4,$'%1,"2>,"

$#*&#1.2.#("#5"2>,"5'%('"#5"2>,"CZD@E".1"$>'(/.(/"'(+".1",I&,$2,+"2#"$#(2.(%,"

2#"$>'(/,"#A,3"2>,"$#*.(/"+,$'+,1"+%,"2#"2>,"3,1&#(1,1"#5"'32>3#&#+1"2#"'"

T'3*.(/"$-.*'2,"'(+"+%,"2#"'++.2.#('-".(23#+%$2.#(1"#5",I#2.$"1&,$.,19"6#4.-,"

1&,$.,1"'3,"'-3,'+)"*#A.(/"%&71-#&,"'(+"&#-,7T'3+"'1"2>,"$-.*'2,"T'3*1"

Yg#2253.,+",2"'-90":LLLB"F'3*,1'(":LLO0"JaaOB"F'3*,1'(",2"'-90":LLLB"F'3*,1'("

'(+"h#>,"JaaKB"@'-2>,3",2"'-9"JaaJB"@.-1#(",2"'-9"JaaR[0"23'$N.(/"2>,.3"$-.*'2.$"

&3,5,3,($,19""M1"2>.1"&3#$,11"#5"3,7+.123.4%2.#("$#(2.(%,10"1#*,"'3,'1"T.--"4,$#*,"

3,5%/.'"Yg#2253.,+",2"'-9":LLL["T>.-,"#2>,31"T.--"1,3A,"'1"$#33.+#31"Ye'(('>",2"'-9"

JaaJ[9"@>.-,"2>,"*#12"A'/.-,"1&,$.,1"*')"3,1&#(+"3'&.+-)0"-,11"*#2.-,"1&,$.,1"

*')"(#2"3,7+.123.4%2,"2>,*1,-A,1"d%.$N-)",(#%/>"2#"23'$N"$-.*'2,9"e'4.2'2"-#11"'(+"

53'/*,(2'2.#("#5"1%.2'4-,">'4.2'2"T.--"5%32>,3",I'$,34'2,"2>.1"&3#4-,*0"1#*,2.*,1"

&3,A,(2.(/"1&,$.,1"53#*"*#A.(/"2#"*#3,"1%.2'4-,"'3,'19"6'()"1&,$.,1"'3,"

,I&,$2,+"2#"4,"-#12"'1"2>.1"&3#$,11"$#(2.(%,1"%(-,11"'$2.#(1"'3,"2'N,("2#"5'$.-.2'2,"

2>,"3,7+.123.4%2.#("#5"1&,$.,1"Y@.--.'*1",2"'-9"JaaR[9"F#1.2.#(,+"'1"T,"'3,"'2"2>,"

4,/.((.(/"#5"2>,"3,7+.123.4%2.#("#5"1&,$.,1"+%,"2#"'$$,-,3'2.(/"$-.*'2,"$>'(/,0"2>,"

K
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(,,+"5#3"'$$%3'2,"+#$%*,(2'2.#("#5"$%33,(2"+.123.4%2.#(1"#5"1&,$.,1"'(+"

1%41,d%,(2"*#(.2#3.(/"#5"1&,$.,1"+.123.4%2.#(1".1".($3,'1.(/-)"4,.(/"3,$#/(.c,+"

Yg%.1'("'(+"X>%.--,3"JaaRB"6'/(,11",2"'-9"Jaa`[9

_#(/"X,3*"Z$#-#/.$'-"6#(.2#3.(/"F3#/3'*"Y_XZ6F["#5"2>,"CZD@E0"'"/3.+7

4'1,+0"*%-2.71&,$.,10"$#--'4#3'2.A,0".(A,(2#3)"'(+"*#(.2#3.(/"53'*,T#3N"

%(+,32'N,("2>3#%/>"'"*,*#3'(+%*"#5"%(+,312'(+.(/"4,2T,,("2>,";<PM"=#3,12"

<,3A.$,"=#3,12"^(A,(2#3)"'(+"M('-)1.1"Y=^M["&3#/3'*"Y=./%3,":[0"&3#A.+,+"'*&-,"

1&'2.'-"+'2'"5#3"+#$%*,(2.(/"+.123.4%2.#(1"#5"1&,$.,1"Y,9/9"6'/(,11",2"'-9"Jaa`[9"

e#T,A,30"+%,"2#"2>,"1'*&-.(/"*,2>#+1"%1,+0".*&,35,$2"+,2,$2.#("$#%-+"(#2"4,"

'$$#%(2,+"5#39

@>,("'"1&,$.,1".1"(#2"+,2,$2,+"&,35,$2-)"4)"5.,-+"*,2>#+1"2>,3,".1"'"&#11.4.-.2)"

#5"3,&#32.(/"5'-1,"'41,($,1"Y.9,90"3,$#3+.(/"'"1&,$.,1"'1"'41,(2"T>,3,".2"T'1".("5'$2"

&3,1,(20"4%2"(#2"#41,3A,+[9"X>.1"-,'+1"2#"4.'1".(",12.*'2,1"#5"2>,"&3#4'4.-.2)"#5"

#$$%33,($,"#5"'"1&,$.,1"Y6'$C,(c.,",2"'-9"JaaK0"JaaO[9"X>.1".11%,"#5".*&,35,$2"

+,2,$2.#(".1",1&,$.'--)"3,-,A'(2".("'"*#(.2#3.(/"$#(2,I29"";(-,11".2".1"'$$#%(2,+"

5#30"$>'(/,1".("2>,"#41,3A,+"+.123.4%2.#("#5"'"1&,$.,1"*')"4,"'223.4%2'4-,"2#",.2>,3"

Y:["$>'(/,1".("2>,"'3,'"#$$%&.,+"4)"'"1&,$.,1"#3"YJ["$>'(/,1".("2>,"-.N,-.>##+"2>'2"

'"1&,$.,1".1"+,2,$2,+"+%,"2#"$>'(/,1".("'4%(+'($,0"$>'(/,1".("1,'1#('-"&>,(#-#/)0"

,2$9

/<<":#%$#'(8"&(;B1+&8+<%(2+%+<%$"#(C.$#'(D<<:1)#<4(!"*+,.

<%412'(2.'-"-.2,3'2%3,",I.121"#("2>,"1%4i,$2"#5"'$$#%(2.(/"5#3".*&,35,$2"+,2,$2.#("

Y1,,"6'$C,(c.,",2"'-9"JaaO"5#3"'"3,A.,T[9"G$$%&'($)"*#+,-1",I&-.$.2-)"'$$#%(2"

5#3".*&,35,$2"+,2,$2.#("%1.(/"3,&,'2,+"1%3A,)"+'2'"2#"#42'.("%(4.'1,+",12.*'2,1"#5"

&3,1,($,j'41,($,"*,23.$1"Y6'$C,(c.,",2"'-9"JaaK0"JaaO[9"6%-2.71,'1#("#$$%&'($)"

*#+,-1"$'("'-1#"4,"%1,+"2#",12.*'2,"-#$'-"3'2,1"#5"$#-#(.c'2.#("'(+",I2.($2.#(0"

&#2,(2.'--)"1#*,"#5"2>,"*#12"3,-,A'(2"*#(.2#3.(/"*,23.$1"/.A,(",I&,$2,+"

+.123.4%2.#("1>.521"'(+"&#2,(2.'-",I&'(1.#(1"#5",I#2.$"1&,$.,19"

^("#3+,3"2#"'$$%3'2,-)"*#(.2#3"1&,$.,1"+.123.4%2.#(1"#5"'32>3#&#+1"#A,3"2.*,0"T,"

&3#&#1,"2#"*#+.5)"2>,"5.,-+"*,2>#+1"#5"_XZ6F"1#"2>'2".*&,35,$2"+,2,$2.#("$'("4,"

,I&-.$.2-)"'$$#%(2,+"5#39

2$3+&.$%4().()(!+).:&+("8(E<".4.%+B(F+),%0

<&,$.,1"3.$>(,11"$'("4,"+,5.(,+"'1"2>,"(%*4,3"#5"1&,$.,1"+.123.4%2.#(1"2>'2"

#A,3-'&"T.2>"2>,"'3,'"#5".(2,3,129"<.($,",$#1)12,*"12'4.-.2)"Y6$8'(("Jaaa[0"

,$#1)12,*"5%($2.#("Ye##&,3",2"'-9"JaaR["'(+"3,1.-.,($,"Y8>'&.(",2"'-9"Jaaa["'3,"

/,(,3'--)"$#33,-'2,+"T.2>"+.A,31.2)0"1&,$.,1"3.$>(,11".1".21,-5"$#(1.+,3,+"2#"4,"'"

/##+".(+.$'2#3"#5"2>,">,'-2>"#5"'"1)12,*"Y6'/%33'(":L``[9";(+,3"2>.1"&3,*.1,0"

2'I#("3.$>(,11".1"#52,("%1,+"'1"'(".(+.$'2#3".(",(A.3#(*,(2'-"'11,11*,(2"12%+.,1"

V
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Y,9/9"H,$>2,-"'(+"8#&,-'(+":LQaB"Z/-#55"'(+"H3'N,-":LQKB"@%":L`JB"E#2>",2"'-9"

:LLVB"C'33"'(+"C.*4,3-.(/"JaaK[9

DGH+<%$3+.

G%3"5.312"#4i,$2.A,"T'1"'(".(.2.'-".(A,(2#3)"#5"2>,"'32>3#&#+"5'%('"#5"2>,"

CZD@E9"G%3"1,$#(+"#4i,$2.A,"T'1"2#"+,A,-#&"*,2>#+1"5#3"*#(.2#3.(/"'32>3#&#+"

+.123.4%2.#(1"#A,3"2>,"-#(/72,3*9""G%3"2>.3+"#4i,$2.A,"T'1"2#"+#$%*,(2"-'(+1$'&,7

1$'-,"&'22,3(1"#5"'32>3#&#+"4.#+.A,31.2)"#("2>,"CZD@E9"

!+%0"*.

I)B1,$#'(!+%0"*.

#./012!34525602#5789:6;2<3574!"_#$'2,+".("1#%2>7$,(23'-"M-'1N'0"2>,"

`aR0aaa">'"CZD@E"$#A,31"*%$>"#5"2>,"T,12,3("C,('."F,(.(1%-'"Y=./%3,":["'(+"

$#(1.121"*'.(-)"#5"4#3,'-"5#3,120"-#T-'(+"T,2-'(+10"'(+"'-&.(,">'4.2'219"X>,"=^M"

&3#/3'*".*&#1,+"'"3,$2'(/%-'3"/3.+"#5"1'*&-.(/"1.2,1"'$3#11"2>,"C,('."F,(.(1%-'"

T.2>"V9`"N*"1&'$.(/"4,2T,,("2>,"1.2,19""G5"2>,"1.2,1"T.2>.("CZD@E0"JRR"1.2,1"2>'2"

+.+"(#2"5'--"#("T'2,3"#3".$,"T,3,".($-%+,+".("2>,"1'*&-.(/"53'*,"#5""_XZ6F9"

<'*&-.(/"+,1./("'(+"*,2>#+1"'3,"+,1$3.4,+".("*#3,"+,2'.-".("6#32#(",2"'-9"

YJaaL[9

=9>.2-4?:;625602<:4902@4.A>0?!"=^M"$3,T1",12'4-.1>,+"5#%3"$.3$%-'30"R9OV"*"

3'+.%1"Y:aa"*J["1%47&-#21"'2",'$>"1'*&-.(/"1.2,0"T.2>"#(,"$,(23'-"1%47&-#2"$,(2,3,+"

#("2>,"1.2,"$##3+.('2,1"'(+"2>3,,"'++.2.#('-"$.3$%-'3"&-#21"'33'(/,+".("'"23.'(/-,"

'3#%(+"2>,"$,(23'-"1%47&-#2"YH%3N*'("JaaR[9"_XZ6F"*,2>#+1"T,3,"5#$%1,+"#("

2>,"$,(23'-"&-#21"'(+",I$-%+,+"2>,"2>3,,"'%I.-.'3)"&-#219""

GA,3"2>,"5.,-+"1,'1#(1"#5":LLLkJaaJ0"=^M"5.,-+"$3,T1"1%3A,),+"'--"#5"2>,":QO"

1.2,1"2>'2">'+"4,,("+,2,3*.(,+"2#"4,"5#3,12,+9""^("JaaV"'(+"JaaO0"CZD@E"5.,-+"

$3,T1"1'*&-,+"A,/,2'2.#("#("2>,"3,*'.(.(/"`a"1.2,19"8#**#("2#"4#2>"=^M"'(+"

CZD@E"5.,-+"*,2>#+1"T'1"$#--,$2.#("#5"&3,1,($,j'41,($,"+'2'"5#3"'--"A'1$%-'3"

&-'(2"1&,$.,1"#("2>,"$,(23'-"R9OV*"3'+.%10"$.3$%-'3"&-#219

<'*&-.(/"#5"2,33,123.'-"'32>3#&#+1"T'1"$#(+%$2,+"4)"CZD@E"5.,-+"$3,T1"#A,3"

2>,"5.,-+"1,'1#(1"#5"JaaV"Y:RJ"1.2,1["'(+"JaaO"Y:aK"1.2,1[9"8#($%33,(2"1'*&-.(/"#5"

4.3+1"+,2,3*.(,+"2>,"1,'1#('-"YW%(,"QkKa["'(+"+'.-)"YaV!Va"2#":a!RV">#%31["

1'*&-.(/"T.(+#T19"M"1.(/-,"1T,,&"(,2"1'*&-,"T'1"2'N,("'2",'$>"&-#29"=#3",'$>"

1'*&-,0"2>,"$#--,$2#3"1T,&2"'"Ka"$*"+.'*,2,3"',3.'-".(1,$2"(,2"d%.$N-)"4'$N"'(+"

5#32>"#A,3"'--"A,/,2'2.#("'(+"#2>,3"1%4123'2,1"T.2>.("3,'$>"#A,3"2>,",(2.3,"$.3$%-'3"

&-#29"X>,"$#(2,(21"#5"2>,"(,2"T,3,"2>,(",*&2.,+".(2#"'"A.'-"#5"`akLab",2>'(#-9"

R
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#>3.:6;25602B046.:C:D5.:>6!"M32>3#&#+"1&,$.*,(1"T,3,"&3#$,11,+"'(+"

'3$>.A,+"%1.(/"'&&3#&3.'2,"$%3'2.#("*,2>#+19"M--"'32>3#&#+1"&3,1,(2".("2>,"

1'*&-,1"T,3,"1#32,+".(2#"#3+,31"'(+"*#12"T,3,"1#32,+"2#"5'*.-.,19""<&,$.,1"

.+,(2.5.$'2.#(1"T,3,"*'+,"T>,(,A,3"&#11.4-,"'(+"*'()"1&,$.*,(1"T,3,"1>.&&,+"

2#"#A,3"Ka"1&,$.'-.121"5#3",I&,32"+,2,3*.('2.#(19"@.2>"2>,",I$,&2.#("#5"1*'--"

'*#%(21"#5"*'2,3.'-"-,(2"2#"A'3.#%1"1)12,*'2.1210"'--"1&,$.*,(1"3,*'.(".("2>,"

'32>3#&#+"$#--,$2.#("#5"2>,"CZD@E"Y.(2,3('2.#('-"$#--,$2.#("$#+,(!"CD@E[9

D<<:1)#<4(!"*+,$#'("8(I1+<$+.(2$.%&$G:%$"#.

=3>8>?402#5789:6;2-4?:;6!"X>,"&3#&#1,+"-#(/72,3*"1'*&-.(/"+,1./("5#3"

_XZ6F".1"'"3#2'2.(/"&'(,-"Y.(2,3&,(,23'2.(/"&'(,-["+,1./("T>,3,"R:"1.2,1"YJab["

T#%-+"4,"1'*&-,+",A,3)"#2>,3"),'3"1#"2>'2",'$>"1.2,"T#%-+"4,"A.1.2,+"#($,",A,3)"

2,("),'319""Z'$>"&'(,-"T#%-+"4,"3,&3,1,(2'2.A,"#5"2>,"CZD@E"'1"'"T>#-,9

P,2,$2.#(">.12#3.,1"1%.2'4-,"5#3"$#33,$2.(/"5#3".*&,35,$2"+,2,$2.#("'3,"*#12"

#52,("#42'.(,+"4)"A.1.2.(/",'$>"1.2,"*%-2.&-,"2.*,1"T.2>.("'"1,'1#(9""H,$'%1,"

1%3A,).(/"'--"1.2,1"*%-2.&-,"2.*,1".("#(,"1,'1#("T#%-+"4,"$#127&3#>.4.2.A,0"

.($3,'1,"+'*'/,"2#"2>,"1.2,1"2>3#%/>"23'*&-.(/0"'(+".($3,'1,"2>,"-.N,-.>##+"#5"

.('+A,32,(2-)".(23#+%$.(/",I#2.$"1&,$.,1"2#"2>,"1.2,10"T,"&3#&#1,"2#"*#+.5)"

'32>3#&#+"$#--,$2.(/"*,2>#+1"1#"2>'2"+,2,$2.#("&3#4'4.-.2.,1"$'("4,",12.*'2,+"53#*"

1&'2.'-"1%41'*&-,1"2'N,("#("'"1.(/-,"A.1.2"2#"'"1.2,9""^("2>,"&-'$,"#5"'"1.(/-,"1T,,&"

(,2"1'*&-,"#A,3"2>,":aa"*J"$.3$%-'3"&-#20"2>,"&-#2"T#%-+"4,"1&-.2".(2#"2T#"

1,*.$.3$-,1"'-#(/"'"(#32>71#%2>"'I.1"'(+"'"1,&'3'2,"1T,,&"(,2"1'*&-,"T#%-+"4,"

2'N,("53#*",'$>"Ra*J"1,*.$.3$-,9"X>,1,"1&'2.'-"1%41'*&-,1"T#%-+"&3#A.+,"'"

+,2,$2.#(">.12#3)"1%.2'4-,"5#3"#$$%&'($)"*#+,-.(/9

@>6.4E&539>2#:7/95.:>6?!"G%3"/,(,3'-"'&&3#'$>"5#3",A'-%'2.(/"_XZ6F"

1'*&-.(/"3,/.*,1"T'1"2#"'11,11"2>,"&,35#3*'($,"#5"2>,"&3#&#1,+"+,1./(1"2>3#%/>"

6#(2,78'3-#"1.*%-'2.#(9"X>,1,"1.*%-'2.#(1"T,3,"+,1./(,+"2#"'(1T,3"2>,"d%,12.#("

#5"T>,2>,3"#3"(#2"#$$%&'($)"*,23.$1"$#%-+"4,",12.*'2,+"T,--B"2>,)"T,3,"(#2"

+,1./(,+"2#"'$2%'--)"*#+,-"1&,$.,1"+.123.4%2.#(19"^("2>,"1'*,"T')"2>'2"'"*,'("$'("

4,"$#(1.+,3,+"'"1&,$.'-"$'1,"#5"-.(,'3"3,/3,11.#("T>,3,"2>,3,".1"#(-)"'(".(2,3$,&2"

'(+"'(",33#3"2,3*0"2>,"1.*&-,"#$$%&'($)"*#+,-1"T,"%1,+",12.*'2,+"#(-)"

#$$%&'($)"*,23.$1"Y#$$%&'($)0"+,2,$2.#("&3#4'4.-.2)0"'(+0".("*%-2.71,'1#("$'1,10"

3'2,1"#5"$#-#(.c'2.#("'(+",I2.($2.#(["T.2>#%2"$#(1.+,3.(/"'++.2.#('-"A'3.'4-,1"Y,9/9"

&#11.4-,"$#A'3.'2,1["2>'2"T#%-+"(#3*'--)"4,".($-%+,+"2#"&3#+%$,"1&,$.,1"

+.123.4%2.#("*#+,-19"X>,1,"1.*%-'2.#(1"T,3,"+,1./(,+"2#"'(1T,3"2>,"d%,12.#(1"#5"

.(2,3,12"T.2>#%2"%((,$,11'3)"$#*&-,I.2)9

=#3",'$>"1$,('3.#"$#(1.+,3,+0"T,"Y:["/,(,3'2,+"-'3/,"(%*4,31"#5"1.*%-'2,+"

+'2'1,21"2>'2"$#(5#3*,+"2#"2>,"&3#&#1,+"_XZ6F"*#(.2#3.(/"+,1./("'(+">'+"

N(#T("&'3'*,2,3"A'-%,10"YJ["5.22,+"#$$%&'($)"*#+,-1"%1.(/"&3#/3'*"FEZ<ZD8Z"

Ye.(,1"JaaQ[0"'(+"YK["$#*&'3,+"2>,",12.*'2,1"#42'.(,+"2#"2>,"N(#T("&'3'*,2,3"

O

USDA Forest Service Proceedings – RMRS-P-56 6.



A'-%,19"@,"T3#2,"1$3.&21".("2>,"E"&3#/3'**.(/"-'(/%'/,"YE"$#3,"+,A,-#&*,(2"

2,'*"Jaa`["1$3.&21"2#"/,(,3'2,"+'2'1,210"T3.2,".(&%2"5.-,10"5.2"#$$%&'($)"*#+,-1"

%1.(/"FEZ<ZD8Z0"'(+",I23'$2"3,1%-219"

@,"/,(,3'2,+"+'2'1,21"1%.2'4-,"5#3"#$$%&'($)"*#+,-.(/".("2>,"5#--#T.(/"T')9"

=#3"'"/.A,("1,2"#5"1$'-'3"A'-%,1"#5"#$$%&'($)"Yl0"2>,"&3#&#32.#("#5"2>,"'3,'"

#$$%&.,+"4)"'"1&,$.,1["'(+"+,2,$2.#("&3#4'4.-.2)"Y%[0"T,"5.312"/,(,3'2,+"'"-.12"#5"

#$$%&'($)"12'2,1"'2"1"1.2,1"4)"1&,$.5).(/"2>'2"2>,"#$$%&'($)"12'2,1"'2"'--"1.2,1"T,3,"

.(+,&,(+,(2-)"'(+".+,(2.$'--)"+.123.4%2,+"3,'-.c'2.#(1"#5"'"H,3(#%--."&3#$,11"T.2>"'"

3'2,"#5"l"%1.(/"2>,"34,3("5%($2.#(".("2>,"E-'4"'++7#("-.43'3)"YH##1",2"'-9"JaaO[9"

<.*.-'3-)0"T,"1&,$.5.,+"2>'2"+,2,$2.#(",A,(21".(",'$>"#5"2>,"2T#"1T,,&"(,2"1'*&-,1"

53#*",'$>"1.2,"T,3,".(+,&,(+,(2-)"'(+".+,(2.$'--)"+.123.4%2,+"3,'-.c'2.#(1"#5"'"

H,3(#%--."&3#$,11"T.2>"'"3'2,"#5"%9"6%-2.&-).(/"2>,"+,2,$2.#("12'2,1"4)"2>,"

#$$%&'($)"12'2,1").,-+,+"+,2,$2.#(">.12#3.,1"T.2>"2>,"1&,$.5.,+"&'3'*,2,3"A'-%,1"#5"

l"'(+"%9

=#3"1.(/-,71,'1#("1$,('3.#10"T,"$#(1.+,3,+"(.(,"A'-%,1"#5"#$$%&'($)"Ya9:0"a9J0"

a9K0"a9V0"a9R0"a9O0"a9Q0"a9`0"'(+"a9L["'(+"2>,"1'*,"(.(,"A'-%,1"#5"+,2,$2.#("

&3#4'4.-.2)9"=#3",'$>"$#*4.('2.#("#5"&'3'*,2,310"T,"/,(,3'2,+":aa"+'2'1,21"Y'"

2#2'-"#5"L"m"L"m":aa"n"`0:aa"+'2'1,21[9";1.(/"2>,"1'*,"1.*%-'2,+"+'2'1,210"T,"

#42'.(,+",12.*'2,1"53#*"&3#/3'*"FEZ<ZD8Z"'(+"('oA,",12.*'2,1"#5"#$$%&'($)0"

T>,3,"('oA,",12.*'2,1"'3,"1.*&-)"2>,"&3#&#32.#("#5"1.2,1"T>,3,"'"1&,$.,1".1"

#41,3A,+".("'()"1%3A,)9""

^("#3+,3"2#"'11,11">#T"T,--"3'2,1"#5",I2.($2.#("'(+"$#-#(.c'2.#("$#%-+"4,"

*#(.2#3,+"#A,3"2>,"-#(/72,3*"4)"2>,"&3#&#1,+"1'*&-.(/"+,1./(0"T,".(2,(2.#('--)"

1,-,$2,+"&'3'*,2,3"A'-%,1"2>'2"T,3,"3,'-.12.$9"@,"1,2".(.2.'-"#$$%&'($)"2#"a9Q0"

+,2,$2.#("&3#4'4.-.2)"2#"a9`0"2>,"-#$'-"3'2,"#5",I2.($2.#("Yp["2#"a9:0"'(+"2>,"-#$'-"

3'2,"#5"$#-#(.c'2.#("Yq["2#"a9aR9"6%-2.71,'1#("+'2'"T,3,"/,(,3'2,+"4)"1.*%-'2.(/"

2>,"6'3N#A.'("&3#$,11,1"#5"$#-#(.c'2.#("'(+",I2.($2.#("#A,3"'"1&,$.5.,+"(%*4,3"

#5"1,'1#(19"=#3",'$>"1.2,"2>'2"T'1"#$$%&.,+"'2"1,'1#("/0"2>,3,"T'1"'"&3#4'4.-.2)"p"

Y2>,"-#$'-"3'2,"#5",I2.($2.#(["2>'2".2"T#%-+"4,$#*,"%(#$$%&.,+"4)"1,'1#("/!r":B"

1.2,1"%(#$$%&.,+".("1,'1#("2">'+"'"&3#4'4.-.2)"q"Y2>,"-#$'-"3'2,"#5"$#-#(.c'2.#(["#5"

4,$#*.(/"$#-#(.c,+"4)"1,'1#("/"r":9"G(,">%(+3,+"+'2'1,21"T,3,"/,(,3'2,+"

$#(5#3*.(/"2#"'"&#&%-'2.#("T.2>"2>,"1&,$.5.,+"&'3'*,2,3"A'-%,1"#A,3"Ja"),'319"

=#3",'$>"1.*%-'2,+"&#&%-'2.#(0",12.*'2,1"#5"2>,"-#$'-"3'2,1"#5"$#-#(.c'2.#("T,3,"

#42'.(,+"%1.(/"&3#/3'*"FEZ<ZD8Z",A,3)"2.*,"2>,"&#&%-'2.#("T#%-+"4,"1'*&-,+"

4)"2>,"&3#&#1,+"_XZ6F"3#2'2.(/"&'(,-"+,1./(9""H#T1,3"YJaaL["&3#A.+,+"'"*#3,"

+,2'.-,+",I&-'('2.#("#5"2>,"*,2>#+1"%1,+"5#3"/,(,3'2.(/"+'2'1,21"'(+"5.22.(/"

#$$%&'($)"*#+,-1"%1.(/"&3#/3'*"FEZ<ZD8Z0".($-%+.(/"2>,"E"1$3.&21"%1,+9

Q
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-)G,+(A7'G"<:;:%,':28;M3%3':2'"2";D,%,)

I8"2#$+,+<"#:3"% ?M;:8:3"% Z"O:3"%

I8$:;:3"% ?M-8M;:+2:3"% N#:#:3"%

I8-:3:3"% V%;A$"8:3"% Q$;"%+#$-:A:3"%

IX-+<D@:3"% V:"A-::3"% Q$+-:3"%

I2:,+A+3:3"% V+;:8$+A+3:3"% Q:AM28M;:3"%

I2+O::3"% V-+,+A$:;:3"% Q;"#DX",#%-:3"%

I2#$+8+-:3"% V-D:2:3"% Q,:;:3"%

I2#$+<D::3"% V-D+<D@:3"% Q,D;;:3"%

I2#$+<D@:3"% [;"#%-:3"% Q#%-+<";:3"%

IA$%;:2:3"% [<A:3:3"% QD#$:3"%

IA$:3:3"% [28D-#:3"% C$"X:+2:3"%

IA:3"% [2#+<+O-D:3"% L8"-"O"%:3"%

I-X:3"% [A$D3-:3"% L8"#$+A$"X:3"%

I,#%::3"% [M;+A$:3"% L8%;:+2:3"%

*%#$D;:3"% [M-D#+<:3"% L8:+<D@:3"%

*:O:+2:3"% G+-<:8:3"% L8:-#:3"%

*-"8+2:3"% \%;%+<D@:3"% L8;%-+,+<"#:3"%

?"2#$"-:3"% \%<%-+O::3"% L%A,:3"%

?"-"O:3"% \DA+X",#-M-:3"% L:<M;::3"%

?%-"A$-+2:3"% 68$2%M<+2:3"% L<:2#$M-:3"%

?$"<"%<D::3"% 6,+#+<:3"% LA$"%-+8%-:3"%

?$;+-+A%-;:3"% ("#$-:3::3"% L#"A$D;:2:3"%

?$;+-+A:3"% ("M]"2::3"% L#-"#:+<D:3"%

?$-D,+<%;:3"% (%:+3:3"% LD-A$:3"%

?$-D,+A:3"% (:#$+O::3"% S"O"2:3"%

?:8"3%;;:3"% (D8:3"% S"8$:2:3"%

?;M,::3"% (DX"%:3"% S%2#$-%3:2:3"%

?+88:2%;;:3"% !:8-+A%@:3"% S%A$-:#:3"%

?+%2"X-:+2:3"% !:-:3"% S$-:A:3"%

?+2:+A#%-DX:3"% !M,8:3"% S+-D<:3"%

X>3#%/>#%2"2>,"1.*%-'2.#("'('-)1,10"&3#/3'*"FEZ<ZD8Z"#52,(").,-+,+"5.22,+"

A'-%,1"#5"c,3#"#3"#(,"5#3"'2"-,'12"#(,"#5"2>,"&'3'*,2,31",12.*'2,+9"@>,("2>.1"

#$$%33,+0".2"'&&,'3,+"'1".5"#(,"&'3'*,2,3"T'1"5.I,+"'2",.2>,3"c,3#"#3"#(,"T>.-,"

5.22.(/"T'1"&,35#3*,+"#("2>,"3,*'.(.(/"A'3.'4-,Y1[0"-,'+.(/"2#",33#(,#%1"3,1%-219"

^("2>,1,"1.2%'2.#(10"&3#/3'*"FEZ<ZD8Z".11%.(/"2>,"T'3(.(/0"\(%*,3.$'-"

$#(A,3/,($,"T'1"(#2"3,'$>,+0]".(".21"#%2&%29"X>,"5'.-%3,"3'2,"#5"'"1,2"#5"

1.*%-'2.#(1"T'1"$'-$%-'2,+"4)"+.A.+.(/"2>,"(%*4,3"#5"5'.-,+"1.*%-'2.#(1"4)"2>,"

2#2'-"(%*4,3"#5"1.*%-'2.#(1"'(+"T'1",I&3,11,+"'1"'"&,3$,(2'/,9"M--"#2>,3"

`
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1%**'3.,1"&3,1,(2,+"4,-#T",I$-%+,"3,1%-21"53#*"1.*%-'2.#(1"T>,3,"FEZ<ZD8Z"

5'.-,+"2#"$#(A,3/,0"1%**'3.c.(/"#(-)"1.*%-'2.#(1"T>,3,"FEZ<ZD8Z"$#(A,3/,+"

1%$$,115%--)9

9)#*"B(@"&+.%(9+'&+..$"#("8(/&%0&"1"*(@)B$,4(9$<0#+..

^("#3+,3"2#"$3,'2,"'"$#(2.(%#%1"3'12,3"#5"'32>3#&#+"5'*.-)"3.$>(,11"#A,3"2>,"

CZD@E0"&3,+.$2.#(1"T,3,"*'+,"4)"3'(+#*"5#3,12"3,/3,11.#(0"'"*'$>.(,"-,'3(.(/"

'-/#3.2>*"T.2>">./>"&3,+.$2.A,"'$$%3'$)"YH3,.*'(0"Jaa:[9"=#3"2>.1",I,3$.1,0"

2'I#(#*.$"43,'+2>"T'1"N,&2"'1"43#'+"'1"&#11.4-,0"'-2>#%/>"1#*,"/3#%&1"T,3,"

,I$-%+,+"+%,"2#"&3'$2.$'-"$#(123'.(219"D.(,2)"5'*.-.,1"YX'4-,":["T,3,".($-%+,+".("

'('-)1,19"G5"2>,"JRR"1T,,&"(,2"1'*&-,1"'A'.-'4-,0"2T#"T,3,"3,i,$2,+"5#3"2>,"

&%3&#1,1"#5"2>.1"3,/3,11.#("'('-)1.19""^("#(,"$'1,0"'"-#/.12.$'-",33#3">'+"$'%1,+"

1&'2.'-"*.1'-./(*,(2"#5"2>,"'32>3#&#+"1'*&-,"T.2>"#2>,3"+'2'"'(+".("'(#2>,3"$'1,0"

'("'A'-'($>,"+3'*'2.$'--)"'-2,3,+"'"&-#2".**,+.'2,-)"4,5#3,"'32>3#&#+1"T,3,"

1'*&-,+9

-)G,+(J7'^"-:"O;%,':28;M3%3':2'C"23+<'G+-%,#'-%X-%,,:+2)

K)&$)G,+(6)B+ 6:BG+&("8(
K)&$)G,+.

2+.<&$1%$"#(

I1)%$),

;"#:#M3%' .

;+2X:#M3%' .

-"1"'&)10$<

%;%H"#:+2' . [;%H"#:+2'W-+<'#$%'V:X:#";'[;%H"#:+2'!+3%;'JV[!K)'

,;+A%' . V%-:H%3'W-+<'V[!)

",A%8#' . V%-:H%3'W-+<'V[!)

8M-H"#M-%' . V%-:H%3'W-+<'V[!)

3:,#"28%_+8%"2' . V:,#"28%'#+'#$%'+8%"2)

?,$B)%+

A-%8:A:#"#:+2 .1 I22M";'JA-%8:A:#"#:+2_"22M";K'"23'<+2#$;D'
JA-%8:A:#"#:+2E.P.0K'A-%8:A:#"#:+2'W-+<'#$%'QC6L!'
<+3%;)

#%<A%-"#M-% .1 I22M";'J#%<A%-"#M-%_"22M";K'"23'<+2#$;D'
J#%<A%-"#M-%E.P.0K'#%<A%-"#M-%'W-+<'#$%'QC6L!'
<+3%;)'

"88M<M;"#:+2' . I88M<M;"#%3',M-W"8%'-M2+WW'O",%3'+2'QC6L!'"22M";'
A-%8:A:#"#:+2'3"#"'"23'V[!)

K+'+%)%$"#

ZV^6' . Z+-<";:@%3'3:WW%-%28%'^%X%#"#:+2'623%]'8";8M;"#%3'
W-+<'0EE0'("23L"#'`':<"X%-D)

;"23'8+H%- . ^%X%#"#:+2'8+H%-'8;",,%,'JG:XM-%'0K)

-+B1"&),

3"D' . 4M;:"2'3"D)'

$+M-' . \+M-,',:28%'<:32:X$#)'

F$.%"&$<

D%"-,_A+,#_W:-%' . a%"-,',:28%';",#'W:-%)

-"%), 1b

L
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)F.35D.:>62>C2&>G53:5.4?!"M":aa"*"m":aa"*"3,1#-%2.#("&3,+.$2.#("/3.+"T'1"

.*&#1,+"#A,3"2>,"CZD@E9"f'-%,1"#5"$#A'3.'2,1"2>'2"T,3,"'A'.-'4-,"'1"3'12,3"

+'2'1,21"T,3,",I23'$2,+"4)"3,1'*&-.(/"Y4.-.(,'3".(2,3&#-'2.#(["%1.(/"M3$6'&"

YX'4-,"J[9"8#A'3.'2,1"'A'.-'4-,"'1"A,$2#3"+'2'1,21"T,3,"$#(A,32,+"2#"3'12,3"+'2'1,21"

$#(5#3*.(/"2#"2>,"&3,+.$2.#("/3.+9"=#3"'--"$#A'3.'2,10"A'-%,1"53#*"&.I,-1".("T>.$>"

_XZ6F"1'*&-.(/"-#$'2.#(1"5,--"T,3,",I23'$2,+"5#3"%1,".("5.22.(/"#5"3'(+#*"5#3,12"

3,/3,11.#("*#+,-19"

Z-,A'2.#("+'2'"T,3,",I23'$2,+"53#*"'";<g<"+./.2'-",-,A'2.#("*#+,-"YPZ6["

3,1'*&-,+"53#*"Ka"*"m"Oa"*"2#"Ka"*"m"Ka"*"3,1#-%2.#(9"X#&#/3'&>.$"A'3.'4-,1"

T,3,"$'-$%-'2,+"53#*"2>,"PZ69""X>,"(#3*'-.c,+"+.55,3,($,"A,/,2'2.#(".(+,I"

YDPf^["T'1"$'-$%-'2,+"53#*"'""Ka*"m"Ka*"3,1#-%2.#("*#1'.$"#5"_'(+<'2"Q"

.*'/,3)"2'N,(".("JaaJ"'(+"*'+,"'A'.-'4-,"2>3#%/>"2>,"6%-2.7E,1#-%2.#("_'(+"

8>'3'$2,3.12.$1"8#(1#32.%*9"8-.*'2,"&'3'*,2,31"T,3,",I23'$2,+"53#*"2>,"J"N*"

3,1#-%2.#("FE^<6"YF'3'*,2,37,-,A'2.#("E,/3,11.#(1"#("^(+,&,(+,(2"<-#&,1"

:a

@$':&+(J7'Y%2":'Q%2:2,M;"';"23'8+H%-'8;",,:W:8"#:+2)

USDA Forest Service Proceedings – RMRS-P-56 6.



6#+,-["3'12,3"+'2'1,21"&3#+%$,+"4)"2>,"<&'2.'-"8-.*'2,"M('-)1.1"<,3A.$,"'2"

G3,/#("<2'2,";(.A,31.2)"Y<8M<jG<;[9"X>.1"+'2'1,2".1"$%33,(2-)"2>,"4,12"$-.*'2,"

$#A,3'/,"'A'.-'4-,"5#3"M-'1N'"Y<.*&1#(",2"'-9"JaaR[9""f,/,2'2.#("2)&,1"T,3,"

,I23'$2,+"53#*"'"3,$,(2"A,/,2'2.#("$-'11.5.$'2.#("#5"2>,"C,('."F,(.(1%-'"

YCZD@E0"%(&%4-.1>,+"+'2'[9

E'(+#*"5#3,12"3,/3,11.#(1"T,3,"5.22,+"%1.(/"2>,"3'(+#*=#3,12"&'$N'/,"Y_.'T"

'(+"@.,(,3"JaaJ["5#3"E9"=#3"'--"3'(+#*"5#3,12"3,/3,11.#(10"R0aaa"23,,1"T,3,"4%.-29"

X#"1,-,$2"'("#&2.*'-"A'-%,"#5"2>,"s*23)t"&'3'*,2,3"Y2>,"(%*4,3"#5"&3,+.$2#31"

3'(+#*-)"1,-,$2,+"5#3"$#(1.+,3'2.#("'2",'$>"(#+,[0"T,"3'("3'(+#*"5#3,12"

3,/3,11.#(1"5#3"'--"A'-%,1"#5"*23)"4,2T,,(":"'(+"Ra"'(+"1,-,$2,+"2>,"A'-%,"#5"*23)"

2>'2").,-+,+"2>,">./>,12"A'-%,"#5"&1,%+#7E71d%'3,+"'(+"2>,"-#T,12"*,'("1d%'3,+"

,33#39"M"3'(+#*"5#3,12"3,/3,11.#("*#+,-"T'1"2>,("5.22,+"%1.(/"2>.1"#&2.*'-"A'-%,"

#5"2>,"*23)"&'3'*,2,39"@,"%1,+"2>.1"*#+,-"2#"*'N,"&3,+.$2.#(1"'2"'--":aa"*"m":aa"

*"&.I,-1"#A,3"2>,"CZD@E9"=#3"&3,+.$2.#(0"2>,"2.*,"T'1"1,2"'2"*,+.'("#41,3A,+"

A'-%,1"53#*"#41,3A,+"_XZ6F"+'2'"YW%(,":`"'2"`!aa"'*[9

9+.:,%.

!)%+&$),(?",,+<%+*

X>,"JRR"1T,,&"(,2"1'*&-,1").,-+,+"'"2#2'-"#5":R0:KO"1&,$.*,(10"#5"T>.$>"

L0LO:"T,3,"#5"2>,"La"5'*.-.,1".($-%+,+".("'('-)1,19""GA,3">'-5"#5"2>,"'32>3#&#+1"

$#--,$2,+"YROb["T,3,"P.&2,3'9""e,*.&2,3'"YJOb[0""8#--,*4#-'"Y::b[0"'(+"

e)*,(#&2,3'"YQb["'-1#"$#*&3.1,+"1%412'(2.'-"53'$2.#(1"#5"2>,"1&,$.*,(1"

$#(1.+,3,+9

X>,"'4%(+'($,"'(+"53,d%,($)"#5"1&,$.*,(1"53#*",'$>"5'*.-)"A'3.,+"/3,'2-)9"

8%-.$.+',0"T.2>"'"2#2'-"#5"K0OLQ".(+.A.+%'-1"$#--,$2,+"'(+"'"53,d%,($)"#5"a9QO"Y.9,90"

$#--,$2,+"'2"QOb"#5"1.2,1[0"T'1"2>,"*#12"'4%(+'(2"'(+"53,d%,(2-)"$#--,$2,+"5'*.-)9"

M&>.+.+',0"<*.(2>%3.+',0"8.$'+,--.+',0"6%1$.+',0"P,-&>'$.+',0"Z*&.+.+',0"

^$>(,%*#(.+',0"<.*%-..+',0"H3'$#(.+',0"_'%I'(..+',0"F>#3.+',0"H.#4.#(.+',0"

M(2>#*)..+',0"'(+"8'(2>'3.+',"T,3,"'-1#"3,-'2.A,-)"'4%(+'(2"'(+"53,d%,(2-)"

$#--,$2,+9"Z&>)+3.+',"T,3,"'4%(+'(2"-#$'--)0"#(,"1.2,"#("2>,"*'3/.("#5"

8>.$N'-##("=-'21").,-+.(/":KK"#5"2>,":KR"Z&>)+3.+"1&,$.*,(1"$#--,$2,+0"4%2"2>,)"

T,3,"/,(,3'--)".(53,d%,(20"$#--,$2,+"'2"#(-)"2>3,,"1.2,19"^("$#(23'120"P.'&3..+',"

T,3,"3,-'2.A,-)"$#**#("4%2"T,3,"%1%'--)"3,&3,1,(2,+"4)"5,T".(+.A.+%'-1"'2",'$>"

1.2,9"6'()"2'I'"T,3,"3'3,-)",($#%(2,3,+"'(+"T,3,"3,&3,1,(2,+"4)"5,T"1&,$.*,(19"

<,A,(2,,("5'*.-.,1"Y^1#2#*.+',0"8>-#3#&,3-.+',0"M$>.-.+',0"D'4.+',0"

F>-',#2>3.&.+',0"M(#4..+',0"8'3'4.+',0"_'2>3.+..+',0"_)$.+',0"F)2>.+',0"

<$'3'4',.+',0"<$.32.+',0"8-%1..+',0"P3)#*)c.+',0"<,&1.+',0"M&>,-.(.+',0"'(+"

H,2>)-.+',["T,3,"3,&3,1,(2,+"4)"1.(/-,2#(19

::
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!"#%+L?)&,"(I$B:,)%$"#.

#A>3.E$4372%4?/9.?!";1.(/"+'2'"53#*"1'*&-.(/"#5"'"1.(/-,"&'(,-"Y'"1.(/-,"

1'*&-.(/"1,'1#([0"&3#/3'*"FEZ<ZD8Z">'+"'">./>"5'.-%3,"3'2,0",1&,$.'--)"T>,("

+,2,$2.#("&3#4'4.-.2)"T'1"-#T"Y=./%3,"K[9""X>,"'A,3'/,"5'.-%3,"3'2,"T'1"JV"5'.-%3,1"

#%2"#5",A,3)":aa"1.*%-'2.#(10"T.2>"'">./>"#5"L`"5'.-%3,1"#%2"#5":aa"1.*%-'2.#(1"

T>,("4#2>"#$$%&'($)"Yl["'(+"+,2,$2.#("&3#4'4.-.2)"Y%["T,3,"a9:9""F3#/3'*"

FEZ<ZD8Z"T'1"*#12"3,-.'4-,"T>,("l"T'1"4,2T,,("a9K"'(+"a9Q"'(+"%"T'1"

4,2T,,("a9O"'(+"a9`9

@$':&+(M7'G":;M-%'-"#%'+W'Q-+X-"<'QC[L[Z?['+H%-'"'-"2X%'+W'H";M%,'+W'l'"23'%'W+-'#$%'
-+#"#:2X'A"2%;'3%,:X2)'^";M%,'"-%'#$%'A%-8%2#"X%'+W',:<M;"#:+2,':2'&$:8$'QC[L[Z?['
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Tree Crown Condition in Virginia Before and 
After Hurricane Isabel (September 2003)

KaDonna Randolph1

Anita Rose2

Abstract: In September 2003, Hurricane Isabel made landfall in North Carolina as a 
Category 2 hurricane. As it moved inland, with sustained wind speeds of 37 to 69 miles 
per hour (59 to 111 km per hour) and gusts up to 91 miles per hour (146 km per hour), 
the hurricane caused widespread damage throughout Virginia and is a plausible 
explanation for adverse changes observed in tree crown condition since the hurricane. 
On average, trees measured before and after the hurricane showed a signifi cant increase 
in foliage transparency. Increases in foliage transparency were greatest for loblolly pine, 
sweetgum, and the Coastal Plain region of the State. A signifi cant correlation between 
tree size and increase in foliage transparency was not observed. This study highlighted 
the potential importance of foliage transparency as an indicator of tree damage from 
severe storms.  

Keywords: FIA, foliage transparency, forest health, hurricane damage.

Introduction

The U.S. Forest Service, Forest Inventory and Analysis (FIA) program has 
been conducting inventories of the Nation’s forest land for 80 years. For most of 
this period, statewide inventories were completed approximately once every 6 to 
8 years in the South and 11 to 18 years in the rest of the country (Gillespie 1999). 
Since the late 1990s, however, FIA has inventoried States on an annual basis, 
striving to complete an inventory cycle every 5 years in the East and every 10 
years in the West. 

The fi rst set of such annual measurements began in Virginia in 1997 and 
concluded in 2001. This was the 7th statewide inventory of Virginia. The 8th 
statewide survey, also accomplished on an annual basis, was conducted during 
2002 to 2007. As part of the 2001 (7th survey) report on the forests of Virginia, 
crown conditions were evaluated to identify potential forest health problems 
within the State (Rose 2007). Average crown density, foliage transparency, and 
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crown dieback were calculated for the softwood and hardwood species groups, 
as well as for individual tree species. When crown conditions from the 7th survey 
were compared to the forthcoming 2007 (8th survey) report (Rose in preparation), 
several changes were noticed. As expected, average values  uctuated for all three 
crown variables; however, the change for foliage transparency, especially among 
the softwoods, seemed atypical. Across the State, average hardwood transparency 
increased from 20 percent to 23 percent and average softwood transparency 
increased from 22 percent to 29 percent. Several individual species also showed 
large increases in average foliage transparency between the two surveys. Loblolly 
pine (Pinus taeda L.) average foliage transparency increased from 19 percent to 
30 percent and the average for sweetgum (Liquidambar styracifl ua L.) increased 
from 17 percent to 25 percent. The levels of foliage transparency measured during 
the 8th survey appeared unusual because the majority of both hardwood and 
softwood trees in the Southern United States typically have foliage transparencies 
of 25 percent or less (Randolph 2006). 

Because hurricanes can cause substantial damage to tree crowns (Putz and 
Sharitz 1991), we considered the hurricane that struck Virginia during the 8th 
survey as a likely explanation for the changes noticed in crown condition. In 
September 2003 Hurricane Isabel made landfall on the Outer Banks of North 
Carolina as a Category 2 hurricane ( gure 1). The storm caused widespread wind 
and  ood damage across eight States from North Carolina to New York. Isabel 

Figure 1: Path of Hurricane Isabel across North Carolina and Virginia, and the location of the 
five FIA units in Virginia.
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passed through Virginia with sustained wind speeds ranging from 37 to 69 miles 
per hour (59 to 111 km per hour), with gusts up to 91 miles per hour (146 km per 
hour) (Beven and Cobb 2004). Rainfall from the hurricane averaged 4 to 7 inches 
(10 to 18 cm) over large portions of east-central Virginia, with the Shenandoah 
Valley in northern Virginia averaging 8 to 12 inches (20 to 30 cm) (Beven and 
Cobb 2004). A total of 77 counties and independent cities across Virginia were 
declared disaster zones, and the estimated economic loss was $925 million, 
greater than any of the other States through which Isabel passed (U.S. Department 
of Commerce 2004). 

The purpose of this study was to examine trees that were measured both before 
and after the hurricane and explore the possibility that Hurricane Isabel was a 
contributing factor to the change in foliage transparency between the 7th and 8th 
surveys.

Methods

Data

Data for this study came from the FIA phase 3 plots measured in Virginia 
between 1997 and 2001 (7th survey) and between 2002 and 2007 (8th survey). FIA 
phase 3 plots are a cluster of four 1/24-acre (0.02 ha) circular subplots located 
across the landscape in a way such that each plot represents approximately 96,000 
acres (38,850 ha) (McRoberts 2005). On each plot crown condition is assessed 
for every live tree ! 5.0 inches (12.7 cm) diameter at breast height (d.b.h.). Three 
crown condition variables are assessed: crown dieback, crown density, and foliage 
transparency. Crown dieback is the recent mortality of branches with  ne twigs, 
whereas crown density and foliage transparency measure the amount of foliage 
and crown biomass on a tree (Schomaker and others 2007). Though foliage trans-
parency and crown density are similar measures they cannot be interpreted as 
exact inverses. Crown density measures the amount of sunlight blocked by all 
biomass produced by the tree (both live and dead) in the crown, whereas foliage 
transparency measures the amount of sunlight penetrating only the live portion 
of the crown. Deductions are made from the maximum possible crown density 
for spaces between branches and other large openings in the crown. However, 
large gaps in the crown where foliage is not expected to occur are excluded from 
consideration when foliage transparency is rated.

Analysis

Individual trees from the 7th and 8th surveys were matched by plot and tree 
number and then divided into pre- and post-hurricane data sets. Trees measured 
before September 18, 2003 were assigned to the pre-hurricane data set and trees 
measured on or after September 18, 2003 were assigned to the post-hurricane 
data set. The mean, standard error, and 25th, 50th, 75th, and 90th percentiles were 
calculated for both the pre- and post-hurricane data sets. Change in crown 
condition was calculated for survivor trees as the difference between the post- and 
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pre-hurricane ratings. Trees that died between the  rst and second assessment 
were not included in this analysis. In this report we focus on the change in foliage 
transparency ("ft).

Paired t-tests were used to test the hypothesis that the mean of "ft equals zero 
at the State and FIA unit level for all trees combined, hardwood and softwood 
groups, and individual species groups. Scatter plots of "ft by d.b.h. and height, and 
average "ft ( ftδ ) by crown position were produced to examine the relationship 
between "ft and tree dominance. In addition, ftδ  based on only the remeasured 
trees was calculated for each plot with three or more live trees and mapped for 
visual inspection in relation to the path of Hurricane Isabel (U.S. Department of 
Commerce 2008). 

Results

Pre- and post-hurricane assessments were matched for 1,492 live trees ! 5.0 
inches (12.7 cm) d.b.h. on 74 plots. Hardwoods made up the majority of the 
trees assessed (67.9 percent). Chestnut oak (Quercus prinus L.), yellow-poplar 
(Liriodendron tulipifera L.), and red maple (Acer rubrum L.) were the most 
abundant hardwood species. Loblolly pine and Virginia pine (Pinus virginiana 
Mill.) were the most abundant softwood species. The time between the pre- and 
post-hurricane assessments was 4 years for one plot and 5 years for all other plots.  

Across the State, there was a signi cant (# = 0.05) increase in average foliage 
transparency pre- to post-hurricane for all trees combined, the hardwood and 
softwood groups, and several of the individual species groups (table 1). The 
increase in foliage transparency was greater among the softwoods ( =ftδ 9.6 
percent) than among the hardwoods ( =ftδ 5.7 percent) and overall was greatest 
for sweetgum ( =ftδ 14.4 percent) and loblolly pine ( =ftδ 12.0 percent). 

Changes in the percentiles of the foliage transparency frequency distributions 
followed the same general patterns as the changes in the average conditions. 
Statewide, median foliage transparency was 20 percent for all trees prior to the 
hurricane and 25 percent after the hurricane (table 2). Greater increases in the 
median were observed for loblolly pine and sweetgum (table 2). Since lower foli-
age transparency values typically indicate healthier trees, increases in the upper 
percentiles especially indicate that more trees had poorer conditions after the hur-
ricane than before. Statewide, the 90th percentile increased from 25 percent to 45 
percent for all trees combined and from 30 percent to 50 percent and 25 percent to 
35 percent for the softwood and hardwood groups, respectively (table 2). 

The main path of Hurricane Isabel passed through four of the  ve FIA units 
in Virginia ( gure 1). Therefore, it was useful to examine the changes in foliage 
transparency at the unit level to help determine the extent to which Hurricane 
Isabel may have been the cause of these changes. For all trees combined, the 
greatest increase in average foliage transparency was observed in the Coastal 
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Table 1: Mean foliage transparency and other statisticsa for all live trees ! 5.0 inches 
d.b.h. measured in Virginia before and after Hurricane Isabel, by species group

Species group Plots Trees
Pre-hurricane Post-hurricane t-test
Mean SE Mean SE p-valueb

- - - number - - - percent percent

Softwoods
Virginia pine 16 135 25.7 1.55 34.9 3.95 0.0356
Loblolly pine 17 259 19.9 1.03 31.9 2.75 0.0005
Shortleaf pine 8 19 20.3 — 28.2 — —
Eastern redcedar 7 14 18.6 — 27.9 — —
Other softwoods 8 52 25.9 1.58 25.4 0.99 —

All softwoods 38 479 22.2 1.01 31.8 2.08 0.0002

Hardwoods
Hickory 32 95 18.7 0.79 20.3 0.67 0.1792
Maple 37 156 19.4 0.70 27.5 1.83 0.0003
Tupelo 16 35 20.4 1.94 23.7 1.13 0.1540
Oak 53 386 19.9 0.44 23.3 0.89 0.0028
Sourwood 10 32 18.4 0.87 22.3 2.56 0.2344
Sweetgum 16 65 17.0 1.44 31.4 3.02 0.0001
Yellow-poplar 30 121 16.9 0.47 25.8 1.73 0.0001
Other hardwoods 37 123 19.4 0.76 26.2 1.82 0.0002

All hardwoods 69 1,013 19.1 0.36 24.8 0.98 0.0001

All trees 74 1,492 20.1 0.41 27.1 1.16 0.0001
SE = standard error; — = not presented due to insuf cient sample.
a The mean and SE calculations consider the cluster of trees on plots. SE not presented for groups 
with < 20 trees.
b The probability of obtaining a large t-value under the null hypothesis that the difference between 
the two means equals 0. T-tests are not performed for species groups with < 10 plots. 

Table 2: Foliage transparency frequency distribution percentiles for live trees ≥ 5.0 
inches d.b.h. measured in Virginia before and after Hurricane Isabel, by species group 

Species group
Pre-hurricane percentiles Post-hurricane percentiles

25 50 75 90 25 50 75 90 
percent 

Softwoods
Virginia pine 20 25 30 35 25 30 45 55
Loblolly pine 15 20 20 25 25 30 40 45
Shortleaf pine 20 20 20 25 20 25 30 40
Eastern redcedar 15 18 20 25 20 25 30 50
Other softwoods 20 25 30 35 20 25 30 30

All softwoods 20 20 25 30 25 25 40 50

Hardwoods
Hickory 15 20 20 25 20 20 20 25
Maple 15 20 20 25 20 25 35 40
Tupelo 15 15 20 25 20 20 25 30
Oak 15 20 20 25 20 20 25 30
Sourwood 15 20 20 25 18 20 20 40
Sweetgum 15 15 20 20 20 30 35 45
Yellow-poplar 15 15 20 20 20 25 30 40
Other hardwoods 15 20 25 25 20 25 30 35

All hardwoods 15 20 20 25 20 20 25 35

All trees 15 20 20 25 20 25 30 45
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Table 3: Mean foliage transparency and other statisticsa for live trees ! 5.0 inches d.b.h. 
measured in Virginia before and after Hurricane Isabel, by FIA unit and species group 

Unit and species group Plots Trees
Pre-hurricane Post-hurricane t-test
Mean SE Mean SE p-valueb

- - - number - - - percent percent

Coastal Plain
Hardwoods 16 165 16.5 0.68 32.8 2.63 0.0001
Softwoods 13 199 19.0 0.88 34.4 3.27 0.0004

All trees 20 364 17.9 0.63 33.6 2.26 0.0001

Southern Piedmont
Hardwoods 16 194 19.4 0.91 24.7 2.97 0.1053
Softwoods 9 145 22.8 1.57 32.4 5.07 —

All trees 16 339 20.9 0.80 28.0 3.67 0.0646

Northern Piedmont
Hardwoods 11 204 19.1 0.76 23.1 1.10 0.0063
Softwoods 8 66 26.4 2.59 28.7 1.34 —

All trees 12 270 20.9 1.40 24.5 1.12 0.0122

Northern Mountains
Hardwoods 16 280 20.4 0.62 22.1 0.85 0.1757
Softwoods 5 43 25.2 1.36 24.9 1.55 —

All trees 16 323 21.0 0.51 22.4 0.80 0.2200

Southern Mountains
Hardwoods 10 170 19.1 0.53 23.9 1.13 0.0049
Softwoods 3 26 26.3 2.80 27.7 0.40 —

All trees 10 196 20.1 0.88 24.4 0.91 0.0096

Statewide
Hardwoods 69 1,013 19.1 0.36 24.8 0.98 0.0001
Softwoods 38 479 22.2 1.01 31.8 2.08 0.0002

All trees 74 1,492 20.1 0.41 27.1 1.16 0.0001

SE = standard error;  — = not presented due to insuf cient sample.
a The mean and SE calculations consider the cluster of trees on plots.
b The probability of obtaining a larger t-value under the null hypothesis that the difference between the two 
means equals 0. T-tests are not performed for species groups with < 10 plots.

Plain ( =ftδ 15.8 percent) followed by the Southern Piedmont ( =ftδ 7.1 percent), 
Southern Mountains ( =ftδ 4.3 percent), Northern Piedmont ( =ftδ 3.6 percent), 
and Northern Mountains ( =ftδ 1.4 percent) (table 3). The increase in foliage 
transparency was signi cant at the 95 percent con dence level in all units except 
the Northern Mountains and was marginally signi cant in the Southern Piedmont 
(p-value = 0.06). Increases in the 90th percentiles were observed in the Coastal 
Plain, Southern Piedmont, and Northern Mountains (table 4). 

Scatter plots of "ft by pre-hurricane d.b.h. and height showed no systematic 
pattern ( gures 2 and 3). That is, increased losses of foliage (higher "ft) were not 
associated with larger and taller trees. Likewise, there was not a signi cant 
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Table 4: Foliage transparency frequency distribution percentiles for live trees ! 5.0 
inches d.b.h. measured in Virginia before and after Hurricane Isabel, by FIA unit 

Pre-hurricane percentiles Post-hurricane percentiles
Unit 25 50 75 90 25 50 75 90 

percent  

Coastal Plain 15 15 20 25 25 30 40 45
Southern Piedmont 15 20 25 30 20 20 35 55
Northern Piedmont 15 20 25 30 20 25 25 30
Northern Mountains 15 20 25 25 20 20 25 30
Southern Mountains 15 20 25 30 20 25 25 30

Figure 2: Change in foliage transparency for trees measured before and after Hurricane 
Isabel by pre-hurricane diameter at breast height.
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dif ference in the average change in foliage transparency by crown position 
( gure 4). Across the State, ftδ  ranged from -6.3 percent to 31.3 percent on 
individual plots, with the highest ftδ  occurring on plots in the eastern half of the 
State ( gure 5). In the Coastal Plain, ftδ  was 10 percent or more on 70 percent of 
the plots. In the Piedmont units, ftδ  was 10 percent or more on 18 percent of the 
plots. In the Mountain units only three plots (12 percent) had ftδ  of 10 percent or 
more.

Discussion

Even in the absence of a stressor, small changes in crown condition over time 
generally are expected due to the natural year-to-year variability in tree crowns. 
The signi cant increase in average foliage transparency for almost all species 
groups, along with the sizeable shifts in the 90th percentiles suggest that more 
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Figure 3: Change in foliage transparency for trees measured before and after Hurricane 
Isabel by pre-hurricane height.

Figure 4: Average change in foliage transparency by pre-hurricane crown position, 
with standard error bars and sample size.
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ft <5 percent

5 percent ≤ ft <10 percent

10 percent ≤ ft

Hurricane Isabel

FIA units

Figure 5: Change in percent foliage transparency for trees measured before and after Hurricane 
Isabel averaged at the plot level (δft). Only plots with three or more live trees ≥ 5.0 inches (12.7 cm) 
d.b.h. are shown. Plot locations are approximate.

than just year-to-year variability was observed between the 7th and 8th surveys. 
Furthermore, the average change in crown density also indicated a signi cant loss 
in crown biomass at the State level as well as for most survey units and species 
groups (unpublished data). Thresholds for biologically signi cant changes have 
not been established for foliage transparency at this point in time. Therefore, 
changes in descriptive statistics highlight potential declining conditions.

The greatest changes in foliage transparency were observed in the eastern part 
of the State. Given the counter-clockwise rotation of hurricanes in the Northern 
Hemisphere and the north-westerly track of Hurricane Isabel, the greatest damage 
is expected on the northeast side of the hurricane’s path. From the individual unit 
statistics and mapped plot averages, it is clear that this was the case in the Coastal 
Plain, though perhaps greater changes in foliage transparency were expected in 
the Northern Piedmont. 

Boucher and others (2005) investigated the impact of Hurricane Isabel on a 
study site in Maryland, where individual trees on a 100 m by 100 m (328 ft by 
328 ft) permanent plot were measured just prior to and again immediately after 
the hurricane passed through the area. After the hurricane they found a signi cant 
increase in the number of trees with severe damage. They also determined that 
trees with larger d.b.h. were more likely to suffer severe damage than smaller 
trees, and that for any given d.b.h., taller trees were more likely to be severely 
damaged than shorter trees. The present study did not  nd a signi cant correlation 
between d.b.h., height, crown position, and hurricane damage. However, Boucher 
and others (2005) considered damage as uprooting and leaning, and this study did 
not take those variables into account. 
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An increase in foliage transparency indicates a loss of foliage and hence, a loss 
of potential energy capture. The impact of foliage loss on tree growth in Virginia 
was not explored in this study; however, trees measured as late as 2006 still had 
elevated levels of transparency suggesting that trees experiencing foliage loss 
as a result of high winds and rain may take several years to recover. Despite the 
potential impact on growth, the loss of leaves may have prevented more serious 
damage by signi cantly reducing wind resistance (Putz and Sharitz 1991). 
Hedden and others (1995) reported that a 25 percent crown loss is more effective 
in preventing mortality than stem bending or branch streamlining at wind speeds 
below category 3 hurricanes, i.e., < 111 miles per hour (178 km per hour). 

Conclusion

Quite often, studies of forest damage due to storms are limited in scale, with 
 eld measurements taken on subjectively and preferentially selected plots only 
after the storm has occurred. This preferential sampling typically emphasizes 
forest stands with unique characteristics, such as mature forests, or stands that 
have unusual features, such as rare species, making it problematic to determine 
the true scope of the damage across the landscape. In contrast, our approach 
utilized repeated measures on plots that were systematically distributed across 
Virginia. This allowed for the study of a wide range of stands across a variety of 
conditions before and after the hurricane. 

The location of our study sites across the entire landscape and the observation 
that the greatest changes occurred in the Coastal Plain, lends support to the 
hypothesis that the changes in foliage transparency were due, at least in part, to 
the impacts of Hurricane Isabel. In addition to the crown condition indicators, a 
host of other individual-tree and plot-level variables are assessed on each plot. 
These include tree length, down woody material, and forest  oor thickness. These 
data, along with auxiliary weather data (e.g. wind speeds and rainfall) are being 
explored to further understand and quantify the potential damage caused by 
Hurricane Isabel. 
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Estimating fine-scale land use change
dynamics using an expedient

photointerpretation-based method

Tonya Lister1, Andrew Lister1, and Eunice Alexander1

Abstract: Population growth and urban expansion have resulted in the loss of forest
land. With growing concerns about this loss and its implications for global processes and
carbon budgets, there is a great need for detailed and reliable land use change data.
Currently, the Northern Research Station uses an Annual Inventory design whereby all
plots are revisited every 5 years and land use change matrices are estimated using a
mapped plot design. These methods have great potential for providing the needed land
use change data; however, for many states in the Northern region, these data will not be
available until 2013 or later and the ability of these methods to capture finer scale
changes, especially those due to urbanization, has not yet been tested. This paper
presents an efficient photointerpretation-based change detection method that automates
the work of gathering and loading images. A grid of photo plots is optimally created and
overlain on the sample area, and land use change is recorded for two points in time by
comparing digital imagery from 1998 and 2007. Results of a pilot test in Maryland show
a net loss of forest land with losses due primarily to urban development and most gains in
forest land coming from agricultural land uses. Forest losses are largely concentrated
around Baltimore and Washington, DC. This pilot study indicates that about 75,000
photo plots would be needed to estimate land use change in Maryland at the county level.
This would require approximately 125 hours, about 1.12 minutes per thousand acres, or
roughly $1,500. The photointerpretation method presented here could be applied to other
states and is well suited for land use change monitoring as the same points could be
resampled when new imagery becomes available.

Keywords: land use change, forest loss, photointerpretation

Introduction

Background

Several recent studies have predicted that urban expansion will continue to be a
significant factor affecting forests in many areas of the country. For example,
Nowak and Walton (2005) predicted that urban land in the United States would
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nearly triple from 2000 to 2050 and that the percent of forest land in urban areas
in Maryland would more than double to 37 percent by 2050. Similarly, Stewart et
al. (2007) documented the current status of forests on the urban fringe, and
highlighted potential impacts that continued urban expansion might have on them.
Data from the National Resources Inventory (NRI) reported that more than 10
million acres of forest land were lost to developed land uses between 1982 and
1997 (U.S. Department of Agriculture 2000). Ecological impacts of urban
expansion vary, but are generally related to loss of forest or other vegetative cover
and increased edge habitat. Loss of forest cover has been shown to lead to loss of
soil by both wind (Whiker et al. 2008) and water (Rice and Lewis 1991). It is
generally accepted that the loss of topsoil not only lowers the productivity of
agriculture and forest ecosystems, but also impacts aquatic ecosystems through
sedimentation, nutrient enrichment, and other factors (Faulkner 2004).

The forests of the Chesapeake Bay watershed, many of which are in Maryland,
provide benefits to wildlife and human populations. For example, they offer
habitat for forestdwelling species, protect drinking water, serve as buffers for
estuarine species against sedimentation and nutrient enrichment, and provide
economic and other benefits for humans (Sprague et al. 2006). Maryland state
resource agencies are interested in assessing and monitoring land use change in
these areas to understand the potential impacts of forest loss on the Chesapeake
Bay and to generate needed information for urban planners, wildlife biologists,
and other resource managers. Land use change data are also being used in
modeling applications, forest resource projections, and carbon budgets
(Woodbury et al. 2006).

Land cover products created with satellite imagery have been found to be
inappropriate for land use assessments. For example, Irwin et al. (2007) found
discrepancies between the satellite imagerybased National Land Cover Database
(Homer et al. 2007) and a GIS dataset of land use derived from aerial imagery, in
terms of both patterns and amount of developed land. These discrepancies are
generally due to the fundamental difference between what a human interpreter can
identify either on the ground or with photography (land use) and what an
automatic, statistically based classification of satellite imagery can reveal (land
cover) (Irwin et al. 2007).

The U.S. Forest Service’s Forest Inventory and Analysis Program (FIA) conducts
a continuous forest inventory using standardized methods that could be used to
assess land cover dynamics. While recent advances in methodology have made it
more feasible to monitor land use change using the existing FIA plot design, the
data will not become available in Maryland and other states for many years.
Furthermore, it is unclear if the sampling intensity of FIA plots is sufficient to
meet precision requirements at the county level.
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Objectives

To address these challenges, we created a flexible, inexpensive procedure with
which to supplement FIA land use change estimates. The objectives of the study
were to develop and implement a method with which to conduct a photobased
inventory of land use change in Maryland using FIA definitions. The goal was to
not only obtain information useful to federal and state resource agencies, but also
to convey information that can help practitioners implement this method in other
states or in areas of interest (e.g., watersheds, wildlife areas, ecoregions).

Methods

Sample Design Development

To estimate land use change, we first had to develop a plot design. We decided
the plot would consist of at least one subplot made up of a single point at which a
photointepretation (PI)based land use category would be assessed. From past
experience, we determined that this type of plot is most amenable to rapid PI
using FIA definitions. The NLCD change product (Homer et al. 2007) was used
to determine the optimal subplot count and configuration and to assess various
subplot arrangements. Although not PIbased, the NLCD data were used because
they are the only spatially explicit and consistent land change data source that
covers large analysis areas. The NLCD change product is a pixelbased GIS
dataset in which each 30m pixel is assigned a land cover change category based
on comparisons of satellite imagery from circa 1990 and circa 2000. Focusing on
forest loss, we first recoded the NLCD change product such that each pixel was
labeled forest loss (1) or other (0). We then randomly generated 100 plots per
county, with each plot consisting of an array of 25 subplots arranged in a square
grid with 100m spacing (Fig. 1). These plots sampled the NLCD change product
derived forest loss data using different numbers of subplots per plot. The
sampling errors were determined for 10 randomly selected configurations of
subplots for each subplot count category up to 10 subplots. Using these results,
we calculated the total cost to achieve an acceptable level of precision (which we
arbitrarily defined as generally having a sampling error no more than 20 percent
of the countylevel estimate) using the following equations:

Nrequired = ((t!, n1 * cv) / E)2 equation 1

and

Cost = a(Nrequired) + i*b(Nrequired) equation 2

where Nrequired = the sample size required to reach the desired precision, t!, n1 = the
critical value of the t distribution associated with a sample size of n at the 1!
confidence interval, cv=the coefficient of variation, E = the desired precision
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expressed as the desired proportion of the mean that the confidence interval will
represent  in this case, 0.2, i = the number of subplots in the design, a = the cost
in time required for the photointerpreter to switch between plots  in this case, 1
second, and b = the time required to complete a single subplot  in this case, 6
seconds.

Figure 1. The 25subplot design used in the first part of the

study involving the NLCD change product. The subplots were

arranged in a square grid with 100m spacing. When subplots

intersected the NLCD change category labeled forest loss (in

red), they were counted, and the proportion of subplots

counted in this manner was assigned to the plot for

estimation purposes.

PI Methods

After determining which plot design minimized total cost and met precision
requirements, we established a spatially balanced plot network consisting of
50,000 randomly selected plots across Maryland using a fractalbased tessellation
approach described by Lister and Scott (2009). We divided the plots into 10
panels, each consisting of 5000 plots evenly distributed across the State. This
paper discusses the results from one panel (5,000 plots) of data. These data were
then used to reevaluate the number of plots needed for countylevel estimates of
land use change in Maryland, using the same methods as described above, only
with the PI data instead of the NLCD change product data.

Land use category was assessed at two points in time (1998 and 2007) on each
subplot by interpreting digital aerial imagery. The 1998 imagery consisted of
panchromatic, leafon, 2mpixel resolution, digital orthophoto quadrangles
(DOQs) from a statelevel imagery dataset stored locally in an ArcGIS raster
catalogue. The later date imagery consisted of color infrared, leafon, 1mpixel
resolution, digital imagery from the National Agriculture Imagery Program
collected for Maryland in 2007 and served over the Internet using a Webmapping
service (WMS). Land use categories used were based on an aggregation of more
detailed FIA definitions (U.S. Forest Service 2005) including Forest, Agriculture,
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Developed, and Other Nonforest. A single interpreter was trained and conducted
all PI for this study.

To increase PI efficiency, an automation method was developed whereby an
ArcGIS tool was used to subset imagery from the raster catalogue and the WMS
to areas encompassing and slightly beyond the extent of the footprint of each plot.
In other words, “snapshots” of imagery at a scale of 1:4000 were generated, with
each image centered on the plot and containing sufficient detail for the interpreter
to assess land use change. The two sets (1998 and 2007) of 5,000 images were
stored locally, and displayed using a Microsoft Access form that we developed
(Fig. 2). The form was designed to display the images and allow for data entry in
such a way that the number of mouse clicks, wait time for image to loading, and
data entry were minimized.

Figure 2. The MS Access form used to enter data and display imagery. Subplots are shown as

dots at each corner of photo and rectangle in center is an acre area used as a reference guide.

Data entry table for each subplot shown on right with all possible combinations of land use classes

displayed.

Data from the 5000 plots were analyzed using the simple random sample
estimator (Zar 1999), and estimates of the total areas of land use change
categories were calculated, along with associated precision estimates. In addition,
equation 1 was used to calculate the number of plots (and subplots) required to
achieve acceptable precision, given a more realistic, optimized PI procedure and
plot and sample design.
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Results and Discussion

Pilot Plot Design Results

Figure 3 presents results of our evaluation of how various combinations of subplot
counts and configurations affect sampling error, based on estimates of forest loss
from the NLCD change product. As subplot count increased, large improvements
in precision were observed until the subplot count reached 5 and then the rate of
improvement was less pronounced. In other words, the change in the precision
level after 5 subplots was not large enough to warrant the additional cost and time
to add additional subplots into the final design. For plots with 3 and 4 subplots,
we also graphed the average sampling error for those plots where the distance
between subplots was maximized. In the best arrangements, subplots were located
at the extremes of the subplot grid, where the intersubplot distances were
maximized. One would expect this to be the case – subplots located farther apart
are more likely to acquire different information about the landscape, making plot
level summaries closer to the sample mean and thus lowering the variance of the
overall estimate.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

Count of subplots

S
a
m
p
li
n
g
e
r
r
o
r

(p
r
o
p
o
r
ti
o
n
o
f
th
e
m
e
a
n
)

sample

mean

greatest distance

between subplots

Figure 3. The relationship between subplot count (various configurations) and

sampling error of estimates of area of forest loss from a set of plots that were

intersected with an image depicting estimates of forest loss from the NLCD

change product.

We conducted our cost analysis based on these results, using costs associated with
between 1 and 5 subplots. With the cost function we chose, we determined that 3
subplots would be the optimal subplot count (Fig. 4). However, for our PI pilot
study, we decided to use a 4subplot design so as not to limit analysis
opportunities. Subplots were arranged in the corners of a square pattern with
vertical and horizontal distances of 500 m. This was the greatest practical distance
given the constraints of the photo image resolution and size.
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Figure 4. The relationship between cost and count of subplots. The optimal

count was the point at which the cost was minimized.

Land Use Change Results

Land use change results from the PI pilot study show a net loss of 28,000 acres of
forest land in Maryland from 1998 to 2007, which averages to be more than 3,000
acres per year (Fig. 5). The gross forest loss (66,000 acres) was primarily due to
conversion to development, accounting for 91 percent of the total forest loss.
Most forest gains were from agriculture (91 percent). The loss of forest land to
development is an expected result, as Maryland experienced increases in
population and housing densities during this period.
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Additions to

forest

Depletions from

forest
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Developed Agriculture Other nonforest
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F

Figure 5. Estimates of areas of different land use change categories. Sampling errors are as

follows: A: 7.9%; B: 35.3%; C: 32.1%; D: 33.3%; E: 9.9%; F: 44.7%.
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Figure 6 shows the distribution of forest loss in Maryland between 1998 and
2007. There is a high proportion of forest loss plots in the growing suburbs of
Baltimore and Washington D.C., an area of the state that has experienced the
greatest pressure from urban expansion. For example, the highest proportion of
forest loss plots is found in Prince George’s county, which borders Washington
D.C. From 2000 through 2007 more than 22,000 new housing units were
approved for construction, making this one of the fastest growing counties in the
state (Maryland Department of Planning 2007).

PI plot with forest loss

PI plot

Figure 6. Distribution of land use plots highlighting plots showing forest loss, 19982007, Maryland.

Reevaluation of Study Design Using Pilot Results

During this study, we made improvements in image viewing and data entry
methods that substantially lowered the cost (in terms of time) involved in
switching between photos. With these new techniques, the cost of switching
between plots in terms of file opening and image loading time was reduced. As
our initial estimate of one second of time spent switching between photos neared
zero, the time associated with doing a single plot of 4 subplots was not
substantially different from doing 4 singlesubplot plots. We therefore determined
that the optimal sampling protocol for future work would be a single subplot plot.

Using results from the pilot study, we reevaluated the number of plots that would
be necessary to estimate land use change at the county level in Maryland with
acceptable precision (having a sampling error no more than 20 percent of the
countylevel estimate). Each county has a separate requirement for the number of
plots needed, and there are some important things to consider when determining
what plot density is best. If the end user’s goals are monitoring and regional
analyses, then a uniform density of plots across the state would be preferred. The
plot density needed for each county ranged from one plot per 28 to 333 acres. The
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counties where we would expect the greatest amount of forest land change as
suggested by U.S. Census and Maryland planning data would be sufficiently
sampled with a plot density of one plot per 91 acres, so we decided to use this as
our plot density requirement across the state. Therefore, we estimated that 75,000
plots would be needed in Maryland for countylevel estimates of land use change.
Results from the study show that, on average, 10 points can be photointerpreted
per minute. To complete the PI work for the whole state, this translates to
approximately 125 hours—just over 3 weeks of fulltime work, or approximately
$1,500.

This method could be applied to other states, and cost could be easily estimated
for a certain level of precision. Because images generated for the PI work are
snapshots, there is no waittime for new images to load and there is no need for
network connections. More than 5,000 images can easily fit on a single DVD,
making the procedure mobile and efficient. The method is also well suited for
monitoring. When new imagery is flown, the same PI points can be measured
allowing for time series analyses of land use change.
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Abstract:  There has been considerable research concerning the extent and effect of 
urbanization and fragmentation and the importance of monitoring current and potential 
magnitudes of change is recognized.  However, there are limited guidelines for 
interpreting fragmentation data or for their application for analysis and statewide 
planning efforts.  In this study we take a first step toward developing a state-level 
analysis of urbanization and fragmentation that addresses three categories of 
information.  Example maps, tables, and analyses are drawn from New York, Maryland, 
and Delaware.  Landscape metrics calculated from various regional or national datasets 
were chosen for their relevance to issues of interest and other traits such as accuracy and 
consistency. Examples of results include maps accompanied by graphic and tabular 
analyses addressing several landscape factors that are increasingly impacting forest 
resources and the ecosystem services and products they provide.  Where published 
guidelines are available, results include management-relevant maps in which the metrics 
have been translated into impacts on stream water quality, interior bird species 
composition, and other processes.  From these elements a  prototype structure can be 
developed for reporting on the status of fragmentation and urbanization in a state and 
across the region so that we can better understand our forest resource in the context of 
its surrounding landscape and the status of changes in its natural, social, or economic 
ecology.   
 
Keywords:  Urbanization, forest fragmentation, landscape metrics, state forest 
assessments, FIA reports.  
 

Introduction 
 

Forest land is a significant factor in the protection of surface and groundwater 
quality and is a major component of many increasingly threatened wildlife 
habitats.  Forest land is also a resource heavily relied upon by people for 
recreation, timber, and nontimber products, and for more intangibles, such as 
aesthetics and intrinsic value.    

As human population growth continues, many areas of the country are seeing 
developed land uses expand, often at the expense of forest land (Hammer et al. 
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2007, Nowak and Walton 2005, Robles et al. 2008, Stein et al. 2006).  In addition 
to losing forest land to development, remaining areas of forest land are currently 
under pressure in many regions in terms of both fragmentation — being divided 
up into smaller and more disconnected pieces; and urbanization —an increasing 
proximity to urban development, population, and other anthropogenic pressures.  
Fragmentation causes changes in light, wind, and moisture microclimates, all of 
which provide an avenue for the introduction and spread of invasive plant and 
animal species.  Fragmentation also introduces barriers to the movement of native 
species and degradation of native habitats (e.g., Belisle et al. 2001, Burke and Nol 
2000, Cam et al. 2000, Herrmann et al. 2005, Rosenberg et al. 2003).   

Urban development in or near forests can change local hydrology, increase 
recreation pressures, alter native species diversity, provide vehicles for the 
introduction of invasive species either by design or by accident, and often bring 
significant disturbance to the area (e.g., Airola and Buchholz 1984, Bastin and 
Thomas 1999, Heckscher et al. 2000, Iida and Nakashizuka 1995, McDonnell and 
Pickett 1990, Rudnicky and McDonnell 1989).  Together, fragmentation and 
urbanization cause a disruption of the flow of material through the forest 
ecosystem, affecting both forest health and sustainability (e.g., Macie and 
Hermansen 2002).  Researchers have documented varied impacts of forest 
fragmentation and urbanization on the probability of commercial forest 
management and timber harvesting (Wear et al. 1999, Munn et al. 2002, Kline et 
al. 2004), and on water quantity and water quality (e.g. Hunsaker et al. 1992, 
McMahon and Cuffney, 2000, Riva-Murray et al. in prep). 
Forest fragmentation and urbanization are also inextricably linked to the effects of 
climate change.  Since the dispersal and movement of forest plants and animals 
are disrupted by forest fragmentation, impacts of climate change on species and 
diversity losses can be magnified (McDonnell and Pickett 1990, Rodenhouse et 
al. 2008).  Similarly, systems already under pressure from urbanization and 
fragmentation will be less resistant to the additional stresses imposed by climate 
change.   

With the increasing fragmentation and urbanization of our landscape (Hobbs 
and Stoops 2002), interest has grown in the location, type, and magnitude of its 
potential impacts. The U.S. Forest Service’s Forest Inventory and Analysis 
program (FIA) has begun to address landscape context and change in its reports 
containing state-level forest inventory results.  Information on forest distribution 
and context is crucial for monitoring and assessment efforts like the U.S. Forest 
Service State and Private Forestry’s statewide assessments, U.S. Geological 
Survey’s national water quality assessments, the U.S. Environmental Protection 
Agency’s wadeable streams assessments, and regional forest assessments like 
those done in Oregon and Washington.   

 
Metrics and Data Sources 
 

Thus, FIA is being asked to monitor the distribution, urbanization, and 
fragmentation characteristics of the forest over time, just as we monitor the 
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change in total forest land over time.  To do this we must choose both metrics and 
the landscape data source(s) carefully. 
 

Of all the fragmentation and urbanization metrics that could be calculated 
from the available data, it is important to identify a concise set of relevant, useful 
landscape metrics for fragmentation analyses. Avoiding redundant metrics 
(Riitters et al. 1995) and metric inconsistency over space and time (De Clercq et 
al. 2006) have been identified as useful ways to create a subset of potential 
landscape descriptors. When identifying useful metrics, insensitivity to both the 
spatial resolution and number of classes in the remotely sensed classification is 
desirable where monitoring over time is a goal (De Clercq et al. 2006).  However, 
as De Clercq et al. (2006) and McAlpine and Eyre (2002) point out that in order 
to be truly useful for forest monitoring, individual metrics also need to be 
carefully chosen based on the particular questions being asked. In this study, we 
are interested in those landscape metrics that add value to the interpretation of 
forest inventory data because of their direct relationship to changes in the forest 
resource, our utilization of it, or its ability to provide ecosystem services and 
products.  We have identified from the current literature accurate, consistent 
landscape descriptors and classification schemes (thresholds) that are most 
consistently related to forest ecological, social, or economic impacts of concern 
and can be more accurately and consistently calculated from available data 
sources.   

The landscape data source used must also be carefully chosen because of its 
impact on both resulting values and interpretation of results (e.g., Riva-Murray et 
al. unpublished, and Riemann et al. in prep).  Several studies have noted the 
impact of data source and have addressed this by applying different ‘corrections’ 
to the landscape dataset to more closely reflect conditions on the ground as they 
are typically seen by land managers or planners, or used by wildlife.  For 
example, Heilman et al. (2002) included roads in their calculation of a forest 
intactness metric.  Lister et al. (2005) removed patches smaller than a certain area 
and width to more closely match FIA definitions of forest land, and used local 
road density to relabel those forest or agriculture pixels in the 1992 National Land 
Cover Dataset (NLCD) dataset that were likely to be developed based on road 
density.  In this study we have chosen to keep land cover and land use clearly 
separate, utilizing the 2001 NCLD for land cover, and U.S. Census-based datasets 
for factors relating to urban land uses, with a clear understanding of the 
development and limitations of each of these landscape datasets and any impacts 
on interpretation. 

The goals of this paper are to: 
• Provide a suite of reliable, interpretable, standardized fragmentation 

measures to authors and consumers of FIA state inventory reports 
• Provide examples of how these measures can be added to state reports to 

enhance the interpretation of FIA forest inventory data and the 
understanding of the forest resource  

• Describe briefly how these were derived from the best available landscape 
data sources, and provide links to complete metadata 
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The potential additions to state reports include maps, tables, and graphs that 

A) describe the current status of fragmentation and urbanization on forest land in 
general; B) begin to address its probable or potential impact; and C) combine 
landscape context information with data on FIA plots to characterize the forest 
affected.    
 

Methods 
 
Identifying Metrics to Use 
 

We were specifically interested in interpretability of results with respect to 
impacts on the forest resource or on the forest’s ability to provide ecosystem 
services and products.  To be able to monitor over time and utilize any known 
relationships established in the literature, we have focused on choosing metrics 
based on their performance with respect to several criteria: A) consistency over 
time – e.g, robust to changes in dataset resolution; B) accuracy in comparison to 
what is observed on the ground or interpret as ‘fragmentation’; and (C) 
representative of those characteristics of forest fragmentation and/or urbanization 
that have been shown in the literature to be relevant to the ecological, social, and 
economic impacts of concern. 
 
Data Sources Used 
 

We required the landscape data sources to be spatially continuous, available 
over broad areas, and of sufficient spatial resolution to meaningfully describe 
landscape processes of interest. The most widely available dataset meeting these 
criteria was the 2001 NLCD, a set of satellite image-based products produced by a 
consortium of federal agencies, led by the U.S. Geological Survey (Homer et al. 
2007). These products are comprised of 30-m pixels, each labeled with a land 
cover category, percent impervious surface, and percent canopy cover estimates.  
In past studies, we used the U.S. Geological Survey’s GAP datasets, which are 
similar to NLCD datasets, but are created with varying methods and slightly 
different goals. We chose NLCD over GAP data because they are produced with 
reasonably consistent methods and their accuracy and other properties over large 
areas are better understood.   

With some caveats, particularly regarding impervious surface, NLCD captures 
land cover information reasonably well (Riemann et al. in prep).  NLCD forest 
land was used for calculating forest pattern metrics even though it does not match 
the FIA definition of forest land (Ruefenacht et al. 2008).  Thus the forest pattern 
metrics in this paper reflect the distribution of forest cover, not FIA forest land.  
Figure 1 illustrates the unit-level differences in forest area calculated by the two 
metrics in New York.  It is evident that FIA forest percent is less than that 
reported by NLCD across most survey units, with a maximum difference between 
the two data sources of ~0.3 million acres (about 10 percent) in the Catskills-
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Lower Hudson survey unit, an area with a substantial amount of residential 
development and forest/urban intermix (Radeloff et al. 2005).  In the northeastern 
United States, NLCD’s forest classification includes trees in residential areas, 
which would not fall under the FIA forest definition.   

Derivation of urban and land-use data required integration of information 
from the U.S. Census Bureau.  Road data were derived from the TIGER/Dynamap 
2000 dataset (U.S. Census Bureau 2002).  Metrics related to the levels and types 
of urbanization were drawn from the Wildland Urban Interface (WUI) database 
(Univ. of Wisconsin n.d., Radeloff et al. 2005), and from the U.S. Census Bureau 
block-level data (2002) on population, housing, and second home density 
compiled for the WUI project (Univ. of Wisconsin n.d.).   Change in house 
density over time also was obtained from WUI database (Univ. of Wisconsin n.d., 
Hammer et al. 2004). 

Hydrologic Unit Code (HUC) polygons were developed as part of the national 
hydrologic dataset and downloaded from the USDA Geospatial Data Gateway 
(USDA Nat. Resour. Conserv. Serv. n.d.).  We used the HUC12 scale, which 
approximated that scale used in studies identifying the percent impervious 
thresholds chosen.   

Forest Inventory and Analysis data were accessed from the internal FIA 
database (U.S. Forest Service n.d.). 

 Landcover Mosaic (LCM), Morphological Spatial Pattern Analysis 
(MSPA), and Forest Area Density (FDEN) datasets describe A) the mixture of 
agricultural/urban/natural land-cover type (Riitters et al. 2009); B) the structural 
element of which a forest patch is part (as described at European Commission, 
DG-Joint Research Centre, Institute for Environment and Sustainability, 
http://forest.jrc.it/biodiversity/Product); and C) the percent forest area, 
respectively, in the 15 ha (37 acre) local area surrounding each grid cell.  
Graphics showing this information for the continental United States are currently 
available at www.forestthreats.org/tools/landcover-maps.  Geospatial datasets 
containing this information will be available shortly. 

In this study we did not apply ‘corrections’ to the landscape data source. 
Instead we relied on careful qualification of ‘forest cover’ vs. ‘forest land use’ and 
the use of multiple metrics including specifically land use-based metrics.  This 
approach provides more potential for application, as well as increasing ease of 
both calculation and interpretation. 
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Figure 1:  Relationship of FIA forest area to NLCD2001 forest area in New York, by FIA unit.   

 
Processing 
 

ArcMap software was used to prepare and analyze the input datasets. We 
automated most of the processing with ArcMap models to facilitate application of 
these processes to other datasets. Most of the spatial datasets shown in this paper 
have already been produced for the northeastern quadrant of the United States (the 
20 states comprising the U.S. Forest Service’s Northern Research Station).  

Complete processing details for each spatial dataset are available at:  
http://www.fia.fs.fed.us/symposium/metadata/fragurban_metrics_metadata.doc.  
In general, data preparation included clipping input datasets to state or region 
boundaries and reclassifying the NLCD land cover data into appropriate land-
cover groups (e.g., forest/nonforest, or forest/natural vegetation/water) for further 
geospatial analyses. A series of geoprocessing operations were then applied to the 
datasets to derive the landscape metrics, including vector-to-raster conversion and 
distance calculations (e.g. for distance to nearest road), calculation of patch areas, 
shrinking patch edges (for edge/interior calculations), area tabulations and/or 
continuous data summaries of the metrics by analysis unit (e.g., county, 10 km x 
10 km grid, and watershed), and extraction of pixel values to FIA plots (e.g. patch 
size, distance to road, WUI class). For example, one ArcMap model used the 
Euclidean distance tool, the census roads, and the NLCD forest dataset for New 
York to assign each valid output pixel the distance to the nearest road. Subsequent 
steps in the model summarized the output of this step and created a table showing 
the frequency distribution of forest cover by distance to road category.  
 
Thresholds to Facilitate Interpretation 
 

Interpretation of the likely impacts of certain configurations of fragmentation 
and urbanization requires an understanding of their relationship to the ecological, 
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social, or economic response of interest.  In addition, ecosystem response to 
fragmentation and urbanization does not always occur gradually across all levels 
of landscape change intensity.  In some cases the observed response indicates a 
particular threshold of interest beyond which the rate or level of response is 
sharply different.  In other cases, crossing artificial thresholds cause an impact, 
like in the case of passing legally allowable limits of forest cutting. Some studies 
have developed general management guidelines from these observed relationships 
between fragmentation measures and an ecosystem response. Where guidelines 
were available, we utilized this information to categorize our map and tabular 
outputs.  In particular, in this paper the following guidelines were utilized in the 
interpretation or development of the maps and tables presented in the results:   

! Patch size and forest proportion: Habitat requirements for wildlife vary 
by species. However, for reporting purposes it is often helpful to 
summarize forest-patch data using general guidelines.  Many wildlife 
species prefer contiguous forest patches that are at least 100 acres.  This 
patch area is often used as a minimum size still containing enough interior 
forest to be a source rather than a sink for populations of some wildlife 
species. Depending on your geographic region of interest or species of 
concern, this threshold could be customized.  Some studies have found 
that in addition to patch size, the proportion of forest land in an area that 
extends beyond the patch can be used to develop habitat thresholds.   
Rosenberg et al. (1999) found that forest-patch size information can be 
used in relation to the amount of forest land in a surrounding 2500-acre 
area to develop habitat suitability models for certain species of interior 
forest dwelling birds.  Their resulting matrix of ecosystem responses 
provides detailed information that can be applied, with some 
understanding of the quality of the landscape data source being used.  

 
! Forest edge: While edge effects vary somewhat with distance, depending 

on the type of effect and species of vegetation or wildlife, (e.g., Chen et al. 
2002, Rosenberg et al. 1999, Flaspohler et al. 2001), 100 to 300 ft (~30 to 
90 m) is frequently used as a general range for the ‘vanishing distance’ or 
the distance into a patch where the edge effect disappears and interior 
forest conditions begin.  

 
! Impervious surface: The amount of land area within a watershed that is 

impervious to water (pavement, buildings, parking lots, etc.) affects water 
quality.  When water is able to pass through the ground, soil and 
vegetation act as a filter and improve water quality. As the proportion of 
impervious surface increases, however, many pollutants flow directly into 
the waterway. Impervious surface areas of 10 and 25 percent are generally 
recognized to be the thresholds above which small watersheds are 
impaired and impacted, respectively (Arnold 1996). 

 
! Human population density:  Population densities are generally 

recognized as having a negative effect on the viability and practice of 
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commercial forestry (Barlow et al. 1998, Kline et al. 2004, Munn et al. 
2002, Wear et al. 1999).  In this study we used thresholds identified by 
Wear et al. (1999), which showed that the probability of commercial 
forestry dropped from 75 to 25 percent as population density increased 
from 20 to 70 people per square mile.  These thresholds were estimated 
based on data from the 2000 U.S. Census and other data from Virginia.  
As research results become available that are more timely and region-
specific, these data will be used to create improved commercial forest 
probability maps. 

 
! House density:  Thresholds of house density used in the wildland-urban 

interface (WUI) and intermix definitions come from the Forest and 
Wildlife Ecology SILVIS laboratory at the University of Wisconsin-
Madison.  The WUI interface is defined as the area where human 
development meets rural or wildland areas.  These thresholds were 
originally established to describe wildland firefighting guidelines 
(Radeloff et al. 2005). 

 
The thresholds and guidelines presented are not an exhaustive list of what is 

available.  Rather they represent examples in several important areas.  More 
guidelines, including those of regional development and relevance, may be 
available now and more will be available in the future. 
 

Results and Discussion 
 

Forest fragmentation and urbanization data analyzed for inclusion in FIA state 
reports can be organized into three broad categories of information.  The first are 
statistics, maps, and/or graphs that describe the landscape character and spatial 
pattern of forest land distribution in a state.  Wherever possible, legend class 
breaks in these maps should be chosen with respect to known or suspected impact 
thresholds.  The second category identifies the impact of forest fragmentation or 
urbanization on a particular ecological, social, or economic issue.  These 
statistics, maps, and/or graphs frame the data with respect to the specific 
threshold(s) and scale(s) identified (and ideally established) in the literature and 
can thus be more directly interpreted for their probable impact on these issues.  
The third type of information that could be useful is the result of an overlay of the 
spatial context and urbanization information with data collected on FIA plots to 
assess the impact on different populations of the forest resource. 

Table 1 provides a summary of the figures presented, in terms of the category 
of information, question addressed, input datasets used, and methods used in its 
creation.  This is not an exhaustive list of the fragmentation or urbanization 
analyses desirable.  Rather, the maps and graphs chosen represent some of the 
carefully chosen metrics that should be used as a starting point. 
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Table 1:  Summary of figures presented in this paper. 

Category of 
information 
(1, 2 or 3) 

Question answered Input Datasets Used Summary of methods 
Example 
figure in 

text 

1 

Where is forest land 
affected by underlying 
house densities greater 
than 6 per sq. km  (15.54 
per sq. mile) 

1) U.S. Census 2000 
house density data at the 
block level 
2) NLCD2001 for the 
nonforest land cover mask

Block-level choropleth 
with 30m raster mask 

2a 

1 

How much fores tland is 
affected by underlying 
house densities greater 
than 6 per sq. km 

--same as above, plus: 
3) FIA unit boundaries 

Extraction of census 
block values to 30 m 
forest pixels 
Data summarization 

2b 

1 

Where is the forest land 
affected by roads and to 
what extent 

1) U.S. Census Bureau 
TIGER/Dynamap 2000 
dataset [all roads] 
2) NLCD2001 for 
nonforest land cover 

Per-pixel distance 
calculation 

3a 

1 
To what extent is forest 
land affected by 
proximity to roads 

--same as above Data summarization 
3b 

1 

Where is a substantial 
proportion of the forest 
land occurring in patches 
less than 100 acres in size 

1) NLCD2001 for forest 
pixels 
2) 10 km x 10 km grid 
poly coverage 

Patch area calculation 
Extraction of patch size 
values to 30 m pixels 
Data summarization to 
100 sq. km grid cells  

4a 

1 

How much forest land 
occurs in patches less than 
100 acres 

1) NLCD2001 for forest 
pixels 

Patch area calculation 
Extraction of patch size 
values to 30 m pixels 
Data summarization 

4b 

2 

What is the probable 
stream water quality as 
predicted by percent 
impervious surface alone?

1) NLCD2001 impervious 
surface layer 
2) U.S. Census 2000 
house density data at the 
block level 
3)  U.S. Census Bureau 
TIGER/Dynamap 2000 
dataset 
4) Hydrologic Unit level 
12 polygons (HUC12) 
from the National 
Hydrologic dataset 

Modeled  percent 
impervious values for 
HUC12 basins 
Choropleth mapping of 
results 

5 

2 

Where is forest land still 
suitable for an interior 
forest bird species such as 
scarlet tanager? 

1) Land Management 
table from Rosenberg et 
al. 1999. 
2) NLCD2001 for forest 
pixels 

Patch area calculation 
Moving window 
analysis for percent 
forest in surrounding 
2500 acre area 
Application of 
Rosenberg et al. 
(1999)’s table  

6 

2 

What is the probability of 
commercial forestry 
occurring, and where? 

1) NLCD2001 for forest 
pixels 
2) U.S. Census 2000 
population density data at 
the block level  
3) Thresholds of 

Extraction of population 
density values to 30 m 
pixel 
Application of Wear et 
al.’s (1999) thresholds 
as the legend 

7 
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commercial forestry 
probability by population 
density from Wear et al. 
1999 

2 

What is the probability of 
commercial forestry 
occurring within each 
county 

--same as above, plus 
4) County boundaries 

Area tabulation  to 
counties 8 

3 

How are species 
distributed with respect to 
the Wildland Urban 
Interface or Intermix 
Areas? 

1) Wildland Urban 
Interface dataset  
2) FIA plot-level data   

Extraction of WUI code 
to FIA plots 
Data summarization 9 

     
 
Characterizing forest distribution and context 
 

In these examples, the metrics chosen relate to some aspect of urbanization or 
fragmentation that is suspected of, or has been documented to have an effect on 
the forest, its management, or on its ability to provide ecosystem services and 
products.  Figures 2a through 4b provide examples of such maps and related 
graphs for New York.  For example, figures 2a and 2b illustrate how much forest 
land is affected by underlying house densities greater than six houses per sq. km 
(15.54 per sq. mile), and where it occurs.  Figures 3a and 3b show where and to 
what extent forest land is affected by roads.  As Riitters and Wickham (2003) 
reported, this can be quite extensive.  The distribution of forest land occurring in 
patches less than 100 acres is portrayed in figures 4a and 4b.  One hundred acres 
is a threshold identified in the literature as an approximate minimum size for 
patches that contain enough interior forest area to be sources rather than sinks for 
wildlife populations.  Other metrics and data sources providing valuable 
information with respect to understanding where fragmentation and urbanization 
impacts on forest land are occurring include:  forest occurring within the WUI 
(Radeloff et al. 2005), changes in housing density over time (Hammer et al. 2004, 
Univ. of Wisconsin n.d.), forest land affected by edge conditions, forest 
connectivity for species requiring large ranges, and areas of forest where there is a 
substantial amount of second home development.  The latter two maps can be 
depicted at the scale of 30 m pixels (e.g. depicting actual distance class to the 
nearest road), or at a summarized scale (e.g. 100 sq. km grid) depicting the 
proportion of the forest land in that pixel that is above or below a certain 
important threshold.  In addition, the land-cover mosaic and spatial pattern 
metrics developed by Riitters et al. (2009), while not specific to a particular issue, 
do provide easily understandable, complementary, consistent and robust metrics 
of land-cover pattern that could also be analyzed with FIA plot data to describe 
some of the characteristics of those segments of forest land most under pressure 
from urbanization and fragmentation influences.  All of the above information can 
also be tabulated, describing the proportion of forest land in each county that’s 
affected by any one (or more) particular criteria (Table 2).  
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Figure 2a: Distribution of forest cover by house density, New York, 2001 (forest), 2000 (house 
density). 
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Figure 2b:  Distribution of forest cover by house density, by FIA unit, New York, 2001 (forest), 2000 
(house density). 

 
Within FIA units in New York, between 10 and 73 percent of the forest occurs 

intermixed with house densities of >6 per sq. km.  This represents the 
approximate density at which firefighting switches from ‘wildland’ to ‘structure’ 
firefighting techniques and costs (Radeloff et al. 2005).   Forest intermixed with 
houses also represents areas of forest cover more likely to be in nonforest land 
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use, and/or more likely to be experiencing pressures from recreation, invasives, 
and other local human effects.   
 

 
 
Figure 3a:  Spatial distribution of forest cover by distance to road, New York, 2001 (forest), 2000 
(roads). 
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Figure 3b:  Frequency distribution of forest cover by distance to road, New York, 2000. 
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In New York, nearly 60 percent of the forest is within 400 m of a road.  

According to Riitters and Wickham (2003), regions with more than 60 percent of 
their total land area within 382 m of a road may be at greatest risk of cumulative 
ecological impacts from roads.      

Road effects distances range from 100 m for secondary roads (a rough 
estimate of a highly variable zone), 305 m for primary roads in forest (assuming 
10,000 vehicles per day), and 810 m from roads in urban areas (50,000 vehicles 
per day) (Forman 2000).  Using currently available road data, these thresholds 
could easily be applied state or regionwide to identify more specifically the 
location and magnitude of forest area affected by roads.   
 
 

 
Figure 4a:  Percent of forest cover in patches less than 100 acres, by 100 sq. km grid cell, New 
York, 2001.   
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Figure 4b:  Distribution of forest cover by patch size, by FIA unit, New York, 2001. 
 
 

Areas with high proportions of forest area in small patches (patches <100 
acres) occur along the river valleys in eastern and central New York, along the 
shores of Lake Erie and Lake Ontario, and over most of northwestern New York. 

 
 
Table 2:  The distribution of forest land with respect to several urbanization and fragmentation 
factors, expressed as a percent of the total land area in each unit. 

 
a Approximating the forest land potentially affected by underlying development. 
b Approximating the forest land undisturbed by edge conditions. 
c Approximating the forest land with potentially enough core area for sustainable interior species 
populations. 
d Approximating the forest land outside the effects of roads. 
e Approximating the forest land not available for commercial forestry. 

 
 

Table 2 shows that in the Adirondack unit, which is 72 percent forested, 23 
percent of the land area (and 23/72 = 32 percent of the forest) is forest potentially 
affected by house densities greater than 6 per sq. km, 43 percent of the land area 
is in forest land that is far enough from an edge to be considered interior forest 
conditions.  Most of that forest is in large patches (>100 acres), but only 60 
percent of that forest (43/72) is greater than 300 m from a road (Table 2). 
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Identifying impact on a particular issue  
 

A second type of analysis that would substantially enhance state reports is the 
use of published models or thresholds to depict the impact of forest fragmentation 
and/or urbanization on an ecological, social, or economic issue of particular 
concern in the state.  This can only be done where such management-relevant 
information exists and data sources are available at the appropriate scale.  
Although few guidelines are definitive, useful information does exist in several 
areas so far, including three we have chosen to illustrate in this study:  water 
quality (e.g. Arnold 1996), probability of occurrence of interior bird species 
(Rosenberg et al. 1999 and 2003), and commercial forestry (Wear et al. 1999).  
Application of these guidelines provides the user with not just a map of one aspect 
of fragmentation or urbanization but one that is already interpreted for probable or 
potential impact on a particular issue.  Application of the thresholds established in 
these guidelines do not represent the final answer, rather they represent the best 
available knowledge of the impacts to date.  To be most useful, such maps can 
and should be qualified for what they are presenting, as in the examples provided 
here.     
 

Water Quality:  As summarized in Arnold (1996), several thresholds have 
been identified for the amount of impervious surface that is correlated to a 
stream’s water quality being impacted or nonsupporting.  Applying these 
thresholds at the same scale as that identified in the literature (approximately 
HUC 12 basins), and with an understanding of the accuracy of the data source 
used, reveals a map of probable water quality (Fig. 5).  In this map, percent 
impervious surface values are not calculated directly from the NLCD2001 data 
source because of known inaccuracies with percent impervious estimates at this 
scale when compared to photo-interpreted data (Riemann et al. in prep).  Instead, 
basin-level percent impervious values are first modeled for HUC12 basins using 
the procedure identified in Riemann et al. (in prep).   
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Figure 5:  Probable stream water quality as predicted by percent impervious surface alone.   
 

Impervious surface is highly correlated with stream water quality.  This is due 
both to impacts of increased runoff from surfaces that add rather than filter 
pollutants, and due to its close relationship to increased levels of urbanization that  
are associated with multiple chemical, physical, and hydrologic changes (Arnold 
and Gibbons 1996).  This example of using impervious surface information 
illustrates those watersheds in Maryland that are likely to be suffering from 
impaired stream water quality using thresholds fairly well established in the 
literature (e.g., Arnold 1996).  The map is created by matching as closely as 
possible both the scale (watersheds no larger than HUC12) and data source 
(photo-intepreted or ground survey) that were used in the studies identifying the 
thresholds.  Thus, Figure 5 is created using HUC12 watersheds and the 
NLCD2001 percent impervious layer modified by the observed relationship 
between the percent impervious in NLCD2001 and percent impervious values 
from photo-interpreted datasets (Riemann et al. in prep).  Though it is an excellent 
and quantifiable land-use indicator, impervious surface is only one factor, and 
thus this map does not predict stream water quality in each watershed, but rather 
depicts the probable water quality absent of other mitigating or exacerbating 
factors.  For more accurate information and suggestions for water quality 
improvement, watersheds in impacted and nonsupporting areas should be 
examined for mitigating factors that could be improved (e.g., additional forest 
land, additional tree cover in developed areas, additional forested stream buffer, 
restoring wetlands).  Similarly, watersheds depicted as having very good or 
impacted water quality should be examined for any exacerbating factors (point 
sources, more grass than trees in developed areas, highly fragmented forests) that 
may reflect lower than depicted water quality, or identify landscape factors that 
could be addressed (Riva-Murray et al. in prep).  Local management, regional 
assessment, and strategic planning efforts would all benefit from such 
information.     
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Probability of interior bird species:  Rosenberg et al. (1999 and 2003) 

developed region-specific and species-specific guidelines that describe the 
probability of finding breeding individuals in a particular forest patch based upon 
patch size and the proportion of forest land in the surrounding 2500-acre 
landscape.  Figure 6 depicts the results of applying the Atlantic Coast guidelines 
for scarlet tanager in Maryland and Delaware (Rosenberg et al. 1999).  Patches 
with high habitat suitability have the same probability of supporting tanagers as a 
suitable unfragmented forest.  Patches that are predicted to have a 25 percent 
lower probability of supporting tanagers are labeled as having moderate 
suitability, and patches which are 50 percent less likely to support tanagers 
relative to unfragmented forest are labeled as having low habitat suitability.   
 

 
  
Figure 6:  Forest land in Maryland/Delaware shaded by degree of habitat suitability for breeding 
scarlet tanagers (an interior forest species). 

 
 In addition to requirements of forest type, forest habitat suitability depends 

upon the configuration of forest land.  For an interior bird species such as scarlet 
tanager, this suitability can be described as a function of patch size and the 
proportion of forest in the surrounding 2500-acre block.  Forest type and other 
forest characteristics are not considered in Figure 6, but future versions of this 
analysis could easily include FIA modeled forest type and structure data.  Future 
work is needed to study the accuracy of the percent forest and patch size data 
derived from NLCD2001.   

 
Probability of Commercial Forestry:  From a survey of experts in Virginia, 

Wear et al. (1999) developed a relationship between human population density 
and the probability that a patch of forest land is used for commercial forestry.  
More recent studies have reported this general relationship for other areas 
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(Barlow et al. 1998, Kline et al. 2004), however none have identified thresholds 
as clearly as Wear et al. (1999).   

 
 
  
Figure 7:  Forest cover by Probability of commercial forestry occurring (based on local population 
density effects and thresholds identified by Wear et al. (1999) in Virginia and applied in 
Maryland/Delaware). 

 
Figures 7 and 8 show the relationship between local (block-level) population 

density and the probability that the forest land in that block will be used for 
commercial forestry, as developed by Wear et al. (1999).   

Generally, harvesting and commercial forest management decline as forest 
landscapes become more populated and more urbanized.  Other factors affecting 
timber management decisions include proximity to roads, distance to markets, 
ownership category, parcel size, and nontimber amenity value (see summary in 
Barlow et al. 1998).  The base probability that the forest is under commercial use 
is 82 percent.  Wear et al.’s (1999) study used data from Virginia circa 1991, so 
probability levels represent conditions in that state at that time.  Actual 
probabilities may be different in Maryland/Delaware and will change as both 
forest treatments and people’s perspectives evolve over time. 
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Figure 8:  Percent forest in each county, shaded by the probability of forest being used for 
commercial forestry (based on local population density effects and thresholds identified by Wear et 
al. (1999) in Virginia and applied in New York, grouped by FIA unit, 2001 (forest), 2000 (population 
density).   

 
In Figure 8, the dark green shade identifies that portion of the forest land in 

each county where the probability of commercial forestry is not impacted by 
human population densities and there is thus roughly an 82 percent probability of 
commercial forestry occurring.  The height of the blue shade (including the 
orange and pale green) identifies that portion of forest land in each county where 
there is less than a 50 percent probability of commercial forestry occurring due to 
local human population densities.   

 
Combining FIA Data with Geospatial Datasets 
  

When data from FIA plots is overlaid with spatial context, forest pattern, and 
urbanization patterns, valuable information can be obtained.  In this example, the 
forest occurring within the Wildland Urban Interface (WUI) designation 
represents one segment of forest land that is potentially impacted by urbanization.  
An analysis of FIA plot data (tree species, stand age, size class, invasive species, 
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lichens, etc.) against WUI class shows which species are being affected, whether 
different stand ages or size classes tend to be associated with forest in the WUI 
area, and whether invasive species or other indicators of ecosystem health are 
associated with the WUI area (Fig. 9).  
 
 

 
 
Figure 9:  Proportion of species basal area (all live) occurring within the Wildland Urban Interface 
(WUI), New York,  2000-2005 (annual FIA plots), 2000 (WUI).    

 
The effects of urbanization on forest land are highly dependent on the time 

that urban development has existed, particularly with large biomass systems such 
as forested ecosystems.  Thus, when looking at a graph of stand size or invasive 
species vs. housing density or WUI, we might be looking at a resulting effect of 
that urbanization.  More likely, we are describing areas where future changes are 
expected.  Thus an analysis of which species or forest types are most influenced 
by WUI status, population density, edge conditions, and patch size, probably 
provides the best look at which are most likely to exhibit future change, 
experience health problems, suffer a decrease in habitat quality, or be less 
sustainable in terms of any of the above criteria.   
 

Conclusions 
 

Informed interpretation of forest inventory data requires information regarding 
the spatial pattern and spatial context in which the forest land occurs.  
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Characterizing forest land by its landscape context provides information that is 
currently absent from most FIA state reports.  FIA should begin to consistently 
monitor and report those aspects of fragmentation or urbanization that affect the 
structure, function, health or sustainability of forests and/or its capacity and value 
for providing the ecosystem services and products on which we rely.   

Information presented in this paper provides examples of what could be done. 
These have been chosen to provide a suite of relevant, consistent, standardized 
fragmentation and urbanization measures.  Choice of which fragmentation or 
urbanization metrics to use in a particular state or region will depend on issue 
priorities, intended use, spatial scale of interest, and the accuracy requirements 
reflecting the intended use.  Wherever both published guidelines and appropriate 
datasets are available, these can be used to generate relatively specific 
management-relevant maps and issue-focused analyses based on the best and 
most current available research.  Qualifying statements accompanying the 
example maps clarify the assumptions and limits of what is expressed in the map 
while allowing a valuable look at our current best interpretation of impacts.    

Using satellite imagery-based datasets in fragmentation analyses in 
conjunction with FIA data requires an understanding of the difference between 
the forest definition used by FIA and that expressed by the classified imagery. 
The relationship between FIA and NLCD2001 percent forest (Fig. 1) illustrates 
the potential magnitude of these differences.  NLCD2001 data provides 
information on forest cover distribution largely independent of information on 
developed land uses and roads.  This independence is sometimes noted in 
individual studies as land cover and land use are observed to have separate and 
independent effects on wildlife, water, and forest ecosystem processes.  Thus 
having land cover and land use information separately available for landscape 
analyses will likely enable, rather than hinder, more specific application of results.  
The only caveat is that for the NLCD impervious cover variable, the land cover 
under trees and shadows is generally not included.  As this may also be important, 
modeling percent total impervious cover to generate values closer to those derived 
from photo-interpretation may be necessary.         

The metrics presented in this paper are simple to obtain.  Their strength is in 
the use of multiple metrics simultaneously, in their relevance with respect to 
issues of concern, in the use of thresholds identified in the literature to aid 
interpretation, and in their analysis with FIA data.  
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A Preliminary Investigation of Forest Carbon 
Changes Associated with Land-Use Change 

in Northern New England 
 

D. Zheng1, L.S. Heath2, M.J. Ducey1, J.E. Smith2 
 

Abstract: Maine (ME), New Hampshire (NH), and Vermont (VT) are three of the four 
most heavily forested states in the United States.  In these states, we examined how land-
use change, at the Anderson Level I classification, affected regional forest carbon using 
the 30-m Multi-Resolution Land Characteristics Consortium 1992/2001 Retrofit Land 
Cover Change product coupled with county-level forest carbon stock densities and 
changes based on U.S. Forest Service, Forest Inventory and Analysis data during the 9-
year period.  Results indicate that about 1,100 km2 of forests were newly developed from 
other land-cover types during 1992 and 2001 across the region, and about 3,100 km2 of 
forests were converted to other cover types in the same period, resulting in an apparent 
net loss of 2,000 km2 of forest.  Thirty percent of land-cover changes occurred within 1.5 
km of major roads.  Forest land converted to nonforest land area change resulted in 
apparent carbon (C) loss of 26 million metric tons (1012 grams – teragrams (Tg)), 
nonforest land becoming forest land sequestered 1 TgC and forest land remaining forest 
land sequestered approximately 154 TgC.  Consequently, the regional forests functioned 
as a carbon sink of 129 TgC over the entire 9-year period.  All counties functioned as C 
sinks during the period, ranging from 0.07 Tg in Grand Isle, VT, to 12.5 Tg in Aroostook, 
ME.  Spatially, 8 of the top 10 counties identified as C sinks were in ME and the other 
two in NH.  In terms of forest carbon loss from deforestation alone, 8 of the top 10 
counties were located in ME while the other two were in southeastern NH, where 
relatively high deforestation rates were detected. 
 
Keywords:  NLCD land-cover maps, land-use change, afforestation, forest land 
remaining forest land, change detection.  
 

Introduction 
 

Global forests play a dominant role in the terrestrial carbon (C) cycle.  They 
contain 86 percent of the earth’s aboveground C and about 73 percent of the C in 
the world’s soil (Post et al. 1982, Olson et al. 1983).  Changes in land-use patterns 
affect C dynamics and balance (Dixon et al. 1994, Houghton 1995).  Various 
models have predicted that the amount of C released from forest ecosystems 
annually to the atmosphere is positively related to the global deforestation rate 
(Alcamo et al. 1996, Yamagata and Alexandrov 1999).  Turner et al. (1996) 
estimated that 45 percent of the potential forest cover of the conterminous United 
States had been converted to other land-cover types.  Furthermore, spatial and 
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temporal dynamics of forest ecosystems can vary substantially with human-
introduced disturbances (such as road accessibility and urbanization). Although 
ownership can also affect spatial and temporal dynamics of forest ecosystems, it 
is not the focus of this study. 
 

The Forest Inventory and Analysis (FIA) Program has been using systematic 
sampling schemes for surveying forest lands across the nation with periodic 
updates since the early 1930s before changing the survey method to an annualized 
approach in the early 2000s (Bechtold and Patterson 2005).  The FIA field data 
provide accurate ground measurements for conducting statistical analyses, and for 
model development and validation; however, these point-based measurements are 
less suitable for conducting spatially explicit analyses across entire landscapes 
(Cramer et al. 2001, Zheng et al. 2003).  Combining satellite observations with 
field-based natural resources inventory data will provide more consistent, reliable, 
and comparable analyses across both spatial and temporal dimensions for 
national-scale forest and carbon related studies (Nelson et al. 2002, Liknes et al. 
2004, McRoberts et al. 2006, Zheng et al. 2008).  A previous study demonstrated 
how land-cover data from different sources could be used for studying regional 
greenhouse gas dynamics (Brown et al. 2007).  Recent collaborations among 
NASA, FIA, and other Forest Service and university partners indicate that 
potential benefits from linking the information have begun to be recognized by 
colleagues, scientific communities, and governmental agencies (Healey et al. 
2007).   

 
The National Land Cover Database (NLCD) provides national land-cover 

maps for 1992 and 2001 using 30-m Landsat Thematic Mapper (TM) and 
Enhanced Thematic Mapper Plus (ETM+) satellite data (Vogelmann et al. 2001, 
Homer et al. 2004).  Although the classification methods and systems were not 
identical between the 2 years, one of the guiding principles in the NLCD 2001 
map was to ensure that the second generation land-cover product maintained 
reasonable compatibility with NLCD 1992 map (Homer et al. 2004).  Thus, the 
products are the best resources currently available for detecting land-cover 
changes between these years at regional and national scales.  While direct pixel-
to-pixel comparison between two datasets is not recommended (U.S. EPA 2008), 
the U.S. Geological Survey NLCD design team initiated research to devise an 
optimal way to compare the products.  As a result, the team generated the NLCD 
1992/2001 Retrofit Land Cover Change Product using a multistage processing 
method on the NLCD 1992 and 2001 datasets (MRLC 2008).  We obtained the 
retrofit change product at the Anderson Level I (broader classification categories 
than those at the Level II used in the original NLCD 1992 and 2001 datasets; 
Anderson et al. 1976) for use in our regional study. 

 
The states of Maine (ME), New Hampshire (NH), and Vermont (VT) are three 

of the four most heavily forested states in the country, about 73 percent forested 
in 1992 and 72 percent in 2001 based on the Retrofit product.  While the three 
states accounted for 1.7 percent of the total land area in the conterminous United 
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States, they contained 4.6 percent of the total forest land.  Therefore, the area has 
disproportionate importance in the nation’s forest ecosystem carbon estimates.  
The overall goal of this study is to establish baseline information for area changes 
in land-cover types and forest carbon dynamics in the region.  The specific 
objectives are to: 1) quantify land-use changes at the Anderson Level I in the 
three northern New England states between 1992 and 2001 focusing on the forest 
sector; and 2) illustrate how these changes affect countywide and regional forest 
area and carbon dynamics, as well as their spatial distributions (that is, related to 
distribution of roads). 
 

Methods and Materials 
 
Study area 

 
The study area contains three northern states (ME, NH, and VT) of the New 

England area in the United States, with a total land area of 133,100 km2.  About 
73 percent of the area is forested.  The area is characterized by rolling hills, 
mountains, and a jagged coastline resulting from retreating ice sheets that shaped 
the landscape thousands of years ago. Elevation ranges from sea level to 1,917 m 
at Mount Washington in NH.  Dominant forest types include: 1) spruce-fir in 
northern ME and at high elevation; 2) white/red/jack pine along the coast of 
southern ME and southeast of NH; and 3) maple/beech/birch in southwestern NH 
and western VT (Irland 1999).  The area is classified as humid continental short 
and relatively cool summers and long, cold winters. Long-term annual mean 
temperature is about 4.4 oC. The average annual rainfall ranges from 500 to 1,000 
mm.   
 
Digital maps and data analyses 

 
We downloaded the NLCD 1992/2001 Retrofit Land Cover Change Product 

provided by the Multi-Resolution Land Characteristics Consortium (MRLC) 
(MRLC 2008), and extracted the data for our study area.  We compared our 
satellite-based forest area change estimates with those developed from FIA data 
during the corresponding period at the state level.   

 
To simplify the calculation in carbon dynamics, we based carbon changes on 

area change categories of nonforest land becoming forest land, forest land 
remaining forest land, and forest land becoming nonforest land, by county.  
Because forest carbon is related to forest type, the most common forest type was 
identified for each county for carbon-related calculations.  Since there was a 9-
year interval for the area change estimates, we assumed the average age of new 
forests was 5 years, but a total of 9 years of growth occurs for the area of forest 
land remaining forest land.  To calculate C loss for deforestation, we used the 
county-level change in forest area, multiplying the county mean forest C densities 
obtained from the most recent FIA data by a conversion factor of 0.8.  This factor 
is based on the assumption that 80 percent of the nonsoil forest C (including live 
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tree, stand dead, understory, down dead wood, and forest floor) would be lost 
during conversion to nonforest (Smith and Heath 2008). 

 
To examine the relationship between land-cover change and road distribution, 

we used the 2004 national major-road map from ESRI (2008).  The map 
represents interstate, U.S. and state highways, major streets, and other major  
thoroughfares within the country.  We clipped the roads for our study area and 
created a polygon cover identifying buffer zones within a distance of 1.5 km (one 
side) from all roads using the GIS function.  The buffered roads were overlaid 
with the Retrofit change map to quantify the relationship. 
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Figure 1. - Relative changes in area between 1992 and 2001 by the seven broad Anderson Level I cover 
categories from the Retrofit change product using 1992 values as reference (= 1).  G/S = Grass/Shrub. 

 
Results and Discussion 

 
Area dynamics and spatial pattern 

 
The most significant relative changes by land-cover types between 1992 and 

2001 were found in barren (increased by 49 percent), followed by grass/shrub (17 
percent), agriculture (7 percent), urban (3 percent), and forest (-2 percent) (Fig. 
1).  Across the region, area of water was estimated to decrease by 0.1 percent of 
total land area (Table 1).  Percentage of forest land decreased from 73.3 percent in 
1992 to 71.8 percent in 2001 by 1.5 percent of the total land area, at an annual rate 
of less than -0.2 percent.  During the 9-year period, about 3.5 percent of total land 
area experienced cover-type change.  About 91 percent of the land experiencing 
the change was related to forest.  Although these changes occurred across the 
region and did not exhibit a specific pattern, we found 30 percent of these cover-
type changes occurred within 1.5 km of major roads (Fig. 2).  Such information is 
useful for future regional resource planning. 
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Table 1. - Statistics in 1992 and 2001 for the seven land-cover categories from the Retrofit change 
product of MRLC, in terms of percentages of total regional land area. 
          --------------------------------------------------------------------------------------------------- 
               Cover Type                           1992 (%)                             2001 (%) 
               ----------------                          -------------                            ------------- 

              Water          4.5            4.4 
              Urban          4.4           4.5 
             Barren          0.3                                      0.4 
             Forest         73.3                                    71.8 
         Grass/Shrub          4.7           5.5 
          Agriculture          5.6              6.0 
           Wetland          7.3           7.4 

          --------------------------------------------------------------------------------------------------- 
 

During the 9-year period, about 3,100 km2 of forest land changed to other 
types (Table 2).  Most of the type changes, in order of amount of area changed, 
were from forest to grass/shrub (G/S), agricultural land, wetland, and urban 
(Table 3).  About 1,100 km2 of other types were converted to forests (Table 2), 
most of these conversions came from G/S, wetland, and agricultural land (Table 
3).  Other cover types with smaller percentage changes during the period were 
wetland (2 percent) and water (-1 percent).  Overall, the region experienced an 
apparent net loss of 2,000 km2 of forests during the 9-year period, at an annual 
rate of 220 km2, which is less than 0.2 percent of total land area including water.  
Considering that all these cover types contain vegetation to some degree, potential 
uncertainties could be caused by mapping errors in satellite based products.  For 
example, wetlands have proven difficult to map with satellite data because they 
may be rare in occurrence (4.6 percent in the region, (Stehman et al. 2003)) and 
their spectral and spatial characteristics are highly context-dependent (Wright and 
Gallant 2007). Among the 7 Anderson Level I categories in the 1992 NLCD map, 
wetlands have the lowest user accuracies using center pixel and mode agreement 
definitions (Stehman et al. 2003). 

 
Spatial heterogeneity in net forest loss across the region between 1992 and 

2001 was observed among the states.  About 85.9 percent of regional net forest 
loss occurred in ME, followed by 8.4 percent in NH, and 5.7 percent in VT; this is 
due to relatively higher deforestation rates in ME, as well as its larger area (Fig. 3; 
Table 4).  On a state basis, forest loss accounted for 2.1 percent, 0.7 percent, and 
0.5 percent of the total areas in ME, NH, and VT, respectively, from 1992 to 
2001.  All counties in ME except Washington and Hancock in eastern ME 
exhibited some degree of forest loss, from 1 percent to 7 percent (Fig. 3).  The 
other three counties in the region gaining forest area during the period were one in 
NH (Coos) and two in VT (Caledonia and Essex) (Fig. 3).  All five counties 
gaining forest area exhibit small percentage gains (less than 1 percent) with the 
maximum of 0.7 percent in Washington County of ME.  Two counties, Grand Isle 
and Lamoille, in VT showed no changes in forest area. Most of the remaining 
counties in VT and NH (excluding 3 counties with forest gains) had relatively low 
rates of forest loss (between 0 and 1 percent).  The exceptions were two counties 
in southeastern NH: Hillsborough with 3 percent loss and Rockingham with 5 
percent loss (Fig. 3).  
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Table 2. - Forest area change and carbon (C) dynamics during a 9-year period (1992-2001) in ME, 
NH, and VT by county (sorted by C sum).  The numbers for total areas may slightly differ to those 
in Table 3 that were derived from regional summary due to rounding. 

--------------------------------------------------------------------------------------------------- 
  County             State             Area Status (km2)              C Status (1000 ton)       C Sum 
                                          Gained    Lost    Remain    Gaineda   Lostb    Remainc   
------------           ------       -------------------------------   ------------------------------- -------- 
Aroostook ME 224 649 12119 291 5103 17342 12531 

Piscataquis ME 153 460 7889 196 3908 15620 11908 

Penobscot ME 122 282 6248 156 2148 12371 10379 

Somerset ME 162 696 7141 207 5477 14139 8870 

Coos NH 12 4 4136 15 34 8189 8170 

Oxford ME 25 40 4432 32 378 7339 6993 

Franklin ME 28 114 3611 36 995 7150 6190 

Washington ME 105 72 4469 137 519 6476 6093 

Grafton NH 10 16 3883 13 167 5766 5612 

Hancock ME 76 63 2842 99 520 4067 3646 

Essex VT 6 2 1517 8 17 3004 2995 

Carroll NH 7 9 2091 9 106 2860 2763 

York ME 0 38 1655 0 355 2741 2385 

Orange VT 3 5 1420 4 49 2352 2306 

Rutland VT 6 27 1739 8 298 2582 2292 

Windsor VT 4 46 2045 5 518 2798 2284 

Merrimack NH 14 32 1886 18 371 2580 2227 

Caledonia VT 4 3 1322 5 26 2189 2168 

Washington VT 2 5 1456 3 52 2162 2112 

Orleans VT 3 6 1278 4 57 2116 2063 

Kennebec ME 8 59 1497 10 545 2479 1945 

Waldo ME 9 51 1337 12 449 2214 1776 

Cheshire NH 8 25 1504 10 299 2057 1768 

Cumberland ME 4 37 1429 5 360 2122 1767 

Windham VT 3 27 1730 4 342 2086 1748 

Bennington VT 4 13 1447 5 168 1745 1582 

Addison VT 5 16 1001 6 156 1658 1508 

Sullivan NH 4 21 1141 5 226 1694 1474 

Hillsborough NH 15 57 1544 19 672 2112 1459 

Lamoille VT 1 1 966 1 11 1435 1425 

Franklin VT 3 4 943 4 42 1400 1363 

Chittenden VT 3 6 853 4 64 1267 1207 

Belknap NH 5 8 826 6 81 1227 1152 

Androscoggin ME 6 22 761 8 199 1260 1069 

Lincoln ME 4 38 812 5 367 1345 983 

Rockingham NH 3 59 1017 4 630 1510 885 

Strafford NH 0 15 617 0 158 916 758 

Knox ME 9 27 484 12 228 693 477 

Sagadahoc ME 1 11 383 1 107 569 463 

Grand Isle VT 0 0 44 0 0 65 65 

Total  1061 3066 93515 1366 26201 153699 128864 

-------------------------------------------------------------------------------------------------- 

 6

USDA Forest Service Proceedings – RMRS-P-56 10.



a  Carbon gain was estimated using carbon accumulation tables for afforestation (Smith et al. 
2006), assuming the average age of the new forests in this 9-year period was 5 years. 
 
b  County-level carbon loss was estimated using average nonsoil forest carbon density by county 
from the latest FIA data, assuming that 20 percent of the nonsoil carbon remained after forest land 
became nonforest land.  
 

c  Carbon for forest land remaining forest land was estimated using carbon accumulation tables for 
reforestation (Smith et al. 2006) for the most common forest type in the county. The county-level 
carbon density was used to estimate the expected carbon growth. 

 
Table 3. - Detected land-cover change (km2) using the Retrofit change product in three northern 
New England states, U.S.A. G/S = grass/shrub. 
 
 Water Urban Barren Forest G/S Agric. Wetland Sum1992 
Water 5817 2 16 8 5 4 72 5924 
Urban 2 5773 1 16 4 48 14 5858 
Barren 0 0 340 0 0 0 0 340 
Forest 14 233 143 94470 1855 530 326 97571 
G/S 1 18 4 695 5462 68 62 6310 
Agric. 2 12 1 85 10 7284 15 7409 
Wetland 3 5 0 266 41 18 9358 9691 
Sum2001 5839 6043 505 95540 7377 7952 9847 133103 

 
     We compared our forest area changes detected from NLCD with those 
calculated from FIA during the corresponding years. Regional estimates from 
these sources were substantially different from each other.  While the NLCD 
detected a forest net loss of 2,000 km2 across the region during the period, FIA 
data showed a loss of 22 km2 (Table 4).  Compared at the state level, the satellite-
based results overestimated the forest net loss by 24 percent in ME while 
underestimating the loss by 73 percent in NH, compared to FIA-based losses.  For 
Vermont, even the sign of the change was opposite.  Such a discrepancy may be 
caused by differences in forest definition and mapping errors.  For example, 
forests in NLCD were defined as areas dominated by trees generally greater than 
or equal to 5 m tall and greater than or equal to 20 percent of total vegetation 
cover (Homer et al. 2004), whereas forest lands defined by the FIA are at least 10 
percent stocked by trees of any size (Bechtold and Patterson 2005).  
Reconciliation of this issue requires better coordination and integrity between 
ground forest inventory and remotely sensed information in future, including 1) 
increasing plot density; 2) measuring all cover types; and 3) improving remote 
sensing techniques to reduce mapping errors.  
 
Forest carbon dynamics and spatial pattern 

 
During the 9-year period, regional afforestation sequestered a net 1.4 million 

metric tons (1012 grams – teragrams (Tg)) of carbon (C) and forest land remaining 
forest land sequestered approximately 153.7 TgC.  Regional deforestation resulted 
in a loss of 26.2 TgC.  As a result, the regional forests functioned as a carbon sink 
sequestering a total of 128.9 TgC (Table 2).   

 
Spatially, all 40 counties in the region functioned as C sinks during the period 

ranging from 12.5 Tg (Aroostook in ME) to 0.07 Tg (Grand Isle in VT).  Eight of 
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the top 10 counties were in ME and the remaining two were in NH (Table 2).  The 
top 10 sink counties as a whole accounted for 62.4 percent of regional sequestered 
C during the period due to their larger size (on average 2.4 times larger than the 
regional mean) and higher forest cover percentages (on average 7 percent higher 
than the regional mean). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Figure 2. - Relationship of spatial distributions of the 
lands experiencing changes from one type to another 
(92-01) and the major roads distributions across the 
region. 

Figure 3. - Spatial pattern of regional forest area 
changes (92-01) in percentage (%, round to a whole 
number) at county level.  Negative percentages (< 0) 
indicated gains in forest area.

 
In terms of C loss due to deforestation, 8 of the top 10 counties were located in 

ME.  The remaining two counties were in southeastern NH where a greater rate of 
urbanization occurred.  For example, areas used for urbanization and development 
in Rockingham County, NH, accounted for 18.9 percent of its total land area in 
2001 compared to that of 4.5 percent for the region according to the Retrofit 
change product.  From the afforestation perspective, 8 of the top 10 counties were 
located in ME and the remaining two in NH.  Only three of the five counties with 
net forest gains during the 9-year period (Fig. 3) were in the top 10 carbon-sink-
county list (Table 2) because 1) all the net gains in area were relatively small; and 
2) carbon density for young trees (afforestation) was much smaller than the 
carbon density in mature forests lost to deforestation.  

 
At the state level, ME had the leading numbers in all categories, both in area 

and C status: forest gained, lost, and forest land remaining forest land (Table 5) 
because of its much larger size of forest land than those in the other two states.  
Maine accounted for 60.1 percent of total regional sequestered C during the 9-
year period, followed by 20.4 percent for NH and 19.5 percent for VT. 
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Table 4. - State-level comparison of forest area changes (km2) between FIA and NLCD Retrofit 
change product based calculations in Maine (ME), New Hampshire (NH), and Vermont (VT): 1992-
2001. 

                                       ------------------------------------------- 
                                       State              FIA            NLCD 
                                       -------             -------          --------- 
                                        ME               -1388          -1723 
 
                                        NH                -631            -168 
                                        
                                        VT                1997            -114 
 
                                        Total              -22            -2005a 
                                       ------------------------------------------- 

 a County level based summary. 
 
Table 5. - State-level statistics of forest area change and carbon (C) dynamics during a 9-year 
period (1992-2001) in Maine (ME), New Hampshire (NH), and Vermont (VT).  Sums may not match 
exactly due to rounding. 
----------------------------------------------------------------------------------------------------------------------------- 
     State                 Area Status (km2)                          C Status (1000 ton)            C Sum 
                       Gained        Lost       Remain       Gaineda     Lostb       Remainc     
     -------          ----------------------------------------      -----------------------------------------      --------- 

       ME 936 2659 57109 1207 21658 97927 77475 

       NH 78 246 18645 99 2744 28911 26268 

       VT 47 161 17761 61 1800 26859 25118 
----------------------------------------------------------------------------------------------------------------------------           
See Table 2 for a, b, and c. 

 
Conclusions 

 
This study illustrates an approach to associate carbon changes with specific 

categories of cover-type changes.  Our results could be used as a reference for 
monitoring future emissions of CO2 and forest removals in the region.  Spatial 
patterns identified from this study can provide useful information for improving 
our existing forest management strategies related to where and how much carbon 
could be enhanced or reduced.  Future management strategies might also need to 
consider the effects of forest accessibility on greenhouse gas emissions.  Our 
method is simple and straightforward because we used a consistent national land 
cover change product. Current limitations of this study are that it included neither 
estimates of carbon in harvested wood products, nor carbon changes from the soil 
pool.  Although further coordination and integrity between field observations and 
remotely sensed information are needed to reduce potential uncertainties, this 
spatially explicit approach provides a way to associate changes in carbon with 
land-cover categories. 
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Wildlife Habitat Applications II



   
  
 

Quantification of Lewis’s Woodpecker habitat 
using Forest Inventory and Analysis data 

 
Chris Witt1  

 
 
ABSTRACT: The Utah Department of Natural Resources’ Division of Wildlife Resources 
(UDWR) placed Lewis’s Woodpecker (Melanerpes lewis) on their Sensitive Species Tier 
II list due to declining populations and suspected local extirpations throughout the state. 
It is thought that the decline in burned coniferous forest has reduced the amount of 
suitable habitat for these birds, which are known to be closely tied to disturbed 
landscapes. The UDWR has identified several key components of Lewis Woodpecker 
habitat using an Ecological Integrity Table (EIT). An EIT identifies “key ecological 
attributes” such as breeding habitat, food, and their acceptable range of variation as 
measured by selected indicators. The main indicators for Lewis’s Woodpecker breeding 
habitat were identified as plant association (i.e. forest type), tree canopy cover, and 
number of suitably-sized snags per hectare of habitat. Each of these indicators is 
measured in some fashion by FIA crews on every visited phase 2 forested plot. The 
indicators and their FIA surrogates were used in this analysis to quantify breeding 
habitat that occurs within and outside of Lewis’s Woodpecker’s preferred habitat of 
burned coniferous forests in Utah. We produced area estimates for each indicator 
thought to be important to Lewis’s Woodpecker as well as estimates of forest land that 
provide all of the structural components in concert. We demonstrated the utility of FIA 
data for large scale habitat evaluation, identifying limiting attributes, and as a 
monitoring tool for habitats of sensitive species that use forested landscapes at some 
point of their life history. 
 
KEYWORDS: Lewis’s Woodpecker, Melanerpes lewis, breeding habitat, FIA, 
monitoring, ecological integrity table 
 

 
Introduction 

 
Lewis’s Woodpecker (Melanerpes lewis) occurs throughout western North 

America where open “park-like” forest stands or recent burns predominate and 
provide structure that facilitates the bird’s mating and foraging strategies (Bock 
1970, Sousa 1983, Tobalske 1997). A preference for burned areas has resulted in 
the species being categorized as a “burn specialist” (Bock 1970, Raphael and 
White 1984, Block and Brennan 1987, Saab and Vierling 2001). Large numbers 
of dead and decaying trees, presence of woody ground cover, and open canopy 
and sub-canopy found in burned pine forests are ideal for this species (Linder and 
Anderson 1998, Russell et al 2007, Saab et al 2007). Fire suppression policies 
over the past century have reduced the extent of burned forest landscapes in the 

                                                 
1 United States Forest Service; Rocky Mountain Research Station; Interior West Forest Inventory and Analysis, 507 25th   
Street, Ogden, Utah 84401 
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Intermountain West. This has resulted in a decline in preferred habitats of Lewis’s 
Woodpecker. However, some unburned ponderosa pine, cottonwood, and aspen 
stands have been found to provide suitable structure and are used successfully by 
the bird (Medin and Clary 1991, Tobalske 1997, Vierling 1997, Linder and 
Anderson 1998, Saab and Vierling 2001). While the use of burned areas by this 
species has been well documented in some forest types, the qualitative nature of 
undisturbed forest structure used by Lewis’s Woodpecker is still largely 
unknown, particularly in aspen stands. Although use of ponderosa pine is not 
uncommon, use of aspen habitats has not been well documented in Utah. From 
management and census perspectives it is important to know the potential of 
alternate habitats to provide suitable breeding sites for these birds, given the 
relative scarcity of recently burned forests in Utah (Figure 1). 

 
 The Utah Department of Natural Resources’ Division of Wildlife Resources 

(UDWR) placed Lewis’s Woodpecker on the Utah Sensitive Species Tier II List 
due to declining populations throughout the state as well as suspected local 
extirpations (Behle et al 1985, Sorenson 1986, Parrish et al, 1999, UDWR 2007). 
Herein we explore the utility of the Forest Inventory and Analysis (FIA) program 
of the U.S. Department of Agriculture Forest Service as an accounting and 
monitoring tool for forest species habitat in Utah. We use potential breeding and 
foraging habitat in undisturbed (not burned or cut) forests for Lewis’s 
Woodpecker as a test case.  
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Figure 1: Estimated burned and unburned area of various forest types in Utah. Plots classified as 
burned have done so within five years of the field crew visit. 
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Forest Inventory and Analysis Data 
 
FIA is responsible for assessing the status and trends of all forested lands in the 

U.S. (Gillespie 1999).  FIA conducts inventory on all forested lands of the U.S. 
using a nationally standardized plot design at an intensity of approximately 1 field 
plot per 2,388 hectares (USDA 2007).  The Interior West region of FIA (IW-FIA) 
is responsible for data collection and analysis in Arizona, Colorado, Idaho, 
Montana, Nevada, New Mexico, Utah, and Wyoming.  

 
In 2000, IW-FIA implemented a continuous annual inventory system 

(Gillespie 1997).  Under annual inventory, approximately 10 percent of plots from 
the full sample set in a state are measured each year.  Plots belonging to an annual 
panel are distributed evenly across each state so as to be free of geographic bias.  
States have been gradually phased into the annual system (Utah, 2000; Arizona, 
2001; Colorado, 2002; Idaho, 2003; Montana, 2003; New Mexico, 2008), 
increasing geographic coverage of the Interior West over the past 8 years. Nevada 
partially employed the annual plot system in 2004 and 2005.   

 
IW-FIA field crews measure and document well over one-hundred plot, 

condition and tree variables on forested plots. Many of these variables are 
“national core” variables and are collected in a consistent manner across all 
regions of the United States. IW-FIA also has several variables that are collected 
using protocols specific to IW-FIA in order to serve local needs and interests. 
Some of these variables are used in our analysis as well. For this analysis we used 
data gathered using annual inventory protocols in Utah during 2000-2006. 
 

Methods 
 
The UDWR has identified several key habitat components of Lewis’s 

Woodpecker in Utah using an Ecological Integrity Table (EIT) (Oliver 2009). An 
EIT identifies “key ecological attributes”, such as breeding habitat and food, and 
their acceptable range of variation as measured by selected indicators (Parrish et 
al 2003, UDWR 2005).These tables have been compiled for each species listed in 
the Utah Comprehensive Wildlife Conservation Strategy (Sutter et al. 2005). The 
primary indicators for Lewis’s Woodpecker breeding habitat were identified as 
plant association (Bock 1970, Tobalske 1997, Saab and Vierling 2001), tree 
canopy cover, and number of suitably-sized snags per hectare of habitat (Sousa 
1983). The primary indicator for Lewis’s Woodpecker foraging habitat was 
percent cover of woody understory (Sousa 1983, Tobalske 1997). Each of these 
indicators is measured in some fashion by FIA crews on every visited forested 
plot. The indicators and their FIA surrogates used in this analysis are listed along 
with a brief description of methodologies used to acquire the data in table 1. In 
addition to the IW-FIA variables used to quantify habitat for Lewis’s 
Woodpecker, data collected on land ownership are analyzed for the purposes of 
discussing where potential Lewis’s Woodpecker habitat occurs in Utah and what 
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management potential exists. A detailed description of IW-FIA field protocols 
and definitions can be found in USDA (2007).  

 
 

TABLE 1: Name and definition of habitat indicators from UDWR Ecological Integrity Table for 
Lewis’s Woodpecker, along with their associated FIA variables and a basic description of how they 
are collected on the plot. Detailed protocols for collecting IW-FIA field data can be found in USDA 

2007. 
 

Key 
Ecological 
Attribute 

 
Description 

 
FIA 

surrogate 

 
How measured 

 
Plant 
Association 
 

 
Major vegetation class. The two 
best rankings include ponderosa 
pine, aspen, cottonwood, 
disturbed pine, and pine or fir 
types that can provide open 
areas between the canopy and 
understory for foraging. Oak 
woodlands are identified as 
preferred winter habitat but not 
included in breeding habitat. 
 

  
Forest Type 
 

 
Calculated by algorithms using 
the plurality of stocking of all live 
trees tallied on the plot. 
 

 
% Tree 
Canopy 
Cover 
 

 
Percent of ground shaded by 
vertical projection of canopies of 
woody vegetation > 5 m in 
height. 
 

 
Crown 
Cover 
 

 
Measures crown intercept of live 
trees 2.54 cm or greater 
diameter at breast height (DBH) 
on every foot of four 7.62 meter 
long transects originating from 
the center of each subplot and 
running in each of the four 
cardinal directions. 
 

 
% Shrub 
Crown 
Cover 
 

 
Percent of ground shaded by 
vertical projection of canopies of 
woody vegetation < 5 m in 
height. 
 

 
Tree Cover-
Aerial View 
and Shrub 
Cover-Aerial 
View 
 

 
Ocular estimate to the nearest 
1% of the total canopy cover of 
trees < 2.54 cm DBH on each 
subplot. The same is done with 
shrub cover, and then the total 
cover of small trees and shrubs 
is added and averaged over the 
entire plot. 
 

 
Number of 
Snags Per 
Hectare 
 

 
Number of standing dead trees 
at least 30.48 cm DBH and 9.14 
meters tall per hectare of 
otherwise suitable habitat. 
 

 
Status Code, 
Lean Code, 
Actual 
Height, and 
Diameter  
 

 
Status Code records whether 
the tree is alive or dead, Lean 
Code records whether the snag 
is standing at an angle <> 45%, 
Actual Height records the 
physical height of the tree, and 
Diameter records the diameter 
of the snag at "breast height" 
(1.37 meters). 
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The range of each EIT variable is divided into four “Indicator Ratings” ranging 
from “poor” to “very good”. The breaks between each rating are based on 
available published and professional knowledge of the species. The Lewis’s 
Woodpecker EIT documents some disagreement in the literature concerning the 
amount of woody understory that is needed to be considered optimal habitat. We 
report on both of the proposed ratings here. The EIT also acknowledges that 
although good crown cover for Lewis’s Woodpecker is thought to be less than 53 
percent, extremely low or the absence of crown cover may not be ideal for the 
species. Given this ambiguity and the fact that IW-FIA collects the majority of 
their data on plots with 5 percent or greater canopy cover, we defined a crown 
cover of 5-52 percent to represent suitable habitat. In consideration of the plant 
association indicator, those lands described as “non-stocked” by FIA standards 
were included in the area estimates as long as the field-derived forest type agreed 
with the EIT definition. Non-stocked lands are those that formerly supported 
forests but do not have the requisite cover or stocking to be classified to a forest 
type using the FIA algorithm. More often than not, these lands have been subject 
to fire, harvest, disease, or other disturbance(s) and likely will re-develop into the 
field-identified forest type at some point in the future through natural regeneration 
or plantings. While Figure 1 illustrates the estimated hectares of burned forests in 
Utah, all estimates provided hereafter will contain all non-stocked hectares 
regardless of disturbance type. 

 
For this analysis, we considered variable measurements that fell within the two 

best ratings for each indicator to represent suitable habitat for Lewis’s 
Woodpecker. These indicator rankings are shown in Table 2.  An exception to this 
was snag densities, where IW-FIA methodologies only describe densities equal to 
or greater than about 2.4 snags per hectare. In order to account for the estimated 
area with snag densities from .2 - 2.3 snags per hectare, a model, 

 
(y = 1/(a + bxc) 

 
was fit to a scatter plot of number of plots in a given forest type versus number of 
snags recorded on the plot. In this model y is the number of conditions that were 
estimated to have between .2 and 2.3 snags per hectare, a, b, and c were estimated 
parameters of the curve, and x was the number of snags tallied on the condition. 
 

The extension of the curve below 2.4 snags per hectare gave a good fit (r2 = 
0.766) and resulted in an upward adjustment of 14 percent for all softwoods and a 
nine percent adjustment for the aspen forest type. These adjustments are reflected 
in the final estimates of area satisfying snag density thresholds. 

 
The IW-FIA data for Utah collected in 2000-2006 were queried and plots 

identified that met each of the rating thresholds. Expansion factors were assigned 
to each plot and by summing the plots that met each criterion, a state-wide 
estimate of hectares was produced. All data compilations and summary statistics 
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were performed using SAS software (Ver. 8.02, SAS Institute, Cary, NC). All 
estimates expressed in percentages were rounded to the nearest whole percent. 

 
 

TABLE 2: Indicators of “Key Ecological Attributes” and their qualitative ratings from the Utah 
Division of Wildlife Resources' Ecological Integrity Table for Lewis’s Woodpecker. Oak woodlands 
and nut and fruit orchards are not considered important breeding habitat and were excluded from 
this analysis. 

 
 

Indicator 
 

“Good" and "Very Good"  Rating 

 
plant association 

 

 
oak woodland, nut and fruit orchards, pine-fir, ponderosa pine, 
cottonwood or aspen riparian, logged or burned forest 
 

 
% tree canopy cover 

 
< 52% 

 
% shrub crown cover < 5 m in 

height 

 
> 25% 

 
% shrub crown cover < 5 m in 

height 
 

 
> 13% 

 

 
number of snags > 30.5 cm DBH 

and > 9.1 m tall per ha 
 

 
> 1.25 

 

 
 

Results 
Forest type 
 

The amount of forest land in Utah potentially suitable for Lewis’s Woodpecker 
was estimated at 1,504,111 hectares, or almost 19 percent of all forested lands in 
Utah (Figure 2).  Of the forest types included in the highest indicator rating for 
this Key Ecological Attribute, aspen contributed the most acreage, with estimates 
exceeding 672,000 hectares. This accounts for approximately 45 percent of the 
total estimated suitable acreage in this indicator. The next highest contribution 
was from Douglas-fir, which approached 18 percent of the acreage at 266,253 
hectares. 
 
Crown cover 
 
An estimated 867,343 hectares met both the requisite crown cover and stocked 
forest type criteria for Lewis’s Woodpecker (Figure 3). This accounted for 
roughly 57 percent of the land estimated to be suitable for Lewis’s Woodpecker in 
terms of stocked forest type. Aspen contributed more to this acreage than any two 
other forest types combined at approximately 323,543 hectares or roughly 38 
percent of the total (Figure 4). 
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 Woody Cover 
 
The amount of suitable stocked forest with adequate crown cover that meets or 

exceeds the woody cover greater than 25 percent woody understory threshold was 
estimated to be 417,979 hectares (Figure 5). Aspen accounted for nearly half of 
this total with an estimated 206,018 hectares. Douglas-fir was the second-most 
abundant forest type meeting the 25 percent woody cover threshold at 76,987 
hectares. The estimate of otherwise suitable habitat that only meets the woody 
cover greater than 13 percent threshold for woody understory was 686,905 
hectares. Aspen forests again provided the bulk of this estimate at 269,442 
hectares. Douglas-fir was the next biggest contributor when the woody understory 
threshold was dropped to 13 percent, providing approximately 123,536 hectares. 

 
Snag Densities 

 
An estimated 122,927 hectares in Utah have adequate snag densities while also 

meeting the requirements of forest type, crown cover, and woody cover greater 
than 25 percent (Figure 6). This estimate increased to 222,242 hectares when 
woody cover greater than13 percent was considered. The aspen forest type 
provided the majority of the acreage with 44,731 hectares at a woody cover 
greater than 25 percent threshold and 64,936 hectares at the woody cover greater 
than13 percent break. Lodgepole pine was the second greatest contributor when 
woody cover greater than25 percent was considered, while White fir got this 
distinction when the woody cover greater than13 percent criteria is applied.  

 
Ownership  

 
Figure 7 shows distribution of area that met forest type, crown cover, and 

woody cover greater than 13 percent thresholds for Lewis’s Woodpecker by 
major ownership groups. Based on our assessment, the Forest Service manages 
roughly 71 percent of the potential breeding habitat of Lewis’s Woodpecker in 
Utah.  The bulk of remaining area is under private ownership, including almost 30 
percent of the aspen predicted to be suitable habitat.  
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Figure 2: Estimated area of forest land in Utah by FIA forest types thought to be potentially useful 
to Lewis’s Woodpecker for breeding and nesting purposes. Error bars represent the ninety-five 
percent confidence interval for the estimate. 
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Figure 3: Estimated area of forest land in Utah by forest type and crown cover ratings. Error bars 
represent the ninety-five percent confidence interval for the estimate. 
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Figure 4: Estimated area of forest land in Utah that meets forest type and crown cover thresholds 
thought to be useful to Lewis’s Woodpecker for breeding and nesting purposes. Error bars 
represent the ninety-five percent confidence interval for the estimate. 
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Figure 5: Estimated area of forest land in Utah that meets forest type, crown cover, and woody 
understory cover thresholds thought to be useful to Lewis’s Woodpecker for breeding and nesting 
purposes. Error bars represent the ninety-five percent confidence interval for the estimate. 
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Figure 6: Estimated area of forest land in Utah that meets forest type, crown cover, woody 
understory cover, and snag density thresholds thought to be useful to Lewis’s Woodpecker for 
breeding and nesting purposes. Error bars represent the ninety-five percent confidence interval for 
the estimate. 
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Figure 7: Estimated area of forest land in Utah that meets forest type, crown cover, woody 
understory cover, and snag density thresholds by land ownership. Error bars represent the ninety-
five percent confidence interval for the estimate. 
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Discussion 
 
The EIT for Lewis’s Woodpecker was assembled using the best available 

published research and local knowledge of the species’ ecology. However, 
research on the species in non-disturbed forests is relatively scarce, and peer-
reviewed literature on the species in Utah is very sparse. Consequently, the EIT 
documents some disagreement in the literature concerning the amount of woody 
understory that is needed to be considered optimal habitat in Utah. It is not fully 
known whether Lewis’s Woodpecker use Utah’s landscape in the same manner as 
in other parts of their range where they have been observed or studied more 
intensely. The IW- FIA data presented here suggest that suitable habitat in Utah 
may be provided by forest types not strongly linked to Lewis’s Woodpecker in the 
literature (Bock 1970, Diem and Zeveloff 1980, Sousa 1983, Vierling 1997, 
although see Medin and Clary 1991, Neel 1999 and Newlon 2005), although more 
study may be needed to verify this. In addition, how often Lewis’s Woodpecker 
uses lodgepole pine stands for nesting sites is not well known. FIA data suggest 
the potential exists for this type to provide the structure these birds are thought to 
prefer. If they do utilize this resource, the lodgepole pine forests of the Uinta 
Mountains could provide approximately 99,134 hectares of potential habitat, 
giving it local importance if not statewide value. Additionally, there are several 
Douglas-fir stands that co-occur in the Uinta Mountains that scored high in the 
indicator ratings. These two forest types make up 64 percent of the potential 
habitat in the Uinta Mountains yet are not strongly associated with Lewis’s 
Woodpecker in the literature.  

 
The results indicate that when both canopy cover and woody understory cover 

are considered, aspen and Douglas-fir forest types provide the bulk of the 
preferred structure thought to be important for Lewis’s Woodpecker for nesting 
and feeding activities outside of winter. Ponderosa pine, thought to be the most 
important forest type other than burned pine forests and cottonwood for these 
birds during the breeding season (Tobalske 1997), provides less than half the 
potential habitat that aspen does. When snag densities are considered much of the 
aspen acreage appears to be unsuitable. However, snag presence should not be as 
important in aspen types because of the ease of excavation of live aspen trees, the 
abundance of live trees with diseased portions of the bole, and the number of 
other excavating bird species that use aspen regularly and create new cavities 
annually (Dobkin et al, 1995, Daily 1993, Flack 1976). For these reasons, any 
aspen forest that meets the crown cover and woody cover requirements could be 
considered potentially suitable habitat. 

 
Tobalske (1997) attributes declining Lewis’s Woodpecker populations to the 

loss of burned stands and riparian cottonwood habitats. This conclusion is 
supported by the paucity of estimated burned forest land and cottonwood that has 
the present or future potential to support Lewis’s Woodpecker in Utah. However, 
if the structural preferences of Lewis’s Woodpecker are accurately reflected in the 
EIT, suitable habitat for this species may abound in Utah’s unburned aspen 
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forests. Newlon (2005) showed high reproductive success and survivorship in 
riparian aspen communities in Idaho and suggested that these communities may 
provide better overall nesting habitat than do cottonwood forests. This is an 
important consideration as many land managers and researchers are concerned 
about the state of aspen throughout the Intermountain West. The same fire 
suppression activities that have been implicated in reducing availability of 
traditional habitats for this species may be the inadvertent architect of new 
habitats in aspen stands as lack of fire in aspen may result in dense canopies, less 
sub-canopy structure,  and a shrubby understory where canopy breaks exist.  
Current and proposed efforts to convert aspen to younger stands/earlier seral 
stages in Utah could have both positive and negative effects to Lewis’s 
Woodpecker breeding habitat. Treatments in stands with little or no understory 
could increase shrub and seedling cover, making it more productive for breeding 
birds. However, treatments in stands already providing sufficient habitat 
components would have negative consequences for Lewis’s Woodpecker, 
especially if ponderosa pine and other traditional habitats are not managed in 
conjunction with aspen “restoration” efforts. It is also important to note that while 
aspen contributes relatively little to the total forested landscape in the 
Intermountain West, it is the fourth most common forest type in Utah, trailing 
only the pinyon-juniper, juniper woodland, and oak woodland types, respectively 
(USDA, unpublished data). These three woodland forest types are thought to 
provide very little breeding habitat for Lewis’s Woodpecker because they lack the 
structure that provides good flycatching opportunities, and in the case of the 
pinyon-juniper and juniper woodland types, they often lack the desired woody 
understory component (Bock 1970).  

 
There is some uncertainty regarding how much understory vegetation is 

required to meet the needs of Lewis’s Woodpecker (Block and Brennan 1987, 
Tobalske 1997). It has been suggested that a certain amount of woody cover is 
required to support the invertebrate communities these birds depend on during 
breeding season (Bock 1970, Sousa 1983). However, the amount of woody 
understory necessary may vary by the general forest type selected and its 
association with riparian systems, agricultural fields, and oak stands. One could 
also argue that because of the ephemeral nature of insect availability in general, 
the understory structure directly surrounding the nest tree may not be as important 
as the nest’s proximity to the aforementioned resources. The amount of 
understory the species requires is an important consideration in Utah, especially 
as it pertains to ponderosa pine. If woody cover of at least 25 percent is indeed 
what is required, the estimated amount of predicted suitable ponderosa pine 
habitat is reduced by roughly 76 percent. Estimates for suitable lodgepole pine are 
reduced by approximately 59 percent.  

 
No information could be found documenting the foraging range of Lewis’s 

Woodpecker around its nest. Block and Brennan (1987) suggest unburned stands 
of Jeffrey pine and Douglas-fir in California adjacent to burned areas are used for 
foraging after nesting season (e.g. after August 1). No nests or individuals were 
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observed in unburned stands prior to that time period. In addition, while the mean 
shrub cover of unburned areas used for nesting was 13.4 percent, unburned sites 
averaged 26.5 percent. These results conflict with the recommendations in Sousa 
(1983) and agree more closely with other published reports of successful breeding 
in areas with woody understory cover ranging from as low as 6.7 percent up to 13 
percent 13 percent (Medin and Clary 1991, Linder and Anderson 1998).   

 
The extent of the effects of temporal availability of resources between burned 

and unburned sites on foraging behavior has not been studied. There also may be 
behavioral traits that restrict adults to foraging in close proximity to their nests 
until their young have fledged. If insects and other food resources were available 
in both burned and unburned areas concurrently, nests constructed near the edge 
of these cover types would have facilitated adult foraging in the unburned areas 
while maintaining a close proximity to their  unfledged young. The fact that no 
individuals were observed in the unburned stands while the nesting season was in 
process suggests some behavioral reluctance to venture into these areas. However, 
distance from nest tree to unburned stands was not reported by Block and 
Brennan (1987). 

 
Although beyond the scope of this analysis, several FIA variables such as 

quadratic mean diameter, stand density index, and basal area may prove useful in 
refining the physical and spatial description of a plot such that other important 
components could be identified and quantified. The EIT assumes that all “pine- 
fir” forests have potential to provide habitat to the species, but it is doubtful that 
all of the types that could be considered pine-fir would provide such structure. In 
Utah it appears to be rare in the subalpine fir and spruce-fir forest types if 
anecdotal information reflects the general condition. Regardless of the potential of 
certain types to exhibit the sub-canopy space needed for flycatching, having 
variables that actually reflect this spatial arrangement and allow for area estimates 
of this habitat component within each forest type would be valuable for 
management purposes and model refinement. 

 
Management Implications 

 
The land area identified as suitable for Lewis’s Woodpecker in terms of forest 

type, crown cover, and woody understory greater than 13 percent is mostly 
managed by the federal government. An estimated 489,350 hectares of these lands 
are managed by the United States Forest Service. This represents about 71 percent 
of the total estimated acreage for Lewis’s Woodpecker potential breeding habitat 
in Utah. As such, an opportunity exists for broad-scale management for the 
benefit of Lewis’s Woodpecker and other birds with similar needs. Site 
occupancy information would go far to refine and/or reinforce the assumptions 
made in the EIT and this type of analysis.  

 
Sampling efforts for Lewis’s Woodpecker using protocols described in Welsh 

et al (2006) and Zielinski et al (2006) could increase the utility of FIA data in 
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modeling wildlife habitats as well. All of these methodologies accommodate the 
use of FIA data as an estimator of existing habitat and as a monitoring tool of the 
physical environments important to many forest-dwelling species. FIA data can 
be useful in tracking trends in one or many important attributes, showing 
predicted future resource availability with and without a given management 
prescription, a continuing management policy, or as a result of natural 
disturbances. The nuances of how FIA data are collected and complied need to be 
fully understood before being applied to a particular question, but the potential for 
increased data quality and quantity along with substantial reduction in data 
collection costs should encourage researchers to explore the utility of using FIA 
data in their wildlife habitat research.  

 
 

Conclusion 
 

The information gleaned from this analysis is useful in several ways. The land 
area identified as suitable for Lewis’s Woodpecker in terms of forest type, crown 
cover, and woody understory > 13 percent is mostly managed by the federal 
government. An estimated 489,350 hectares of these lands are managed by the 
United States Forest Service. This represents about 71 percent of the total 
estimated acreage for Lewis’s Woodpecker potential breeding habitat in Utah. As 
such, an opportunity exists for broad-scale management for the benefit of Lewis’s 
Woodpecker and other birds with similar needs. Site occupancy information 
would go far to refine and/or reinforce the assumptions made in the EIT and this 
type of analysis.  
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Abstract: Landsat images have been widely used for assessing forest characteristics and 
dynamics. Recently, signifi cant progress has been made towards indepth exploration of the 
rich Landsat archive kept by the U.S. Geological Survey to improve our under standing of 
forest disturbance and recovery processes. In this study, we used Landsat images to map 
forest disturbances at biennial intervals from 1984 to 2007 for the State of Mississippi. 
Forest Inventory and Analysis plot data were used to characterize and validate the 
mapped disturbances. These products were used to produce multi-county forest assess-
ments, which were compared with those derived from inventory data. We conducted our 
study, in part, to support a larger conterminous U.S.-level LANDFIRE effort. 

Keywords: Disturbance, FIA, LANDFIRE, Landsat, Mississippi.

Introduction

Foresters have long combined remotely sensed data, such as aerial photo-
graphy, with fi eld-collected data to aid in estimating population means and totals, 
develop regression equations, and study forest characteristics over varying spatial 
scales. Remotely sensed data provide a low-cost means for evaluating large areas 
when compared with increasing costs of plot-based surveys. This is particularly 
true now that the U.S. Geological Survey has begun providing free user access to 
historical Landsat data via the Internet. 
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The Landsat program has been in operation since 1972, and imagery from the 
program has been used for multiple purposes in the fi elds of forestry, geology, 
agriculture, and even sociology, among others. The number of scientifi c articles 
referencing the Landsat program and its data exceeds 3,200, according to NASA 
(NASA http://landsat.gsfc.nasa.gov/about/appl.html). This unique time-series 
imagery, coupled with increasingly sophisticated imagery analysis software, 
provides scientists with a wide array of information related to vegetation change 
over time, which previously was possible only through the collection of fi eld data 
(Cohen and Goward 2004).

The USDA Forest Service, Forest Inventory and Analysis (FIA) program 
has been collecting data in the fi eld since the mid-1930s. Data collected by FIA 
includes plot and tree characteristics that may be used to evaluate changes in 
vegetation characteristics, including data specifi cally related to plot-level and tree-
level disturbances. Field crews attempt to revisit the same plots through time so 
that trend analysis is possible. While some changes to the FIA plot design have 
occurred, and some changes in plot locations have been unavoidable, the FIA 
program still provides one of the best records of fi eld-collected forest inventory 
data, worldwide.

In this study, we used Landsat images to map forest disturbances at biennial 
intervals from 1984 to 2007 in the State of Mississippi. FIA plot data were used 
to characterize and validate the mapped disturbances in a fi ve-county area for 
disturbance year 2006. These products were used to produce multi-county forest 
assessments, which were compared with those derived from inventory data. 
We conducted our study in part to support a larger, conterminous U.S.-level 
LANDFIRE effort. 

Methods

Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) 
images constituting a nominal temporal interval of 2 years per acquisition were 
used to map forest disturbances using the vegetation change tracker (VCT) 
method (Huang and others in press). The VCT process creates two attributes 
per detected disturbance: disturbance year and disturbance magnitude. For our 
study’s purposes, we focused solely on disturbance year. Disturbance year was 
defi ned by the acquisition year of the earliest available Landsat image acquired 
after the disturbance. For each acquisition year, the VCT algorithm creates a map 
consisting of 7 categories: 0 = background (nonsampled); 1 = persisting nonforest 
(nonforest); 2 = persisting forest (forest); 4 = persisting water; 5 = previously 
disturbed (forest); 6 = current disturbed (nonforest); 7 = prior disturbance 
(nonforest). In this study, the map acquisition year assessed was 2006.

Five counties were selected for analysis based on the availability of 2006 
Landsat thematic imagery for counties in southern Mississippi and those analyses 
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were based on a prior knowledge of disturbances that occurred in 2005 as a result 
of Hurricane Katrina. The fi ve counties considered were Hancock, Pearl River, 
Lamar, Marion, and Forrest Counties along the Mississippi River (fi gure 1). 

Output from the VCT from 2006 was converted from ENVI format to ESRI 
GRID format then tiled using tools in ArcMap™ Version 9.2. The raster mosaic 
was then clipped by the fi ve-county polygon layer using Hawth’s Tools. We 
imported Forest Service FIA plots into ArcMap™ and projected them to match 
the raster mosaic. Forest Inventory plots were located using actual (not fuzzed and 
swapped) latitudes and longitudes. Hawth’s Analysis Tools 3.2 was used to assign 
a raster category to each forest inventory plot. We then exported FIA plot data and 
the corresponding disturbance category into comma-delimited fi les and imported 
them into SAS® (version 8) for summarization with additional FIA characteristics 
(e.g. condition and tree records on each plot).

We examined the agreement between FIA fi eld-based classifi cation and the 
Landsat-based classifi cation using a standard confusion matrix (a tabulation 
of agreement and disagreement). For this assessment, four categories were 
considered: forest (VCT categories 2 and 5), nonforest (VCT categories 1, 6, and 
7), water (VCT category 4), and nonsampled. In addition to examining agreement, 

Figure 1: Five-county study area in Mississippi with number of sample plots and 
county name.
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commission errors, and omission errors, we also performed a Kappa analysis. 
Kappa analysis is a multivariate technique that takes into account both diagonal 
and off-diagonal elements of the confusion matrix and provides an index of the 
agreement improvement between the classifi ed image and reference data over that 
obtained by chance (Congalton and Mead 1983). 

We also examined forested plots within each disturbance category for differ-
ences in forest structure. The disturbance categories used were persisting forest, 
post disturbance, and current year (2006) disturbance (categories 2, 5, and 6). 
Generally, we would expect tree density to be higher in post-disturbance forest 
and lowest in current year. We used mixed models analysis of variance and least 
square means to test the null hypothesis of no difference in the average number 
of trees per acre among VCT disturbance categories, controlling for diameter 
class, and to test the null hypothesis of no differences in average trees per acre by 
hardwood and softwood among disturbance categories. 

Traditional FIA protocols for recording condition-level disturbances specify 
minimum impacted areas of at least 1 acre, and mortality and/or damage to at 
least 25 percent of all trees in a stand or 50 percent of an individual species’ 
count (U.S. Department of Agriculture 2005). The Southern Research Station FIA 
program added regional protocols for collecting wind-related damage on plots in 
Mississippi following Hurricane Katrina in 2005 (U.S. Department of Agriculture 
2005). The wind damage protocols do specify a minimum area of impact or 
minimum number of trees. Therefore, if any tree in any condition has been 
damaged, that condition receives a designation of damaged. Additional variables 
allow cruisers to indicate the degree of damage that occurred to each tree. We 
also compared plot level disturbance rates with the VCT-derived disturbance 
categories. 

Results and Discussion

Forest-Nonforest Classifi cation Agreement

We evaluated the agreement of 300 FIA plots in fi ve counties with VCT 
classifi cation in four categories: forest, nonforest, water, and nonsampled. The 
overall agreement across categories was 62.7 percent (table 1). With respect to the 
forest category, 91.9 percent of the pixels classifi ed as forest by VCT also were 
identifi ed as forest based on the FIA plots. However, the VCT classifi cation had 
an omission error of 43.7 percent for the forest category. Based on the confusion 
matrix, 97 plots identifi ed as forest by FIA were classifi ed as nonforest based on 
the VCT classifi cation. This led to a relatively high commission error rate for the 
nonforest category (63.3 percent). Disagreements between forest and nonforest 
classifi cation led to a moderately low Kappa (Khat) value of 31.5. However, about 
80 percent of the commission errors likely are due to differences in the defi nition 
of forest between FIA and the VCT algorithm (table 1).
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Table 1: Forest Inventory and Analysis versus vegetation change tracker forest/nonforest confusion 
matrix with Khat value

Field-based 
classifi cation

Vegetation change tracker classifi cation

Agreement
Commission

errorForest Nonforest Water
Non-

sampled Total
- - - - percent - - - -

Forest 125 97 222 56.3 43.7
Nonforest 10 58 68 85.3 14.7
Water 2 5 1 8 62.5 37.5
Nonsampled 1 1 2 0.0 100.0

Total 136 158 5 1 300

Agreement 91.9% 36.7% 1 0
Overall 
agreement 62.7

Omission 
error 8.1% 63.3% 0 1 Khat 31.5

The national FIA program defi nes forest land as “land at least 10 percent 
stocked with forest trees of any size, or formerly having had such tree cover, 
and not currently developed for nonforest use,” (Bechtold and Patterson 2005). 
Although the area studied is not a naturally sparse forest ecosystem, regenerating 
forests typically have sparse canopy cover during the fi rst years following disturb-
ance. VCT does not use a specifi c defi nition of forest, but it likely maps young, 
regenerating forest land as post-disturbance nonforest (class 7), even though 
it meets the FIA defi nition of forest land and is classifi ed as forest in the FIA 
database. Remaining commission errors may be attributable to the effects of 
forest edges on the VCT sample. Because VCT uses tens of images to produce 
disturbance maps, forest edges are more likely to be classifi ed as nonforest due to 
residual registration errors in the satellite images.

Characteristics of Landsat Categories based on FIA Plot Data

The average density of trees (trees per acre) was similar among all VCT 
categories when diameter class was controlled (p = 0.27), and there were no 
notable interactions between diameter and VCT category (p = 0.37). Hardwood 
trees had the highest density among all classifi cations in the fi ve-county area 
studied (p = 0.0083). When species group was controlled, trees per acre did not 
differ among VCT category (p = 0.9). 

Average per-acre basal area was similar between persisting forest and post-
disturbance forest classifi cations (p = 0.99). Average per-acre basal area was also 
similar between the persisting nonforest and nonforest disturbed in the year of 
measurement (p = 0.99). Persisting forest basal area (mean = 90.4) was higher 
than post-disturbance nonforest (p = 0.006; mean = 61.9). Post-disturbance 
forest basal area (mean = 87.0) was also higher than post-disturbance nonforest 
(p = 0.03). Category 7 post-disturbance nonforest was least like any of the 
groups, with the lowest average per-acre basal area. Category 6 post-disturbance 
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nonforest, though not signifi cantly different from the other categories, had the 
next lowest average per-acre basal area. 

Recorded Hurricane Katrina Disturbances

Ninety percent of FIA plots classifi ed as persisting forest had experienced 
wind damage from Hurricane Katrina in 2005. Ninety-one percent of FIA plots 
classifi ed as post-disturbance forest had experienced damage from Hurricane 
Katrina.

Although most plots showed some degree of damage, the proportion of trees 
on FIA plots that received damage was low, as shown in previous studies (Oswalt 
and Oswalt 2008). The proportion of trees damaged on plots was similar across 
all Landsat classifi cations. Sixteen percent of trees on plots classifi ed as persisting 
forest had recorded damage, and 22 percent of trees on plots classifi ed as post-
disturbance forest were recorded as having had damage, while 20 percent of trees 
on plots classifi ed as either post-disturbance nonforest or persisting nonforest 
were recorded as damaged.

Traditional FIA Disturbance Variables

Major disturbances were recorded on 125 of 222 forested FIA plots in the 
fi ve-county area we studied. VCT detected about 58 percent of the disturbances 
noted by FIA cruisers (table 2). Weather-related events accounted for 36 percent 
of the disturbances noted. The majority (89 percent) of those weather events were 
wind-related, presumably a result of Hurricane Katrina. Sixty percent of FIA plots 
classifi ed by VCT as persisting forest experienced major disturbances (primarily 
weather-related, but some fi re and disease damage was recorded, as well). 
Forty-seven percent of plots classifi ed as post-disturbance forest experienced 
major disturbance, while 49 percent of plots classifi ed as post-disturbance 
nonforest and 12 percent of plots classifi ed as persisting nonforest experienced 
major disturbances.

Table 2: Forest Inventory and Analysis versus vegetation change tracker disturbance confusion 
matrix with Khat value

Field-based 
classifi cation

Vegetation change tracker classifi cation

Agreement
Commission

error
No 

disturbance Disturbance Total
- - - - - percent - - - - -

Disturbance 52 73 125 58.4 41.6
No disturbance 38 59 97 39.2 60.8

Total 90 132 222

Agreement 42.2% 55.3% Overall agreement 50.0

Omission error 57.8% 44.7% Khat -2.4
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Conclusions

Landsat TM images analyzed using VCT algorithms require further study 
before they will be useful to the FIA program in a production mode. Several 
things preclude the ability to incorporate the VCT data into typical FIA outlets 
at this time. First, the fi le storage space and processor memory required to join 
and analyze FIA data in the spatial context of the imagery is larger than many 
laptops or standard personal computer towers may be able to handle without 
overloading systems and causing delays, particularly if users attempt to study 
State-level or larger areas. For example, analyses repeatedly caused system errors 
while conducting this study using a USDA Forest Service Lenovo model T7400 
laptop equipped with an Intel®Core™2 processor, 100GB hard drive, and 2GB 
of random access memory running on Windows XP Service Pack 2. Landsat VCT 
images were stored remotely on an external 250GB hard drive. To avoid system 
errors, we chose to subset the State-level datasets to a more manageable fi ve-
county area.

A second potential challenge to using the VCT product in FIA production 
reports is the learning curve necessary to understand the imagery, merge the 
imagery with FIA data, and analyze the two datasets simultaneously. Many of the 
computer programs used to analyze remotely sensed data (e.g. ERDAS, ENVI, 
ARCGIS) require advanced knowledge of the software that extend beyond the 
expertise of scientists who do not work with geospatial data on a daily basis. As 
a result, the process of learning the programs while concurrently learning the 
product capabilities takes a long time, something that is not suitable for reports 
that require a quick turnaround.

More work will also be necessary to study the agreement rates between FIA 
fi eld data and the VCT algorithms. In our study, images analyzed using VCT 
algorithms detected a little over one-half of the disturbances recorded by cruisers 
on FIA plots. Some of the disagreement between the image detection and the 
FIA fi eld call probably can be explained by further examination of change 
magnitude maps in the context of FIA defi nitions of disturbance. For example, 
the VCT algorithm does a better job of detecting stand-clearing disturbances than 
relatively minor disturbances. Therefore, some disturbances that result in minor 
defoliation or crown dieback on a large enough scale to meet the FIA defi nition of 
disturbance may not cause enough of a change in spectral signature for algorithm 
detection. Thus, the VCT algorithm may be more useful for detecting harvests, 
land-use change (reversions and diversions), or massive natural disasters than for 
detecting other disturbance components.

In addition to disagreement between fi eld-recorded disturbance and VCT-
detected disturbance, there was disagreement in terms of fi eld classifi cations of 
forest versus nonforest and VCT algorithm forest versus nonforest. Some of the 
disagreement can be explained by a known weakness in the imagery analysis, 
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whereby forest edge is assigned to the nonforest category. For example, the 
fact that basal area values are signifi cantly lower for post-disturbance nonforest 
VCT categories suggests that either forest defi nitions differ (e.g. VCT is missing 
regeneration plots—a known phenomenon) or many of the plots were forest edge 
and were therefore classifi ed by VCT as nonforest. Therefore, either the FIA data 
or the VCT algorithm could be further analyzed to try and isolate cases where 
forest and nonforest conditions exist on FIA plots; and/or pixels obviously are 
on a forest edge; to evaluate how much forest edge contributed to the agreement 
issue. 

Additionally, forest/nonforest values were extracted from VCT imagery at 
FIA plot center, while FIA plots actually cover a 3 by 3 pixel square. In the 
future, it may be best to work with an average of the 3 by 3 area because of 
pixel-level spatial variation. Another potential explanation for disagreements is 
simply whether or not forest, as defi ned by FIA, is equivalent to forest as defi ned 
by the VCT algorithm. Finally, Global Positioning System receivers are prone to 
some error, particularly under a closed canopy. Therefore, FIA plot locations are 
generally, but not always, within 15m of a plot, introducing another, unavoidable, 
source of error.

The FIA program strives to quantify both the current status and the change in 
forest conditions in the United States. Estimators used by FIA require the stratifi -
cation of forest inventory plots into approximately 4-6 strata. The purpose of 
stratifi cation is to group like plots together, in order to reduce the variance of 
estimates. Currently, stratifi cation schemes vary among FIA regions. However, 
they are all based on geospatial data at any single time. For example, the 
Southern FIA unit uses the National Land Cover Database to group inventory 
plots into the following stratum: forest, forest edge, nonforest, and nonforest 
edge. This stratifi cation scheme does reduce the variance of current estimates of, 
for example, forest area but it likely does not decrease the variance of change 
estimates. The VCT data provides an excellent opportunity to stratify fi eld 
inventory plots for estimating the components of change. We recommend that the 
VCT data be examined for its use in stratifi ed estimation.

The change detection imagery produced using the VCT algorithm has the 
potential to be a tremendously useful product when coupled with FIA data, 
particularly for long-term land-use change analysis, in depth looks at harvest 
levels, and ecosystem-level analyses. The imagery has the potential to be particu-
larly useful in cases where FIA data may not be suffi cient (e.g. fi ne scales) or 
where data collection is particularly diffi cult (e.g. in Alaska). VCT products need 
to be improved and better characterized before they can be used as production-
level products. More studies comparing and contrasting FIA fi eld data with the 
VCT algorithm results are necessary, as well, to refi ne the VCT product and to 
understand how the two relate.
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Analyzing Landsat Time-series Data Across 
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ABSTRACT: The North American Forest Dynamics (NAFD) Program is assessing 

disturbance and regrowth in the forests of the continent. These forest dynamics are 

interpreted from per-pixel estimates of forest biomass, which are produced for a time 

series of Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced TM Plus images. 

Image data are combined with sample plot data from the Forest Inventory and Analysis 

(FIA) program using Random Forests, a tree-based estimation method implemented here 

in the R statistical environment.  The NAFD approach is based on a sample of image 

Path/Rows, resulting in most images being disjunct from and independent of other 

images in the sample. Increases in sample intensity and needs for assessing forest 

dynamics over geographic extents larger than a single image are leading to increased 

frequency of adjacent, overlapping images in the sample. We assessed the consistency of 

estimates of forest biomass and classification of forest/nonforest in southern Missouri, 

USA, across space and time, for adjacent images in Path 25/Row 34 and Path 24/Row 

34, and for coincident images in Path 25/Row 34 acquired in 2000 and 2007. Results 

were consistent across space and time, implying consistency of both Landsat and FIA 

data, and supporting the NAFD image sample strategy and subsequent augmentation 

with overlapping images. 
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Trends in afforestation in southern Missouri 
 

W. Keith Moser1, Mark D. Nelson1, Sean Healey2, Mark H. 
Hansen1, Warren Cohen3 

 

Abstract: Past studies of forest disturbance traditionally have focused on biomass loss, 
e.g., blowdown in the Boundary Waters Canoe Area Wilderness, gypsy moth infestation, 
the impacts of Hurricanes Hugo and Katrina. Using FIA data and satellite imagery, this 
study examined a region of the country that is simultaneously experiencing biomass loss 
due to oak decline and biomass gain from afforestation of agricultural lands by eastern 
redcedar, following change to nonagricultural land use. This paper examines the 
increase in eastern redcedar in southwestern Missouri between 1985 and 2007. After 
converting stacks of Landsat imagery to delineations of forest and nonforest categories, 
we looked at changes between succeeding images. We observed a small increase in forest 
land area, particularly in the first 10 years of the analysis. Image-based estimates of 
forest land area did not differ significantly from estimates derived from FIA sample plot 
data. Differences in definition of forest may explain any real variations in the estimates. 

 

Keywords: Forest, inventory, FIA, remote sensing, eastern redcedar, agricultural 
abandonment, Landsat. 
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Introduction 

 
Past forest disturbance studies traditionally have focused on biomass loss, e.g., 

impacts of hurricane and blowdown, insect infestation, wildfire, and harvest 
activities. Little attention has been paid to biomass accretion in disturbance-
dependent ecosystems, such as the ecotone between the grasslands and forests in 
the Upper Midwest. A combination of changing economics of agriculture and 
human-influenced disturbance patterns in this region have resulted in a 
substantially different landscape than in past decades. One tree species taking 
advantage of the reduction in disturbance events in Missouri woodlands and 
rangelands is eastern redcedar (Juniperus virginiana L.). The suppression of fire 
and the reduction in grazing on pastureland have resulted in an unprecedented 
expansion of eastern redcedar in Missouri. The overall study, of which this paper 
reports some early analyses, intends to document the pattern and extent of 
redcedar expansion. 
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Eastern redcedar 

 

 
Figure 1: Eastern redcedar cubic foot volume on Missouri forest land, by county, 2007. 

Eastern redcedar is a coniferous tree species common to the eastern United States 
(Lawson 1990). Historically limited to areas with infrequent fires, the species has 
long been known as a vigorous invader of old fields (Arend 1950, Lawson 1985). 
The two chief disturbances that suppress redcedar are grazing and fires – natural 
or prescribed (Beilmann and Brenner 1951, Buehring et al. 1970, Briggs and 
Gibson 1992).  The species exhibits classic invasive behavior by producing 
prolific seed crops every 2 or 3 years. The seed are not light enough to disperse by 
wind, so dispersion depends heavily on birds and small mammals, which ingest 
and later defecate the seeds (Arend 1950, Parker 1951).  The species can begin 
producing seeds at 10 years old, although it is most prolific as a seed producer 
between the ages of 25 to 75 years.  Most seeds germinate in the spring of the 
second year after dispersal; those that germinated during the first year likely 
passed through an animal’s digestive tract (Schopmeyer 1974).  Seedling 
establishment is improved by exposure to bare soil, but intensive site preparation 
is not necessary (Ferguson et al. 1968).  Since it is very shade intolerant (Baker 
1949), eastern redcedar has higher survival rates under more open canopies 
(Parker 1952). Stands formed through invasion of old fields may start to break up 
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at around 60 years of age as hardwoods or other competing species become 
established. 

Eastern redcedar has the potential to dramatically alter the structural 
characteristics of an ecosystem it enters. Dense redcedar stands not only change 
the character of pasture, range, or woodland to forest, but can also severely impact 
ground flora biomass and diversity, simultaneously creating a monolayer canopy 
and a monoculture. In native prairie ecosystems, encroaching redcedar is viewed 
as an undesirable invasive species. As previously mentioned, redcedar is 
suppressed by fire, as the stands are highly flammable and any established fires 
are extremely intense and usually stand-replacing. 

This project provides several benefits to state agencies, resource managers, 
and others interested in trends in ecological succession along the prairie-woodland 
ecotone of the Upper Midwest. Gaining a better understanding of the relationship 
between satellite imagery and forest inventory data in this rapidly changing 
landscape will allow us to make better estimates of the resource. With an 
improved understanding of landscape change, we have the possibility to refine our 
post-sampling stratification. Our analysis of resource trends will improve as we 
can go back to times between periodic inventories and “fill in the gaps” on 
resource estimation. By obtaining a relatively intensive set of imagery (at 2-year 
intervals), we can simulate the effects of various image-sampling intensities to 
identify the most efficient and least expensive strategy for meeting the production 
needs of the U.S. Department of Agriculture, Forest Service’s Forest Inventory 
and Analysis (FIA) program. This is accomplished by comparing the value of 
intensive data for growth (a relatively continuous process) vs. mortality and 
harvesting (examples of discrete events). Finally, this study will provide baseline 
data for analysis of carbon storage in the forest-woodland-prairie ecotone.  To 
achieve these goals, this study had two objectives: 1) Assess the relationship 
between satellite image data and FIA field sample data, specific to forest biomass 
change processes; and 2) Document the timing and amount of forest biomass 
change over time using a combination of remote sensing imagery and FIA data. 

 

Methodology 

In 2007, we published an analysis of the Boundary Waters Canoe Area 
Wilderness (BWCAW) after the 1999 windstorm (Moser et al. 2007a).  One of 
the challenges of that study was estimating the intensity and extent of the damage 
from the storm. A sketch map of forest blowdown was produced by U.S. Forest 
Service Forest Health Protection staff, who flew over the area in fixed-wing 
aircraft following the blowdown event, ‘sketched’ damage site locations on maps, 
and visually interpreted severity of blowdown damage. Reasonable estimates of 
the blowdown damage area were produced from sketch maps, but the coarse 
resolution of sketch map polygons limited their utility for site-specific 
assessments or linkage to inventory plot data and satellite image pixels. 
Therefore, we developed and employed alternative methodologies to estimate 
damage extent (Nelson et al. 2007). 
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The North American Forest Dynamics Program (NAFD) utilizes stacks of 
imagery from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper 
plus (ETM+) satellite sensors to estimate loss and regrowth of forest biomass 
following fire, windstorms, harvesting, and other disturbances (Goward et al. 
2008).  Image dates are constrained to the growing season and have similar 
anniversary dates. A sample of Landsat Path/Row images was selected to produce 
estimates. NAFD is a cooperative effort between the University of Maryland, 
FIA, NASA, and the Forest Service’s Pacific Northwest Research Station. 
Because NAFD addresses recovery and regrowth following disturbance, it has 
potential for estimating biomass increase resulting from afforestation of former 
agricultural lands. 

 
Figure 2:  Map of Missouri with location of the two Landsat scenes 25034 and 24034, county 

boundaries, and the Mark Twain National Forest. 

For this study, we selected a series of images acquired between 1985 and 2007, 
covering Path 25, Row 34 (25034) and Path 24, Row 34 (24034) (Fig. 2). This 
imagery was not part of the existing NAFD sample, but was purchased by the 
Forest Service’s Northern Research Station, FIA program. For this paper, we will 
confine our analysis to Scene 25034. NAFD provided much of the processing 
supporting this work, which included the following steps (Nelson et al. 2008): 

! Atmospheric correction of imagery, conducted by the Landsat Ecosystem 
Disturbance Adaptive Processing System (LEDAPS) at NASA 

! Download of additional free imagery and cloud masking at UMD 

! Modeling of forest probability with Random Forest models and FIA data at 
FIA.  These models were applied to all images in the time series. 

! Application of an algorithm to reduce inter-annual spectral noise and to 
identify pixels showing steady increases in probability of forest. 

 

USDA Forest Service Proceedings – RMRS-P-56 14.



 
Figure 3: Schematic of the image processing effort. 

A model predicting probability of forest (0-100%) was built based upon 
radiometrically corrected Landsat satellite imagery (Fig. 3) (Nelson et al. 2008).  
Because all of the imagery in the time series is similarly corrected, the model can 
be applied to all images to give an idea of how forest cover is changing over both 
space and time. 

The algorithm to reduce inter-annual noise and identify trends has two primary 
steps: segmenting a pixel’s temporal trajectory into discrete periods (usually 
punctuated by disturbance or, in our case, field abandonment), and fitting lines to 
the values in each period (Kennedy et al. 2007).  The Y-axis in Figure 4 (Band 5 
reflectance) is different from our Y-axis (probability of forest), but the process is 
the same.  Our analysis is based on these fitted trajectories (i.e., the black lines). 
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Figure 4: Methodology for reducing inter-annual noise. P(0) year of disturbance, P(1) pre-

disturbance state, P(2) intensity of disturbance, P(3) period of recovery, and P(4) projected future 
state. 

Figure 5 presents an example of an agricultural field (pink) gradually becoming 
forested (green) during a span of two decades. 

 
Figure 5:  Example of an agricultural field gradually becoming forested. 

Figure 6 is a graphical presentation of the process visualized in Figure 5. The 
series of blue symbols represents a pixel’s change over time. For our study, we 
chose a 50 percent threshold. This minimum threshold was chosen as a reasonable 
cutoff to characterize a pixel as “forest” versus “nonforest”. The series of pink 
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symbols represents a pixel that, while possibly revegating, did not cross the 50 
percent threshold and thus is not considered (re)forested at any time. In a more 
open-canopy situation, such as a longleaf pine forest or a more woodland 
condition, pixels evaluated at a higher threshold (line A in the diagram) might 
better correspond with a definition of forest land. In situations with a vigorous 
shrub understory or a more dense canopy with a high leaf area index (LAI), a 
lower threshold (line B) might be appropriate. 

 
Figure 6: Example trajectories of increasing probability of a pixel representing a forested state and 
the selection of threshold values. The blue diamonds represent a pixel transitioning from open land 

to forest. The pink squares represent a pixel that remains classified as open land. 

 

Pixel-based estimates of “probability of forest” (used here as an index of forest 
cover) can be tracked over time using NAFD data. Once a pixel exceeds the 50 
percent forest-probability minimum threshold, it gets counted as forest area, e.g., 
for county-by-county analysis. However, definitional differences between land 
use and land cover mean that more trees do not always mean more forest. The 
algorithm predicts increases in forest probability in housing developments as trees 
are planted and irrigated.  Obviously, new developments initially cause forest 
probability to go down. 
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Figure 7: Example views from 1985 and 2007, and a transitional graphic illustrating forest vs. 

nonforest progression. 

Using image reflectance data and the threshold level illustrated in Figure 6, we 
categorized each pixel as “forest” or “nonforest”. By comparing scenes at time 1 
and time 2, we then constructed a transition image dataset that predicted whether 
a pixel category remained constant, or changed to another category (Fig. 7). The 
temporal increment between time 1 and time 2 typically represents the number of 
years between successive images in the NAFD image stack – 2 years on average. 
However multiple increments can be combined such that intervals between time 1 
and time 2 can span more than two decades.  

 

We tracked four possible scenarios between succeeding images: Nonforest at both 
time 1 and time 2 (NFOR – NC), forest at both time 1 and time 2 (FOR-NC), 
change from nonforest at time 1 to forest at time 2 (toFOR), and change from 
forest at time 1 to nonforest at time 2 (toNFOR).  We then produced estimates for 
each of the categories by summing image pixel areas for each year and county,  
for the 11 counties that are wholly within scene 25034. 
 
FIA estimates 
 
Estimates of forest land area were produced from FIA field sample data, using 
FIA data from the 1989 periodic inventory (Spencer et al. 1992), and the 1999-
2003 (Moser et al. 2007c) and 2004-2006 (Moser 2007b) annual inventories. 
These three estimates were compared to image-based estimates of forest land area 
from similar time periods. 
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Results 

ates of FOR-NC, NFOR-NC, toFOR, and toNFOR are reported for 
 

 

ter 
 

ing a 

Area estim
Scene 25034, for each pair of successive image dates (Fig. 8). Most land within
the study area exhibited almost no change between successive periods, both for 
forest and nonforest classes. A small but gradual decrease in nonforest and a 
corresponding increase in forest area were revealed by examining trends over
multiple time increments. The two change categories, toFOR and toNFOR, 
portray more variability between successive time increments and reveal shor
term trends. A notable increase in area of toFOR occurred during earlier years of
the study, peaking in the year 1993, and declining markedly thereafter. A 
corresponding decrease in toNFOR occurred during the earlier years, reach
low in year 1988, then showing a gradual increase thereafter.  

 

 

 
Figure 8: Image to image category transitions, in hectares of land in all counties of scene 25034, 

This study examined trends in t each of the 11 counties 
re 

y (Fig. 

Missouri, 1985 to 2007. 

he total scene and in 
within the scene. Two counties – Pulaski (Fig. 9) and Camden (Fig. 10) – we
chosen to represent typical predominantly forested and nonforested counties, 
respectively. Figure 11 portrays an example image of modeling results for 
Camden County, Missouri, over a time frame of 22 years. In Pulaski Count
9), there was a net increase in forested area through 1996, then a slight decline 
afterwards. In Camden County (Fig. 10), a county with a higher overall 
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proportion of nonforest, there was a more dramatic change to forested la
through 1993; subsequent changes to forested land were smaller but always 
exceeded changes to nonforested land until the final interval (2004 to 2007). 
Figure 11, a map comparing forest and nonforest landscapes in Camden County 
shows the likely urban-influenced change to nonforest in the southern and eastern
parts of the county and changes to forest occurring more in the north and west.  

nd 

In 

 

 
Figure 9: Image-to-image category transitions, in hectares of land, Pulaski County, Missouri, 1985 

 
to 2007. 
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Figure 10: Image-to-image category transitions, in hectares of land, Camden County, Missouri, 

1985 to 2007. 

 

 
Figure 11: Example transition graphic for forest and nonforest conditions, Camden County, 

Missouri, 1985 to 2007. 

USDA Forest Service Proceedings – RMRS-P-56 14.



 

Imagery analysis vs. FIA data 

Because of FIA’s forest definitional requirements, our initial expectations were 
that FIA data would have lower estimates of forest land than the estimates from 
the imagery. But FIA estimates were significantly higher, in some years markedly 
so (Fig. 12).  There was a definitional change in forest land in the 1990s, which 
might explain the larger difference between the satellite estimates and the FIA 
estimates in the second half of our study period.  There might have been sites 
where the forest was harvested, which FIA would have classified as forest land 
but the satellite imagery would not. Preliminary analysis (Moser, unpublished 
data) did not find any conclusive relationship between harvested area and the gap 
between the two estimates. 
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Figure 12: Estimates of forest land area using imagery (black) and FIA inventories (blue), 1985 

through 2007. FIA inventories were conducted in 1989, 1999-2003, and 2004-2006. 

Results were more variable at the county level (Fig. 13). In some counties, FIA 
estimates exceeded image-based estimates. In other counties, the opposite was 
true. Because the variance of FIA estimates at the county level was quite high, we 
did not observe any significant difference between the image-based estimates and 
the inventory-based estimates for any county, i.e., the image-based estimates of 
forest land area are within the confidence intervals of FIA plot-based estimates. 
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Figure 13: Estimates of forest land area, in hectares, of the 11 Missouri counties in Landsat scene 

25034, 1985 though 2007 (symbols and lines), and estimates of forest land area using FIA data 
(stars). 

 

Conclusion 

This study examined patterns of afforestation in southwestern Missouri by 
processing a stack of Landsat TM imagery from Scene 25034 from 1985 through 
2007, using NAFD procedures. Overall, we observed a slight but gradual net 
increase in forest land area over the period, with the bulk of the increase in the 
first half of the study period.  We compared image-based estimates with estimates 
from FIA inventories conducted in 1989, 1999-2003, and 2004-2006. Although 
the FIA estimates of forest land area over the entire study area was significantly 
larger, the differences at the county level were not significant. While there were 
some counties with significant patterns of harvesting activity, we could not 
conclusively make the connection between harvested area and differences in the 
two forest land estimates at the county level. Continuing analyses from this study 
will extend to an adjacent image and further assess afforestation and resulting 
biomass changes resulting from eastern redcedar encroachment of abandoned 
agricultural lands. 
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National Inventory and Monitoring Applications



 

  

 

Overview of the National Inventory and 
Monitoring Applications Center (NIMAC) 
 

Charles T. Scott 1 
 

 
Abstract: The National Inventory and Monitoring Applications Center (NIMAC) was 

created by the Forest Inventory and Analysis (FIA) program in 2006.  NIMAC addresses 

a growing need, expressed by FIA partners, for technical assistance in designing and 

implementing monitoring plans for forests at scales finer than that provided by the FIA 

standard inventory. NIMAC’s goal is to develop leading-edge forest ecosystem 

monitoring methods and tools to help FIA and other organizations monitor forests, 

resulting in comparable results across the landscape.  Methods and software tools are 

designed for use by land managers and across ownerships at landscape to national 

scales.  To date, NIMAC has helped six states develop more specific inventories on their 

lands and is working with several National Forests on developing forest monitoring 

plans.     

 

NIMAC is developing a monitoring toolkit composed of a design tool, field data 

collection software, data storage and compilation tools, and spatial/tabular analysis 

tools.  The toolkit will be applicable to a wide range of customers including the National 

Forest System, states, and FIA itself.  Honduras is funding the development of a Spanish 

version of the toolkit.  NIMAC is being funded to work with National Forest System 

monitoring coordinators and planners to develop the question-driven monitoring design 

and analysis tools to help ensure that data are collected and analyzed efficiently and in a 

scientifically defensible manner.  NIMAC’s software enhancements also will provide 

added flexibility to FIA customers. 

 

Keywords: Forest, inventory, monitoring, FIA, sampling design, software. 
 
 

Introduction 
 

As a result of the 2006 combination of the North Central and Northeastern 
Research Stations of the U.S. Forest Service Research and Development branch, 
the Station’s Forest Inventory and Analysis (FIA) units also were combined.  This 
provided the opportunity to create a group dedicated to serving the forest 
inventory and monitoring needs of other organizations, such as states, the 
National Forest System, and other countries.  The expertise of FIA has long been 

                                                 
1 U.S. Forest Service, Northern Research Station, FIA, 11 Campus Blvd., Suite 200, Newtown 
Square, PA 19073  USA; ctscott@fs.fed.us; http://nrs.fs.fed.us/people/Scott  

 

 

USDA Forest Service Proceedings – RMRS-P-56 15.

In: McWilliams, Will; Moisen, Gretchen; Czaplewski, Ray, comps. 2009. 2008 Forest Inventory and Analysis (FIA) 
Symposium; October 21-23, 2008: Park City, UT. Proc. RMRS-P-56CD. Fort Collins, CO: U.S. Department of  
Agriculture, Forest Service, Rocky Mountain Research Station. 1 CD. 



 2 

sought after, but FIA did not have the capacity to meet that need until the National 
Inventory and Monitoring Applications Center (NIMAC) was formed.   
 

NIMAC’s Mission  
 

The mission of NIMAC is to develop leading-edge forest ecosystem inventory 
and monitoring methods and tools to help FIA and other organizations monitor 
forests, resulting in comparable results across the landscape.  The emphasis is on 
providing expertise (consultation and training) and the tools needed for the 
partner organization to monitor its forests on its own in a way that is compatible 
with FIA estimates.  NIMAC also develops new monitoring methods as problems 
are identified. 
 
NIMAC’s Assignments 
 

To accomplish its mission, NIMAC works in several areas.  We develop or 
enhance methods to make existing monitoring techniques more efficient, such as 
spatially balanced sampling methods (Lister and Scott 2008) and optimal plot 
design (Scott 1993).  Similarly, we can develop new metrics or apply others’ 
research and make their measures operational, such as for monitoring Montreal 
Criteria and Indicators.  We also develop techniques to bridge the gap between the 
regional FIA survey and mid-scale planning needs, such as for developing forest 
plans, and even between mid-scale monitoring and stand-level inventory, such as 
small area estimation methods or ways to prioritize stand exams.     
 
How NIMAC Can Help 
 

NIMAC benefits customers in a number of ways.  Forest managers benefit by 
having more efficient and effective forest monitoring plans.  While these initially 
will focus on vegetation-related objectives, we hope to expand to other plot-based 
natural resource monitoring.  The resulting methods are scientifically defensible 
in a court of law.  The data are compatible and consistent with existing 
inventories, allowing comparisons with the forest matrix (context) and 
aggregation to ecoregion, regional, and national levels.  Efficiency is also gained 
by building on existing FIA data and techniques.  NIMAC provides the tools to 
implement the methods and to generate reports.  NIMAC charges for its services – 
re-investing those funds in FIA’s toolkit to speed up its development and to add 
new features, so everyone benefits. 

 

NIMAC Projects 
 

Much of the focus is on serving NIMAC customers.  Most are traditional FIA 
partners:  states, State & Private Forestry, and the National Forest System.  We 
also work with other countries in cooperation with the International Forestry 
program of the U.S. Forest Service, and with nongovernmental organizations. 
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States 
 

Wisconsin Continuous Forest Inventory:  The Wisconsin Department of 
Natural Resources asked FIA to help conduct a continuous forest inventory (CFI) 
on 518,650 ac of State Forest lands so that they could monitor invasive plants and 
address the requirements for forest certification.  NIMAC took this on as its first 
project.  Wisconsin provided funds for NIMAC’s technical guidance to help 
determine the objectives, monitoring questions, attributes to observe, precision, 
sampling and plot design, and plot locations. We modified the regional FIA field 
manual and data recorder program to meet their needs.  Since the sampling 
intensity was increased to one plot per 166 ac, the number of 1/24-ac subplots was 
reduced to two so that multiple plots could be visited in a day.  The proportion of 
Phase 3 (forest health) plots was increased from 1/16th to 1/3rd.  Contractors were 
used to collect the data and to modify the FIA compilation program (NIMS) and 
the web-based analytical tool (FIDO).  Some of the first season’s data are 
available at: http://131.216.27.117/fido/mastf/index.html.   The monitoring tools 
developed for Wisconsin are now being used to help other customers plan, 
conduct, process and analyze their own surveys, to the extent that they choose. 

 
Indiana Continuous Forest Inventory:  Based on the Wisconsin CFI 

experience, the Indiana Department of Natural Resources (DNR) asked NIMAC 
to help with a similar effort on their 157,211 ac of State Forests.  Because the 
emphasis was on forest certification, only Phase 2 (tree) plots were selected.  
Another objective was to provide results at the analysis unit level – roughly 6,000 
ac.  Thus the sampling was increased to a single subplot every 40 ac.  One 
concern with this design is the small number of sample trees on a plot with which 
to classify forest type.  After considering different options, it was decided to rely 
only on the field crew classification.  James Westfall conducted a study of the 
implications of reducing the number of subplots on the consistency of 
classification (Westfall 2008, this publication).  Indiana DNR contracted the 
fieldwork to the same contractor currently measuring the statewide FIA plots.  
The first field season was completed in the fall of 2008.  Indiana DNR staff will 
process the data using PC-based tools developed by NIMAC and funded by 
Indiana DNR. 

 
Great Plains Initiative:  The four states with the highest proportion of ash 

trees, relative to the total number of trees in the state, are North and South Dakota, 
Nebraska, and Kansas.  Out of concern for the threat posed by the emerald ash 
borer, these States partnered with State & Private Forestry to fund a study of the 
potential ecological and economic impacts of this pest.  As part of that study, they 
asked NIMAC for assistance in conducting a one-time inventory of trees outside 
of forests, including shelterbelts, riparian areas, scattered trees, and urban areas.  
In order to focus the field sampling effort, NIMAC developed a stratified two 
phase sampling system that used a percent tree cover layer from satellite imagery, 
a large subsample of aerial photographs, and ground samples.  The allocation of 
samples to strata was optimized to efficiently sample plots with tree cover in areas 
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outside of what FIA calls forestland.  Using PC-based tools, NIMAC will process 
the data, and provide the states with an analysis tool.  The urban data will be 
processed by the urban forestry unit of the Northern Research Station. 
 
National Forest System 
 

NIMAC’s assistance to the National Forest System started with a pilot project 
on the Mark Twain National Forest in 2006.  We collaboratively identified the 
vegetation-related objectives, monitoring questions, metrics, and precision 
requirements.  NIMAC then developed the sample size alternatives and resulting 
costs.  The optimal solution was to continue doubling the intensity of the Phase 2 
sample and to increase Phase 3 by seven times – much less than expected.  Both 
Region 8 and 9 were encouraged by the pilot, so they asked NIMAC to work with 
several more National Forests.  The ultimate objective is to apply NIMAC’s 15 
monitoring steps to all 30+ National Forests and Grasslands in the east over the 
next few years.  The end result will be adequate forest-level information to 
monitor the vegetation-related aspects of their forest plans and to fulfill annual 
and 5-year reporting requirements under the 2008 Planning Rule.  NIMAC is also 
providing assistance to the Spring Mountain National Recreation Area in Nevada 
(Region 4).   

 
International 

 
At the request of International Programs of the U.S. Forest Service, NIMAC is 

providing technical assistance to Honduras and Russia. For more than 75 years, 
Russia has been inventorying managed stands across the country.  However, these 
stand data are difficult to roll up to national estimates and are representative of 
only managed forests.  They have asked the United States and other countries for 
assistance in developing a national forest inventory (NFI).  During several visits 
NIMAC has provided advice on NIMAC’s monitoring steps and on the methods 
that FIA uses.  The NFI will be critically important for sustainable forest 
management of these climate-sensitive areas which represent roughly 25 percent 
of the world’s forests. 

As a result of NIMAC’s efforts, Honduras now has a monitoring system for its 
national forests in their highly productive pine regions.  Initial work has begun on 
monitoring mahogany and other broadleaves.  A high proportion of the harvests in 
these forests are illegal, so efforts are being made to foster sustainable forest 
management in cooperation with local communities.  With funding from 
Honduras, NIMAC also is collaborating on the development of a Spanish version 
of the monitoring toolkit.  These tools should then be useful in other Spanish-
speaking countries. 
 

Inventory and Monitoring Toolkit 
 

The genesis of the development for a monitoring toolkit was the result of a 
meeting between FIA and The Nature Conservancy, NatureServe, the National 
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Park Service, and the state of New York, focused on how to more consistently 
monitor the forests of New York. The concept of a monitoring toolkit originated 
as a means of developing and fostering the use of consistent methods, based on a 
suite of tools that had been developed by the author.  The vision was to first create 
a monitoring design tool for identifying consistent and efficient sampling 
methods.  Then, develop data recorder, data compilation, and data analysis tools 
that all rely on those methods to integrate all steps and help foster consistency.  
Each of the tools would allow some flexibility, but would provide a common 
framework and a starting point that was consistent with FIA. 

NIMAC has built upon that initial idea by adding functionality to the 
monitoring toolkit as needed for each new customer.  The toolkit is applicable to a 
wide range of customers, including the National Forest System, states, and FIA 
itself.  NIMAC is being funded to work with National Forest System monitoring 
coordinators and planners to develop question-driven monitoring design and 
analysis tools. The ultimate objective is to help ensure that data are collected and 
analyzed efficiently and in a scientifically defensible manner.   

 
Design Tool 

 
The Design Tool for Inventory and Monitoring (DTIM) is being developed to 

assist those who plan forest monitoring to work through the first 9 of the 15 
monitoring steps.  NIMAC has developed a working prototype to help: 

 
1. Identify users and broad objectives of the monitoring. 
2. Identify the monitoring questions to be asked. 
3. Identify the tables of estimates (and their metrics and attributes) needed to 

answer the questions. 
4. Assess whether existing data are sufficient to answer the questions, or to 

assess their variability if they are not adequate. 
5. Set cost and/or precision constraints for collecting additional data 
6. Develop an efficient plot and sampling design to balance cost and 

precision in order to address monitoring questions. 
7. Select the plot locations in a spatially balanced way. 
8. Generate field manual text for selected attributes 
9. Generate training materials for selected attributes. 

 
Based on a knowledge base from monitoring experts, users will be presented 

with lists of choices to guide the development of the monitoring system that best 
suits their needs.  These steps are largely done within a spreadsheet.  The version 
NIMAC is developing for the National Forest System will be more complete and 
will link with the other monitoring tools, especially the analytical tool (step 4 
above). 
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Portable Data Recorder Tool 
 

The use of portable data recorders with data collection software provides 
several important benefits.  By not re-entering the data in the office, the data are 
available sooner and transcription errors are avoided.  The data can be checked for 
completeness, for valid codes, and for cross checks between data elements in the 
field, where the data are most easily and accurately corrected. 

Since late 2006, NIMAC customers have been using the Field Data Manager 
(FDM) system developed by the FIA unit in the North Central states.  The new 
national system, Mobile Integrated Data Acquisition System (MIDAS), will soon 
replace FDM.  It is highly flexible and more closely integrated with other FIA 
data processing software. 
 
Data Storage and Compilation Tool 

 
The data recorder software transfers the field data to servers via the Internet.  

These field data must then be loaded into the database and error checked again, 
including some checks that cannot be done on the data recorder.  Once the data 
are determined to be clean and complete, then the data can be loaded into the 
main database and calculated fields added, such as volume per tree and forest-
type class.  In addition, the estimation methods used by FIA (Bechtold and 
Patterson 2005) require additional information about the stratification and 
population sizes.  This information must be loaded into the various “population” 
tables. 

FIA developed and uses the National Information Management System – 
Compilation System (NIMS-CS) to store and compile the data.  NIMAC members 
have adapted the system for use in Wisconsin, since NIMAC is processing the 
data for this State.  NIMAC has funded the development of the protocol sample 
design, which includes detailed metadata about each FIA or NIMAC inventory, 
the attributes collected, and their protocols.  Once fully developed and integrated 
into NIMS, this will add the flexibility needed for NIMAC customers and for FIA 
to load past survey data into NIMS.   

Since NIMS is designed for internal use, NIMAC chose not to try to transfer it 
to other NIMAC customers for their use yet.  Instead, the Formatter program was 
written to transfer the data from the field tables (Oracle) to a Microsoft Access 
database that is an enhanced version of the FIADB (FIA Data Base) version 
available on the FIA website (http://fiatools.fs.fed.us/fiadb-
downloads/fiadb3.html “Microsoft Access Database file ready for loading all of 
the FIADB data”).  Currently, Formatter has no editing capabilities and limited 
ability to compute calculated fields.  Enhancements will be added based on 
customer needs. 
 
Spatial and Tabular Analysis Tools 

 
Once the data are ready in the FIADB format (fia.fs.fed.us/library/database-

documentation/FIADB_user_manual_v3-0.pdf, Forest Inventory and Analysis 
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2008), the data analysis can begin.  FIA’s primary analytical tool is Forest 
Inventory Data Online, or FIDO, (Wilson and Ibes 2005) and can be accessed at:  
http://www.fia.fs.fed.us/tools-data/.  With it, the user can select the area of 
interest (state and counties), the survey years, the summary metric (e.g., area, 
volume, and biomass), the row and column categories, and apply data filters, if 
any.  The results are presented as tables with associated sampling errors.  Some 
results can also be displayed as maps.   

NIMAC modified FIDO somewhat to analyze the Wisconsin inventory (as 
noted above).  The Indiana DNR and Great Plains data will be analyzed using the 
EVALIDatorPC reporting tool (http://fiatools.fs.fed.us/fiadb-
downloads/fiadb3.html).   EVALIDatorPC uses the Microsoft Access database 
mentioned above to compute tables using the same estimation methods used by 
FIDO.  NIMAC is enhancing EVALIDatorPC in order to provide some of the 
features, such as ratio estimation, included in NIMAC’s TabGen analytical tool 
(Scott and Klopfer 1999).   

NIMAC is also cooperating with Wisconsin on the development of a spatial 
intersection tool to select subsets of plots based on the mapped location.  Analysts 
can use a geographic information system (GIS) to identify areas (polygons) of 
interest, such as broad buffer zones along streams or roads.  These areas are then 
intersected with the plot locations to identify all the sample plots within those 
zones.  Note that there are locational errors for both plots and map features, so 
this needs to be factored in when defining the polygon of interest.  The plot list is 
then submitted along with the polygon area to FIDO for analysis.  The tool will 
also be able to associate mapped categories with each plot so that these categories 
can be used in making the tables of estimates.  If available, information on 
stratification for variance reduction can also be sent to FIDO.  

The National Forest System has funded NIMAC to develop the Analytical 
Tool for Inventory and Monitoring (ATIM).  ATIM will build on the strength of 
FIDO, focus on NFS inventory data, add GIS capabilities for input and output, 
and will add data query functionality.  It will also give the user the flexibility to 
apply their own algorithms for calculated fields, such as volume equations. 

 

Conclusions 
 
NIMAC has been working on two primary areas: providing technical 

assistance to a variety of customers and developing inventory and monitoring 
software. 

 
Technical Assistance 

 
NIMAC continues to work with several states on intensifying their inventories 

on state-owned lands (IN and WI) or more targeted, specialized inventories (Great 
Plains).  The work with the National Forest System is expanding, especially in the 
east.  With the increasing emphasis on forest certification, carbon monitoring and 
on local estimates, the demand for NIMAC’s assistance will likely increase both 
within and outside the United States. 
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Inventory and Monitoring Tools 
 

While continuing to enhance the PC-based tools, Formater and 
EVALIDatorPC, much of NIMAC’s focus will be on the development of the 
Design and Analytical Tools for Inventory and Monitoring.  Although originally 
designed to meet the needs of National Forest System, many of the new features 
added will also be applicable to FIDO, thus enhancing FIDO’s capabilities for all 
FIA customers.   

It is the goal of NIMAC to assist customers (who are often already 
cooperators with FIA) in meeting their needs.  This collaboration further 
strengthens the partnerships.  In addition, the enhancements that NIMAC 
customers fund are then made available for use by FIA and other NIMAC 
customers.  NIMAC’s goal is to make more efficient and comparable estimates 
across the landscape, contributing to the sustainable use of our forest resources. 
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Abstract: Forest survey planning typically begins by determining the area to be 

sampled and the attributes to be measured.  All too often the data are collected but 

underutilized because they did not address the critical management questions.  The 

Design Tool for Inventory and Monitoring (DTIM) is being developed by the National 

Inventory and Monitoring Applications Center in collaboration with the National Forest 

System (NFS) and the Remote Sensing Applications Center.  DTIM will assist inventory 

planners by stepping them through the monitoring process:  1) identifying key customers 

and broad objectives, 2) identifying monitoring questions, 3) identifying attributes needed 

to answer the questions, 4) evaluating existing data; then if additional data are needed, 

5) setting precision and cost constraints, 6) selecting the sampling and plot designs and 

sample sizes; and, 7) selecting the sample locations.  A prototype was successfully used 

on the Mark Twain National Forest and is being applied on several other National 

Forests. A team of NFS representatives is identifying the requirements for developing 

DTIM to help establish monitoring plans on National Forests as well as for use by other 

Forest Inventory and Analysis partners. 

 

Keywords:  FIA, sampling design, plot design, software. 
 

Introduction 
 

Information on natural resources is important to any land management 
organization.  The U.S. Forest Service spends at least $200 million annually on 
resource monitoring, and the expenditure could be more than $500 million.  There 
are concerns that some of the monitoring is not statistically sound, defensible in 
court, efficient, consistent over time and space, well integrated across resources, 
or well utilized once data are collected.   The 2008 National Forest Management 
Act Planning Rule requires that forest plans have an associated monitoring 
program to ensure that each national forest is progressing toward its desired 
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conditions and objectives.  An inventory and monitoring toolkit is being 
developed to address these needs.  A brief overview of the toolkit is presented 
followed by a more detailed description of the Design Tool for Inventory and 
Monitoring (DTIM). 
 

Overview of Toolkit  
Inventory and monitoring of natural resources is an involved and expensive 

process.  The National Inventory and Monitoring Applications Center (NIMAC), 
part of Forest Inventory and Analysis (FIA) Program within the U.S. Forest 
Service, is focused on this issue.  NIMAC has identified 15 inventory and 
monitoring steps from the initial identification of the information needs through 
the analysis and decision process.  While the data collection process is familiar to 
many, most of the steps are not.  Initial steps to identify measurable objectives 
and questions that can be answered are often overlooked or given little attention. 
Existing inventories are often used to answer questions after the fact without 
consideration for changes or managing costs in inventories. While analysis and 
reporting steps will be repeated after each remeasurement, the planning (design) 
steps are done once, thus land managers have little or no experience at initiating 
an inventory and monitoring system.  Based upon experience gained with FIA, 
NIMAC provides technical assistance to others so that they can develop inventory 
and monitoring systems that are compatible with FIA data which are collected on 
all lands across the United States.   

An inventory and monitoring toolkit is being built to help with most of the 15 
steps.  The toolkit has four main tools.  The Design Tool for Inventory and 
Monitoring (DTIM) is used to identify monitoring needs, to evaluate existing 
data, and, if necessary, to specify the sampling design to balance cost and 
precision in order to address the monitoring questions.  The Portable Data 
Recorder (PDR) Tool is software on PDRs and personal computers to collect, 
validate, and transfer field data.  The Database and Compilation Tool is used to 
store the data and to compute calculated fields, such as tree volumes, biomass, 
and species richness.  NIMAC and FIA are developing several spatial and tabular 
Analytical Tools for Inventory and Monitoring (ATIM) to estimate tables and 
produce maps.  The tabular tools produce estimates with associated sampling 
errors based on the data.  The spatial tool selects subsets of the data for estimation 
based on spatial layers, such as ownership, cover-type maps, and ecological 
classification maps.  The vision for the completed set of tools, the relationships 
between the tools, and their roles are shown in Figure 1. 

 
The Design Tool will play a major role in linking the tools.  DTIM will 

provide the analytical tool, ATIM, with a list of tables to estimate.  If existing data 
are insufficient, it also will provide metadata to the protocol sample design on 
data collection methods, the attributes to measure and variables to compute.  
DTIM computes the sample size and can create a list of plots which is then input 
to the data recorder software.  DTIM also could be used to create portions of 
forest plan monitoring guides for national forests.  
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Figure 1:  Diagram of the inventory and monitoring toolkit, its linkages, and its outputs. 

 
 

Design Tool for Inventory and Monitoring (DTIM) 
 

The Design Tool for Inventory and Monitoring is being developed to assist 
with the first 9 of the 15 monitoring steps.  Using a knowledge base from 
monitoring experts, users will be presented with lists of choices to guide the 
development of the monitoring system that best suits their needs.  These steps are 
done largely within a Microsoft Excel spreadsheet.   
 

1. Identify customers and set broad objectives. – Pick from a list of broad 
objectives based on desired conditions or outcomes.  Examples of broad 
objectives are:  forest production, biodiversity, and ecosystem restoration. 

2. Select monitoring questions. – Pick from list of generic questions based on 
the chosen objectives.  Many of the questions relate to more than one 
broad objective. 

3. Select attributes. – Pick from list of metrics for the questions chosen, then 
select from list of categorical attributes used to make tables to answer the 
questions.  For example, to answer the question, “Are forests replacing 
themselves?”, the chosen metric could be the number of seedlings and 
saplings by species (rows) and forest type (columns). Once the list of all 
attributes needed for tables is developed, then the attributes that were not 
selected should be evaluated to see if any should be included. 

4. Assess existing data. – Use the Analytical Tool on FIA or other existing 
data to determine whether they are sufficient to answer the questions, in 
terms of precision of the estimates or whether the attributes have been 
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collected (data gaps).  If so, then stop.  If not, then use the ATIM to assess 
their variability for the next steps. 

5. Set time/cost and precision constraints. – If existing data are imprecise or 
have gaps, then identify the costs of each component of monitoring.  
Specify the upper limit of funding.  Specify precision requirements and the 
scale of analysis (e.g., forest or ecoregions) for key metrics, such as forest 
area, volume, or carbon. 

6. Select sampling and plot designs. – Based on the selected attributes, 
specify which portions of the FIA plot need to be measured, or what 
components need to be added.  DTIM can then be used to evaluate plot 
design options:  FIA’s Phase 2 (trees only), Phase 3 (forest health), or 
simplifications of them, including 1, 2 or 3 subplots or eliminating some 
of the components such as lichens, soils, downed woody material, or 
crowns.  Based on the plot design chosen, determine sample size. 

7. Select plots. – Based on the sample size chosen, select plot locations in a 
spatially balanced manner across the population. 

8. Plan field work. – Since most attributes are chosen from the list provided 
in DTIM (so that they are compatible across the landscape), existing FIA 
field guides could supply the text for a field guide for the selected 
attributes. 

9. Train field crews. – Since most attributes are chosen from the list provided 
in DTIM, existing FIA training materials could be accessed to provide 
training materials for the selected attributes. 

 
This provides a quick overview of the nine steps that precede data collection, 

processing, analysis, and decisionmaking.  The sample selection steps (steps 6 and 
7) merit additional discussion. 

 
Sampling Design Alternatives 

 
Considerable research on forest inventory has resulted in a wealth of efficient 

alternatives for one-time surveys.  However, when monitoring over time, many of 
these alternatives result in changing probabilities of selection over time, which 
can be difficult to handle.  Hence, the standard sampling design alternative that 
DTIM evaluates is an intensification of FIA Phase 2 and/or Phase 3 plots (e.g., 2X 
for Phase 2 and 7X for Phase 3).  This makes maximum use of the existing FIA 
plots which are permanent, fixed-area plots.  If a higher intensity is required for 
certain areas, such as rare habitat, old growth, or other key management areas, 
then additional samples can be located within them.  It is strongly recommended 
that this two-step process be used rather than partitioning the target areas first, 
then allocating the samples to each.  This could create estimation problems for the 
whole population over time as those boundaries change.  For this reason, pre-
stratification with other than proportional allocation should only be used if it is a 
one-time inventory or when the strata boundaries are “permanent” (e.g., political 
boundaries rather than forest cover).   
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In general, NIMAC recommends intensifying using the standard FIA plot 
design (Bechtold and Patterson 2005).  However, when high levels of 
intensification are used, then other plot designs may prove more efficient (e.g., 
using fewer or larger subplots).  This is because the FIA design was chosen to be 
efficient when travel to and from the plot requires about half a day, thus the on-
plot time should take much of the other half.  If plots are located close to one 
another (within a mile or so), then sampling smaller plots allows the crew to 
sample more than one per day.  However, smaller plots are more variable, so there 
is a tradeoff.  Scott (1993) describes these tradeoffs by first identifying the 
different subplot types:  overstory, understory, soils, etc.  For each type of 
subplot, the survey planner can specify the size, the number of subplots, and their 
spatial arrangement (distance).  By knowing the time it takes to do each and the 
resulting precision of the key metrics, an optimal plot design can be chosen.  For 
FIA, the optimal design chosen has four subplots (Fig. 2) but for the much higher 
sampling intensities (less than 1 km apart), a single set of nested subplots can be 
more efficient (i.e., using only the center set of subplots).   
 

 
 
Figure 2:  FIA plot design including both Phase 2 and Phase 3 subplots. 
 

Optimization of the plot design features attempts to avoid over-sampling one 
attribute while under-sampling another.  For example, if the regeneration sample 
is too variable relative to the overstory sample, then the regeneration subplot size 
or the number of regeneration subplots could be increased.  Since the time 
required to sample the plot would thus increase, it might be necessary to decrease 
the overstory subplot size.  DTIM will allow the user to evaluate these 
alternatives.  Another alternative is to consider using a subsample for precise, 
expensive, or seasonal attributes, such as Phase 3 plots.  In this case, not all 
attributes are measured on all plots, thus two (or more) plot kinds could be 
identified.  DTIM helps evaluate tradeoffs between time on plot versus traveling 
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(increasing plot size versus increasing sample size).  DTIM also attempts to 
efficiently use the available time in a day (no partial plots that require a second 
visit).  Once the cost and precision relationships are developed, then the 
optimization can be performed in one of two ways:  optimize precision for fixed 
cost, or minimize cost for fixed precision. 

 
Select Plot Locations 

 
FIA uses a hexagonal grid across the nation to spatially balance the plot 

locations (Bechtold and Patterson 2005).  While this meets FIA’s needs, it is 
difficult to achieve a fixed sample size when intensifying for a given area.  
NIMAC developed an alternative method which also is spatially balanced but 
results in the desired sample size (n) for the target population (Lister and Scott 
2008).  The approach is to use a geographic information system (GIS) to divide 
the population area into pixels, and use the GIS to aggregate the pixels into n 
equal area groups (clumps).  Then randomly sample a point (or pixel) within each 
clump (Fig. 3).  
  

 
 
Figure 3:  Example of spatially balanced sample using pixel groups from Lister and Scott (2008). 
 

Space-filling curves are a mathematical means of creating a string of plots by 
connecting adjoining plots until all sample plots are included.  A systematic 
sample of this string (e.g., every fifth plot) also is spatially balanced, thus the 
sample can be divided into annual panels (one for each measurement year) or into 
subsamples, such as Phase 3.  Another approach to creating annual panels is to 
first group plots within compartments or other subpopulation of interest for which 
it would be helpful to have all plots completed in a single year.  These groups can 
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then be formed into a space-filling curve and then divided into annual panels.  
This approach was used to monitor state forests in Indiana.  It also could be 
applied to wilderness areas or other remote areas.  The groups would be sized so 
that a crew could do an entire group during a single entry into the area (e.g., a 2-
week sampling trip).  For estimation purposes, the groups become the primary 
sampling units, thus variances would be computed using the group means. 
 

Current Status and Path Forward  
Early versions of DTIM were applied on the Mark Twain, Cherokee, 

Mississippi, Superior, Texas and Humboldt-Toiyabe National Forests, as well as 
to state forests in Wisconsin and Indiana.  The Mark Twain collected the first 
season of data based on the intensified design in 2008.  The other forests are in 
various stages of planning based on DTIM results.   

The current version of this spreadsheet tool assists with steps 1-3, 5, and part 
of 6 (only evaluates sample size based on one to four subplots).  A team of 
National Forest System (NFS) representatives is identifying the requirements for 
developing the Design Tool to help establish monitoring plans on National 
Forests as well as for use by other Forest Inventory and Analysis partners. 
Iterative use of DTIM has assisted in developing desired condition and objectives 
statements that are both meaningful and measurable. We will refine and complete 
DTIM so that it handles all 9 steps (with the help of ATIM).  We also will include 
more questions and attributes with hope of extending beyond vegetation sampling 
to other resources that can be sampled with plots.  We plan to expand DTIM’s 
ability to evaluate sampling design alternatives and to optimize plot designs for 
customers who need to do so.  DTIM will include a module to generate a spatially 
balanced list of plot locations.  While designed to meet the needs of NFS, many of 
the new features also will be applicable to other NIMAC customers, such as 
states.  NIMAC’s goal is to make more efficient and comparable estimates across 
the landscape resulting in the sustainable use of our forest resources.  
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ABSTRACT: The U.S. Forest Service’s Forest Inventory and Analysis (FIA) program 

collects information on trees in areas that meet its definition of forest. However, the 

inventory excludes trees in areas that do not meet this definition, such as those found in 

isolated patches, in areas with sparse or predominantly herbaceous vegetation, in 

narrow strips (e.g., shelterbelts), or in riparian areas. In the Plains States, little is known 

about the tree resource in these noninventoried, nonforest areas, and there is a great deal 

of concern about the potential impact that invasive pests, such as the emerald ash borer, 

might have. To address this knowledge gap, the National Inventory and Monitoring 

Applications Center (NIMAC) has partnered with state cooperators to design and 

implement an inventory of trees in nonforest areas. The goal of the inventory is to 

characterize the tree resource using methods compatible with those of FIA so a holistic 

understanding of the resource can be obtained by integrating the two surveys. The goal 

of this paper is to give an overview of the goals and objectives of the inventory and to 

describe the plot and sample designs. Key findings related to the planning and 

establishment of the inventory are also provided. 

 

 

KEYWORDS:  Trees outside of forest, nonforest tree inventory, emerald ash borer, 

isolated trees, Great Plains forest inventory, multiphase sample. 

 

 

Introduction 
 

The U.S. Forest Service’s Forest Inventory and Analysis (FIA) program conducts 

an inventory of trees in areas meeting its definition of forested land use. This 

definition includes areas that are at least 1 acre in size, with certain geometric 

properties (e.g., at least 120 feet wide), of a current or former stocking level of at 

least 10 percent, and that are not subject to activities like mowing or understory 

clearing that would prevent normal regeneration (U.S. Forest Service 2007).  FIA 

produces estimates of several forest parameters and creates statistical and 

analytical reports that are used by many customers including local, state, national 
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Effects of Plot Size on    

Forest-Type Algorithm Accuracy   

   
James A. Westfall1   

   
   
Abstract: The Forest Inventory and Analysis (FIA) program utilizes an algorithm to   
consistently determine the forest type for forested conditions on sample plots. Forest type   
is determined from tree size and species information. Thus, the accuracy of results is   
often dependent on the number of trees present, which is highly correlated with plot area.   
This research examines the sensitivity of a forest-type algorithm to changes in amounts   
and types of input data that result from altering the sample plot area. Logistic regression   
was used to determine which plot metrics have the most influence on algorithm output.   
Relationships between plot area and key variables such as number of species, number of   
trees, and total basal area were established and applied to the regression models. The   
results allow for assessment of algorithm accuracy over a range of plot sizes. The    
algorithm was generally robust to changes in area for loblolly/shortleaf, oak/hickory,    
and oak/gum/cypress type groups. Algorithm accuracy was mediocre for other type   
groups, with oak/pine having the poorest performance. A comparison between field-  
observed forest type and algorithm output showed average agreement rates of near 90   
percent when computed types were conifer. However, agreement rates were lower for   
hardwood groups, especially when the computed type was aspen/birch. Better alignment   
between the field- and algorithm-based determinations may be achieved by providing   
real-time algorithm output to field crews.   
   
   
Keywords: forest inventory, logistic regression, species diversity, classification   
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Introduction 
 

Eyre (1980) describes forest type as a “descriptive classification of forestland 
based on present occupancy of an area by tree species”. The contributions to site 
occupancy are often determined via the numbers and sizes (e.g., diameter at breast 
height [dbh]) of trees for each species (Hansen and Hahn 1992). The relative 
occupancies among species (or groups of species) are used to establish the forest-
type classification. Due to the relatively large number of described forest types 
and pronounced similarities among a number of types, forest-type groups are 
often created. This allows a number of related forest types to be classified under a 
single designation, which is often useful for broader analytical summarizations.  
 

In many forest inventories, the forest type may be assessed by the field crew at 
the time the sample data are collected, determined at a later time by applying a 
computer algorithm to the sample plot condition data, or both. The Forest 
Inventory and Analysis (FIA) program of the U.S. Forest Service uses both field- 
(USDA 2007) and algorithm-based (Arner et al. 2003) forest-type information. 
Generally, the algorithm-based forest type is used in estimation. However, if a 
forested condition is less than one subplot in area (~0.0415 ac) the field-based 
forest type is used. It is assumed the algorithm cannot accurately determine the 
forest type when the area is relatively small, because often few trees are present 
on which to make a determination. As area and numbers of trees are highly 
correlated, the question that arises is what affect does sampled-area size have on 
an algorithm-based determination of forest-type. An understanding of the 
accuracy of algorithm-determined forest type in relation to area sampled will 
allow forest managers to make informed decisions regarding the appropriate 
method of forest-type classification for particular forest inventory designs. 
 
 

Data 
 

Evaluation of algorithm classifications at various sampled-area sizes was 
accomplished using FIA data from Indiana (1999-2003), South Carolina (2002-
2006), and Maine (1999-2003). The states were chosen so that many of the forest 
types encountered in the eastern United States. would be represented. The data 
were collected under the annual inventory design outlined by Bechtold and 
Patterson (2005). Sample plots are composed of four subplots, each having a 24-ft 
radius. Within each subplot is a microplot having 6.8-ft radius. Trees having 5.0 
in. or larger dbh were tallied on the subplots. Sapling (1.0-4.9 in. dbh) and 
seedling (< 1.0 in. dbh with minimum height criteria) data were recorded on the 
microplots. To facilitate the analysis, only single-condition plots were retained. In 
order to have a large number of possible plot combinations for repeated 
simulations, only forest-type groups having more than 100 plots were evaluated. 
There were 3,712 plots in the study data representing 55 forest types within eight 
forest-type groups. Table 1 provides a summary of the data by forest-type group 
and forest type. 
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Methods 
 

The forest-type algorithm used in this study is described by Arner et al. (2003). 
This algorithm uses relative stocking to assess the site occupancy of sample trees. 
Individual-tree stocking values are computed from species-specific equations 
using tree dbh. Further adjustments (e.g., weighting) may be made based on tree-
size classification and social position. The individual-tree values are aggregated 
into initial type assemblages and the stocking totals of these initial groups are 
evaluated via decision rules to determine the final forest type. Forest types are 
hierarchically assigned to a more generic forest-type group, so forest-type group 
determination is straightforward once the forest type is established. 

 
The accuracy of the algorithm-based classifications was examined for forest-

type groups, which are assemblages of similar forest types. The analysis consisted 
of two phases: 1) combining a number of plots with the same forest-type group 
and then systematically reducing the area of the combined plots and re-evaluating 
the forest-type group to see if the classification changes; and 2) using the results 
of (1), perform logistic regression to evaluate which plot attributes are correlated 
with the classification changes and predict probabilities of correct classification. 

 
In the first phase, a Monte-Carlo simulation (Metropolis and Ulam 1949) was 

performed by combining 30 randomly selected plots (without replacement) 
having identical forest-type group classification into a ‘population’ of 5 acres in 
size (30  1/6 ac = 5 ac). Forest-type group was determined for this combination 
of plots. The area was then reduced by 1/24 ac by removing a randomly selected 
subplot and the forest-type group was re-evaluated. This area reduction method 
was carried out until only a single subplot remained (1/24 ac). This allowed for 
evaluation of potential forest inventory plot sizes ranging from 1/24 ac to 5 ac. 
The resultant output for the 120 different plot sizes included a binary variable that 
indicated whether the classification had changed from the original type and also 
summary variables such as numbers of species and numbers of stems for 
seedlings, saplings (1.0-4.9 in. dbh), and trees (5.0+ in. dbh), and basal area for 
saplings  and trees. This process was repeated 500 times for each forest-type 
group; results were quite stable after 300 iterations. 

 
These data were then used in a logistic regression analysis where the binary 

response variable was whether or not the type classification had changed at any 
given reduced area. Independent model variables considered were the summary 
variables described above (with two-way and three-way interactions). A stepwise 
variable-selection procedure was used to identify variables having significant ( = 
0.10) predictive ability. The  level of 0.10 was chosen to promote inclusion of 
more variables that may help explain the classification changes. These logistic 
regression models provided the basis for predicting the probability that forest-type 
group would be correctly identified at a specified plot size. 

 

USDA Forest Service Proceedings – RMRS-P-56 18.



 4 

Regression models relating the summary variables to plot area were developed 
to describe average plot attributes at the various plot sizes. The relationships in 
the data suggested linear relationships between plot area and numbers of stems as 
well as plot area and basal area. Nonlinear relationships existed between area and 
numbers of species. The model forms were: 
 

  jkj1jkjk AS +=     [1] 

                   jk


j2jkjk ASPP 3jk +×=            [2] 
      jkj4jkjk ABA +=           [3] 

 
where:  j = tree size class (seedling, sapling, and tree) 
 k = forest-type group 

Sjk = number of stems tallied for tree size class j, forest type k 
SPPjk = number of species tallied for tree size class j, forest type k 
BAjk = basal area of stems tallied for tree size class j, forest type k 
Aj = sampled plot area (ac) for tree size class j 
jk = random error component for tree size class j, forest type k 
1jk – 4jk = estimated coefficients for tree size class j, forest type k 
 

The estimated coefficients are presented in Table 2. The predicted values from 
models [1] through [3] were used as inputs into the logistic regression model to 
predict the probability of misclassification for a given plot area. This analytical 
approach was carried out separately for each forest-type group. 
 
 

Results 
 

The logistic regression analyses were conducted for the eight forest-type 
groups. The general form of the model was: 
 

( ) ( ) kjkjkjkk 32,,SPP,BA,SfCorrectP +××=    [4] 
 
where:  Pk(Correct) = Probability of correct classification for forest-type group k  

×2 = all two-way interactions of the predictor variables 
 ×3 = all three-way interactions of the predictor variables 

k = random error component for forest-type group k 
 all others as defined above 
 

The variables chosen by the stepwise selection procedure varied considerably 
among the groups. Across all eight type groups analyzed, there were 34 different 
significant predictor variables related to the probability of correct classification of 
forest-type group (the detailed information is not provided here due to size limits). 
The models fit the data reasonably well with R2 values ranging from 0.43 to 0.64 
(Table 3). The AIC (Akaike 1974) statistics also showed that the addition of 
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covariates to the model substantially improved the prediction when compared to 
an intercept-only model.  

 
The probability of correct classification of the white/red/jack pine and 

spruce/fir groups was influenced primarily by numbers of stems, numbers of 
different species, and basal area for saplings and trees. The classification accuracy 
of the loblolly/shortleaf pine group was affected mostly by numbers of stems, 
numbers of different species, and basal area for trees only. Conversely, the 
hardwood-type groups were more complex due to increased numbers of 
significant predictor variables, such numbers of stems and numbers of species for 
seedlings and various two-way interactions between these variables and the 
sapling and tree covariates. The oak/pine group had the most intricate model, with 
numerous three-way interactions being significant explanatory variables. 

 
Inputs into the logistic regression model for each forest-type group were 

generated using models [1] through [3] for plot sizes ranging from 1/24 to 5 ac. 
The sensitivity of the algorithm to changes in forest parameters due to sample plot 
size was dependent upon the type group of interest. Within conifer types, the 
loblolly/shortleaf pine forest-type group was the most robust, as the probability of 
classification error was only 0.15 for 1/24 ac plot size (Figure 1c). The 
white/red/jack pine and spruce/fir type groups were more sensitive to area 
sampled, with the probability of misclassification being 0.3 - 0.4  at a plot area of 
only 1/24 ac (Figure 1a, 1b). A sampled area of roughly 0.2 ac. was needed to 
attain a nearly zero misclassification probability for loblolly/shortleaf, while the 
other two conifer types required about 0.5 ac. 

 
For hardwood forest-type groups, the most stable classifications across the 

various plot sizes were in the oak/hickory and oak/gum/cypress groups (Figure 1e, 
1f). For these groups, the probability of misclassification was near 0.1 at the 
smallest plot size evaluated (1/24 ac). Near-zero probabilities were achieved at a 
plot size of roughly 0.25 ac for oak/gum/cypress and nearly 0.5 ac for 
oak/hickory. The oak/pine group required plot sizes of over 2.5 ac to attain near-
zero misclassification rates (Figure 1d). At a 1/24 ac plot size, the oak/pine group 
had misclassification probability of 0.62 and was 0.24 for the maple/beech/birch 
group. The maple/beech/birch group required a plot size of about 0.45 ac to obtain 
a misclassification probability less than 0.001 (Figure 1g). For the aspen/birch 
group, the maximum misclassification probability was near 0.29 (at 1/24th ac plot 
size) and near-zero probabilities occurred at about 0.9 ac (Figure 1h). 

 
The forest-type algorithm always provides the same forest-type group for a 

given set of input data from the sample plot. However, the field crews have the 
advantage of viewing the entire area – their determination is not limited to only 
trees within the sample plot. Also, a certain amount of subjectivity is introduced 
based on the field crew’s perception of the area. These factors can result in 
differing outcomes between the field-based and algorithm-based forest-type 
group. Table 4 quantifies the agreement/disagreement proportions for the forest-
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type groups analyzed in this study. Agreement was relatively high for softwoods, 
with red/white/jack pine having ~81 percent agreement and both spruce/fir and 
loblolly/shortleaf having agreement rates exceeding 90 percent. The conformity 
for hardwoods was poorer, as both aspen/birch and oak/pine had agreement rates 
less than 50 percent. When the algorithm determined the type was aspen/birch, the 
field call was spruce/fir for nearly 40 percent of the plots. The best agreement 
between algorithm and field hardwood type groups was for oak/gum/cypress, 
which had identical results for roughly 88 percent of the plots. Overall, agreement 
between field crew and algorithm occurred for ~ 75 percent of the plots. 
 
 

Discussion/Conclusion 
 

For the red/white/jack pine, spruce/fir, and maple/beech/birch groups, the 
algorithm classification accuracies decreased relatively quickly at plot sizes below 
1/4 ac. This outcome is a reflection of the algorithm threshold for information 
needed to accurately classify these type groups. A review of the description for 
each type group indicates a wide range of species occur within these type groups 
(Eyre 1980). For example, spruce and fir species occur in areas where aspen, 
birch, and maple are also present. As plot size is reduced below 1/4 ac, the 
dominance of the spruce/fir species becomes more ambiguous, and the decision 
rules employed in the algorithm may produce a classification outside the 
spruce/fir group. The most common classification error for both red/white/jack 
pine and spruce/fir groups was maple/beech/birch. Similarly, a common 
misclassification of maple/beech/birch was spruce/fir type. 

 
In contrast, there should be much less concern regarding misclassification of 

the loblolly/shortleaf pine group. These plots often come from planted areas 
where other species (primarily hardwoods) occur in the understory, which makes 
the preeminence of the primary species more apparent for smaller plots. In cases 
where loblolly/shortleaf was misclassified, oak/pine was by far the most common 
outcome. 

 
A notable characteristic for the oak/pine and (to a lesser extent) aspen/birch 

groups was a relatively slow improvement in classification accuracy as plot sizes 
increased. For oak/pine, numbers of species, numbers of stems, and basal area 
among the three tree size classes all contributed to the misclassification rate. The 
confusion within aspen/birch was due primarily to species, stems, and basal area 
of trees having dbh 5.0 in. or larger. The oak/pine group required over 2.5 ac plot 
size to attain near-zero misclassification probabilities, while the aspen/birch group 
needed slightly less than 1 ac. In addition, the oak/pine group had the worst 
classification accuracy of all groups evaluated, with a probability of 
misclassification exceeding 0.6 when plot size was 1/24 ac. This gives further 
support to the argument given above related to species mixes. On plots where 
there is a wide range of species, it is difficult to determine the dominant type and 
relatively small shifts in the tree list can sway the classification in a different 
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direction. Common misclassifications of oak/pine were loblolly/shortleaf and 
oak/hickory groups. The aspen/birch group was most often mistaken with 
spruce/fir and while maple/beech/birch, owing to the primary species of this 
group often being replaced by more shade-tolerant species, resulting in relatively 
high numbers of species and differing tree sizes. 

 
The relationships between area sampled and misclassification probability for 

the oak/hickory and oak/gum/cypress groups were similar to those for 
loblolly/shortleaf pine. This is presumably attributable to the tendency for these 
species groups to be fairly well defined, such that the dominant species are likely 
to survive and flourish relative to species that are primary to other type groups. 
The oak/gum/cypress sites also tend to be undisturbed and have large diameter 
trees. These large trees provide high stocking values that are very influential in 
the computations, especially at the smaller plot sizes. Misclassifications were due 
primarily to confusion with the oak/pine and either maple/beech/birch or 
elm/ash/red maple groups. 

 
There are two primary differences between field observation and algorithm-

based forest-type group determination. The field crews have the advantage of 
viewing the broader area, not just the area within the plot. However, there is also 
an element of subjectivity such that different crews may resolve different forest 
types when assessing the same area. A feature of the algorithm is that the same 
forest type will be computed for a given tree list, removing any subjectivity. The 
drawback of the algorithm is that performance is suspect when there are not many 
trees. These differences can result in conflicting determinations of forest-type 
group. It is shown in Table 4 that when a computed type group is either 
oak/hickory or oak/pine, a wide range of different types are recorded by the field 
crew. It is also shown that a computed aspen/birch type is seen as spruce/fir for 
almost 40 percent of the plots and is judged to be maple/beech/birch for 14 
percent of the plots. This suggests that 1) the tree species and size composition 
over the broader area differs somewhat from that within the sample plot area only; 
and/or 2) the relative importance afforded to the various tree sizes and species 
differ between the field crew and the algorithm. 

 
This leads to another point regarding species composition. One would expect 

that increases in species diversity occur in transition zones near the edges of 
stands of differing type groups and more generally near the indistinct boundaries 
of natural ranges of type groups. In these zones, the increased diversity may lead 
to higher levels of classification error, as well as additional disparity between the 
field determination and algorithm output. Such analyses are beyond the scope of 
this paper, but the concept is worth highlighting as a future research topic. 

 
A dilemma for analysts is whether to use an algorithm or the field-observed 

forest-type group. This choice could result in large shifts in estimated area for 
certain forest-type groups. There is a need to better align the field forest-type 
group with that computed by the algorithm. Given that crews collect data with 
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electronic data recorders, improved consistency may be obtained by having the 
algorithm provide real-time feedback on the computed forest-type group. This 
would allow the field crews to see when there is disagreement. This may 1) allow 
the field crews to calibrate their observations to be more consistent with algorithm 
output; and 2) provide feedback that sheds light on needed modifications to 
improve algorithm accuracy. 

 
In summary, the algorithm was generally robust to changes in plot size for 

loblolly/shortleaf, oak/hickory, and oak/gum/cypress groups. For classification of 
other forest-type groups, the recommended plot size should reflect the relative 
proportions of occurring type groups and be consistent with levels of 
misclassification that are considered tolerable. For example, if the area is 
composed primarily of aspen/birch then a larger plot size should be considered 
than if the area is mostly oak/gum/cypress. Ultimately, it would be desirable to 
refine the algorithm such that all forest-type groups had similar (small) 
misclassification probabilities. This paper provides an analytical framework for 
evaluating whether changes to the algorithm provide improved classification 
consistency. 
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Figure 1: Misclassification probability vs. plot area for a) red/white/jack pine; b) spruce/fir; c) 
loblolly/shortleaf; d) oak/pine; e) oak/hickory; f) oak/gum/cypress; g) maple/beech/birch; and h) 
aspen/birch type groups. 
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Table 1: Data summary statistics by forest type and forest-type group. 
 

Forest type group Forest type # plots Min. Mean Max. Min. Mean Max.
White/red/jack pine Jack pine 1 55 55 55 5 5 5
White/red/jack pine Red pine 7 41 86 113 6 10 14
White/red/jack pine Eastern white pine 58 30 74 154 3 8 15
White/red/jack pine White pine/hemlock 28 36 74 119 6 8 14
White/red/jack pine Eastern hemlock 30 43 93 135 4 9 13

124 30 79 154 3 9 15
Spruce/fir Balsam fir 269 7 95 194 2 8 15
Spruce/fir White spruce 14 12 53 103 1 5 9
Spruce/fir Red spruce 151 32 104 187 1 8 13
Spruce/fir Red spruce/balsam fir 137 25 97 177 3 8 13
Spruce/fir Black spruce 73 4 73 141 1 5 13
Spruce/fir Tamarack 5 31 72 122 5 7 10
Spruce/fir Northern white-cedar 119 38 116 177 3 9 16

768 4 97 194 1 8 16
Loblolly/shortleaf pine Loblolly pine 512 4 65 308 1 7 17
Loblolly/shortleaf pine Shortleaf pine 7 3 89 167 1 13 19
Loblolly/shortleaf pine Virginia pine 9 32 76 114 10 14 19
Loblolly/shortleaf pine Pond pine 9 33 59 106 2 7 10

537 3 66 308 1 7 19
Oak/pine White pine/red oak/white ash 37 12 66 103 3 9 14
Oak/pine Eastern redcedar/hardwood 14 7 68 124 6 13 20
Oak/pine Longleaf pine/oak 13 20 41 70 4 7 12
Oak/pine Shortleaf pine/oak 9 31 72 97 6 11 18
Oak/pine Virginia pine/southern red oak 6 28 60 92 3 13 22
Oak/pine Loblolly pine/hardwood 80 12 62 147 3 9 19
Oak/pine Slash pine/hardwood 4 31 44 60 9 10 12
Oak/pine Other pine/hardwood 6 42 65 92 3 6 8

169 7 62 147 3 10 22
Oak/hickory Post oak/blackjack oak 12 20 68 116 8 12 18
Oak/hickory Chestnut oak 12 24 55 115 4 8 15
Oak/hickory White oak/red oak/hickory 190 15 63 283 5 12 24
Oak/hickory White oak 30 20 66 138 4 12 18
Oak/hickory Northern red oak 19 34 65 84 5 8 14
Oak/hickory Yellow-poplar/white oak/red oak 35 21 67 158 6 14 26
Oak/hickory Sassafras/persimmon 19 1 54 101 1 9 18
Oak/hickory Sweetgum/yellow-poplar 50 27 59 122 3 10 18
Oak/hickory Bur oak 1 24 24 24 3 3 3
Oak/hickory Scarlet oak 3 57 63 72 8 11 14
Oak/hickory Yellow-poplar 9 33 71 152 9 12 16
Oak/hickory Black walnut 2 27 33 38 7 8 9
Oak/hickory Black locust 1 68 68 68 10 10 10
Oak/hickory Southern scrub oak 10 19 35 73 1 6 11
Oak/hickory Chestnut oak/black oak/scarlet oak 15 18 47 87 3 11 21
Oak/hickory Red maple/oak 11 2 59 143 1 8 12
Oak/hickory Mixed upland hardwoods 103 2 62 380 2 10 21

522 1 62 380 1 11 26
Oak/gum/cypress Swamp chestnut oak/cherrybark oak 7 33 46 64 8 11 15
Oak/gum/cypress Sweetgum/Nuttall oak/willow oak 84 3 47 97 1 9 17
Oak/gum/cypress Overcup oak/water hickory 4 13 27 46 6 10 14
Oak/gum/cypress Baldcypress/water tupelo 33 25 54 92 1 7 15
Oak/gum/cypress Sweetbay/swamp tupelo/red maple 77 19 56 145 3 8 21

205 3 51 145 1 8 21
Maple/beech/birch Sugar maple/beech/yellow birch 978 20 92 172 4 9 19
Maple/beech/birch Black cherry 2 17 32 47 4 6 7
Maple/beech/birch Cherry/ash/yellow-poplar 33 22 72 156 4 10 20
Maple/beech/birch Hard maple/basswood 9 33 60 119 5 10 14
Maple/beech/birch Elm/ash/locust 1 22 22 22 6 6 6
Maple/beech/birch Red maple/upland 66 10 87 147 2 9 14

1089 10 91 172 2 9 20
Aspen/birch Aspen 114 3 90 151 1 9 17
Aspen/birch Paper birch 173 4 89 185 1 8 17
Aspen/birch Balsam poplar 11 57 97 162 6 10 15

298 3 90 185 1 9 17
a Includes all tallied seedlings, saplings, and trees.

No. stems/plota No. species/plot
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Table 3: Fit statistics by forest-type group for model [4].  
 

Forest type group R2 a Intercept only
Intercept + 
covariates

% reduction 
(covariates)

White/red/jack pine 0.57 4419.4 1975.7 55.3%
Spruce/fir 0.50 2952.0 1525.5 48.3%
Loblolly/shortleaf pine 0.64 1389.9 519.6 62.6%
Oak/pine 0.46 25862.0 15441.7 40.3%
Oak/hickory 0.43 2657.6 1536.3 42.2%
Oak/gum/cypress 0.51 2025.0 1010.3 50.1%
Maple/beech/birch 0.58 4854.6 2090.3 56.9%
Aspen/birch 0.49 7717.3 4054.7 47.5%
a Max. rescaled R2

AIC
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Table 4: Frequency of agreement between field forest-type group and computed forest-type group 
for 3,712 FIA plots. 
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Wisconsin State Forests Continuous Forest 
Inventory: A Look at the First Year 

 
Randall S. Morin1 
Teague Prichard2 
Vern Everson3 
Jim Westfall4 
Charles Scott5 

 

 

Abstract: The demand for timely, consistent, and reliable forest inventory and monitoring 

information for Wisconsin’s state forests has increased significantly.  A wide range of 

publics and partners, including businesses, organizations, and citizens alike are well 

aware of the benefits of sustainable forestry and are working together to increase 

knowledge through an annual comprehensive forest inventory and monitoring program.  

In response, the Wisconsin Department of Natural Resources (WDNR) and the National 

Inventory and Monitoring Applications Center (NIMAC) of the U.S. Forest Service, 

Forest Inventory and Analysis (FIA) program have developed a Wisconsin State Forest 

Continuous Forest Inventory (WisCFI) program for the 518,680 acres of land distributed 

across 10 state forests.  To accomplish the monitoring objectives of the WDNR, NIMAC 

designed a survey of approximately 3,145 FIA-like plots to be measured over 5 years (1 

plot per 165 acres).  A limited suite of summer only variables (soils, understory 

vegetation, down woody materials, and crowns) will be measured on one-third of the 

plots.  The first panel of data was collected in 2007.  We used this first panel to describe 

the benefits of the intensification on the precision of forest-level estimates for state forest 

land.  Additionally, estimates of species richness were compared for plots where 

introduced species were present versus those where they were absent. 

 

 

Keywords: continuous forest inventory, intensification, forest health, introduced species, 

species richness 

 

 

Introduction 
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 Wisconsin Department of Natural Resources, Bureau of Forest Management, Madison, WI, 608-

264-8883 
3
 Wisconsin Department of Natural Resources; Bureau of Forest Management, Madison, WI, 608-

264-8883 
4
 Research Forester, U.S. Department of Agriculture, Forest Service, Northern Research Station, 

Newtown Square, PA, 610-557-4043, 610-557-4250 FAX 
5
 Program Manager, U.S. Department of Agriculture, Forest Service, Northern Research Station, 
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FIA Map Products: Production and Assessment
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Combining Forest Inventory, Satellite Remote 
Sensing, and Geospatial Data for Mapping 

Forest Attributes of the Conterminous United 
States  

 

Mark Nelson1, Greg Liknes2, and Charles Perry3 
 

 
Abstract: Analysis and display of forest composition, structure, and pattern provides 

information for a variety of assessments and management decision support. The objective 

of this study was to produce geospatial datasets and maps of conterminous United States 

forest land ownership, forest site productivity, timberland, and reserved forest land. 

Satellite image-based maps of forest land cover, geospatial datasets of land protection 

and ownership, and data from the U.S. Department of Agriculture Forest Service’s 

Forest Inventory and Analysis (FIA) program were integrated to produce forest land 

maps. Forest land cover was derived from the U.S. Forest Service Forest Types Map; 

land ownership and protection is derived from the Conservation Biology Institute’s 

Protected Areas Database; and forest attributes are derived from FIA, summarized by a 

hexagon sampling array from the Environmental Protection Agency Environmental 

Monitoring and Assessment Program. This approach provides a technique for efficiently 

producing forest resource maps over large geographic extents. 

  

Key  words: Forest, inventory, FIA, mapping, CONUS 

 

Introduction 
 

The U.S. Department of Agriculture Forest Service’s Forest Inventory and 

Analysis (FIA) program produces estimates of United States forest land 

composition and structure across all classes of land ownership. These estimates 

provide information about the amount, condition, health, and change in forest 

resources. As a sample-based inventory, FIA reports estimates for defined 

estimation units, typically states and counties.  
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An Assessment of the Relationship Between 
Emerald Ash Borer Presence and Landscape 

Pattern 
 

Susan J. Crocker and Dacia M. Meneguzzo1 
 
ABSTRACT: Six years after its 2002 detection near Detroit, MI, the emerald ash borer 

(EAB) (Agrilus planipennis Fairmaire) has spread hundreds of miles across the Upper 

Midwest and Mid-Atlantic regions of the United States. Human-assisted transportation of 

infested ash materials is the primary mechanism of EAB dispersal over long distances. 

Natural spread occurs locally and is influenced by factors, such as host availability, 

meteorological conditions, and landscape configuration. This study looks at the effects of 

ash density and landscape pattern on current EAB distribution. Forest Inventory and 

Analysis (FIA) data were used to calculate plot-level landscape metrics (total edge 

length, edge density, and forest proportion) in Ohio, Indiana, Illinois, and Wisconsin. 

Initial results indicate that while EAB is primarily found in areas with a low proportion 

of forest land, it is also found in areas with a relatively high concentration of ash. 

Counties containing EAB infestations were also found to have high relative edge 

densities.  

  

Keywords: Emerald ash borer, landscape metrics, forest inventory. 

 

 

Introduction 
 

The emerald ash borer (EAB) (Agrilus planipennis Fairmaire, Coleoptera: 

Buprestidae) is a wood-boring beetle that is believed to have been introduced to 

the United States from Asia during the early 1990s (McCullough and Katovich 

2004, Siegert et al. 2008). Undetected until 2002, EAB was initially found near 

Detroit, MI, and in adjacent Windsor, Ontario, Canada. Since that time, EAB has 

killed tens of millions of ash trees (Fraxinus spp.) across the Upper Midwest and 

along the East Coast, causing it to become one of the leading threats to the 

nation’s forest resource (de Groot et al. 2008). EAB is currently (as of October 

2008) found in 10 U.S. states (Michigan, Ohio, Indiana, Maryland, Illinois, 

Pennsylvania, West Virginia, Virginia, Missouri, and Wisconsin) and two 

Canadian provinces (Ontario and Québec) (USDA APHIS 2008). 

Natural spread of EAB has been facilitated by human transportation of 

infested ash materials, such as movement of firewood and nursery stock. This 

form of artificial spread has been the source of many localized, outlier infestations 

(Cappaert et al. 2005). Once an outlier infestation has been established, the 

gradual, natural spread of EAB becomes paramount. Natural dispersal is 

influenced by many factors, including host availability, meteorological 

conditions, insect flight ability, and the configuration of the landscape (Cappaert 

et al. 2005). Additional research on natural spread from outlier infestations is 
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Mountain Pine Beetle Infestations and 
Sudden Aspen Decline in Colorado: Can the 

Forest Inventory and Analysis Annual 
Inventory System Address the Issues? 

 
 

Michael T. Thompson1 

 

 

 
 Abstract.: There are two events occurring in Colorado that are concerning forest 
managers in Colorado. There is severe and widespread mortality of lodgepole pine due to 
the mountain pine beetle and aspen forests in some areas of the state have experienced 
widespread, severe, and rapid crown deterioration leading to mortality. Implementation of 
the Forest Inventory and Analysis annual inventory coincided with the two mortality 
events, providing an opportunity to test the utility of the annual inventory system. 
Preliminary analysis suggests that annual inventory data can quantify status and trends. 

 
Keywords: forest inventory, FIA, conifer, mortality, bark beetles 
 
 
 
     In the mid-1990’s, the U.S. Department of Agriculture (USDA) Forest Service 
Forest Inventory and Analysis (FIA) program began a transition from periodic to 
annual inventories (Gillisepie 1999). Under the periodic system, the entire sample 
grid of plots was measured in a given State over a period of 1 to several years. 
Subsequent periodic inventories occurred anywhere from 5 to 20 years. Users of 
FIA data and reports became concerned about the time lag between periodic 
inventories and suggested ways be explored to produce more timely information. 
In response, the FIA program began implementation of an annual inventory 
system that would provide inventory estimates on a yearly basis (Gillisepie 1999).  
 
 
_______________________ 
1 United States Forest Service; Rocky Mountain Research Station; Forest Inventory and Analysis 
Program; 507 25th Street; Ogden, UT 84404 USA; mtthompson@fs.fed.us
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The same systematic sample grid that was used for periodic inventories was 
also used for the annual inventory grid. The difference in an annual inventory is 
that each plot in a state is assigned to one 6000-acre hexagon. These hexagons are 
then systematically formed into groups that are referred to as panels. Panels are 
selected for measurement on an annual rotating basis, and measurement of all 
accessible plots in one panel is completed before measurement of plots in a 
subsequent panel is initiated (Reams and Van Deusen 1999). Therefore, 
theoretically, annual panels of data are free from geographic bias. In the western 
United States, one panel represents approximately one-tenth of all plots in a State 
with the objective being that all plots will be measured in ten years. The 
advantage of the annual inventory system is that data are available every year 
which provides researchers with more timely data across the landscape. This 
system results in data being collected and compiled every year, which allows for 
more flexible analysis options and provides opportunities to monitor forest change 
in ways that were not possible using periodic inventory data. 

 
The Interior West FIA (IW-FIA) program operates in Arizona, Colorado, 

Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming. The annual 
inventory system was implemented in Utah in 2000 and in most of the other IW-
FIA states since then. The annual inventory began in Colorado in 2002, and as of 
2007, six panels have been completed in the State. About the same time that 
annual inventories were implemented in the Interior West, forest managers began 
noticing significant increases in the incidence of insects and disease for certain 
tree species. Some of these incidents were attributed to drought that began in the 
late 1990’s. Others are attributed to stand conditions, stand dynamics, and unusual 
weather patterns. 
 

Two events, in particular, are considered significant issues in Colorado. There 
is severe and widespread mortality of lodgepole pine (Pinus contorta) due to 
mountain pine beetle (Dendroctonus ponderosae). The current mountain pine 
beetle epidemic is currently considered to be catastrophic and unprecedented. 
Aspen forests in some areas of Colorado and other regions have experienced 
widespread, severe, and rapid crown deterioration leading to mortality. This 
phenomenon is now being referred to as Sudden Aspen Decline (SAD). These 
two events can be considered an opportunistic test of the ability of the FIA annual 
inventory system for quantifying rapid change over a State. Analysis of the event 
may test some assumptions that have been made about the FIA annual inventory 
system. 
 

This article describes mortality of lodgepole pine and aspen from the FIA 
annual inventory in Colorado, preliminary analysis of the results, and how the 
design of the annual inventory may influence the final analysis. 
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The FIA Annual Inventory Design 
 
 

There are more analysis options for monitoring forest change under the annual 
inventory system than the periodic inventory system. One option is to simply 
compile the data as if it were a periodic inventory, ignoring the fact that some 
panels are several years older when compared to previous periodic inventories. 
This may be referred to as the traditional periodic option (Reams and Van Deusan 
1999). Another analysis option considers the fact that the annual inventory is an 
interpenetrating design. This may be referred to as the independent panel option. 
Under this approach, each annual panel is analyzed independently and estimates 
are produced on a yearly basis. The independent panel option is a design where 
the n units (FIA sample plots) are divided into k = 10 panels, each panel 
containing m = n/k units. Panel 1 plots are measured in year 1, panel 2 in year 2, 
etc., such that all plots have been visited by the end of year 10. The panel cycle is 
repeated into perpetuity (Reams and Van Deusan 1999).  
 

When FIA began implementation of annual inventories in the mid 1990’s, 
questions immediately arose regarding the inventory design. The most 
fundamental question was, are there enough plots in one annual panel to detect the 
progression of events such as tree mortality due to natural disturbance? A 
systematic grid of plots serves as the base for annual inventories where one field 
plot represents approximately 6000 acres. Therefore, under the annual inventory 
in the Interior West, one plot in an annual panel represents about 60,000 acres 
(1/10th of the periodic grid). Table 1 illustrates the number of plots that sample 
forest land in Colorado by measurement year and panel number. An average of 
about 394 plots is scheduled to be visited in any given year in Colorado. 
 

Since each panel represents about 1/10th of all plots in Colorado, the smaller 
number of plots results in a higher variance around the individual panel estimate. 
Mortality estimates, in particular, are subject to high variances since tree mortality 
is relatively infrequent. Tree mortality does not always occur on every plot.  For 
situations like insect and disease outbreaks where mortality may be spatially 
spotty, the signature of the event may not be adequately captured with a limited 
sample size. Caution must also be exercised when screening data for single panels 
by certain attributes such as forest type or analyzing data for very small domains 
since the small number of plots may result in an unacceptably high variance. 
Therefore, there is a tradeoff between variance and temporal currency. Does 
having current inventory estimates with a high level of statistical variance 
outweigh having more dated data with lower variance? 
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Estimating Tree Mortality 
 
 

The IWFIA program defines a mortality tree as one determined to have died 
within 5 years of the plot measurement date (USDA 2007). Therefore, field crews 
make a distinction between trees that have recently died and long-standing dead 
trees on all plots that sample forest land. For this analysis, population estimates of 
the number of all formerly live lodgepole pine and aspen trees with a minimum 
diameter at breast height of 5.0 inches that qualify as mortality on forest land are 
used for comparisons. All trees that qualify as mortality on FIA plots are assigned 
a cause of death code that estimates the primary agent that caused the tree’s death. 
Only lodgepole pines that were assigned a cause of death of insects were used in 
mortality estimates. All aspen trees, regardless of cause of death, were used in 
mortality estimates. The annual number of mortality trees is the number of 
mortality trees expanded to a population level averaged over a 5-year period and 
reported as an average annual number. For example, the mortality tree estimate 
for the year 2002 represents the average number of trees that died each year 
during the period 1998-2002. This period is termed mortality period in this paper 
(Table 1). The reason behind this mortality estimation procedure in Colorado, 
along with several other IW regions, is the inventory data was limited to initial 
plot measurements. Complete remeasurement data for the State, where the status 
of the plot and all trees on the plot are known at two points in time, will not be 
available in Colorado until all ten panels of data are completed and 
remeasurement begins in the eleventh year. 

 
 
 
 
 
 
 

Table 1: Number of Inventory Plots That Sampled Forest Land in Colorado by 
Mortality Period, Measurement Year, and Panel Number. 
 
Measurement Year       Mortality Period       Panel Number        Number of Plots  
2002                                1997-2002                          1                          362 
2003                                1998-2003                          2                          387 
2004                                1999-2004                          3                          409 
2005                                2000-2005                          4                          407 
2006                                2001-2006                          5                          391 
2007                                2002-2007                          6                          411 
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The Mountain Pine Beetle Epidemic 
 
 

The USDA Forest Service Region 2 Forest Health Management Group began 
statewide aerial surveys of mountain pine beetle infestations in 1996. This 
monitoring effort has recorded significant increases in the area of lodgepole pine 
forests affected by the mountain pine beetle since 1996 and as of 2007, the 
epidemic is believed to be catastrophic and unprecedented. Mountain pine beetle 
outbreaks are occurring at greater intensity and at locations where they have not 
previously occurred (Logan and Powell 2001, Caroll et al. 2004). These 
epidemics are not unique to Colorado—much of western North American and 
Canadian lodgepole pine forests are also suffering from mountain pine beetle 
infestations.  
 

The mountain pine beetle is a native insect to western pine forests in North 
America and innocuous populations are almost always present in forests. 
Transition to epidemic populations is a function of the beetle’s capacity to locate, 
colonize and reproduce within suitable host trees in a weather pattern conducive 
to overwintering survival, emergence, and dispersal (Caroll et al. 2004). The 
current epidemic in Colorado is of major concern because lodgepole pine, the 
primary host of the insect in the state, is an important tree for timber production, 
recreation, and wildlife.  

 
 
 

Sudden Aspen Decline 
 
 

Rapid mortality of trembling aspen has been reported from multiple locales in 
southwestern Colorado by varied observers since 2004 (Worrel et. al. 2008). The 
suddenness of the phenomenon is in striking contrast to the stand-level mortality 
processes typically observed in aspen stands. Adding to the concern, there appears 
to be a lack of regeneration occurring in stands were the overstory mortality is 
unusually high. 
 

Evidence to date suggests that it is a decline disease incited by acute, warm 
drought. Predisposing factors include low elevation, south and southwest aspects, 
droughty soils, open stands, and physiological maturity. Contributing factors, 
which kill the stressed trees, include Cytospora canker, two bark beetle species, 
poplar borer, and bronze poplar borer.  
 

What is happening to aspen in Colorado? Unlike mountain pine beetle 
infestations, an event that has been extensively researched, there is no recorded 
precedent for this phenomenon and the aspen mortality appears to be function of 
several agents. Aspen forests are dynamic and have always changed in response 
to climate, frequency and intensity of disturbance, and natural succession. There 
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is no conclusive evidence to date that indicates that this event will continue into 
the future nor what the eventual impact on the aspen resource will be. 

 
 
 

What the Data Show  
 
 

Annual inventory data indicate an upward progression of lodgepole pine 
mortality caused by bark beetles in Colorado. The average annual number of 
lodgepole pine trees killed by insects in the 2002-2007 mortality period is over 10 
times that recorded in the 1997-2002 mortality period (Figure 1). The annual 
average of lodgepole pine mortality indicated an increase with each successive 
mortality period over the six years of measurement with the largest increase 
occurring after the 2000-2005 mortality period. Average annual mortality rates of 
beetle-killed lodgepole pine progressed upward from .22 percent during the 1997-
2002 mortality period to 2.6 percent in the 2002-2007 mortality period.  
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Figure 1: Average annual number of lodgepole pine trees killed by insects by mortality period in 
Colorado. Error bars represent 95% confidence interval. 

 
 

Statistical analysis of the mortality data was performed in two steps. First, an 
analysis of variance was done to detect mortality period effect using the ANOVA 
procedure version 8.02, of the SAS system for Windows Version 5.0.2195 (SAS, 
2001). The difference in the mean number of lodgepole pine mortality trees per 
acre among mortality periods panels was significant (P=0.0130). Second, all 
combinations of mortality periods were tested against each other using the 
Bonferroni correction factor for multiple tests. Comparisons among panels 
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identified two combinations of mortality periods significant at the 0.05 level; 
1997-2002 compared to 2002-2007, and 1998-2003 compared to 2002-2007. 
 

Trends in number of aspen mortality trees do not indicate the same distinctive 
upward trend as lodgepole pine beetle-killed mortality over the same period in 
Colorado (Figure 2). The highest level of aspen mortality occurred in the 2002-
2007 period where the average annual number of trees was nearly 15 million 
trees. A test for mortality period effect indicated no significant difference 
(P=0.5387). 
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Figure 2: Average annual number of aspen trees classified as mortality by mortality period in 

Colorado. Error bars represent 95% confidence interval. 
 

 
Discussion 

 
 

The current high rate of lodgepole pine mortality due to the mountain pine 
beetle event has forest managers very concerned about the future of this species in 
Colorado. There is concern that the high rate of mortality will continue and could 
possibly deplete the supply of large-diameter trees in as little as five years. Trends 
revealed by annual data of other forest estimates agree with the progression of 
lodgepole pine mortality. For example, examination of the percentage of live 
lodgepole pine trees damaged by bark beetles by individual year indicates similar 
trends (Figure 3). Bark beetle damage rates jumped from 4 percent in 2005 to 
over 12 percent in 2006 and continued upward to 15 percent in 2007. If the 2007 
mortality and damage rates continue to increase, assuming that most of the 

 7

USDA Forest Service Proceedings – RMRS-P-56 22.



damaged trees will die in the near future, the impact of the remaining living 
lodgepole pines in Colorado could be dramatic.  
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Figure 3: Percentage of live lodgepole pines damaged by bark beetles by measurement year in 
Colorado. 

 
Unlike lodgepole pine, trends in aspen mortality over the annual inventory 

period do not indicate an immediate serious threat to the statewide inventory of 
aspen. There are several reasons why SAD is not reflected in Colorado’s annual 
inventory. First, the rapid mortality associated with this phenomenon is relatively 
recent—it was first observed by researchers in 2004 (Worrel et. al. 2008). Second, 
it may be more of a localized event that will impact aspen in domains too small to 
be adequately captured in a broad-scale inventory. Third, the diverse factors 
associated with the decline make it difficult to assess cause of death and 
damaging agents that are specific to SAD. Fourth, aspen stand dynamics are 
complex. It is a relatively short lived species susceptible to a host of pathological 
organisms. Aspen is also a clonal tree species showing a variety of characteristics 
between individual clones.  
 

Is there additional data from the annual inventory that might shed light on 
aspen decline? Figure 4 illustrates the percentage of live aspen trees that had 
evidence of damage. Disease was identified as predominate damaging agent of 
this species in Colorado and the highest disease damage rate of nearly 11 percent 
was recorded in 2007. As the annual inventory progresses in Colorado, and more 
temporal data is collected, the eventual impact that Sudden Aspen Decline may 
have on the aspen resource can be assessed with more confidence. 
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Figure 4: Percentage of live aspen trees that have evidence of damage by cause and 
measurement year in Colorado. 
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Large Area Mapping Applications I



Harmonizing Estimates of Forest Land Area 
from National-Level Forest Inventory and 

Satellite Imagery

Bonnie Ruefenacht1, Mark D. Nelson2, Mark Finco1,  
Ken Brewer1

Abstract: Estimates of forest land area are derived both from national-level forest 
inventories and satellite image-based map products. These estimates can differ substan-
tially within subregional extents (e.g., states or provinces) primarily due to differences 
in definitions of forest land between inventory- and image-based approaches. We pres-
ent a geospatial modeling approach for redefining satellite image-based pixels to meet 
inventory definitions. We compare resulting estimates of forest land area for six test 
states – Arizona, Minnesota, Montana, New York, North Carolina, and Oregon – using 
image estimates based on Moderate Resolution Imaging Spectroradiometer (MODIS) 
and inventory estimates from the U.S. Department of Agriculture Forest Service’s Forest 
Inventory and Analysis Program (FIA). Our geospatial model utilizes several ancillary 
geospatial datasets to simulate conditions required by FIA’s definition of forest land, 
including minimum forest patch area and width, minimum tree stocking or canopy cover, 
and exclusion of lands not used primarily as forest land.

Keywords: forest, inventory, land use, land cover, dasymetric mapping, FIA

Introduction

Forest Inventory and Analysis

The mission of the USDA Forest Service Forest Inventory and Analysis 
Program (FIA) is to inventory the renewable forest and rangeland resources of 
the US. To inventory these resources, FIA has established field sample plots 
throughout the US at an intensity of approximately one plot per 2,400 ha (6,000 
acres) (USDA Forest Inventory and Analysis 2007). FIA uses an annual rotating 
panel system whereby between 10 to 20 percent of each state’s plots are sampled 
every year. From this plot data, FIA produces annual estimates of forest land 
area, reported in the form of tabular data at the county and state level. FIA defines 
forest land as land that meets at least one of the two following criteria:

1 USDA Forest Service Remote Sensing Applications Center, 2222 West 2300 South, Salt Lake City, UT 84119
2 USDA Forest Service Northern Research Station, 1992 Folwell Avenue, St. Paul, MN 55108
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The land is at least ten percent stocked by trees of any size or has been at 1. 
least ten percent stocked in the past. It is not subject to non-forest use(s) 
that prevent normal tree regeneration and succession such as regular 
mowing, grazing, or recreation activities. The area stocked by trees is at 
least one acre in size and at least 120 feet wide.
The land is a western woodland type where stocking cannot be determined, 2. 
and has at least five percent crown cover by trees of any size, or has had at 
least five percent cover in the past. Additionally, the land is not subject to 
non-forest use(s) that prevent normal regeneration and succession such as 
regular mowing, grazing, or recreation activities. The area stocked by trees 
or with five percent crown cover is at least one acre in size and at least 120 
feet wide.

Conversely, non-forest land is defined by FIA as land that does not support, 
or has never supported forests, and lands formerly forested where use for timber 
management is precluded by development for other uses. Non-forest land includes 
areas used for crops, improved pasture, residential areas, city parks, improved 
roads of any width and adjoining rights-of-way, power line clearings of any 
width, and non-census water. If intermingled in forest areas, unimproved roads 
and non-forest clearings must be more than 120 ft wide or more than one acre 
in size to qualify as non-forest land. Structures such as houses and cabins are 
considered non-forest land regardless of the size of the housing unit.

Although FIA forest land and non-forest land often are referred to in terms of 
“land use”, FIA definitions reveal components of both land use and land cover. 
Requirements for minimum tree stocking or crown cover, minimum patch size, 
and minimum patch width all refer to land cover characteristics. Presence or 
absence of specific human activities (e.g., clearing of power line rights-of-way, 
or mowing of city parks) refers to land use characteristics. In addition, a temporal 
component is inherent within FIA’s definitions: previously forested lands continue 
to be defined as forest following removal of tree canopy (e.g., from harvest, fire, 
or windstorm) if those lands have not been converted to another use and future 
tree regeneration is expected to achieve minimum thresholds of stocking or 
crown cover. FIA forest land is further differentiated into three sub-components: 
timberland, reserved forest land, and other forest land, which are defined by forest 
productivity and protection status.

Satellite Image-Based Land Cover Classification

Satellite imagery incorporates large geographic extents and commonly is 
used for mapping land cover. Land cover classifications typically include all 
landscape entities such as urban areas, forests, shrublands, grasslands, open 
water, etc. Usually these map products are defined in terms of land cover such as 
the National Land Cover Database (NLCD) of 2001 (Homer and others 2007). 
However, a seminal classification system for remotely sensed data (Anderson 
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and others 1976) refers to both land use and land cover, as do many current 
assessments of Bland use/land coverD change and trends. 

Nelson and others (2005) explored the efficacy of satellite image-derived maps 
for estimating forest land area by comparing estimates obtained from FIA, the 
USDA Natural Resources Conservation Service’s (NRCS) National Resources 
Inventory (NRI), and four satellite image-derived data sets: 1991 Forest Cover 
Types, 1992–93 Land Cover Characteristics, 2001 Vegetation Continuous Fields, 
and the 1992 NLCD. The four satellite image-derived land cover maps, differing 
in date of image acquisition, classification scheme, and spatial resolution, showed 
varying degrees of similarity with inventory estimates of forest land across the 
conterminous United States (CONUS).

Forest Land Cover and Land Use

Both FIA and satellite image-based classifications may include components 
of land cover and land use but the importance of cover vs. use differs between 
these approaches. Therefore, a mapping approach for differentiating forest land 
use versus forest land cover would provide a more consistent basis for comparing 
classified satellite imagery with FIA estimates of forest land area. This topic 
comprises components of a broader research project being conducted by FIA and 
the Forest Service Remote Sensing Applications Center to produce a “four-in-
one” geospatial dataset of pixel predictions for percent 1) tree canopy cover, 2) 
forest cover, 3) forest use, and 4) subcomponents of FIA forest land. 

Nelson and others (2004) addressed the first component – tree canopy cover – 
by calibrating satellite image-based per-pixel predictions of percent tree canopy 
cover such that resulting estimates of forest land area were comparable to FIA 
estimates. Canopy cover is defined as “the proportion of the forest floor covered 
by the vertical projection of the tree crowns” and canopy closure is defined as “the 
proportion of the sky hemisphere obscured by vegetation when viewed from a 
single point” (Jennings and others 1999). Although terms such as crown closure, 
crown cover, and canopy closure sometimes are used interchangeably, (e.g., 
Avery and Burkhart 1994), we use the term canopy cover as defined in Jennings 
and others (1999). Although per-state estimates of forest land area derived from 
tree canopy cover data were strongly and positively correlated with FIA estimates, 
the two were not equivalent, due in part to definitional differences in land cover 
and land use. 

The fourth component – differentiating timberland, reserved forest land, and 
other forest land – has been addressed by combining geospatial datasets of forest 
inventory attributes, forest land cover, and land ownership and protection (Nelson 
and Vissage 2007).

The focus of this study is to address the second and third components of the 
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“four-in-one” project – forest cover vs. forest use – by using existing geographic 
information systems (GIS) / remote sensing data layers to produce a map of 
forest land for the conterminous United States (CONUS), corresponding to FIA’s 
definition of forest land. The initial map product is designed to have spatial 
resolution of 250 m, although the modeling procedure was designed to allow for 
production of forest maps having other spatial resolutions. Six states were chosen 
to develop and test the methodology: Arizona, Minnesota, Montana, New York, 
North Carolina, and Oregon. The subject of this paper is the development of the 
forest land use product for these six states.

Methods

An overview of the geospatial modeling process is presented below, and is 
diagrammed in the flowchart in figure 1. Following this overview is a more in-
depth description of the methodology for specific land cover components. 

FIA forest land is characterized by minimum tree stocking or crown cover, 
minimum patch area and width, and absence of non-forest uses. Non-forest land 
is defined in terms of agriculture lands, roads, urban areas, water, and small 
patch area or width. GIS and remote sensing data layers that characterize non-
forest land cover classes already exist for CONUS. Therefore, forest land can be 
characterized and mapped by eliminating everything that is not non-forest land. 

A raster tree canopy cover data layer was filtered to serve as a surrogate for 
FIA tree stocking/crown cover. Because the tree canopy dataset used in this study 
had coarser spatial resolution (250 m) than the other land cover datasets (30 m), a 
dasymetric mapping procedure was employed to spatially reallocate tree canopy 
cover to only areas with potential tree cover within the 250 m pixels so that 
accurate percent tree canopy cover estimates could be made.

The first step involved selection of land cover pixels where trees could 
potentially grow; trees cannot grow or are prohibited from growing on several 
land cover types (e.g., roads, water, and agricultural lands). GIS and remote 
sensing data layers of these land cover classes were combined and labeled as non-
forest; everything else was labeled as potential forest.

Within each canopy cover pixel, non-forest cover pixels were labeled as non-
tree cover; remaining areas were labeled as potential tree cover. The percent tree 
canopy cover attributed to the coarser pixel was reallocated to represent a more 
spatially explicit distribution of tree canopy cover within each pixel. This “true” 
“canopy cover layer was used to eliminate areas of potential forest that did not 
meet the minimum threshold. Initial GIS processing was conducted in a vector file 
format. This procedure was compared with a raster-based approach, which was 
used thereafter.
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Non-Forest Land Use

Agriculture Lands: The database used to delineate agriculture lands was the 
2001 NLCD (Homer and others 2007), which categorizes the entire U.S. at a 
spatial resolution of 30 m into 29 land cover classes (http://landcover.usgs.gov). 
The classes of interest to this project were 81 (pasture/hay), 82 (cultivated crops), 
and 31 (barren). Overall classification accuracies reported for 2001 NLCD ranged 

from 70 to 98 percent across mapping zones, with a nationwide average accuracy 
of 83.9 percent (Homer and others 2007). To create an agriculture/bare land mask, 
pixels with codes 31, 81, or 82 were recoded to a value of “1”; everything else 
was recoded to value of “0”. The agriculture/bare land mask was converted to a 
polygon coverage.

Roads: The roads database, which is a line coverage at a scale of 1:100,000, 
was obtained from the Bureau of Transportation Statistics (http://www.bts.gov). 
Roads are attributed as indicated in the first two columns of table 1. According to 

FIA’s non-forest land definition, unimproved roads that are intermingled in forest 

areas and less than 120 feet wide are considered forest land. Four-wheel-drive 
(4WD) trails generally are narrow and unimproved, meaning that they are not 
typically defined as non-forest. Therefore, these roads, with FCC codes A5 - A53, 

were deleted from the roads database. Since roads in the database are represented 
as centerlines that have no inherent width, the lines were buffered according to the 
road widths shown in table 1. These road widths were either derived from federal 
road standards or from general accepted standards of road widths.

Table 1: Road Attributes and assigned widths

FCC Road Type Total Road Width

A1 – A18 Interstate Highways 86 ft
A2 – A29 State Highways 44 ft
A3 – A38 City Main Thoroughfares 30 ft
A4 – A48 Local Roads 20 ft
A5 – A53 4WD Trails 10 ft
A61 Cul-de-Sac 120 ft
A62 Traffic Circle 120 ft
A60, A63 Access Ramps 26 ft
A64 Service Road 10 ft
A7 – A73 Other 10 ft

Water: The water data layer was extracted from the Wildland-Urban Interface 
(WUI) database (http://silvis.forest.wisc.edu/projects/WUI_Main.asp), which is 
based on the U.S. Census Bureau TIGER line files. The scale of the water data 

layer is 1:100,000. 
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Urban Areas/Structures: The smallest geographic entity for which the U.S. 
Census Bureau tabulates decennial data is the census block (http://www.census.
gov). Aggregations of blocks are termed block groups. Blocks and block groups 
are irregular in shape and vary in size. Urbanized areas (UA) and urban clusters 
(UC) portray aggregations of core blocks or block groups that have a population 
density of at least 1,000 people per square mile, and surrounding blocks or block 
groups that have an overall density of at least 500 people per square mile. The UA 

and UC areas were considered to be non-forest. Census UA/UC data layers 
address population centers, but do not include rural areas. In addition, houses 
rarely are evenly distributed within census blocks or block groups. Normally, 
houses are located close to roads and are not located on steep slopes. Using the 
roads database described above, roads were buffered by 300 feet to capture a zone 
of proximity in which most housing structures are expected to be located. 

A data layer of topographic slope from the USGS Elevation Derivatives for 
National Applications (EDNA) (http://edna.usgs.gov/) was used to produce a 
slope mask, where a value of “1” indicated areas less than 15 degrees of slope and 
a value of “2” indicated areas greater than or equal to 15 degrees of slope. 

The slope mask and the road buffer data layers were joined together to predict 
locations of housing structures for areas outside the urban areas and urban 
clusters. Using a housing density attribute in the WUI database, the number of 
houses in each census block was redistributed to a geographic subset of each 
block occurring within the zone of road buffers, where slopes were less than 15 
degrees. This dasymetric mapping approach was used to recalculate housing 
density within non-steep road buffers. Raster cells then were assigned their 
corresponding housing density value. If the resulting housing density was less 
than one house per ten acres, then the area was considered to be undeveloped. 
Otherwise, the area was considered to be developed and defined as non-forest. 

The non-forest land use products described above are used in the development 
of the potential tree cover data layer discussed in the next section.

Tree Cover

Potential Tree Cover: A data layer representing non-treed lands was created 
by combining data layers for agriculture lands, road buffers, and water, described 
above. Remaining areas were assumed to have potential for growing trees. The 
potential tree cover data layer is used in the development of the potential forest 
data layer described in the next section.

Percent Potential Tree Cover: The next step was to calculate the areal extent 
of potential tree cover within each 250 m x 250 m cell, using the Moderate 

Resolution Imaging Spectroradiometer (MODIS) 250 m Vegetation Continuous 

Fields (VCF) percent tree canopy cover dataset. The VCF dataset consists of 

USDA Forest Service Proceedings – RMRS-P-56 23.



8

per-pixel predictions of woody vegetation, herbaceous vegetation, and bare 
ground, which together sum to a total of 100 percent cover for each pixel. The 
VCF data layer of interest to this project is woody vegetation, i.e., tree canopy 

cover, which will be referred to simply as VCF for the remainder of this 

document. 

Using VCF and the PIXELX and PIXELY functions in the ERDAS Imagine 
software package, a raster product was created where each pixel had a unique 
value based on the spatial location of the cell. This raster product was converted 
to a polygon coverage consisting of 250 m x 250 m squares. This polygon 
coverage was joined with the potential tree cover data layer making possible the 
calculation of area of potential tree cover occurring within each square polygon. 
This product was converted to a raster with a spatial resolution of 250 m. The area 
values were converted to percentages, thereby creating a percent potential tree 
cover data layer.

Area-Weighted Canopy Cover: VCF percent tree canopy cover values 

represent per-pixel predictions. However, canopy cover can vary substantially 
within each pixel because source MODIS pixels are coarse in spatial resolution 
relative to patterns of forest structure. For example, a VCF cell value might be 

30% but this does not imply that woody vegetation is evenly distributed, at a 
density of 30%, throughout the cell.

To calculate the “true” canopy cover of the cell, the VCF per-pixel prediction 
of percent tree canopy cover was divided by the percent potential tree cover. If the 
percent potential tree cover was 100% and the VCF value was 30%, the woody 
vegetation was assumed to be evenly distributed throughout the cell and the BtrueD 
canopy cover is also 30%. If, however, only 50% of the cell has potential tree 
cover and the VCF value was 30%, then the VCF value is reallocated to the half 
of the cell with potential tree cover and the area-weighted prediction of canopy 
cover for that cell is 60% (i.e., 30/50).

Forest Cover Mask: A minimum threshold of tree stocking (or crown cover) 
must be present to meet FIA’s definition of forest land. Because no geospatial 

dataset of tree stocking was available, the area-weighted canopy cover dataset was 
used as a surrogate. To satisfy the stocking requirement, a 25% minimum 

threshold of canopy cover was employed. If the area-weighted canopy cover for a 
pixel was below the threshold, the pixel was assigned a “0”. Otherwise, the pixel 
was assigned a “1”. This forest cover mask dataset was used to remove areas of 
non-forest land from the forest land in the next section. 
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Forest Land

Potential Forest: Potential forest was modeled by combining the potential 
tree cover data layer with the urban areas/structures data layer. Pixels were labeled 
as potential forest if they had potential tree cover and were not labeled as 
developed. 

Minimum Acreage and Width: The next step was to eliminate areas from the 
potential forest data layer that were too small or too narrow, according to FIA’s 
definition. All forest polygons smaller than one acre were relabeled as non-forest. 

Forested areas that were less than 120 feet wide were relabeled as non-forest. 
Because of coverage processing limitations, all procedures were performed on 
geographic subsets of data that measured 150 km x 150 km in extent.

FIA Forest Land: The resulting data layer produced from the steps above was 
joined with the 250 m x 250 m polygon grid created previously making possible 

the calculation of area of potential forest land occurring within each square 
polygon. This product was converted to a raster with a spatial resolution of 250 m 

and the area values were converted to percentages. The forest cover mask 
described above was used to remove pixels with less than 25% area-weighted 

canopy cover. These steps created a percent forest use or percent forest land data 
layer. The percent forest use data layers for Arizona, Minnesota, Montana, New 
York, North Carolina, and Oregon are displayed in Figures 2 – 7.

FIA produces tabular county summaries for various forest attributes which are 
estimated using sample plot measurements. These estimates are made available to 
the public as published reports and via web-based estimation tools such as Forest 
Inventory Data Online, EVALIDator, and FIA MapMaker (http://www.fia.fs.fed.
us/tools-data/). FIA forest land area estimates were compiled for the states and 
counties for each of the six states included in this study. Corresponding estimates 
of sampling errors were used to construct 95 percent confidence intervals 
surrounding per-state estimates. 
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Figure 2: Percent forest use at 250 m spatial resolution of Arizona. 
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Figure 3: Percent forest use at 250 m spatial resolution of Minnesota.

USDA Forest Service Proceedings – RMRS-P-56 23.



12

F
ig

u
r
e

 4
: 

P
er

ce
nt

 fo
re

st
 u

se
 a

t 2
50

 m
 s

pa
tia

l r
es

ol
ut

io
n 

of
 M

on
ta

na

USDA Forest Service Proceedings – RMRS-P-56 23.



13

F
ig

u
r
e

 5
: 

P
er

ce
nt

 fo
re

st
 u

se
 a

t 2
50

 m
 s

pa
tia

l r
es

ol
ut

io
n 

of
 N

ew
 Y

or
k.

USDA Forest Service Proceedings – RMRS-P-56 23.



14

F
ig

u
r
e
 6

: 
P

er
ce

nt
 fo

re
st

 u
se

 a
t 2

50
 m

 s
pa

tia
l r

es
ol

ut
io

n 
of

 N
or

th
 C

ar
ol

in
a.

USDA Forest Service Proceedings – RMRS-P-56 23.



15

F
ig

u
r
e
 7

: 
P

er
ce

nt
 fo

re
st

 u
se

 a
t 2

50
 m

 s
pa

tia
l r

es
ol

ut
io

n 
of

 O
re

go
n.

USDA Forest Service Proceedings – RMRS-P-56 23.



16

GIS Processing Effects

A major technical question is: can a geospatial forest map product be produced 
using a raster GIS file format, rather than the vector GIS file format employed 
in this study? Due to improved processing efficiency, working in a raster 
environment would eliminate the need to subset databases and could greatly 
reduce computer processing time. However, some vector processes cannot be 
replicated in a raster environment, or may produce different results (Wade and 
others 2003). For example, the reallocation of WUI housing density to different 
size polygons is a vector operation and raster data do not have polygons. Also, 
the elimination of areas less than 120 feet wide would be difficult to perform in a 
raster environment, unless pixel spatial resolution was small, which would negate 
some of the gains in processing efficiency. The end products of this project are at 
250 m spatial resolution. The effects of simply eliminating the minimum width 
and area processes on the overall forest land area estimates were not investigated 
as part of this study.

For comparison, the vector methodology described in this paper was adapted 
for a raster environment, with one process altered and another process omitted. 
The process altered was the elimination of areas less than 120 feet wide. Instead, 
a minimum mapping size criterion was applied, which partially dealt with the 
120 foot width requirement. The process omitted was the reallocation of housing 
density. All the data layers used in the vector-based approach were converted to 
a raster file format with spatial resolution of 30 m. The same basic procedures 
described above were followed, using the ERDAS Imagine software package.

Comparisons

Forest Land Area: Estimates of forest land area derived from this study’s 
geospatial datasets were compared with FIA’s plot-based estimates. Additional 
comparisons were made with estimates of forest land area derived from the 2001 
NLCD (Homer and others 2007), the 2001 Forest Types Map (Ruefenacht and 
others 2008), and with FIA estimates of timberland – a major sub-component of 
FIA forest land.

For each state, countywide FIA estimates of forest land area were compared 
with modeled geospatial estimates to produce area weighted root mean square 
deviations (RMSD) using methods derived from Häme and others (2001): 

(1)

 

( )! =
i

isir

i

rs
pp

A

a
RMSD

2ˆˆ

where !" is the area of the ith county, #$is the total area within a state (sum of !"s 
for all counties in that state), and p

ir
ˆ  and p

is
ˆ  denote the estimated proportion of 

forest land in the ith state obtained from the FIA sample plots (%) and modeled 
geospatial dataset (&) estimates.
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Results

Differences in results derived from the raster and vector products were 
insignificant (table 2), but raster processing took only two days per state, as 
opposed to seven days for vector processing. These results support those of 
Wade and others (2003) who reported faster processing time with raster data, and 
ecologically insignificant differences in results. Subsequent results are reported 
only for modeling of raster geospatial file formats. 

Table 2: Comparison of forest land area estimates (acres) derived using vector and raster GIS file 
formats.

State Raster Vector

Difference 

(Raster – 

Vector)

RMSD 

(Acres)

RMSD 

(Prop.)

RMSD 

(Percent)

Arizona 5,076,039 5,106,296 -30,257 11,209 0.0017 0.17

Minnesota 17,442,442 17,502,500 -60,058 21,082 0.0010 0.10

Montana 19,091,504 19,688,044 -596,540 33,000 0.0009 0.09

New York 18,309,622 16,839,980 1,469,642 33,880 0.0022 0.22

North 
Carolina 17,187,758 16,634,397 553,361 10,791 0.0006 0.06

Oregon 22,731,634 24,130,448 -1,398,814 79.867 0.0014 0.14

Figure 8 shows the per-state FIA estimates of forest land (FIA forest land) 
and timberland (FIA timberland) area compared to estimates derived from raster 
geospatial modeling of this study (GIS raster model), 2001 NLCD (NLCD01), 
and 2001 Forest Type Groups (ForTypGrp Map) datasets. Forest land area 
estimates from the raster model were substantially lower than FIA forest land area 
estimates for three western states (Arizona, Montana, Oregon), but were more 
similar for three eastern states (Minnesota, New York, North Carolina). However, 
all estimates were outside the lower and upper error bounds of the FIA forest land 
area estimate 95 percent confidence intervals. Modeled estimates were lower than 
2001 NLCD estimates for all states, and lower than 2001 Forest Types estimates 
for all states except Minnesota, where the two were similar. By definition, 
timberland comprises a sub-component of FIA forest land area. For all states 
except North Carolina, FIA area estimates of timberland were significantly lower 
than estimates of forest land.
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Figure 8:  Estimates (in acres) of forest land area derived from the GIS raster 
model, FIA forest land, 2001 Forest Type Groups Map, 2001 NLCD; and FIA 
timberland area. Error bars for FIA forest land and FIA timberland show the 95 
percent confidence intervals.

Figure 9 shows the RMSD between FIA estimates and raster GIS model-based 
estimates of countywide forest land area for each of six states included in this 
study. FIA forest land area estimates were in agreement with the forest land area 
estimates produced in this study. Arizona shows the largest RMSD, exceeding 3 
percent, while Minnesota, New York, and North Carolina all had RMSD values 
below 0.5 percent. Montana and Oregon showed RMSD values between those of 
Arizona and the three eastern states. 
 

Figure 9:  Area-weighted RMSD between FIA-based and GIS raster model-
based countywide estimates of forest land area.
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Discussion

Figure 8 reveals disappointing results in the raster GIS model-based estimates 
of forest land area for all states, with the possible exception of New York. One 
processing step in particular – applying a minimum canopy cover threshold of 
25% – likely was a major cause of the discrepancy in estimates between FIA 
and the raster GIS model. A change in this threshold would greatly influence the 
resulting forest land area estimates. Nelson and others (2004) reported that mean 
VCF percent canopy cover varies substantially among states. Thus, considerable 
improvement in estimates is expected to result from optimizing the tree canopy 
cover dataset.

One of the goals of this project was to design an operational modeling 
framework where interchangeable pieces could be taken out and replaced with 
newer or more current data, or used for other spatial resolutions. Because the 
geospatial modeling procedure is now established and documented, it is possible 
to rerun the models with alternate data sources, and recalculate forest land area 
estimates, with resulting improvement in estimates of forest land area.

One of the major challenges with the methodology was the amount of 
time involved in processing geospatial databases in the GIS. For example, the 
computer processing time for each state spanned a minimum of seven days, which 
did not include analyst time required to obtain and transfer files, manage datasets, 
set up processes, etc. To process one state might require a total of two to three 
weeks. One of the reasons why the processing takes a considerable amount of 
time is due to the necessity of sub-setting the data layers into small subsets. This 
made it necessary to keep track of neighboring subsets, which was challenging. 
Extra processes needed to be incorporated to handle border issues, which 
significantly increased the processing time. Based upon our results, it is strongly 
recommended that future processing be performed in a raster environment, with 
modeling steps modified accordingly. 
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Investigation into Calculating Tree Biomass 
and Carbon in the FIADB Using a Biomass 
Expansion Factor Approach 
 
Linda S. Heath1, Mark H. Hansen2, James E. Smith1, W. Brad 

Smith3, and Patrick D. Miles2  
 
 

Abstract:  The official U.S. forest carbon inventories (U.S. EPA 2008) have relied on tree 
biomass estimates that utilize diameter based prediction equations from Jenkins and 
others (2003), coupled with U.S. Forest Service, Forest Inventory and Analysis (FIA) 
sample tree measurements and forest area estimates. However, these biomass prediction 
equations are not the equations used in the current public national FIA dataset 
(FIADB3), which utilizes regionally specific prediction equations, nor are they based on 
current FIA volume estimates. We describe and investigate an approach that is proposed 
for biomass estimates in the FIADB version 4 (FIADB4), due to be released in April, 
2009, and that would produce national-level biomass and carbon estimates consistent 
with FIA volume estimates at the tree-level. The approach, called the component ratio 
method (CRM), is based on: 1) converting the sound volume of wood in the bole to 
biomass using a compiled set of wood specific gravities; 2) calculating the biomass of 
bark on the bole using a compiled set of percent bark and bark specific gravities;  3) 
calculating the biomass of  tops and limbs as a proportion of the bole biomass based on 
component proportions from Jenkins and others (2003); 4) calculating the biomass of the 
stump based on equations in Raile (1982); and 5) summing the parts to obtain a total 
aboveground live biomass.  Root biomass is also available as a proportion of the bole 
biomass based on component proportions from Jenkins and others (2003).  The CRM 
approach is based on assumptions that the definition of bole in the volume prediction 
equations is equivalent to the bole in Jenkins and others (2003), and that the Jenkins and 
others (2003) component ratios accurately apply.  

We compare results between estimates calculated using equations in Jenkins and 
others (2003), current regional FIA equations, and this approach. The CRM approach is 
promising because the estimates are congruent with FIA volumes and compiled specific 
gravities. However, because FIA units currently use different volume equations the 
resulting estimates are not nationally consistent (that is, biomass of the same diameter 
and species tree will differ between regions). Because a number of volume equations are 
currently used by FIA, this approach can be complex for those wanting to take their own 
tree data and estimate biomass with FIA prediction equations especially when data cross 
regional boundaries.  In the long-term, a planned and coordinated research study, as 
well as an accompanying operational implementation plan, for volume and biomass 
estimation methods would greatly add to the credibility of these estimates in the publicly 
available national FIA dataset.  

 
Keywords: biomass equation, forest inventory, greenhouse gas inventory, FIA 
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Introduction 
 

The U.S. Forest Service, Forest Inventory and Analysis (FIA) program is 
receiving an ever-increasing number of requests for forest biomass and carbon 
estimates, in addition to the traditional volume estimates that have been central to 
the FIA program. Because the carbon content of wood and bark is about 50 
percent of dry biomass (Houghton and others 1997), carbon estimates are 
obtained by multiplying dry biomass estimates by 0.5, and all discussion of 
carbon estimation focuses on the estimation of dry biomass.  Previous analysis of 
the data in FIA’s national database revealed inconsistencies in the biomass 
estimation approaches and resulting estimates in the FIA regions (for example, 
see Hansen 2002) suggesting that FIA needs a national approach to biomass 
estimation. More importantly, the standard prediction equations used nationally in 
conjunction with FIA tree measurement data to produce the official forest 
greenhouse gas (GHG) inventories of the United States (U.S. EPA 2008) are the 
biomass prediction equations developed by Jenkins and others (2003).  Note that 
we use the phrase “biomass prediction equation” to indicate the equations are 
fitted models; the word “equation” alone implies an equality. 

 
In addition to a relationship between biomass and carbon, it is logical to 

assume there should be a relationship between volume and biomass.  This 
relationship is implicit in the biomass expansion factor (BEF) approach (Brown 
and others 1989, Houghton and others 1997, Somogyi and others 2007).  The FIA 
program for years has developed and maintained a statistically sound, sample 
based inventory of forests of the United States, including estimated volumes of 
individual sample trees based on tree measurements applied to volume prediction 
equations. These prediction equations used by FIA, such as those described in 
Hahn and Hansen (1991) and Flewelling and Rayner (1993) have been developed 
specifically to obtain the best possible estimates of individual tree volumes on a 
regional basis, have received scientific peer review, and are being used 
extensively for volume estimation purposes. FIA volume estimation procedures 
take into account major species, diameter, and height, or other factors that help 
predict a tree’s volume, as well as taking deductions for atypical tree form. 
Traditionally, FIA has focused on the estimation and reporting of net volume of 
wood in the bole (net means deductions for nonmerchantable portions of the bole 
are made); however, in recent years the focus has shifted to the estimation of 
sound volume where only deductions for missing and rotten portions of the bole 
are made. Tying biomass to sound volume, and then multiplying biomass by a 
carbon conversion factor, provides not only consistent volume and biomass 
estimates, but also ‘matching’ carbon estimates.  

 
One way for FIA to calculate carbon estimates at this time in the national FIA 

databases is to simply adopt the Jenkins and others (2003) equations, arguably the 
current standard for carbon estimates in the United States (for example, see Smith 
and others 2006, U.S. Dept. of Energy 2006, U.S. EPA 2008).  This would make 
the FIA database consistent with past national carbon reporting.  It would not 

 2
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provide direct linkage between biomass and carbon estimates and the volume 
estimates. 

 
The objective of this study is to conduct a preliminary analysis of a biomass 

expansion factor approach to investigate its potential to be a nationally consistent 
biomass computation procedure to calculate dry weight biomass in the publicly 
available national-level Forest Inventory & Analysis database, the FIADB (U.S. 
Forest Service 2008).  Because “biomass expansion factor” is often used 
generically and consequently is ambiguous, we use the phrase “component ratio 
method” (CRM) to describe our BEF approach.  We present the CRM approach in 
detail and apply it to a specific example as well as to all data from annualized 
surveys in the FIADB. 

 
Background and Current Status 

 
BEF and Forest GHG Inventories 
 

FIA conducts statistically sound forest surveys over large areas (Bechtold and 
Patterson 2005).  Measurements are taken, and prediction equations applied to 
calculate volume or biomass.  Biomass may be calculated from measured tree 
attributes using biomass prediction equations, or calculated indirectly by 
multiplying the volume estimates by biomass factors that expand or convert the 
volume estimates to biomass.  In the latter case, these factors are called “biomass 
expansion factors,” originally applied only to expand stand-level volumes or 
volume growth.  However, this phrase now has been applied generically at the 
tree level and has been used to mean a number of things, including converting 
units rather than factors that expand. See Somogyi and others (2007) for an 
extensive discussion of various definitions and facets of BEF approaches.  A BEF 
approach is listed as the preferred method for some of the tiers in the 
Intergovernmental Panel on Climate Change guidance for national greenhouse gas 
inventories (Penman and others 2003).  However, the higher tier methods call for 
greater specificity, such as country-level factors and factors specific to species. It 
is generally recognized that when individual tree data is available, biomass 
estimates based on individual trees are preferred.   

 
A Standard Way to Develop Equations 
 

The standard empirical way of developing credible biomass prediction 
equations is to collect data from a sample of trees across the range of sizes, from 
species and the area of interest. This approach was taken in Canada by Lambert 
and others (2005) and Ung and others (2008) using data from thousands of trees 
collected under the Energy from the FORest (ENFOR) project in the early 1980s.  
With these data, the authors could truly develop an internally consistent set of 
national allometric equations, including validation and testing. Two sets of 
equations were developed: one based on diameter at breast height (d.b.h) only and 
the other based on d.b.h and height.  Such an approach provides not only 
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predictions of individual tree biomass but also estimates of the bias and random 
error associated with these prediction equations. 

 
A second credible approach is to collect unrelated datasets for a wide-ranging, 

well studied species without having to collect additional samples, and reanalyze 
the data. For instance, Wirth and others (2004) studied Norway spruce using this 
approach. Out of 688 trees, only 78 were completely sampled for biomass, and 
young trees especially were under-represented.  In spite of this limitation, this 
study features important points to consider when designing a study to derive 
biomass equations.  The credibility of the equations and estimates are 
strengthened by setting evaluation criteria on the process and resulting equations.  
This is discussed below.  

 
Evaluation Criteria 

 
Quality, science-based information for land management, at the strategic to 

applied level, is needed (USDA FS 2007).  “Science-based” typically implies 
some type of peer-review, either as peer-review in journal publications or as a 
review by a designated panel of experts.  The most stringent criteria for choosing 
participants in peer-review are for highly influential scientific assessments (OMB 
2004), but even this document notes that different types of peer review are 
appropriate for different information.  The Forest Survey Handbook4 calls for 
“high quality, consistent and reliable data” in FIA databases, but provides little 
guidance on how to do that.  More detailed guidance is given within the Forest 
Service Research and Development quality assurance program.  Acceptance and 
publication in a peer-reviewed research journal is often an acceptable standard, 
but for highly influential work or in which the turnaround time is critical, expert 
panels are often preferred.  

 
In the past, for individual studies, evaluation criteria for carbon accounting 

studies focused on criteria of accuracy, precision, consistency over time, and 
transparency, yet would also be cost-effective and usable by other scientists and 
managers and.  Having a consistent approach over time is absolutely critical 
because it is the change in carbon over time, not just carbon stocks, which is of 
most interest in the terms of the carbon issue.  Inconsistent approaches over time 
can affect the amount claimed to be sequestered.  In this preliminary 
investigation, we do not formally evaluate the equations, but note issues and 
results to consider. 

 
As new information needs and science results become available, it is important 

to re-evaluate existing systems, in this instance, equations, and consider adopting 
new approaches.  To maintain consistency over time when implementing an 
“improved prediction equation” it is important to be able to apply the new method 
to not only current data but also to all previous data that form the historical 
record, to recode all tools that use the method being updated, and to work with 
                                                 
4 Forest Service Handbook 4809.11 Amendment No. 4809.11-2001-1, approved 12/28/2008. 
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users to again develop credibility in the methods.  Thus, changing estimation 
techniques is costly in many ways, and therefore changes are not undertaken 
without clear benefits. 
 
Carbon Estimation in Forest GHG Inventories of the United States 

 
The Jenkins and others (2003) biomass prediction equations are one of the 

pillars of the carbon estimates used for forests in the official greenhouse gas 
inventories of the United States (U.S. EPA 2008), which have arguably served as 
the “gold standard” for carbon.  Scientific studies (for example, Potter and others 
2008) compare their carbon results to carbon estimates based on the application of 
Jenkins and others (2003) to the FIA data, or use the estimates to calibrate their 
models. Virtually all the policy-relevant carbon estimates and carbon tools, such 
as the U.S. Greenhouse Gas Inventories (for example, U.S. EPA 2008, USDA 
2008), Heinz Center carbon storage indicators (Heinz Center 2002, 2005, 2008), 
carbon indicators for the 2010 Sustainable Forests, the updated 1605b Voluntary 
Reporting Program of the United States (Smith and others 2006, Pearson and 
others 2008, U.S. Dept of Energy 2006, NCASI 2008); Carbon Calculation Tool 
(Smith and others 2007); Hoover and Rebain 2008 (FVS-Carbon) in the United 
States are based to at least some degree on FIA data and the biomass equations 
from Jenkins and others (2003).  There are a number of studies that have used FIA 
regional biomass estimates for carbon (such as Schroeder and others 1997), but 
these studies only covered only a part of the conterminous United States. 

 
Carbon estimates for trees based on databases of older plot-level FIA data are 

based on Smith and others (2003), which were developed based on biomass from 
Jenkins and others (2003).  The Jenkins and others (2003) equations were 
developed at the time specifically because 1) large differences in tree biomass 
carbon between FIA units5 for the same species and size tree sometimes occurred; 
2) documentation for existing equations was scattered and uneven in its quality so 
it was difficult to check the data or know the source of the estimate; and 3) 
databases at the time did not include mass for standing dead trees.  Some of these 
items are still true. Perhaps most importantly, forest carbon inventories were still 
viewed with some suspicion by many communities as highly uncertain, and 
having a method based on a peer-reviewed publication provided credibility, 
especially with carbon becoming a commodity in the marketplace.  

 
Jenkins and others (2003) features 10 equations covering all tree species in the 

conterminous United States, based on a meta-analysis of a thorough compilation 
of all biomass equations (Jenkins and others 2004) found in the literature. These 
equations are based on diameter only because the databases available at that time 
included tree diameter in all tree records, but only occasionally included measured 
height (that is, not estimated from diameter).  A similar approach was also 

                                                 
5 The FIA units are designated by Northern Research Station (NRS), Pacific Northwest Research 
Station (PNWRS), Rocky Mountain Research Station (RMRS), and Southern Research Station 
(SRS). 
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adopted by Muukkonen (2007) to develop generalized allometric volume and 
biomass equations for some species in Europe for regional analyses, also based on 
diameter. Moreover, Muukkonen (2007) included equations with height in the 
underlying compilation of equations by using diameter-height equations, which is 
usually a strong relationship. 

 
Some users of Jenkins and others (2003) equations have reported the equations 

estimate greater biomass than they expect at large diameters because height is not 
included, that the form of the equation forces biomass to continue to increase as 
diameter increases (see Figure 1).  Users expect the rate of increase at larger 
diameters to be smaller with total biomass in a tree approaching some maximum 
upper limit rather than continuing to increase at an increasing rate.  This issue 
may be worth revisiting. 
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Figure 1:  Total aboveground biomass from Jenkins and others (2003) estimated for each of the 
species groups.  Note the diameter of woodland species may be measured at diameter root collar 
because some woodland species are multi-stemmed; this woodland equation is based on d.b.h. 

 
 

FIA Biomass and Volume Estimation for Forests of the United States 
 
There is currently no single publication that lists the tree biomass estimation 

approaches for all the FIA units.  Current FIA biomass and volume equations 
have different forms for the regional FIA units, and were developed at different 
times from different datasets (Hansen 2002).  Hansen (2002) documented the 
different volume and biomass estimation procedures in the eastern FIA units, 
which, due to historical reasons, included three sets of approaches for the current 
Northern Research Station (NRS) FIA alone.  Methods were compared for 67 
species that cross regional boundaries.  Based on the results, Hansen cautioned 
users of FIA data from making regional comparisons of volume or biomass 
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estimates for small diameter trees.  He suggested that FIA needs to move to a 
consistent method to estimate tree volume and biomass nationwide that uses 
common measurement data.  However, he also noted that consistency over time is 
an important consideration in revising equations because these will affect the 
calculation of changes over time.  

 
Methods 

 
Our approach entails compiling species-level wood densities (dry mass per unit 

green volume) to multiply by green bole volume for a dry biomass estimate per 
bole.  This approach makes the biomass estimate for the bole portion of the tree 
equivalent to the FIA volume of that portion; adopting the Jenkins and others 
(2003) equations would not.  In addition to tree biomass prediction equations, 
Jenkins and others (2003) presents equations to predict the proportion of the 
biomass in foliage; tops, limbs, and stumps; bark of bole; bole wood; and coarse 
roots; to the total aboveground biomass, respectively, for hardwood and softwood 
species by d.b.h.  We use ratios developed from the component equations in 
Jenkins and others (2003) for a consistent approach to predicting biomass in other 
components of the tree besides the bole.  We calculate the component ratio 
estimates based on the equation sets from Jenkins and others (2003), and produce 
proportions of tops and limbs, and root components in terms of bole wood 
biomass. The calculation of stump and bark components that the ratios are built 
from are based on different methods described below.  We multiply these ratios in 
terms of bole biomass by our calculated bole biomass to calculate the biomass in 
each component pool. 

 
Understanding the concepts underlying the current approaches is necessary to 

devise a method to calculate biomass from volume.  First we define types of 
volumes and biomass used by FIA. We then briefly discuss current regional 
biomass computation.  Finally, we describe the steps we used to calculate biomass 
from sound volume. 

 
Definitions 
 

Definitions of the various volume, biomass, and carbon components are key.  
FIA volumes are green wood basis—that is, they represent the volume of wood as 
standing or freshly cut, not the volume of dry wood, and bark is not included.  
The unit of measure of interest for this study is cubic feet, although other units of 
volume, such as board foot, are available from FIA.  Volume is defined for trees 
greater than 5 inches diameter, and only includes the central bole of the tree from 
1 foot aboveground to the point where the central stem has a diameter outside 
bark of 4 inches (or the point where the tree forks into branches all of which are 
less than 4 inches).  This is the standard volume that has been used historically in 
most volume studies in the United States for more than 100 years.  Trees less than 
5 inches d.b.h., called saplings, are assumed to have zero volume.  
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Users of biomass equations and estimates in general need to aware that these 
may be on a dry or green weight basis; may include or exclude bark, foliage, 
stump and root portions of trees;  may include seedlings (trees < 1 inch diameter); 
or may include species that FIA considers to be shrubs rather then trees.  Also the 
units of measure for reporting biomass include pounds, tons and kilograms.  
Biomass in this study is on an oven-dry basis and includes bark, but excludes 
foliage. The unit of measure is pounds unless otherwise noted and FIA biomass is 
defined only for trees greater than 1-inch diameter.  FIA biomass estimates 
typically include only the aboveground portion, however, with the introduction of 
FIADB4 a prediction of the biomass in the coarse roots portion of all trees greater 
than 1-inch diameter has been added.   
 
Volume 

 
FIA defines and calculates gross, sound, and net bole volumes, of all live trees 

at least 5 inches d.b.h (USDA FS 2008b) (Fig. 2). These volumes are estimated 
for the central stem (bole) from a 1-foot stump to a minimum 4-inch top diameter 
outside bark, or to a point where the central stem breaks into limbs.  The only 
time there are differences between these three volume estimates for a tree is when 
the estimated rotten or missing parts of the tree are nonzero, or when the tree has 
poor form.  Gross volume is the total potential volume; rotten or missing parts of 
the tree and poor form effects on tree volume have not been deducted from gross 
volumes. Sound volume is gross volume with missing and rotten volumes of the 
tree deducted.  Net volume is gross volume minus deductions for rot, roughness, 
and poor form.  Depending on the FIA unit, either gross volume or net volume 
will be calculated first, as well as the missing and rotten, or volume affected by 
form, and then sound volume is calculated by adding or subtracting the 
appropriate portion.  Many of the gross volume prediction equations used by the 
Pacific Northwest Research Station FIA unit are based on the integration of taper 
equations that predict the diameter of the bole at any height, such as those in 
Flewelling and Rayner (1993).  The Northern Research Station FIA unit is in the 
process of converting its volume estimation to a taper equation-based system.  
These taper-based systems are capable of predicting the bole volume in any 
portion of the bole from the ground to the top of the tree. 

 
Biomass 

 
FIADB3 (version 3 of FIADB) includes two biomass variables: total gross 

(named DRYBIOT in the database) and merchantable stem (DRYBIOM) 
biomass.  Total gross aboveground biomass includes main stem, bark, tops, limbs 
and stump of all live trees 1 inch in diameter or larger, but excludes foliage and 
roots. Merchantable stem biomass includes only trees greater than or equal to 5 
inches d.b.h from a 1-foot stump to a minimum 4-inch top outside bark of the 
central stem.  All trees less than 5 inches d.b.h have total biomass, but they have a 
merchantable biomass of zero. Gross biomass minus merchantable biomass 
produces the amount of biomass in tops, limbs, and stumps, as well as all the 
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biomass in trees less than 5 inches diameter.  See Figure 3 for an illustration of 
the differences between these types of biomass.   
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                  Figure 2:  Illustration of gross, sound, and net volume at the tree-level. 
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Figure 3:  The difference between gross and merchantable biomass as stored in FIADB3. 
 
The components of biomass in this approach are illustrated in Figure 4.  The 

biomass components for top and limbs (labeled DRYBIO_TOP) are broken out 
from the stumps (DRYBIO_STUMP) and the merchantable (bole) biomass has 
been labeled DRYBIO_BOLE because it is not the same value as in previous FIA 
datasets.  These three variables are computed for all species where FIA measured   
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d.b.h., and are defined to be zero for woodland tree species (because diameter is 
measured at root collar) and for trees less than 5 inches d.b.h.  To avoid 
confusion, the attributes DRYBIO_SAPLING (total aboveground biomass in trees 
1 to 5 inches d.b.h) and DRYBIO_WDLD_SPP (total aboveground biomass in 
woodland species) have been added.  Belowground biomass estimates in coarse 
roots are not part of FIADB3; however, these estimates are of interest and are 
shown in the illustration as DRYBIO_BG. 
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Figure 4:  Biomass variables needed to implement this method in the FIADB. 

 
 
Inconsistencies in estimation of component biomass 
 

FIA biomass estimation procedures have shown unexpected differences in the 
average amount of biomass in tops, limbs, and stumps. Table 1 shows an example 
of the differences between eastern FIA units using select red oak trees of 10 
inches d.b.h and 60-70 feet in height from all trees measured over the period 
1999-2006, using regional equations and the Jenkins and others (2003) equations.  
The percent in tops, limbs, and stumps varies from approximately 10 to 30 
percent in the eastern units, based on the current biomass calculation procedures.  
The pounds of wood per cubic foot of sound wood vary from 40 lbs/cu ft to 
almost 54 lbs/cu ft.  The region with the higher lbs/cu ft has the lowest percentage 
in tops, limbs, and stumps. A revised approach should result in these components 
being similar between regions.  

 10

USDA Forest Service Proceedings – RMRS-P-56 24.



 
Table 1:  Biomass statistics for all 10-inch diameter at breast height, select red oak growing 
stock trees, 60-70 feet tall, from all FIADB3 observations, 1999-2006. 

FIA Regiona DRYBIOM/VOLCFSND 
(DRYBIOT-

DRYBIOM)/DRYBIOT 
 --Pounds wood and bark 

per cu ft sound wood-- 
--Percent of total biomass 
in tops, limbs, and stumps-- 

Using regional equations: 
NRS-East 53.5 11.3 
NRS-West 40.9 29.8 
SRS 41.4 21.8 

Using Jenkins and others (2003): 
NRS-East 40.7 26.5 
NRS-West 47.7 26.5 
SRS 38.3 26.5 

a NRS-East: the eastern portion of the Northern Research Station which is the area covered by the former 
Northeastern Research Station, NRS-West:  the western portion of the Northern Research Station which is 
the area covered by the former North Central Research Station, and SRS:  Southern Research Station.. 
 

 
Component Ratio Method (CRM) 

 
For trees 5 inches in diameter and greater, total aboveground biomass is 

computed as the sum of three components: bole of the tree, tops and limbs, and 
the stump.  Bole biomass is the largest portion of aboveground biomass. Stumps, 
tops and limbs, and saplings are a significant yet much smaller portion of the total 
aboveground biomass in most forests.  The biomass of saplings, that is, trees less 
than 5 inches in diameter but greater than or equal to 1-inch diameter, are based 
on an adjustment of Jenkins and others (2003) equations because they have zero 
volume.  Belowground biomass, that is, biomass of coarse roots, is predicted as a 
ratio of aboveground tree biomass. We present the details of these calculations by 
section below. 

 
Aboveground Biomass of Trees ! 5 inches d.b.h., Dry Weight: Total 
aboveground biomass (dry weight) of trees greater than or equal to 5 inches d.b.h. 
is calculated as the sum of three components of the tree:  

 
  AGBIOT5 = DRYBIO_BOLE + DRYBIO_STUMP + DRYBIO_TOP     [1] 

 
where  AGBIOT5 (lbs) = total aboveground biomass (dry weight), including bark 
but excluding foliage, of a tree ! 5 inches d.b.h., 
 DRYBIO_BOLE (lbs) = biomass (dry weight, including wood and bark) 
of the main stem of tree that also defines sound volume, 

 DRYBIO_TOP (lbs) = biomass of top and limbs (dry weight, excluding 
foliage but including bark) of trees ! 5 inches d.b.h., and, 

 DRYBIO_STUMP (lbs) = biomass (dry weight) of wood and bark from 
ground level to 1 foot stump. 

 
Biomass of the Bole:  Biomass of the bole of a particular species is calculated by 
multiplying green volume (cu ft) by the weight of one cubic foot of water (62.4 
lbs/cu ft) to convert to a weight basis, and then multiplying by the specific gravity 
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of the component, including wood and bark, separately, for that species.  Specific 
gravities are obtained by laboratory studies, and the results compiled by species 
where available, or assigned to similar species.  Here, specific gravities in terms 
of dry weight per unit of green volume are used. Because the specific gravity is 
different for bark and wood, these two components are calculated separately and 
then summed.  The calculation for bark has an additional term, bark as a 
proportion of wood volume.  Bark volume in terms of percentage is given in 
Table 2; proportions are equal to percent divided by 100.  Specific gravities used 
in this study are from Miles and Smith,6 which build on the compilations by 
Smith (1991) and Jenkins and others (2004). 

 
DRYBIO_BOLE (lbs) = (VOLCFSND x 62.4 x SG_BARK x BRK_VOL_PROP) 

+ (VOLCFSND x 62.4 X SG_WOOD)   [2] 
 

with DRYBIO_BOLE (lbs) = biomass (dry weight, including wood and bark) of 
the main stem of tree that also defines sound green volume (VOLCFSND), 

   VOLCFSND (cu ft) = sound green wood volume of a tree ! 5 inches d.b.h., 
   SG_BARK = dry weight specific gravity of green bark volume of tree bole, 
   BRK_VOL_PROP = ratio of green volume of bark to green volume of sound 

wood (see Table 2), and, 
   SG_WOOD = dry weight specific gravity of green wood volume of tree bole. 
 

Table 2:  Bark as a percent of wood volume by Jenkins and others (2003) species groups. 
Jenkins groupsa (Bark as % of 

wood volume) 
Jenkins groupsa (Bark as % of 

wood volume) 
Aspen/alder/ 
cottonwood/willow 

20 Cedar/larch 15 

Soft maple/birch 14 Douglas-fir 14 
Mixed hardwood 18 Pine 18 
Hard maple/oak/ 
hickory/beech 

19 Spruce 12 

Woodland 12 True fir/hemlock 15 
aExceptions to these species groups are coastal redwood, giant sequoia, baldcypress, 
eastern, western, and Carolina hemlock – 25%; beech, sycamore – 7% 

 
Factors for Calculating Top & Limbs and Stump Biomass: The biomass in the 
stumps and tops and limbs of large trees make up the next largest components of 
aboveground biomass in most forests.  Jenkins and others (2003) provide 
equations that calculate total aboveground biomass, and also a set of equations 
that estimate the proportion of biomass in the tops and limbs as well as other tree 
components. The CRM uses the component equations from Jenkins and others 
(2003) to compute the ratio of the component to Jenkins total aboveground 
biomass.  These ratios are then multiplied by the bole biomass calculated in [2] 
using the CRM approach to produce the biomass in tops and limbs 
(DRYBIO_TOP), and biomass of the stump (DRYBIO_STUMP).  We cannot 
apply those equations directly because the value of our biomass bole is not the 
same.  
                                                 
6 Miles, Patrick, and W.B Smith. In review. Wood and bark specific gravity for tree species in the 
continental United States.  USDA Forest Service, Northern Research Station. Research Note. 

 12

USDA Forest Service Proceedings – RMRS-P-56 24.



 
Applying these component ratios to biomass equations other than Jenkins and 

others (2003) results in different absolute biomass estimates than would be 
produced by Jenkins and others (2003).  However, we assume that the proportions 
are the same, and thus we calculate these factors to multiply by our bole biomass. 
Equation 3 shows the formula for calculating the proportion in tops and limbs.  
Stump biomass in Jenkins and others (2003) is based on stump volume equations 
from Raile (1982).  Equations 4 and 5, respectively, show the computations for 
factors related to stumps.  

 
  TPLMB_PROP = ((BIO_TOP_JENKINS)/(DRYBIO_BOLE_JENKINS))   [3] 
 
where TPLMB_PROP = proportion of bole biomass that is biomass in top and 
limbs, 

      BIO_TOP_JENKINS (kg) = biomass in top and limbs using Jenkins, and,  
      DRYBIO_BOLE_JENKINS (kg) = biomass of the bole based on Jenkins. 

 
    DRYBIO_STUMP_RAILE (kg) = d.b.h (inch)*d.b.h (inch)*ParameterB      [4]  
  where DRYBIO_STUMP_RAILE (kg) = stump biomass, and, 

        Parameter B = coefficient from Table 1 in Raile (1982).   
 

STUMP_PROP = ((DRYBIO_STUMP_RAILE(kg)) 
/(DRYBIO_BOLE_JENKINS(kg))) [5] 

 where STUMP_PROP = proportion of bole that is stump biomass, 
       DRYBIO_STUMP_RAILE (kg) = biomass in stump, and,  
       DRYBIO_BOLE_JENKINS (kg) = biomass of the bole using Jenkins. 
 
Top and Limb Biomass: Equation 6 shows the computation for estimating 

biomass in the top and limbs. 
 
             DRYBIO_TOP = DRYBIO_BOLE x TPLMB_PROP                     [6] 

 
where DRYBIO_TOP (lbs) = biomass of top and limbs (dry weight, excluding 
foliage but including bark) of trees ! 5 inches d.b.h., and, 

      DRYBIO_BOLE (lbs) = biomass (dry weight, including wood and bark) of 
the main stem of tree that also defines sound volume (VOLCFSND), and, 

      TPLMB_PROP = proportion of bole biomass that is biomass in top-limbs. 
 
Stump Biomass:  Equation 7 shows the computation for stump biomass. 
 
     DRYBIO_STUMP = DRYBIO_BOLE x STUMP_PROP                     [7] 

where DRYBIO_STUMP (lbs) = biomass (dry weight) of wood and bark from 
ground to 1 foot stump, 

 DRYBIO_BOLE (lbs) = biomass (dry weight, including wood and bark) 
of the main stem of tree that also defines sound volume, and,  

       STUMP_PROP = proportion of bole that is stump biomass, see above. 
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As FIA converts to a taper-based system to predict sound volume, it will be 

possible to directly calculate the sound wood volume in any section of the bole, 
including the stump.  Thus, the separate stump calculation based on Raile (1982) 
will not be needed.  

 
Aboveground Saplings: The biomass of saplings is based on biomass computed 
from Jenkins and others (2003) on the observed diameter multiplied by an 
adjustment factor.  For the purposes of this preliminary investigation, the 
adjustment factor was computed as a national average ratio of the CRM total 
biomass divided by the Jenkins total biomass for all 5-inch trees, which is the size 
at which biomass based on volume begins.  Each species group has an adjustment 
factor, which is given in Table 3. Computations are shown in Equation 8. 

 
DRYBIO_SAPLING = (BIO_SAP_JENKINS - FOLIAGE) X (1- 

JENKINS_SAPLING_ADJUSTMENT))  [8] 
 

with DRYBIO_SAPLING (lbs) = aboveground biomass  of trees < 5 inches d.b.h 
and ! 1.0 inch d.b.h., including wood, bark, and stump, but excluding foliage, 

   BIO_SAP_JENKINS (lbs) = aboveground biomass calculated using Jenkins 
and others (2003), converted to pounds 

   FOLIAGE (lbs) = dry weight of foliage from Jenkins and others (2003) 
converted to pounds, needed to subtract off foliage,   

   JENKINS_SAPLING_ADJUSTMENT = factor that adjusts Jenkins biomass 
for trees < 5 inches d.b.h for a smooth transition at 5-inch trees (see Table 3).  
 

As with the stump biomass (DRYBIO_STUMP), when taper equations are 
available for volume estimation in all FIA units, it will be possible to calculate the 
central stem component of sapling biomass if the taper equations have been fit to 
datasets that include an adequate sample of smaller trees. This may prove to 
provide a better prediction of biomass in sapling size trees.   
 
Belowground (Root) Biomass:  Equation 9 shows the computation for coarse 
root biomass. 
 

            DRYBIO_BG = DRYBIO_BOLE x ROOT_PROP                          [9] 
 

where DRYBIO_BG (lbs) = biomass of coarse roots,  
      DRYBIO_BOLE (lbs) = as above, 
      ROOT_PROP = ((ROOT _JENKINS)/(DRYBIO_BOLE_JENKINS)), 

which is the proportion of bole biomass to biomass in coarse roots, 
      ROOT_JENKINS (kg) = biomass in roots calculated using Jenkins, and,  

           DRYBIO_BOLE_JENKINS (kg) = biomass of the bole based on Jenkins. 
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Table 3: Adjustment factors applied to Jenkins and others (2003) sapling equations for the 
component ratio method. 

FIA species codes Jenkins sapling 
adjustment 

Common name 

58-60,62,63,65,66,69,106,133,134,140,141,143 0.352 Juniper, pinyon 
745,747-749 0.378 Cottonwood 
211 0.410 Redwood 
116,122,135 0.434 Ponderosa pine 
92,93,96 0.442 Spruce 
41,42,50-55,64,72,101-104, 109,112-114,118, 
120,124, 127,137-139,142,201,212, 231,251, 
264, 299 

0.458 
Pines, other conifers 

98 0.463 Sitka spruce 
202 0.526 Douglas-fir 
117 0.557 Sugar pine 
119 0.574 Western white 
81 0.588 Incense-cedar 
11,14,15,17-22 0.602 Fir 
10,12,90,94,95,97 0.608 Balsam fir, spruce 
260-262 0.628 Eastern hemlocks 
16,40,43,56,57,61,67,68,70,71,91,100,136,144, 
200, 220, 230,232,240,241,252 0.631 Various conifers 

531 0.632 American beech 
105 0.643 Jack pine 
300,321,322,475,755-758, 
803,810,814,829,843,846, 847,850,81,902,990 0.651 Variety, woodland 

species 
263 0.671 Western hemlock 
950-953 0.672 Basswood 
740-744, 746,752,753 0.691 Cottonwood 
242 0.705 Western redcedar 
822,832,835,836,838,840, 841,844 0.722 Oaks 
125,129 0.729 Red pine, white pine 
400-413,316,317 0.744 Hickory, misc. maples 
611 0.749 Sweetgum 
351 0.750 Red alder 
110,131 0.763 Shortleaf, loblolly pine 
802,804,808,823,825,826 0.770 White oaks 
801,805,807,811,815,818, 821,839 0.774 Western oaks 
806,809,812,817,820,824,827,828,830,831,837 0.780 Black oaks 
371 0.789 Yellow birch 
313,331,332,334,337,350,355,370,373,375,377, 
379,422,452,460-463,555,580-583,600,601,605, 
650-653, 655,657,658,712,729,731,762,911, 
912,915,922,924,927,928,929,931,970-976,992 

0.792 

Mixed hardwoods 

73 0.800 Western larch 
813,833,834 0.811 Oaks 
All other species not listed elsewhere 0.840 All other species 
310,311,314,318,320,323, 690, 691,693, 694 0.841 Maples, tupelo 
621 0.852 Yellow-poplar 
602 0.872 Black walnut 
108 0.883 Lodgepole pine 
111,121 0.922 Slash, longleaf pine 
372,450,491,510,513,521, 550, 551,552, 
571,591,680- 683,800,858,901,977 0.932 Various hardwoods 

541,543-546,548,549 0.936 Ash 
221-223 0.952 Taxodium 
312,330,333,352,353,361- 
363,374,378,431,492,511, 
542,547,603,604,606,631, 661,730,732,768,981 

0.964 
Various hardwoods 

107,115,123,126,128,130, 132 1.011 Various pines 
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Example 
 
We present an example for using Jenkins and others (2003) and CRM for 

estimating biomass for a 4-inch tree and 25-inch tree, red oaks in the NRS-East 
region.  For the 25-inch CRM, we use the volume calculated in the FIADB 
because we do not have the volume equations readily available.  Mass is in terms 
of dry weight.  
----------------------------- 
Information needed for the Jenkins estimates: 

! The species and d.b.h for the individual tree. 
! Red oak, species code 833, is in the “hard maple/oak/hickory/beech” 

group (mo).  Therefore the paired coefficients (b0,b1) needed for estimates 
are: (-2.0127, 2.4342) for total aboveground biomass, (-4.0813, 5.8816) 
for foliage, and (-1.6911, 0.816) for the coarse root component. 

! Metric-English conversions for length and mass: 1 inch equals 2.54 
centimeters, and 1 kilogram equals 2.2046 pounds. 

 
For a 25-inch d.b.h tree excluding foliage, aboveground biomass is based on 
deducting foliage from the aboveground-biomass equation: 

! Total aboveground biomass = exp(b0 + b1 × ln(d.b.h)) = exp(-2.0127 + 
2.4342 × ln(25×2.54)) = 3267.4 kg dry weight = 3267.7 × 2.2046  = 
7203.4 pounds. 

! Foliage component ratio = exp(b0 + b1/d.b.h) =  exp(-4.0813 + 
5.8816/(25×2.54) ) = 0.01852.  Thus, foliage biomass (total × component) 
= 7203.4 × 0.01852 = 133.4 pounds. 

! Therefore, the aboveground biomass excluding foliage for a 25-inch d.b.h 
tree is the difference: 7203.4 - 133.4 = 7070 pounds. 

 
Similarly, for a 4-inch d.b.h tree 

! Total aboveground biomass = exp(b0 + b1 × ln(d.b.h))  = exp(-2.0127 + 
2.4342 × ln(4×2.54)) = 37.75 kg = 37.75 × 2.2046 = 83.22 pounds. 

!  Foliage component ratio = exp(b0 + b1/d.b.h) = exp(-4.0813 + 
5.8816/(4×2.54) ) = 0.03013. Thus, foliage biomass (total × component) = 
83.22 × 0. 03013 = 2.507 pounds. 

!  Therefore, the aboveground biomass excluding foliage for a 4-inch d.b.h 
tree is the difference: 83.22 - 2.507 = 80.71 pounds. 

 
Belowground, or coarse root, biomass for the 25- and 4-inch d.b.h trees are based 
on total aboveground biomass and the coarse root component: 

! Coarse root component = exp(b0 + b1/d.b.h) =  exp(-1.6911 + 
0.816/(25×2.54)  = 0.1867 for a 25-inch d.b.h tree and exp(-1.6911 + 
0.816/(4×2.54)  = 0.1997 for a 4-inch d.b.h tree. 

! Therefore, the belowground biomass for a 25-inch d.b.h tree is the 
product: 7203.4 × 0.1867 = 1345 pounds. 

! Therefore, the belowground dry weight for a 4-inch d.b.h tree is the 
product: 83.22 × 0.1997 = 16.62 pounds. 
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!
Information needed for the CRM estimates: 

! The species and volume of sound wood (VOLCFSND) from the FIADB. 
! The set of Jenkins biomass and component coefficients for red oak, as 

provided above plus the additional paired coefficients (b0,b1): (-2.0129, -
1.6805) for the stem bark component, (-0.3065, -5.424) for the stem wood 
component, and (-1.6911, 0.816) for the coarse root component. 

! Five additional species-specific factors: (1) the ratio of volume of bark to 
volume of wood (aka BARK_VOLUME_PROP); (2) specific gravity of 
wood (aka SG_WOOD); (3) specific gravity of bark (aka SG_BARK); (4) 
a factor for estimating stump biomass based on Raile (1982, aka 
RAILE_STUMP_B1); (5) an adjustment factor applicable to trees less 
than 5 inches d.b.h (JENKINS_SAPLING_ADJUSTMENT). 

! Most calculations are in English units.  However, the metric-to-English 
conversion of 1 kg equals 2.2046 pounds may be necessary if stump 
biomass units are in pounds.  The density of water is 62.4 pounds per 
cubic foot. 

 
For a 25-inch d.b.h tree excluding foliage, aboveground biomass is based on 
determining merchantable biomass and then expanding according to the top and 
stump component ratios: 

! Merchantable biomass, or biomass of the bole = VOLCFSND × 
(BARK_VOLUME_PROP × SG_BARK × density of water) + 
VOLCFSND × (SG_WOOD × density of water) = 103.04 × (0.19 × 0.65 × 
62.4) + 103.04 × (0.56 × 62.4) = 794.07 + 3600.63 = 4394.8 pounds. 

! Note that volume equations are needed, as well as information on defects 
and form to calculate sound volume; we do not include that here as this 
information is not readily available. 

! Top component ratio = (Jenkins total aboveground – Jenkins merchantable 
– Raile stump – Jenkins foliage) / (Jenkins merchantable) = (7203.4 - 
5805.0 – 176.3 - 133.4) / (5805.0) = 0.1875.   
o Where Jenkins merchantable = (Jenkins total aboveground) × (Jenkins 

stem bark component + Jenkins wood component) = (7203.4) × (exp(-
2.0129 +  -1.6805/(25×2.54)) + exp(-0.3065 + -5.424/(25×2.54))) = 
7203.4 × (0.1301 +  0.6758) = 7203.4 × 0.8059 = 5805.0 pounds. 

o Where Raile stump = DIA × DIA × RAILE_STUMP_B1 = 25×25 × 
0.12798 = 79.99 kg x 2.2046 lbs/kg = 176.3 pounds. 

! Stump component ratio = Raile stump / Jenkins merchantable = 80.0 / 
5805.0 = 0.03038. 

! Therefore, the aboveground biomass excluding foliage for a 25-inch d.b.h 
tree is = 4394.8 × (1 + top component ratio + stump component ratio) = 
4394.8 × (1 + 0.1875 + 0.03038) = 5352.3 pounds. 

 
Aboveground biomass, excluding foliage, for a 4-inch d.b.h tree = Jenkins 
aboveground biomass without foliage × JENKINS_SAPLING_ADJUSTMENT = 
80.71 × 0.81068 = 65.43 pounds. 
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Belowground, or coarse root, biomass for the 25-inch d.b.h tree is based on 
merchantable biomass and the coarse root component ratio: 

! Coarse root component ratio = (Jenkins coarse root) / (Jenkins 
merchantable) = 1344.9 / 5805.0 = 0.2317. 

! Therefore, the belowground biomass for a 25-inch d.b.h tree is the 
product: 4394.8 × 0.2317 = 1018 pounds. 

 
Belowground, or coarse root, biomass for a 4-inch d.b.h tree = Jenkins 
belowground biomass × JENKINS_SAPLING_ADJUSTMENT = 16.62 × 
0.81068 = 13.47 pounds. 

!
Results and Discussion 

 
This approach was applied to all trees in all the annualized surveys in the 

FIABD3, using a preliminary set of specific gravities by species. In terms of 
merchantable biomass and percent in tops, limbs, and stumps, results in Table 4 
indicate that the larger differences in Table 1 have been resolved.  Figure 5 also 
indicates that other problems with tops, limbs, and stump can be resolved using 
the CRM approach. In particular, the regional percentages for PNWRS-softwoods 
and NRS-East hardwoods are quite different compared to the other regions, but 
the CRM-based results are more similar among units.  The range in average top, 
limbs, and stump by unit is about 10 to 33 percent using the regional approaches, 
but the range is 16 (PNWRS-softwoods) to 27 (RMRS – hardwoods) percent 
using CRM.  These results conform to what is expected given the nature of the 
predicted tops and limbs proportions (TPLMB_PROP) from Jenkins and others 
(2003) which predict the smallest proportions for large diameter softwoods and 
the largest proportions for small diameter hardwoods.  The PNWRS has the 
largest average diameter of softwoods and the RMRS region has the smallest 
average diameter of hardwoods. 

 
 

Table 4:  Select red oak, 10-inch d.b.h., 60-70’ height, growing stock trees,—CRM 
equations. 

FIA regiona DRYBIOM/VOLCFSND DRYBIOT-
DRYBIOM/DRYBIOT 

 --Pounds wood and bark  
per cubic feet of sound wood-- 

--Percent of total biomass in 
tops, limbs, and stumps-- 

NRS-East 42.7 26.5 
NRS-West 42.7 26.5 
SRS 43.6 26.5 

 a NRS-East: the eastern portion of the Northern Research Station which is the area covered by 
the former Northeastern Research Station, NRS-West:  the western portion of the Northern 
Research Station which is the area covered by the former North Central Research Station, and    
SRS:  Southern Research Station. 
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Figure 5: Percent of live tree biomass of all forest land trees ! 5 inches d.b.h. in tops, limbs, and 
stumps for the current regional approach and the proposed CRM, by softwood/hardwood and FIA 
unit.  Abbreviations for unit designations are: SRS = Southern Research Station, RMRS = Rocky 
Mountain Research Station, PNWRS = Pacific Northwest Research Station, NRS = Northern 
Research Station where NRS-East = the former Northeastern Research Station and NRS-West = 
the former North Central Research Station. Note: This figure currently includes component ratios of 
woodland species; however, woodland species were not included in the Jenkins and others (2003) 
calculation of component ratios.  

 
Figure 6 shows the overall effect that implementing either the CRM or Jenkins 

and others (2003) on a national basis would have on the total estimated biomass in 
trees 5 inches diameter and larger within each of the regions. Aboveground 
biomass estimates for trees ! 5 inches d.b.h on a tons per acre basis from Jenkins 
and others (2003) tend to be greater than estimates from the other approaches.  
The current regional approach for NRS-East is a compilation of biomass 
equations, including some that were used in the development of Jenkins and 
others (2003).  The biomass prediction methods in NRS-West, RMRS and for 
many species in PNWRS7 are based on volume predictions and are therefore very 
similar to the CRM.  Thus, the CRM estimates in these regions are quite close to 
the regional estimates.  The CRM approach reduces biomass densities even 
further compared to the current regional equations, with the exception of 

                                                 
7 For example, for PNWRS, bole wood volume is predicted based on species, diameter, and height 
measurements, and a library of volume equations specific to the species or species groups and 
portion of region. These equations take on different forms, but many are based on the integration 
of taper equations such as Flewelling and Raynes (1993). Bole bark volume is computed from a 
variety of sources including methods that calculate inside bark and outside bark volume using 
equations from Pillsbury and Kirkley (1984). These are then multiplied by wood weight to get 
bark mass. These bole wood and bole bark volume predictions are converted to biomass using 
specific gravity estimates, many of which are in Table 3. Branch, top, and stump mass calculations 
come from a variety of sources, such as Snell and others (1983), Gholz and others (1979), and 
Cochran and others (1994). These components are added to obtain predictions of total 
aboveground biomass. 
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estimates for RMRS which are only slightly greater on a per acre basis.  Note we 
are not presenting any validation evidence to prove that the CRM-based estimate

0 10 20 30 40 50 60 70 80
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s 
are any more accurate than the regional estimates or Jenkins and others (2003). 
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adopted before the older estimates could be updated. 

 this 
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d carbon 

sequestration calculations is not simply due to a change in equations. 

erage 

 
Figure 6:  Aboveground live t
c

In this preliminary investigation, we have not examined how the different
equations affect change in biomass over time.  If the older estimates are not 
updated, we will be comparing a smaller estimate based on the CRM method to a 
larger estimate from an older method.  Even if the tree did not change in siz
trees would show a notable artificial loss in biomass if

 
The measurement of change in volume over time and the breakdown of

change into various components of change such as growth, removals and 
mortality has been a central part of FIA estimation.  To produce these estima
is vital that both old and new observations are based on the same prediction 
methods.  Whenever a new volume estimation procedure is implemented in FIA, 
there has been a need to recalculate previous inventory methods.  A volume based 
system such as CRM facilitates recalculations of biomass and the computation of
biomass change into the standard FIA data processing system. Similarly, carbon
change has been central in the GHG inventory estimates and the use of Jenkins 
and others (2003) equations. It is absolutely crucial to recalculate all the biomas
data going back in time to ensure the change over time for biomass an

 
Figure 7 shows a comparison of Jenkins and others (2003) in terms of av

total aboveground biomass by d.b.h. with both the FIA regional and CRM 
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methods for only one species group, alder/aspen/willow/cottonwood. This is 
probably the most wide-ranging group, growing throughout the conterminous 
United States.  In the NRS-West, PNWRS, and RMRS regions the CRM and 
regional methods produce very similar results to the CRM.  In those regions the
regional method is based on bole volume, rather than on independent biomass
equations as it is in NRS-East and SRS.   The results from various FIA units 
bound the results from the Jenkins and others (2003) equations, illustrating how 
those equations effectively yield an average estimate composited from published 
equations across the United States.  Note that differences in these results could be 
due to different equations u

 
 

sed in the different regions, tree size, number of trees, 
and different species mix. 

 
 

701 trees (NRS-
EAST 10,507 trees, NRS-WEST 81,812 trees, PNWRS 9,558, RMRS 31,498, and SRS 4,326) in 
FIA

s 

002), 

 

 
Figure 7:  Average aboveground tree biomass for each FIA region based on both the current FIA 
regional and CRM methods by diameter, and the aboveground tree biomass from the Jenkins and
others (2003) equation for the alder/aspen/willow/cottonwood species group.  For the regional and
CRM methods, all tree data of alder/aspen/willow cottonwood species from 137,
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Comparing Jenkins and others (2003) with the CRM approach, as shown in 

Figure 7, estimates from all the units are less than those from Jenkins and other
(2003).  Note that differences in these results could be due to different volume 
equations, which are the basis for the CRM, used in the different regions, tree 
size, number of trees, and different species mix. Although densities of wood and 
bark do not change at FIA unit boundaries, volume equations do (Hansen 2
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and since biomass based on CRM is based on volume equations, biomass 
est

s 
 

kins 

 

ll-

ation 
 results to FIA-

plot results either for planning, double-checking, or verification.  This is 
esp

 
 a 

nd 

on of biomass.  Merchantability standards of volume have 
continued to change, but the definition of total biomass is has always included all 
bio

r 

ees 
e, artificial changes 

will be induced.  One example set of biomass equations created for urban tree 
biomass estimat

 

imation still changes at FIA unit boundaries.   
 
Several items in the CRM were identified in this preliminary investigation a

needing further work to meet the Forest Survey Handbook standard of “high
quality, consistent and reliable data.” Component ratios for woodland species 
need to be derived. Stump equations need to be reworked to match specific 
gravity and bark estimates from the tables. The adjustment process to the Jen
and others (2003) biomass predictions for use in CRM for diameters less than 5 
inches needs further consideration.  The implementation of a well designed 
national system for bole volume prediction that is based on taper equations would
address these issues.  Datasets for validation should be compiled, at least for 
major species to test the accuracy of the equations.  For transparency, a full we
documented compilation of volume equations is needed for all FIA units and 
species. A complete set of specific gravities by species, well-documented and 
consistent with existing estimates in the published literature is needed.  Such 
documentation will also meet the needs of users of FIA data, who sometimes 
collect their own inventory data, and would like to apply the same compil
procedures as FIA so they can compare their biomass and carbon

ecially important if FIA data are used for carbon monitoring. 
 
The CRM is based on the assumption that component ratios calculated in 

Jenkins and others (2003) can be accurately adopted and applied to the predictions 
of sound bole volume. That is, it is assumed the merchantability standards for a
tree bole in Jenkins and others (2003) are the same merchantability standards for
bole measured for FIA volume. (For instance, top height is a standard, such as 
height to a 4-inch top.)  This method allows the user to plug in any volume a
convert it to a biomass estimate. An interesting hypothesis to test is whether it 
would be more accurate to predict aboveground biomass and then estimate 
volume as a proporti

mass of the tree. 
 
The urban tree biomass scientific community also has biomass equations fo

their estimates, and these equations and estimates should also be taken into 
consideration when adopting methods for forest biomass estimates. Biomass 
estimates for forest land that recently converted to urban land without loss of tr
should be similar to urban forest biomass estimates.  Otherwis

es is presented in Nowak and others (2002).  
 

Conclusions and Recommendations 
 

The CRM produced biomass estimates that feature nationally consistent 
specific gravities, and biomass consistent with volumes. However, because CRM
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is based on volume equations which still differ by FIA unit, biomass estimates for 
the same species and diameter can differ by unit. If we had a consistent natio
volume approach, biomass based on volumes would be nationally consistent al
Additional items were identified as work that was needed to be done before 
biomass equations based on CRM were completed.  A key assumption of this 
approach is that merchantable bole in Jenkins and others (2003) is equivalent in 
definition to the bole in the volume equations.  The validity of this assumption 
should be further investigated.  Biomass estimates in terms of tons per acre ba
on this approach were almos

nal 
so. 

sed 
t always less than the regionally based estimates and 

the Jenkins and others (2003) estimates.  This is a curious result that may be 
wo

or 

ould the biomass estimates be significantly 
different if specific gravity was based on samples from the field rather than using 

r 

ly 
ased on 

rth investigating further. 
 
There were additional research questions identified as a result of this 

preliminary analysis. Did the perceived over-prediction of biomass in the Jenkins 
and others (2003) biomass equations for larger trees, and lack of a deduction f
damaged and standing dead trees, over-estimate total biomass? Are the small tree 
adjustments in CRM under-predicting biomass? Are there problems with the 
specific gravities used in the CRM?  W

average compiled specific gravities? 
 

The Jenkins and others (2003) biomass equations were developed and adopted fo
producing tree biomass carbon estimates because of regional differences in 
approaches by FIA units and database limitations. Adopting CRM immediate
will hinder use of current U.S. Forest Service carbon estimates and tools b
the Jenkins and others (2003) equations, because consistency across time is 
critical.  Because CRM is fundamentally based on volume, when volume 
estimates change, then biomass and carbon estimates based on the CRM will 
change.  Since volume updates are planned in the near future in some regions, 
adopting CRM now means carbon estimates will change as the volume estimates 
are

 

 
sistent, 

volving a 
 

erhaps subtropical and tropical forests of U.S. 
territories and biomass for bioenergy plantations could also be considered for 
inclusion in such 

 

 updated.  
 
Adopting new approaches that are an improvement to existing protocols is 

inevitable and underway. A planned, coordinated, supported and funded national
effort across FIA units and with other interested scientific experts to develop tree 
level volume, biomass, and carbon equations would increase the credibility and
usefulness of the resulting biomass estimates, providing “high-quality, con
and reliable data.”  Ideally, for the long term, a several-year effort in
team of scientists that allows for data mining of existing studies and data
collection for validation data, sets selection criteria, works through 
inconsistencies, and garners support of our users will be well worth the 
investment. Equations for calculating tree biomass for carbon in urban forests, 
agroforestry systems, and p

a study.  
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Estimating Diesel Fuel Consumption and 
Carbon Dioxide Emissions from Forest Road 

Construction 
 
 
Dan Loeffler1, Greg Jones2, Nikolaus Vonessen3, Sean Healey4, 

Woodam Chung5 
 
 
 
Abstract: Forest access road construction is a necessary component of many on-the-
ground forest vegetation treatment projects.  However, the fuel energy requirements and 
associated carbon dioxide emissions from forest road construction are unknown.  We 
present a method for estimating diesel fuel consumed and related carbon dioxide 
emissions from constructing forest roads using published results from a study designed to 
measure road construction costs together with machine productivity and fuel 
consumption rates.  Our resulting estimate of diesel fuel required per mile of road 
constructed on slopes up to 50% using a cut-fill construction method is 590 gallons, with 
13,400 pounds of carbon dioxide emitted per mile of road built.  Using a full bench road 
construction method on slopes greater than 50% where volume of material handled and 
moved is very sensitive to hill slope and soil type, we estimated between 3,265 and 8,000 
gallons of diesel fuel are required per mile of road emitting between 74,400 to 182,700 
pounds of carbon dioxide. 
 
 
Keywords: forest roads, carbon, carbon accounting, forest management, road 
construction, forest products, diesel emissions 
 
 
 

Introduction 
 
 

In 2007 the Chief of the US Forest Service outlined three ways in which 
forests, including national forest system lands, can be used to address climate 
change.  The first is to manage forests in ways that make them more resistant to 
fires, insects, and disease resulting in more resilient forest stands.  Second, the 
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Forest Service should reduce its own carbon footprint, which includes generating 
more heat from woody biomass, a renewable source of energy that offsets the use 
of non-renewable fossil fuels.  And third is to use the nation’s forests to reduce 
the buildup of greenhouse gases, with support for carbon markets that ultimately 
convert forests into a carbon sink (Kimball 2007).  All three of these proposals 
share a common theme, as stated by the Chief: “…protecting the existing carbon 
sink through forest conservation and increasing carbon sequestration through 
reforesting degraded land, improving forest health, and supporting sustainable 
forest management” (Kimball 2007).  Accomplishing almost any aspect of this 
agenda will require some form of on-the-ground wood fiber removal. 
 

While carbon storage in forest products is viewed as a means to defer 
disturbance-related emissions (Skog and Nicholson, 2000), the forest operations 
enabling this deferral almost always involve the release of fossil carbon, including 
harvesting and hauling products, and constructing the forest roads, either 
temporary or permanent, over which raw products are initially hauled.  Healey 
and others (this volume) used historical harvest records and some assumptions 
about product carbon dynamics to calculate the magnitude and timing of carbon 
sequestration related to harvesting in Ravalli County, Montana.  Healey and 
others also digitized a county-wide visual assessment of new roads apparent in 
sequential Landsat satellite imagery.  These new-road maps, used together with 
spatially co-registered slope data, will in the future provide an application for the 
forest road construction emission factors discussed here.  While forest operations 
release fossil carbon, little attention has been devoted to measuring carbon 
emissions associated with the various aspects of forest operations and forest 
products procurement. 
 
 The literature discussing carbon accounting methods and guidelines for 
harvested wood product flows between carbon pools is well established (Birdsey 
2006; IPCC 2003, 2006).  The Consortium for Research on Renewable Industrial 
Materials modeled fossil fuel consumption for stump-to-truck harvesting of wood 
products in the US Northwest and Southeast (CORRIM 2006) and Markewitz 
(2006) provides a detailed methodology for tracking fossil fuel consumption 
during silvicultural activities.  However, the literature directly discussing the 
fossil fuel requirements and related emissions to construct the forest roads over 
which forest operations equipment travel is extremely sparse.  A small portion of 
the forest road construction literature is financially-based, but contains little or no 
information about the fuel consumption underlying road construction costs 
(Balcom 1988; Layton and others 1992; Erickson and others 1992; USFS 2007). 
 

Because forest access road construction is a necessary and critical component 
of many forest vegetation treatment projects, the range of fuel energy 
requirements and associated emissions from road construction are needed for an 
accurate carbon accounting of forest vegetation treatments.  Here we present a 
methodology for estimating diesel fuel consumption and corresponding carbon 
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dioxide emissions associated with building forest roads, and discuss its benefits 
and limitations.   
 
 

Methods and Results 
 
 

There are two common ways to construct a forest road in mountainous terrain 
– the cut-fill method and the full bench method.  The cut-fill method is used on 
gentle to moderate hill slopes ranging from approximately 0% – 50% and the full 
bench method is employed for steeper slopes.  Using the cut-fill method, the 
builder would cut into hillside approximately half of the total road width, and then 
use the material removed by that cut as fill to construct the remaining half of the 
road on the downhill slope (Figure 1).  When the full bench method is employed, 
the builder cuts into the hillside the entire width of the road, essentially creating a 
bench in the hill serving as the base of the road (Figure 2).  Historically bulldozers 
have been the primary equipment used to construct forest roads.  However, 
according to Forest Service Northern Region engineers most forest road building 
contractors switched to using hydraulic excavators in the mid to late 1980’s (pers. 
comm. Rich Raines 3 October 2008; pers. comm. Marcia Hughey 15 October 
2008).  Excavators were found to be much more versatile and efficient for 
building forest roads, able to incorporate all aspects of road building into one 
single pass (Balcom 1988). 
 

CUT

FILL 9 feet

9 feet

Original hill slope

CUT

FILL 9 feet

9 feet

Original hill slope

 
Figure 1: Cross sectional view of hill slope on which an eighteen feet wide road base would be 
constructed with the cut-fill method. 

 
In this paper we have derived estimates of fuel consumption and resulting 

carbon dioxide emissions from building forest roads using information from 
Balcom (1988) and the Caterpillar Performance Handbook (CAT 1989, 2007).  
We estimate fuel consumption and emissions for each of the following major road 
building activities for both the cut-fill and full bench methods: 1) pioneering, 2) 
clearing and grubbing, and 3) sub-grade excavation.  However, the following 
methodology is not limited to using the results from our selected sources.  Rather, 
we have conceptualized a framework for estimating fuel consumption and 
emissions that is not limited to our selected sources. 
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Figure 2: Cross sectional view of hill slope on which a fourteen feet wide road base would be 
constructed with the full bench method. 

 
 
Cut-Fill Road Construction 
 
 

Balcom (1988) conducted a time-motion study of forest road construction costs 
in Oregon using both crawler tractors and hydraulic excavators.  This time-motion 
study provides results of feet per hour for building roads using the cut-fill method 
on hill slopes up to 50%.  Although several types of machines were analyzed by 
Balcom, we isolated the results from the Caterpillar 235 hydraulic excavator and 
acquired that machine’s fuel consumption rate of 8 gallons per hour from the 
1989 Caterpillar Performance Handbook (CAT 1989) assuming 72% utilization, 
the midpoint in the utilization range listed for forestry operations.  Average 
construction rates in linear feet per hour reported by Balcom were used to 
estimate pioneering, clearing and grubbing, and sub-grade excavation.  Table 1 
displays the average production per hour and fuel consumption per linear foot of 
road constructed for each of the three major road building activities listed above.  
Our estimates show that using a hydraulic excavator to construct forest roads with 
the cut-fill method on gentle slopes consumes approximately 0.11140 gallon of 
diesel per linear foot of road constructed, or approximately 590 gallons per mile. 

 
We then combined the diesel fuel consumption estimate with emissions data 

for internal combustion diesel engines reported by the US Environmental 
Protection Agency (EPA 1995) and diesel energy content reported by the US 
Energy Information Administration (EIA 2008), which resulted in a carbon 
dioxide emission factor of 22.796 pounds per gallon of diesel.  Combining this 
with molecular weights for carbon (12) and oxygen (16) yields the carbon dioxide 
and carbon equivalent results displayed in Table 2. 
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Table 1: Diesel fuel consumption per linear foot of forest road construction using the cut-fill method 
on slopes less than 50% for eighteen feet wide roads. 

Road construction activity Production (feet/hour)a Diesel consumption 
(gallon/foot)

Diesel consumption 
(gallons/mile)

Pioneering 582 0.01375 73

Clearing and grubbing 129.5 0.06178 326

Sub-grade excavation with 
sidecasting

223 0.03587 189

0.11140 588Total of all activities  
a From Balcom (1988) 
 

Approximately 2.5 pounds of carbon dioxide are emitted from diesel fuel 
burned per linear foot of forest road constructed on slopes less than 50%, or 
13,400 pounds per mile.  The carbon equivalent using the carbon-to-carbon 
dioxide ratio of 12/44 equals roughly 0.7 pound of carbon per linear foot of road 
construction, or 3,650 pounds of carbon per mile. 
 
Table 2: Carbon dioxide emissions per linear foot of forest road construction using the cut-fill 
method on slopes less than 50% for eighteen feet wide roads. 

Road construction activity
Carbon dioxide 

emissions 
(pounds/foot)

Carbon dioxide 
emissions 

(pounds/mile)

Carbon equivalent 
(pound/foot)

Carbon equivalent 
(pounds/mile)

Pioneering 0.31345 1,655 0.08548 451

Clearing and grubbing 1.40834 7,436 0.38409 2,028

Sub-grade excavation 0.81769 4,317 0.22301 1,177

Total of all activities 2.53947 13,408 0.69258 3,657

 
 
 
Full Bench Road Construction 
 
 

Contrary to gentle slopes for which the cut-fill method would be appropriate, 
the amount of material that needs to be handled and moved to construct a full 
bench road in steep terrain is very sensitive to percent hill slope and soil type.  
Because of this, measuring the amount of cubic material handled and moved is 
critically important.  To estimate the amount of cubic material for any given hill 
slope and cut slope, we multiply the cross sectional area that would be cut into the 
hill by the linear distance of road constructed (Douglas 1999).  The cross sectional 
area of the hill cut out to build the road (bold area in Figure 3) is calculated with 
the following equation (see Appendix A): 
 

sc
scwArea
!
"

""# 2

200
1                            [Equation 1] 
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In this equation,  is the cross sectional area in square feet, denotes the 
width of the road base in feet, and and denote the percent hill slope and percent 
cut slope, respectively, where 

Area w
s c

cs $$0 .  Note that for a slope of, for example, 
, ; more notably%35 35#s 35.%s  (the same condition also holds for ). c

 

 
Figure 3: Triangle used to estimate cut material to build forest roads. 

 
Next, to calculate total cubic feet volume of material handled and moved, we 

multiply the results from Equation 1 by the linear road distance measured in 
feet and a material swell factor& 'd & 'sf 6, which accounts for the percent increase 
in material volume due to air voids introduced into the material when disturbed: 
 

AreasfdeTotalVolum **#                        [Equation 2] 
 
Appendix B presents an approach for calculating total volume of material to be 
handled and moved for constructing roads having varying percent hill slopes. 
 

To estimate fuel consumption and emissions for handling and moving the 
material calculated with the above equations, we used average production rates of 
cubic material moved per hour with a hydraulic excavator and two dump trucks 
from Balcom (1988).  We assumed the same fuel consumption and utilization rate 
as above for the excavator.  To estimate fuel consumption for endhauling the cut 
material & , we used the average dump truck production rates reported 
by Balcom and assumed the use of two Caterpillar D25D articulated dump trucks 
requiring 4.7 gallons of diesel per hour each (CAT 1989).  Additionally, 
according to a US Forest Service transportation planner, spreading the endhauled 
material at a waste site is also a necessary component of full bench road 
construction (pers. comm. Fred Bower, 13 January 2009).  For this we assumed a 
Caterpillar D7 track type dozer is used 4 hours daily (pers. comm. Bob Greil, road 
construction contractor, 29 January 2009) requiring 8 gallons of diesel per hour 
(CAT 1989).  We further assumed a material swell factor of 1.3. 

'

                                                

eTotalVolum

 
The resulting fuel consumption and emissions estimates per cubic foot of 

handled material from road construction on slopes greater than 50% are displayed 

 
6 If material swell is 30% then the swell factor is sf = 1+.30 = 1.3. 

w z

h
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in Table 3.  The estimates are based upon the same diesel fuel emissions and 
energy content as with the cut-fill method.  The estimates show approximately 
0.007 gallon of diesel fuel is required per cubic foot handled and moved to 
construct a forest road using the full bench method.  Carbon dioxide emissions are 
about 0.17 pounds per cubic foot and the carbon equivalent is roughly 0.05 pound 
per cubic foot. 
 
Table 3: Diesel fuel consumption and carbon dioxide emissions per cubic foot of handled material 
with full bench method on slopes greater than 50%. 

Road construction 
activity

Production (cubic 
feet/hour)

Diesel consumption 
(gallon/cubic foot)

Carbon dioxide 
emissions 

(pound/cubic foot)

Carbon equivalent 
(pound/cubic foot)

Pioneering, Clearing and 
grubbing, Sub-grade 
excavating (excavator)

2926.8a 0.00273 0.06223 0.01697

Endhauling (2 dump trucks) 2948.4a 0.00319 0.07272 0.01983

Waste site spreading 
(dozer)

5896.8b 0.00136 0.03100 0.00846

0.00728 0.16595 0.04526Total of all activities
 

aFrom Balcom (1988) 
bAssumes dozer operation is half the time as the other equipment (pers. comm. Bob Greil, road 
construction contractor 29 January 2009) 

 
Tables 4 and 5 display diesel fuel consumption and carbon dioxide emissions 

by incremental hill slopes.  The values are derived from total cubic feet of 
material to handle and move from Equations 1 and 2 and the estimate of diesel 
consumed per cubic foot from Table 3.  We also assumed a fourteen foot wide 
road and 200% cut slope (pers. comm. Bob Greil, road construction contractor, 29 
January 2009).  Our estimates of total diesel fuel consumption for building forest 
roads on hill slopes greater than 50% range from approximately .62 – 1.5 gallons 
per linear road foot, and roughly 3,260 – 8,000 gallons per mile.  Carbon dioxide 
emissions range from approximately 74,400 pounds per mile at 50% hill slope to 
182,700 pounds per mile at an extreme hill slope of 90%.  The carbon equivalent 
ranges from 20,300 – 49,800 pounds per mile. 
 
Table 4: Diesel fuel consumption estimates by percent hill slope greater than or equal to 50% 
assuming a cut slope of 200% and fourteen feet wide roads. 

(cubic yards) (cubic feet) Excavator Dump trucks Dozer Total

50 3.15 84.93 0.23187 0.27094 0.11551 0.61831 3,265
55 3.58 96.65 0.26385 0.30831 0.13144 0.70360 3,715
60 4.04 109.20 0.29812 0.34835 0.14851 0.79498 4,197
65 4.54 122.68 0.33492 0.39135 0.16685 0.89312 4,716
70 5.08 137.20 0.37456 0.43767 0.18659 0.99882 5,274
75 5.66 152.88 0.41736 0.48769 0.20792 1.11297 5,876
80 6.29 169.87 0.46374 0.54187 0.23102 1.23663 6,529
85 6.98 188.33 0.51414 0.60077 0.25613 1.37105 7,239
90 7.72 208.47 0.56913 0.66503 0.28352 1.51768 8,013

Full-bench

Diesel fuel consumption per linear road foot 
(gallons) Gallons per 

mile

Road 
construction 

method

Hill slope 
(percent)

Material to move per 
linear road foot
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Table 5: Diesel fuel consumption, carbon dioxide emissions and carbon equivalent estimates by 
percent hill slope greater than or equal to 50% assuming a cut slope of 200% and fourteen feet 
wide roads. 

Road 
construction 

method

Hill slope 
(percent)

Total diesel 
fuel 

consumption 
(gallons/foot)

Total diesel 
fuel 

consumption 
(gallons/mile)

Total carbon 
dioxide 

emissions 
(pounds/foot)

Total carbon 
dioxide 

emissions 
(pounds/mile)

Total carbon 
equivalent 

(pounds/foot)

Total carbon 
equivalent 

(pounds/mile)

50 0.61831 3,265 14.10 74,422 3.84 20,297
55 0.70360 3,715 16.04 84,687 4.37 23,097
60 0.79498 4,197 18.12 95,686 4.94 26,096
65 0.89312 4,716 20.36 107,499 5.55 29,318
70 0.99882 5,274 22.77 120,220 6.21 32,787
75 1.11297 5,876 25.37 133,960 6.92 36,535
80 1.23663 6,529 28.19 148,844 7.69 40,594
85 1.37105 7,239 31.25 165,023 8.52 45,006
90 1.51768 8,013 34.60 182,673 9.44 49,820

Full-bench

 
 
 

Discussion 
 
 

It is common practice for road engineers to use published machine productivity 
equations to estimate costs or other related information.  Here we have combined 
mathematical estimates with published production information to estimate fuel 
consumption and carbon dioxide emissions from building forest access roads.  
However, the results presented above rely on published studies designed to 
estimate forest road construction costs.  While such studies are based upon field 
collected data, and general machine production rates were presented, machine fuel 
consumption during road construction was not investigated.  Here we have 
estimated fuel consumption and emissions from forest road construction by 
combining computed average production estimates with estimates of machine-
specific fuel consumption rates. 

 
We recognize that our estimates have limitations.  First, as Erickson (1992) 

described, forest road construction costs are difficult to estimate due to site-
specific variations; therefore it is logical that fuel consumption would also be 
difficult to estimate due to similar variations.  Second, applying the limited 
information provided by Balcom should be with caution, as conditions such as 
soil type can significantly impact the necessary cut slope and overall production.  
Third, there is no way to account for operator experience and production, or 
control for job-specific variations, such as culvert installment, turnout 
construction, seeding and stabilization, rolling dip construction, etc.  We also 
cannot reasonably account for machine positioning and re-positioning, idling or 
other down time exclusive of the basic utilization rate used in our estimation 
process.  Here we assumed that the amount of cut material equals the fill needed 
to build the road base with the cut-fill method, requiring no relocation of fill 
material.  However, actual hill slope angles are not linear as displayed in Figure 3 
and thus can require moving either more or less material for any given hill slope 
percent. 
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Additionally, in this analysis we have not included estimates of fuel 
consumption or emissions for road reconstruction, grading and maintenance, 
prism obliteration, employee commute to and from the job site, equipment 
mobilization via a lowboy tractor trailer, or delivery of supplies.  We have limited 
our estimates to the basic elements of road construction, and suggest much more 
effort be devoted to this and other aspects of forest management as they relate to 
carbon accounting. 
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Appendix A 
 
 

To verify the area in Equation 1, we first note that the hill slope in percent 

equals 100  multiplied by rise over run: 
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Appendix B 
 
 

When building a forest road, the hill slope is usually not constant over any 
significant distance.  To use the data from Tables 1, 2, 4 and 5 to estimate fuel 
consumption and emissions in this more general setting, proceed as follows.  
Estimate the total length of forest road to be built in miles (or feet).  Then 
determine the total length of the road pieces that will be built on gentle to 
moderate hill slopes < 50% and denote this length by .  Next, determine the 
total lengths of the road segments that will be built on hill slopes of approximately 
55%, 60%, 65%, etc.  Denote these lengths by , , , etc.  Therefore 

d

modd

%55d %60d %65d
 

%90%65%60%55mod dddddd (((((# ! . 
 
Next denote the estimate for fuel consumption or carbon emissions from forest 
road construction on gentle to moderate slopes from Table 1 or 2 (per foot or 
mile) by .  Similarly, for a given hill slope of  on which the full bench 
construction method would be used, denote the corresponding estimate for fuel 
consumption or emissions from Table 4 or 5 by .  The total estimate TE for 
fuel consumption or carbon dioxide emissions for building the entire forest road is 
then given by 

modE %s

%sE

 
%90%90%65%65%60%60%55%55modmod ***** EdEdEdEdEdTE (((((# ! . 
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Determining Landscape-Level Carbon Emissions 
from Historically Harvested Forest Products 

 
Sean P. Healey1, Todd A.Morgan2, Jon Songster2, Jason Brandt2  

 

 

Abstract:  Resources have been developed in the literature to enable landowners to estimate the 

carbon sequestration timeline of forest products derived from their land.  These tools were used 

here to estimate sequestration and emissions related to harvests carried out in Ravalli County 

from 1945 to 2007.  This county-level accounting of product carbon release can later be 

combined with county-level estimates of growth and emissions from fire and other sources to 

provide landscape-level insights into relationships between forest carbon exchange and processes 

like harvest and fire.   

 
Keywords:  Forest Products, Carbon Sequestration, Carbon Accounting 
 
 

Introduction 
 

It is broadly recognized that durable forest products may represent significant storage 
of forest carbon.  Although the sum of stored product carbon and re-growing stand 
carbon may take many years to reach pre-harvest stand storage levels (Harmon et al., 
1990), harvest products nevertheless delay the release of carbon from disturbed stands.  
Accurate assessment of the relationship between forest dynamics and the carbon cycle 
must account for the storage of forest carbon in products that are either in use or in 
landfills (Schlamadinger and Marland, 1996).  Efforts are underway in the Rocky 
Mountain Research Station to monitor several interrelated components of landscape-scale 
forest carbon dynamics by combining remote sensing with carbon-tracking tools 
developed to help individual landowners register sequestration related to management.  
These tools, detailed by Smith et al. (2006), include heuristics for estimating the timeline 
of decay for forest products in various regions within the United States.  Since decay of 
old forest products can contribute to current emissions, it is important to understand 
historical harvest trends of areas being monitored.  The goal of this paper is to outline a 
strategy for combining product disposition heuristics such as those published by Smith et 
al. (2006) with county-level historical timber harvest information to develop estimates of 
recent emissions stemming from historical harvest products.  The resulting estimated 
rates of product carbon release will be combined in future work with estimated effects of 
ecosystem processes such as growth and disturbance to provide a fine-scale picture of 
forest carbon exchange related to landscape dynamics.   

 
Much regional and national carbon cycle monitoring relies upon what is called the 

“stock change” approach – tracking inventory-based estimates of ecosystem carbon stores 
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over time – plus accounting for carbon sequestered in products (e.g. Skog and Nicholson, 
2000; Heath et al., 2003; Woodbury et al., 2007).  Stock change approaches consider the 
competing factors that affect ecosystem carbon storage only in aggregate: stable stock 
levels may actually imply stasis, or they may imply offsetting trends in factors such as 
fire, growth, and harvest.  An alternative monitoring approach that does address the 
differential effects of growth and harvest was described by Smith et al. (2006) to help 
landowners understand and potentially register gains in carbon sequestration due to their 
management decisions.  Like Birdsey (1996), Smith et al. (2006) provided “look-up” 
tables that give regional averages for ecosystem carbon accumulation and product carbon 
sequestration.  Work is underway at the US Forest Service’s Rocky Mountain Research 
Station to produce similar look-up tables for other processes such as fire. 

 
While stand-level look-up tables address dynamics such as the role of disturbance that 

are ignored in stock-change approaches, stand-level approaches cannot work at broader 
scales unless important details are known about every stand in the forest.  Choosing the 
appropriate cell in any given look-up table, for example, requires that the region, species 
group, and growing stock volume or age be known.  Additionally, one must know how 
and when disturbance has reset carbon densities among different stand pools in each 
stand.  Remote sensing can provide estimates of these stand parameters across large 
areas.  Satellite-derived species group maps are available across the country (Ruefenacht 
et al., 2008), volume and age estimates can be mapped when inventory and satellite data 
are combined (Kimes et al., 1996; Healey et al., 2006), and many disturbances can be 
mapped with a high level of precision (Cohen and Goward, 2004).   

 
Like other approaches for tracking forest carbon dynamics, efforts to use remote 

sensing in conjunction with stand-level look-up tables depend upon accurate assessment 
of the disposition of product carbon.  Historical harvest monitoring data are available at 
the county level in timber-producing areas throughout the United States.  One source of 
this harvest information is Timber Product Output (TPO) monitoring, which is carried out 
nationally on behalf of the U.S. Forest Service’s Forest Inventory and Analysis program 
(FIA).  These data contribute to national timber harvest analyses presented in RPA 
reports (Forest and Rangeland Renewable Resources Planning Act, 1974 -- see Smith et 
al., 2004).  Using historical harvest data along with product disposition rates published by 
Smith et al. (2006) and some assumptions about how these rates have changed over time, 
one may estimate recent rates of product carbon emissions at the county level.  This paper 
details how such estimates may be made, using Ravalli County in western Montana as an 
illustration. 

 

Methods 
 

Smith et al. (2006) provided heuristics for the timing and movement of product carbon as 
it passes from the “in use” pool into landfills and finally into the atmosphere.  Table 1 
reprints these heuristics for the northern Rocky Mountain region.  The methods described 
here allow product dynamics implicit in these tables to be combined with historical 
records of annual harvest volume to track how much carbon is released each year from  
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Table 1:  Product Disposition Rates from Smith et al. (2006) with relevant derived annual changes. 

Years after 
production In use Landfill Energy 

Emitted 
without 
energy 

Year-on-
year 

emission 

Year-on-
year 

disposal 

 ----------- Fraction of original harvest  ------- ----- Annual Change ----- 

0 0.704 0 0.209 0.087 0.087 0.087 

1 0.664 0.019 0.223 0.094 0.007 0.026 

2 0.628 0.036 0.235 0.101 0.007 0.024 

3 0.595 0.051 0.247 0.107 0.006 0.021 

4 0.567 0.065 0.256 0.112 0.005 0.019 

5 0.541 0.077 0.265 0.118 0.006 0.018 

6 0.517 0.088 0.273 0.122 0.004 0.015 

7 0.495 0.098 0.28 0.127 0.005 0.015 

8 0.474 0.107 0.287 0.131 0.004 0.013 

9 0.455 0.116 0.294 0.135 0.004 0.013 

10 0.438 0.124 0.3 0.139 0.004 0.012 

11 0.425 0.1296 0.304 0.142 0.003 0.0086 

12 0.412 0.1352 0.308 0.145 0.003 0.0086 

13 0.399 0.1408 0.312 0.148 0.003 0.0086 

14 0.386 0.1464 0.316 0.151 0.003 0.0086 

15 0.373 0.152 0.32 0.154 0.003 0.0086 

16 0.3644 0.1558 0.3226 0.1562 0.0022 0.006 

17 0.3558 0.1596 0.3252 0.1584 0.0022 0.006 

18 0.3472 0.1634 0.3278 0.1606 0.0022 0.006 

19 0.3386 0.1672 0.3304 0.1628 0.0022 0.006 

20 0.33 0.171 0.333 0.165 0.0022 0.006 

21 0.3234 0.1738 0.335 0.167 0.002 0.0048 

22 0.3168 0.1766 0.337 0.169 0.002 0.0048 

23 0.3102 0.1794 0.339 0.171 0.002 0.0048 

24 0.3036 0.1822 0.341 0.173 0.002 0.0048 

25 0.297 0.185 0.343 0.175 0.002 0.0048 

26 0.2918 0.187 0.3444 0.1768 0.0018 0.0038 

27 0.2866 0.189 0.3458 0.1786 0.0018 0.0038 

28 0.2814 0.191 0.3472 0.1804 0.0018 0.0038 

29 0.2762 0.193 0.3486 0.1822 0.0018 0.0038 

30 0.271 0.195 0.35 0.184 0.0018 0.0038 

35 0.248 0.204 0.356 0.192 0.0016 0.0034 

40 0.229 0.211 0.36 0.2 0.0016 0.003 

45 0.213 0.217 0.364 0.207 0.0014 0.0026 

50 0.198 0.222 0.367 0.213 0.0012 0.0022 

55 0.185 0.227 0.369 0.219 0.0012 0.0022 

60 0.174 0.231 0.371 0.225 0.006 0.01 

65 0.163 0.235 0.372 0.23 0.005 0.009 

70 0.154 0.238 0.373 0.235 0.005 0.008 

75 0.146 0.241 0.373 0.24 0.005 0.008 

80 0.138 0.244 0.373 0.244 0.004 0.007 

85 0.131 0.247 0.373 0.249 0.005 0.008 

90 0.124 0.25 0.373 0.253 0.004 0.007 

95 0.118 0.253 0.373 0.256 0.003 0.006 
100 0.112 0.255 0.373 0.26 0.004 0.006 
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products produced in each previous year.  This accounting of product carbon release 
depends upon good records of historical harvests and upon systematic tracking of the 
carbon in each year’s product cohort as it progresses through the timeline of disposition 
described in Table 1.  Both of these accounting components are discussed below. 
 
Underlying Timber Product Output Data 
 

Timber Product Output (TPO) studies are conducted nationally for FIA to estimate 
industrial and non-industrial uses of roundwood across the United States (e.g. White et 
al., 1980; Keegan et al., 2001). All primary wood-using mills in each state are 
periodically canvassed regarding the amounts, types, and origin of the wood products 
they use.  Logging utilization studies that are also carried out for FIA provide an 
important link between this industrial data and inventoried volume.  

 
TPO data showing annual removals in board feet (bf) from Ravalli County in four 

points in time (1988, 1993, 1998, and 2004) were the starting point for a county-level 
harvest timeline.  County-level harvest numbers for other years between 1961 and 2007 
were derived from a combination of sources: Montana Department of Natural Resources 
and Conservation (DNRC) cut-by-county reports for private lands, DNRC harvests for 
state lands, and USFS Cut & Sold Reports for the Bitterroot National Forest.  Earlier 
removals (1945-1960) were estimated using available state-level harvest information.  
Since the distribution of harvest among ownership groups was known in both state and 
county datasets, it was possible to: 

 
1. Use the 1961-1969 county-level data to establish the relative importance of each 

ownership group in the county-level cut (federal Bitterroot National Forest 
95.4%; private forest 2.6%; other, mostly state, forest 2%) 

2. Come up with an ownership-weighted estimate of 1945-1960 Ravalli County 
harvest as a function of the state-level harvest for those years.  

 
Annual harvest numbers were converted to cubic feet (cf) from board feet (bf) TPO 

data (total bf / total cf) from different dates (see Spoelma et al., 2008).  The conversion 
for 2004-2007 (3.69 bf/cf) was taken from the 2004 survey, while the 1998-2003 
conversion (3.71) was taken from the 1998 survey, 1993-1997 used the 1993 conversion 
(4.79), 1988-1992 used the 1988 conversion (4.93), and dates prior to 1988 used an 
arbitrarily selected conversion of 5.0 bf/cf.  It is likely that declining log sizes have led to 
a declining ratio of board-foot volume to cubic-foot volume.  This relationship must be 
accounted for in the inference of cubic harvest volume from county-level board foot 
harvest records.  Calculated cubic volumes were converted to units of carbon (first to 
pounds, then to metric tonnes, or megagrams) using the “Northern Rocky Mountains” 
factor published in Table 5.1 of Skog and Nicholson (2000).  The resulting product 
carbon mass for each year (1945-2007, see Figure 1) was the input for subsequent 
inquiry into product disposition. 
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Figure 1: Harvest products from Ravalli County, MT, 1945-2007.  Mass of carbon comes from 
administrative harvest volume records, transformed from board feet to cubic feet using TPO survey data and 
further translated to carbon using conversion factors in Skog and Nicholson (2000). 

 
Estimating Emissions from Decomposition of Harvest Products 
 

In general, assumptions regarding forest product longevity were taken from Table 6 
in Smith et al. (2006), which shows changing fractions of the carbon in industrial 
roundwood among 4 different pools: 1) in use, 2) in landfills, 3) emitted with energy re-
capture, and 4) emitted without energy capture.  This table (partially illustrated here in 
Table 1) was based upon: national and regional assessments of wood harvest and end 
uses (partially summarized by Birdsey, 1996; Smith et al., 2004); basic assumptions 
about recycling rates and efficiencies (Skog and Nicholson, 1998), and studies of carbon 
decay  limits and decay rates (Freed and Minz 2003, de Silva Alves et al. 2000).  The 
disposition of the roundwood harvest volume from Ravalli County for each year from 
1945 to 2007 was tracked over time using this table with the goal of monitoring all 
product carbon emissions for each year from 1985 to 2007.  This study period 
corresponds with the Landsat TM era, and will complement satellite-derived information 
about growth and fire in future work. 
 

While the dynamics of product life cycles have changed in the past and will continue 
to change in the future, generalized carbon flow heuristics may be applied over time with 
attention to major shifts in use or storage (Miner, 2006).  In this study, the only 
implemented deviation from the dynamics discussed by Smith et al. (2006) was separate 
treatment of forest products discarded prior to 1980.  Legislation in the 1970s mandated 
that dumps, which until then had been the primary means of waste disposal, be phased 
out by 1986 (Skog and Nicholson, 2000).  Since landfills contain only a limited amount 
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of oxygen, and therefore facilitate much less aerobic decomposition than dumps, the shift 
from dump- to landfill-disposal was consequential with regard to post-disposal emission 
rates.  For the sake of simplicity, the move to landfill disposal was represented in this 
study as a discrete event in 1980.  While the tables in Smith et al. (2006) show relatively 
slow emission rates consistent with the anaerobic conditions in most landfills, Skog and 
Nicholson (2000) estimated that 65% of the material sent to dumps was burned and/or 
emitted relatively quickly, with the remaining material decomposing over a 96-year 
cycle. 

 
The amount of carbon entering the product pools in each year from 1945 to 2007 was 

tracked independently, and emissions from each of these “origin” years were calculated 
and summed for each year of the study period (1985-2007).   For material harvested and 
processed after the shift in 1980 to the landfill dynamics addressed in the Smith et al. 
tables, calculation of carbon emitted each year was simply derived from the by-year 
change in the “emitted without energy” column (see Table 1) from one “year after 
production” to the next.  Linear interpolation was used in this table to fill in values not 
supplied by Smith et al.  Consider as an example the determination of how much carbon 
was emitted in 1989 from material harvested in 1982. If the roundwood harvested in 1982 
(Year 0) was 10000 tonnes, and Table 1 indicates a fractional increase from 12.2% to 
12.7% in carbon emitted without energy capture from Year 6 to Year 7, the calculated 
emission for 1989 from 1982 products will be 50 tonnes (0.5% of 10000).    

 
For products produced and disposed of prior to the 1980-shift to landfills (i.e. 1945-

1979), the dump dynamics outlined by Skog and Nicholson (2000) were implemented; 
65% of disposed material was supposed emitted within the first year, with the remainder 
emitted uniformly over a 96-year period.  Table 1 was used to determine the rate at which 
product carbon reached the dump; the disposal rate was assumed to be equal to the 
fraction of product carbon falling out of the “in use” category minus the fraction “emitted 
with energy re-capture.”  This year-by-year fraction of disposed carbon (D below) was 
used to track the arrival of part of each year’s product cohort at the dump in each 
successive year.  Further, emissions of dump contents were calculated for each year A as 
follows:  
 

o
TDC            (Equation 1) 

 
where O is each product origin year between 1945 and Year A, T is the mass in metric 
tonnes of carbon in the roundwood originally processed in year O, D is the fraction of T 
expected to reach the dump in Year A based upon Table 1.   C is a constant: 
 

RFC =            (Equation 2) 
 
where R is percentage of TD remaining following the initial burning at the dump (0.35 
here), and F is the fraction of the assumed life cycle represented by Year A (1/96 here).  
Since the amount of carbon in dumps has been capped since 1980, and since that carbon 
is assumed to be emitted evenly on a 96-year cycle, emissions from dumped 1945-1979 
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products will be a constant until the first cohort of dumped products is envisioned to be 
completely emitted (i.e. 2041). 
 

Many pre-1980 products were in use following 1980, of course, and their disposal 
must be accounted for via the landfill dynamics represented in Table 1.  The percentage 
of products in use in 1980 from each harvest year since 1945 was determined using the 
“in use” column of Table 1.  These products were assumed to be emitted using a rate of 
0.17% per year.  This rate, while somewhat arbitrary, is the 100-year average rate of 
emission without energy re-capture from Table 1 if the most volatile first year is 
excluded.  First-year emissions were not considered in this emission rate because fact 
none of the emissions in this category (produced prior to 1980, disposed and emitted 
following 1980) could have occurred in the first year following harvest.   

 
In summary, a fraction of each year’s harvest products was estimated to be emitted in 

each subsequent year using product life cycle heuristics found in Table 1 and in the work 
of Skog and Nicholson (2000).  Emissions from dumps and landfills from each product 
cohort were summed for each year to produce an estimate of overall emission of carbon 
resulting from forest products dating back to 1945.   These emissions were plotted over 
time for the study period 1985-2007. 
 

Results 
 

As discussed above, county-level harvest volumes were tracked through the product 
cycle to disposal and eventual emission using three different scenarios: 1) landfill 
dynamics (see Table 1) for all harvests after 1979; 2) dump disposal (after Skog and 
Nicholson, 2000) for products discarded prior to 1980; and 3) landfill dynamics for 
products produced prior to 1980 but discarded thereafter.  Table 2 shows part of the 
accounting (1961-1979) of the rate at which each year’s forest products reached the 
dump; quantities in tonnes of carbon have been reduced by 65% to account for initial 
rates of burning (Skog and Nicholson, 2000).  Similar accounting was done for estimated 
forest product levels from 1945 to 1960 (not shown).  The total mass of carbon in dumps 
resulting from 1945-1979 forest products is estimated to be 148,288 tonnes, resulting in 
an annual emission of 1545 tonnes. Since the quantity of carbon in dumps has been 
capped since 1980 and emissions are distributed evenly over a 96-year period, calculated 
dump emissions will stay at this level until 2041.  Emissions from older forest products 
still in use in 1980 (and thus assumed to have gone through landfills) was estimated to be 
1101 tonnes per year. 

 
Emissions from products estimated to have been discarded after 1980 were determined 
through the “emissions without energy re-capture” column in Table 1. Figure 2 shows the 
composite emissions from dumps and landfills.  Total emissions declined throughout the 
study period from above 12000 tonnes per year to less than 9000 tonnes per year.  The 
decline in emission in Figure 2 is not as pronounced as the decline in harvest volumes 
seen in Figure 1 because the amount of carbon accumulated in landfills since 1980 has 
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Figure 2:  Annual product carbon emissions in Ravalli County, 1985-2007.  Three product pathways were 
considered: produced after 1980 and sent to a landfill (black), produced 1945-1979 and sent to a landfill 
(gray), and produced 1945-1979 and sent to a dump (white). 

 
 

Discussion 
 

The legacy of carbon associated with historical forest products must be considered 
when assessing the role management plays in forest carbon cycles.  Because the forest 
product cycle of processing, use and disposal can defer release of carbon into the 
atmosphere, harvest can be seen as a relatively benign form of disturbance.  Deferral of 
product emissions is not permanent, however, and accurate comparison of the effects of 
harvest vs. fire and other factors, as is the goal of currently ongoing research, depends 
upon adequate estimates of current emissions from products manufactured over preceding 
decades. 

 
Remote sensing using historical Landsat imagery, as calibrated with inventory data, 

can provide temporally and spatially consistent harvest information (Healey et al., 2007).  
Indeed, in countries where there is no systematic monitoring of forest industry output, 
remotely-sensed estimates of volume removal could form the basis of historical product 
assessments.  In the United States, however, the most credible county-level estimates of 
harvest trends come from administrative records related to taxes and TPO industry 
surveys.  Mill-based survey assessments are presumed to have little error, and are 
available across much of the country for the last 50 years (Smith et al., 2004).  The long 
continuous county-level time series used here may not be available in some parts of the 
country where the timber industry is less important than in western Montana, but in these 
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cases, TPO surveys (typically produced once every 5 or so years) might be extrapolated 
to fill in the time series.   

 
While the use of TPO data obviates modeling error that would be present if harvest 

numbers were provided by remote sensing, two potential sources of error should be 
emphasized in the historical product carbon accounting approach described here. One 
source of uncertainty may be potential mismatch between the regional spatial scale of the 
reference data used in Smith et al.’s product dynamic tables (see Table 1), and the 
relatively small portion of the Rocky Mountain region studied here.  Specifically, the 
species composition of Ravalli County’s forests and the mix of its product types may 
deviate from regional averages.  Secondly, while the disposition rates in Table 1 may 
accurately portray current product life cycles, application of those rates to historical 
harvests may mask important changes in the rate that product carbon is emitted.  The 
system discussed here accounts for a shift in destination from dumps to landfills, for 
example, but it does not address potentially important changes in recycling rates (Skog 
and Nicholson, 2000).   

 
The emissions described in this paper do not distinguish between carbon dioxide and 

methane.  Since the global warming potential of methane (over a 100-year period) is 
estimated to be 21 times that of carbon dioxide (IPCC, 1996), the effective of Ravalli 
County’s product carbon emissions would actually be higher if methane contributions 
were translated into carbon dioxide equivalents.  However, rate of capture of landfill 
methane has increased recently and is currently about 50% (Skog, 2008).  So, the effect 
of methane on emissions in terms of carbon dioxide equivalents would be to raise the 
estimates given here, but in a way that continues to decline as more methane is captured. 

 
Nevertheless, the processes used to create the historical emission estimates in Figure 

2 are straightforward and could easily be modified to accommodate life cycle heuristics 
that are better adapted either spatially or temporally to the unit of analysis.  Resulting 
county-level product emission estimates will be compatible in spatial and temporal scale 
with estimates of carbon flux related to other processes like growth and fire.  Synthesis of 
different carbon cycle components and analysis of their behavior in relation to forest 
management should yield fundamental ecosystem-specific information about the 
relationship between management and landscape-level carbon movement.   
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Abstract:  Does air pollution risk represented by a lichen bioindicator of air pollution, an 
ozone bioindicator, or a combination of both,  correlate with forest health as reflected by 
condition of tree crowns and other variables? We conducted pilot analyses to answer this 
question using Forest Inventory and Analysis (FIA) data from the Sierra Nevada region 
of California and the New England region; they have very different environments. We 
started by addressing procedural and statistical issues. Several steps were required to 
assemble data sets for addressing this question. Currently, incomplete data availability 
limits the ability of an analyst not affiliated with the FIA program to conduct similar 
investigations. Statistical issues include data characteristics, data screening for 
suitability, and how to combine different variables in the same analysis. We calculated 
combined plot-level air pollution risk indexes from lichens and ozone data, and combined 
plot-level ‘forest stress’ indexes from two or more tree health indicators. Consultations 
with other FIA indicator advisors and with FIA analysts having experience with the tree 
variables we used were extremely important. For the Sierra Nevada region no significant 
correlations were found between pollution risk and ‘forest stress’ indexes. The next step 
there is to decide whether it seems worthwhile to pursue other related avenues 
investigating the same question. For the New England states, some correlations were 
significant but so weak that their biological relevance is questionable. For one of three 
ecoregion subgroups examined, correlations were significant and strong enough to 
warrant follow-up studies.  In general we concluded that crown dieback and vigor 
variables were more useful than other tree variables, and summarizing to plot-level 
based on tree basal area was more useful than using tree counts. Development of more 
sophisticated plot-level indexes of ‘forest stress’ should be part of all follow-up 
investigations.  
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Introduction 
 
 
 We decided to explore whether estimated air pollution risk in forests 
(represented by a lichen bioindicator of air pollution, an ozone bioindicator, or a 
combination of both) correlates with forest health as reflected by condition of tree 
crowns and other variables. The U.S. Department of Agriculture, Forest Service, 
Forest Inventory and Analysis Program (FIA) collects both tree mensuration data 
and data addressing forest ecosystem health on a subset of its full national grid 
(phase 3 or P3 plots). Lichens are included in the program as useful forest health 
indicators for air quality impact, biodiversity, and forest ecosystem integrity. An 
ozone bioindicator is included to help assess the level of this known risk to some 
vascular plants. A number of variables included in the program can be used to 
assess tree health on FIA plots, including growth and mortality, crown condition, 
and tree damage variables (FIA 2008f). 
 We conducted pilot analyses to answer our question using FIA data from the 
Greater Sierra Nevada region of California and the New England region 
(including New York state) – parts of the USA with very different environments. 
Since this is a very preliminary investigation, our project included evaluation of 
the procedural and statistical issues involved in asking such a question. What 
steps are required to assemble data sets for addressing this question? How might 
these steps be seen by a data user from outside the Forest Service trying to do 
similar analyses based on FIA data available online? What statistical issues arise 
related to using the different indicators in the same analyses? What issues arise 
when we attempt to generate a combined air pollution response index from 
lichens and ozone indexes, or a combined plot-level ‘forest stress’ index from two 
or more tree variables? When and where are consultations critical - with FIA 
Indicator Advisors and FIA Analysts having experience with these variables? 
 Our starting assumption was that air pollution tracked by lichen air quality 
indexes and the ozone bioindicator index might contribute to low-level stress that 
would render trees more susceptible to reduced health or damage from other 
agents. It is possible this might happen well below levels of air pollution that 
would directly damage most trees.  
 
 

Selected variables 
 
 We selected several FIA variables for our pilot project. These variables are 
primary or derived variables related to either pollution risk or tree health. Most 
are defined in online FIA documents. Other published documents linked to the 
FIA program explain how to use and interpret the variables. 
 
Pollution risk variables 
 
 We used two different kinds of pollution risk variables. Lichens are sensitive to 
several kinds of Nitrogen- and Sulfur-based air pollutants, and lichen air quality 
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indexes track response of lichens to all of these pollutants together. The ozone 
interpolated biotic index (IBI) is calculated based on response of sensitive 
vascular plants; it assesses potential risk from only this single pollutant. Both 
lichen air quality indexes and the ozone IBI apply to an entire FIA plot. 
 
 Lichen air quality indexes: Lichen air quality indexes are based on lichen 
species composition at sites, are derived from models specific to a particular 
geographic region (Will-Wolf and Neitlich in review), and apply only within that 
region. They are not currently defined in online FIA database documentation; 
users refer to published descriptions of each model and to Will-Wolf (in review) 
for guides to usage. Lichens are sensitive to two major classes of air pollution: 1) 
mostly neutral pH/alkaline N pollution from agricultural sources (figure 1A), and 
2) acidic N and S pollution that comes primarily from urban and industrial 
sources (figure 1B). In addition, N from both sources can have a fertilizing effect 
on the ecosystem. Responses of lichens to the two classes of pollution differ, and 
the most important kind of pollution may differ between regions (Will-Wolf et al. 
in review). Thus lichen air quality indexes from different regions may reflect 
response to different kinds of air pollution. In both regions included in this study, 
a higher index number indicates poorer air quality.  
 
 
A            B 

 
Figure 1:  Pollution wet deposition modeled from 1998-2004 National Atmospheric Deposition 
Program data (Coulston and others 2004). Black lines mark boundaries of ecoregion groups (some 
noted in figures 3 and 4). A. NH4

+ represents effects of agriculture; B. NO3
-- represents urban/ 

industrial effects. Note amounts for both are much higher in the East.  Reproduced from Will-Wolf 
et al. (in review).  
 
 
 Greater Sierra Nevada (GSN) region of California – The published Lichen Air 
Quality index (LichenAirGSN for this project) for this region (Jovan & McCune 
2006) tracks mostly response to neutral/alkaline agricultural nitrogen pollution 
(Fenn et al 2003, Jovan 2008). The amount of pollution in this region is 
underestimated in figure 1 because those maps are based only on wet deposition 
and dry deposition is an important contributor there (Fenn et al. 2008). 
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 New England (NE) region – This region has two provisional Lichen Air 
Quality indexes (Will-Wolf unpublished) that track response primarily to acidic 
urban/industrial pollution. LichenAirNE-A is relative abundance of eight 
pollution-tolerant lichen indicator species, and LichenAirNE-B is the former 
index adjusted for latitude. The latter takes into account north-south gradients in 
climate as well as regional background air pollution (figure 1), leaving this index 
more responsive to relative local pollution level regardless of regional context.  
 

Ozone interpolated biosite index (IBI):  This index is based on level of 
damage to sensitive species at special field plots. It is calculated by spatial 
interpolation for FIA plots (FIA 2008a).  It is diagnostic for one pollutant, and is 
applicable and comparable across the country (Coulston et al. 2004, Smith et al. 
2007); ozone risk is quite similar for the two pilot project regions (figure 2). A 
higher number indicates greater potential risk for ozone injury.  
 

 
 
Figure 2: This map of Ozone Interpolated Biosite Index (IBI) illustrates estimated risk of ozone 
injury (map by John Coulston). 
 
 
 
Tree health variables 
 
 Crown condition, growth, mortality, and damage are all classes of FIA tree 
variables (FIA 2008b) that are good candidates for evaluating tree health. 
Relatively few plots for which we have lichens data also have damage data, so we 
did not consider damage variables further. We needed to aggregate values 
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representing tree health across all trees at the plot into ‘forest stress’ indexes for 
comparison with pollution risk indexes. For this pilot study, we conducted no 
calibration based on species of tree. In most cases stressed trees were expressed as 
proportion of either total number of trees or total basal area at the plot. Total basal 
area was also used as a surrogate for stand age.  
  
 Crown variables:  From crown condition documents (Bechtold and Randolph 
2007, Schomaker et al. 2007) and consultation with current crowns indicator 
advisors William Bechtold and KaDonna Randolph, we identified several crown 
variables suitable to represent tree stress. Our ‘stressed tree’ cutoff levels are 
based on both advice from Bechtold and Randolph and on previous work by 
others; our choices of cutoff levels are our responsibility alone. 
 Crown dieback (trees !5in/12.7cm diameter) – This variable may be 
aggregated across species to plot-level. It is considered a strong ‘tree stress’ 
indicator. Both average dieback and proportion of trees with dieback !10% 
(indicating stress) are calculated for ‘forest stress’ indexes.  
 Crown vigor (trees <5in/12.7cm diameter) – This variable may be aggregated 
across species to plot-level. This is considered a strong ‘tree stress’ indicator. 
Proportion of small trees (saplings) in vigor class 3 (indicating stress) is 
calculated for a ‘forest stress’ index.  
 Crown density (trees !5in/12.7cm diameter) – Density for healthy trees varies 
by species, so this variable should be related to a species standard before 
aggregating to plot-level. Steinman et al. (2000) used crown density "35% as a 
conservative indicator of a stressed tree, so we used proportion of trees stressed 
based on this cutoff value as a weak ‘forest stress’ index.   
  Foliage transparency (trees !5in/12.7cm diameter) – Density for healthy trees 
varies by species, so this variable should be related to species standard before 
aggregating to plot-level. Steinman et al. (2000) used foliage transparency !35% 
as a conservative indicator of a stressed tree, so we used proportion of trees 
stressed based on this cutoff value as a weak ‘forest stress’ index.   
 
 Growth:  Growth for healthy trees varies by species, so this variable should be 
related to a species standard before aggregating to plot-level. We found no 
examples in literature for reasonably conservative indicators of a stressed tree 
based on growth alone, so we did not pursue this variable further. 
 
  Mortality: – This variable may be aggregated across species to plot-level. We 
calculated the proportion of trees that died up to 5 years before an inventory year 
as an estimate of tree stress, to be consistent with mortality variable definitions 
(FIA 2008b). Expected mortality might vary with stand age (Bechtold, pers. 
comm.), so the proportion might need to be adjusted for stand age. Also, mortality 
became an optional variable to report starting in 2003, and some states did not 
report this after 2002. For both these reasons, we consider this a weak ‘forest 
stress’ index. 
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Data for analysis 

 
 
 Data were assembled for the two pilot study areas, then were screened for a 
variety of issues. Plot variables were assembled from screened data. Data sets 
were assembled in Excel (2003); statistical analyses used SPSS (2007). 
 
Study areas 
 
 The Greater Sierra Nevada region of California (figure 3) is mostly one 
ecoregion province. Lichens data are available from 1998-2001 and 2003. 
 The New England states (figure 4) include Connecticut, Maine, Massachusetts, 
New Hampshire, New York, Rhode Island, and Vermont. This region is much 
larger than the California region; we investigated patterns both for the whole 
region and for three ecoregion group subdivisions from another project (Will-
Wolf et al. in review). Lichens data are available from 1994 and 1998-2004. 
 
 
Assembling data sets 
 
 FIA data are in the public domain (FIA 2008c) and are made available in a 
timely manner, but difficulties reconciling some data matching issues mean not all 
measured data used for this project are currently available to the public online. No 
2000-2002 data are currently available online, pending resolution of data 
matching issues. Neither lichen nor ozone indexes (derived variables) are 
archived in the central database and posted online, pending development of FIA 
database structures for derived variables. They must be obtained by both FIA and 
public data users from lichen indicator advisors (currently the coauthors of this 
document) or the FIA region. It is assumed that both database and data matching 
issues that limit data availability online are temporary; all data will eventually be 
publicly available in some form. 
 We started with a list of all plots in each region for which lichens data are 
available. Plots were screened based on the following criteria. Plots with no 
lichens found (cannot calculate a lichens air quality index for them) or with flags 
for poor fit to the regional model were excluded. Eastern plots with live tree basal 
area (BA) below 5 m2/ha (21.8 ft2/ac) were excluded; their lichen air quality 
indexes might be biased due to limited substrate (no BA cutoff needed for western 
plots; Will-Wolf in review). Some plots were excluded because tree data were not 
easily available. Plots with fewer than 3 trees rated for crowns were excluded as 
giving inadequate representation of forest health. An ozone IBI can be calculated 
by interpolation for all our plots; no screening was needed based on ozone data. 
 Lichen air quality index values for the greater Sierra Nevada region of 
California were calculated by Sarah Jovan. Two provisional lichen air quality 
indexes for the New England region were calculated by Susan Will-Wolf. The 
ozone IBI was calculated via interpolation for all project plots by John Coulston 
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using exact plot locations. Tree data were extracted from FIA database files and 
FHM legacy database files mostly by Randy Morin, and also by Susan Will-Wolf.  
 Available lichen plots and plots excluded based on lichen data criteria are 
summarized in table 1; plots excluded based on tree data and remaining plots 
available for this project are summarized in table 2. Plots in four ecoregion 
subgroups of the New England region are listed in table 2. 
 
 
Table 1:  Lichen plots available and excluded based on lichen data screening. 

  
Lichen plots:  
years 

No lichens; 
plots 
excluded 

Plots surveyed 
in 2 years; 1 
year excluded 

Plots excluded -  
tree BA too lowa 

California Sierra 
Nevada region 

146 plots: 
1998-2001, 
2003 3 9b   

     

New England 
region 

668 plots: 
1994,       
1998-2004 4 71c 53 

         
aNE plots only; lichen air quality index might be biased.  
b1998 plots retained  
cplots from several later years retained  

 
 
Table 2:  Lichen plots available and excluded based on tree data screening. 

  

Plots 
with 
lichens 
dataa 

Plots excluded:  
tree data 
unavailable  

Plots excluded: too 
few trees rated for 
crowns 

Plots used for  
this project 

California Sierra 
Nevada region 134 

2 plots: 1998-2001   
25 plots: 2003  8  99 

     

New England 
region 540 

4 plots:  1994-1999 
178 plots:  
    2000-2002 6 352 

     

     Adirondacks 
         subregion    146 

     Laurentian 
         subregion    125 

     Eastern 
     Deciduous 
         subregion      80 

     Appalachian 
         subregion           1 
aPlots remaining from table 1. 
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Assembling plot variables 
 
 We used single variables calculated from the program databases as described 
above. We also used composite variables calculated from combining different 
single variables. For composite variables we used different approaches depending 
on the variables used. Our calculation procedures took into account a number of 
statistical issues; we outline these first.   
 
Statistical issues:  To avoid bias in our cross-indicator analyses, we modified 
differently-scaled variables to be used in the same statistical procedure. We tried 
two ‘low tech’ options to equalize scales for variables. One choice was to add 
and/or multiply values of some variables by constants to match ranges of the other 
variables to be used in the same analysis. A second choice was to rank-transform 
all variables to equalize ranges. This second choice at the same time corrects for 
any problems with data distributions. 
 
Pollution - lichen and ozone plot indexes:  These are the single or composite 
variables we used for analysis. We used the same approach for all three 
LichenAir… indexes in both regions. Since high values of both lichen and ozone 
indexes suggest higher pollution risk, we added them together for a composite 
index. We tried three kinds of composite pollution index, one with original 
indexes weighted equally, and others with one or the other weighted double. One 
set of indexes was calculated using modified variable range – these are listed 
below. A second parallel set of variables was calculated using rank-transformed 
data. 
  
- LichenAir… [region suffix]:   Range modified to match Ozone IBI in region. 
- OzoneIBI:    No region suffix needed; IBI is nationally consistent. 
- LichenAir…+OzoneIBI:    Composite index from simple addition.  
- 2xLichenAir…+OzoneIBI:    Composite index, LichenAir… weighted double. 
- LichenAir…+2xOzoneIBI:    Composite index, OzoneIBI weighted double. 
 
Forest stress - crowns and mortality plot variables:  Most of the forest stress 
indexes are composite variables; only average crown dieback seems a useful 
single index. All variables are calculated so that a higher value suggests greater 
stress on the forest at the plot. We found that % recent mortality (based on counts 
or BA of trees) in either region was not correlated with total plot BA, our best 
estimator for stand age.  
 
- AvgDbk is Average Crown dieback class (for all trees rated) – a single variable 
 
 All composite variables are % of trees (‘Ct’ for count added after % in variable 
name) or % of basal area (‘BA’ added after % in variable name) on a plot with 
various combinations of variables indicating tree stress. Since numerator and 
denominator were in the same units and numbers were converted to unitless 
proportions, there was no need to rescale values for composite variables.  
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- %...DbkVgr   are proportion (live trees only) showing stress based on crown 
dieback or crown vigor class cutoffs. These are strong combined forest stress 
indexes. 
- %...DbkVgrM   are proportion (all trees) showing stress based on crown dieback 
or crown vigor class cutoffs or recent mortality. These are slightly weaker 
combined forest stress indexes, since mortality was not available for all years. 
- %...Stress    are proportion (all trees) showing stress based on any of the crown 
variable cutoffs or recent mortality. No extra weighting was given based on 
multiple indications of stress to a tree. These are weak combined forest stress 
indexes, since mortality was not available for all years and crown density and 
foliage transparency should be compared with species standards. 
 
 
 

Greater Sierra Nevada Region Analyses 
 
 
Sierras results 
 
 No correlation of any of the pollution risk indexes with any ‘forest stress’ 
index was significant. The strongest was a Spearman rank correlation of rho = 
0.157 (p=0.121, rho2 #0.03) for [2 x rank of LichenAirGSN + rank of OzoneIBI] 
with [%BA-DbkVgr (crown dieback !10% or crown vigor code 3)].  
 Despite the lack of significant results, we observed some patterns worth 
reporting qualitatively to support possible future work. Correlations were stronger 
for composite pollution risk variables based on ranked data than for composite 
variables with LichenAirGSN rescaled to match OzoneIBI. Correlations were 
stronger for LichenAirGSN than for OzoneIBI, as were those for combined 
indexes weighting LichenAirGSN more heavily. Combined pollution risk indexes 
gave slightly stronger correlations than either single index. Correlations with 
‘forest stress’ indexes based on crown dieback or vigor (the strongest of our tree 
stress variables) were stronger than others. Correlations with ‘forest stress’ 
indexes based on BA were stronger than those based on tree counts. Composite 
pollution risk variables from ranked data gave stronger correlations than those 
from rescaled data, and nonparametric correlations were mostly stronger than 
parametric correlations. These findings suggest probably most variables failed to 
meet assumptions for parametric statistics (not tested). 
 
Sierras discussion 
 
 The Greater Sierra Nevada region appears to have relatively low S and N air 
pollution as compared with the New England region (figure 1). However, dry 
deposition has been shown to be a strong source of S and N pollution more 
important than wet deposition in West Coast states (Fenn et al 2003, 2008). 
Moisture may actually mitigate pollution effects on lichens there (Jovan and  
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Figure 3:  Greater Sierra Nevada Region of California. Data used in this project are from standard 
(on-frame) FIA plots. Figure modified from Jovan (2008) 
 
 

 
 
Figure 4:  New England region with ecoregion subgroups. (modified from Will-Wolf et al. in review). 
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Carlsberg 2006). So the apparently lower pollution loads shown in figure 1 for the 
West Coast as compared with the Northeast might be somewhat misleading. 
LichenAirGSN is primarily an index of response to agricultural nitrogen pollution 
(Jovan and McCune 2006). 
 The Sierras and New England regions appear to have similar ozone risk (figure 
2). Ozone is one of several variables correlated with effects on lichens in an 
adjacent region of California (Jovan and McCune 2005).  
 Clearly our simple approaches are not adequate to establish there is potential 
for pollution risk variables to be related to forest stress in this region. Since most 
of the N pollution is related to agriculture, it may be having a mostly fertilizing 
effect on forests that is not reflected in our selected measures of tree stress. It 
might be useful to test more sophisticated estimation of tree stress on a plot. For 
instance, it might for this small region be useful and not too difficult to calculate 
tree stress and growth indexes by comparing with species-based standards and 
aggregate those to plot level for correlation with pollution risk. The presence of so 
many federal class 1 areas in this region (figure 3) is a reason further research 
should be conducted on correlation between pollution risk and forest stress 
indexes, even with little support from this pilot study. 
 
 
 

New England Region Analyses 
 
 
 A brief summary of New England region analyses is followed by summaries of 
results for three ecoregion subgroups (figure 4).  
 
New England region results 
 
New England entire region:  A few correlations of ‘forest stress’ indexes with 
LichenAirNE-B or composite indexes that include it were statistically significant 
or approached significance (table 3) for the New England region as a whole. The 
variation in variables accounted for by the correlations was no more than 1-2% 
(estimated by r2); these results have little biological importance. More variation 
was accounted for by the best nonsignificant correlation for the Greater Sierra 
Nevada region. Statistical significance for the weak NE region results stems from 
the large sample size. Correlations for pollution risk indexes and ‘forest stress’ 
indexes not included in table 3 were much weaker than those shown.  
 Despite few significant results and the lack of any biologically important 
results, we observed some patterns worth reporting qualitatively to support 
possible future work. LichenAirNE-B in general gave stronger correlations with 
‘forest stress’ indexes than did LichenAirNE-A, suggesting that it is important to 
control for the effect of regional gradients in climate and air pollution. 
Correlations were also stronger for LichenAirNE-B than for OzoneIBI or any 
combined indexes. The one combined index that approached significance 
included LichenAirNE-B weighted double (table 3). These patterns suggest forest 
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stress is potentially more strongly related to urban/industrial pollution than to 
ozone risk. Correlations with ‘forest stress’ indexes based on crown dieback or 
vigor were stronger than others. Parametric correlations were stronger than non-
parametric correlations. Combined pollution risk indexes based on rescaled data 
gave stronger correlations than those based on ranked data. Both patterns suggest 
assumptions for parametric statistics were probably met for New England region 
data (not tested). 
 
 
Table 3:  New England region:  Pearson correlations between selected pollution risk and ‘forest 
stress’ indexes. Correlation coefficients are followed by probability.  We include r2 in parentheses to 
indicate percent of variation involved in the correlation. Dashes indicate lack of significant results.  

‘Forest stress’ 
indexes Pollution risk indexes 

N = 352 LichenAirNE-B 2 x LichenAirNE-B +OzoneIBI 

AvgDBK 

0.126 
p=0.018 
(r2=0.02) 

0.102 
p=0.055 
(r2=0.01) 

%BA-DbkVgr 

0.107 
p=0.044 
(r2=0.01) 

- 
 

%BA-DbkVgrM 

0.118 
p=0.027 
(r2=0.01) 

- 
 

 
 
 
Table 4:  Eastern Deciduous ecoregion group:  Pearson correlations between selected pollution 
risk and ‘forest stress’ indexes. Correlation coefficients are followed by probability.  A p>0.01 is 
considered significant; a 0.01<p<0.1 is considered approaching to weakly significant. We include r2 
in parentheses to indicate percent of variation involved in the correlation. 
‘Forest stress’ 
indexes Pollution risk indexes 

N = 80 LichenAirNE-B 2 x LichenAirNE-B +OzoneIBI 

AvgDBK 

0.240 
p=0.032 
(r2=0.06) 

0.205 
p=0.068 
(r2=0.04) 

%BA-DbkVgr 

0.341 
p=0.002 
(r2=0.12) 

0.284 
p=0.011 
(r2=0.08) 

%BA-DbkVgrM 

0.328 
p=0.003 
(r2=0.11) 

0.273 
p=0.014 
(r2=0.07) 

%Ct-Stress 

0.280 
p=0.017 
(r2=0.08) 

0.233 
p=0.038 
(r2=0.05) 

%BA-Stress 

0.270 
p=0.016 
(r2=0.07) 

0.228 
p=0.042 
(r2=0.05) 
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New England ecoregion groups: Based on results for the entire region, we 
correlated only LichenAirNE-B, Ozone IBI, and combined indexes with ‘forest 
stress’ indexes within three ecoregion groups. After excluding plots, only one plot 
remained in the Appalachian ecoregion.  For the Adirondacks and Laurentian 
ecoregions, all correlations were weaker than for the entire region, and no 
additional or contrary patterns were observed. So we consider them no further. 
 For the Eastern Deciduous ecoregion there were several significant 
correlations. The two strongest correlations accounted for 11-12% of variation 
between the two indexes; these are strong enough to perhaps approach biological 
relevance (table 4). The strongest correlation still shows a fairly weak relationship 
(figure 5), but it does suggest pollution may indeed be a relevant contributor to 
stress on forests in this region.  
 

 
Figure 5:  Scatterplot for the 80 Eastern Deciduous ecoregion group plots of LichenAirNE-B vs. 
%BA-DbkVgr (% of live tree BA with crown dieback !10% or crown vigor code 3). The Pearson 
correlation for this strongest of the within-group relationships (table 4) is 0.341, p=0.002, r2=0.12. 
 
  
 In general, LichenAirNE-B and combined pollution risk indexes with 
LichenAirNE-B weighted double had stronger correlations with ‘forest stress’ 
indexes than did OzoneIBI and other combined pollution risk indexes. 
Correlations with LichenAirNE-B were always stronger than for combined 
pollution indexes. Correlations based on rescaled data were stronger than those 
based on ranked data. ‘Forest stress’ indexes based on BA mostly gave stronger 
correlations than those based on tree counts. The combined index %BA-DbkVgr 
(from crown dieback and crown vigor, our two best ‘tree stress’ variables) gave 
the strongest correlation with pollution risk of all the ‘forest stress’ indexes for the 
Eastern Deciduous ecoregion subgroup.  
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New England region – discussion 
 
 For the New England region as a whole and for two of the ecoregion 
subgroups, the answer to our question is similar to that for the Sierras. Clearly our 
simple approaches are not adequate to establish there is potential for pollution risk 
variables to be related to forest stress in most of this region. 
 In contrast, for the Eastern Deciduous ecoregion subgroup there does indeed 
appear to be at least some relationship of pollution risk indexes to our simple 
‘forest stress’ indexes. The Eastern Deciduous subregion is subject to heavier 
pollution loads than the other two subregions, while the Laurentian subregion 
probably has the widest range of pollution loads (compare figures 1 and 4). Our 
results suggest absolute pollution load might be the more important factor 
promoting the finding of a significant correlation between pollution risk indexes 
and ‘forest stress’ indexes. 
 More sophisticated estimation of tree stress on the plot would certainly be 
useful to calculate. It would for the entire NE region be much more difficult to 
calculate tree stress and growth indexes by comparing with species-based 
standards because there are many more tree species recorded in the region. 
Another possibility might be for the %...Stress indexes to weight contribution of a 
single tree based on number of stress indications for that tree. 
 
 
 

Conclusions and follow-up 
 
 
 This very preliminary pilot study suggests simple approaches to linking 
pollution risk indexes to forest stress may not work in most regions. However 
they do show some promise in one subregion with relatively high levels of 
pollution. Our study was somewhat limited by data availability, and it benefited 
greatly from consultation with other FIA experts. It does seem it would be 
worthwhile to pursue development of more sensitive forest stress indicators in 
follow-up studies. 
   
Data availability and consultation 
 
 Limited data availability did affect our project. Temporary unavailability of the 
ozone and lichen indexes online was a minor inconvenience easily overcome with 
consultation. Ozone data were made available rapidly, and all lichen data were 
available to the authors from previous projects. Substantially more tree and 
lichens data will be available for analysis after existing data mismatches are 
resolved, especially for 2000-2002 data. Data collected before 2000, when FHM 
plot data collection was transferred to the FIA program, were one-half to two 
thirds of the data available and suitable for our pilot study. Any further 
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documentation of changes and online crosswalks between data sets for the years 
1994 to present will enhance the value of all current data for analysis. 
 Assembling the data sets and data screening were by far the most time-
consuming steps for this project. Online tools for selecting and sorting FIA data 
according to user-defined criteria would substantially aid both FIA and outside 
analysts to pursue a variety of exploratory investigations. Database scripts for 
calculating plot-level summaries such as BA, number of trees, and forest 
composition summaries would aid investigation of plot-level forest health 
questions.  
 Consultation with FIA indicator experts about variables other than lichens 
indexes was critical to the success of this project. Even after all data availability 
issues are resolved, researchers both inside and outside the FIA program would 
benefit from substantial consultation with FIA personnel to ask similar questions 
using FIA data. Online documents explaining use of the ozone indicator were 
completely adequate to support investigating our question. Consultations with 
ozone indicator advisor John Coulston (FIA-Southern Region; ~3 hrs; consulted, 
provided data and maps) and past advisor Gretchen Smith (University of 
Massachusetts-Amhearst; ~1 hr; consulted) were essential to guide us to ask the 
right questions and to obtain data. Consultation with crown indicator advisors 
William Bechtold (FIA-Southern Region; ~1.5 hrs) and KaDonna Randolph (FIA-
Southern Region; ~1 hr) was very important to supplement information available 
in online documents about appropriate use of crown variables. Bechtold also 
advised on use of growth and mortality variables; little information was available 
online about appropriate use of these variables for estimating plot-level forest 
health. Randall Morin (FIA-Northern Region; ~2-3 hr; consulted, provided map 
and 2000-2002 tree data) consulted on historical use of crown variables and 
mortality to assess forest stress, and consulted on efficient management of tree 
data. Elizabeth LaPoint (FIA-Northern Region; ~1 hr) provided crosswalk tables 
for linking lichens data with tree data (1994-2002 data especially).  
  
 
Evaluation of project for follow-up 
 
 We recommend follow-up investigation soon of linkage between pollution risk 
and forest stress for the Eastern Deciduous ecoregion, since we found evidence 
for such linkage in that subgroup of the New England region. There was no 
evidence from our simple pilot study for such a linkage in the other regions and 
subregions we investigated. 
 Results of our pilot project suggest that crown dieback and crown vigor seem 
to be the best variables to use for calculating plot-level ‘forest stress’ indexes 
related to pollution risk. Calculating these indexes based on % BA of trees 
appears to be better than calculating based on % of tree counts. More 
sophisticated estimation of plot-level forest stress seems essential to address our 
question in most regions. Relating crown density and foliage transparency to 
standards for each species seems a logical, but very time-consuming step to take. 
In some areas it might be worthwhile to try using different cutoff standards for 
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conifers vs hardwoods. Another possibility is to weight contribution of single 
trees to plot-level indexes based on the number of stress indications recorded for 
each tree. 
 Use of damage variables should be investigated where possible. Calculation of 
% BA of trees with any kind of damage avoids problems with identifying cause of 
damage or number of damages. With this approach FHM legacy data and all other 
available damage data would be appropriate to combine and use in analyses for 
this purpose. 
 We found that in the Greater Sierra Nevada region combination pollution 
indexes seemed better. However, in the New England region a single pollution 
index seemed to work better. This suggests a general approach will need to be 
adapted for different regions; neither one kind of pollution risk index, nor one 
kind of ‘forest stress’ index is likely to work best for all regions of the USA. 
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The Power of FIA Phase 3 Crown-Indicator  
Variables to Detect Change 
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ABSTRACT: The goal of Phase 3 Detection Monitoring as implemented by the Forest 
Inventory and Analysis Program is to identify forest ecosystems where conditions might 
be deteriorating in subtle ways over large areas. At the relatively sparse sampling 
intensity of the Phase 3 plot network, a rough measure of success for the forest health 
indicators developed for this purpose is the ability to detect meaningful change when 
indicator data are pooled across two or three States. The statistical power of a test is the 
probability of detecting a difference of a certain magnitude when it indeed exists, and is 
defined as 1 minus the type II error (i.e., 1-beta). This study applies statistical power 
analysis to Phase 3 Crown-Indicator variables (crown density, foliage transparency, and 
crown dieback) to determine how many plots are necessary to detect various degrees of 
change at various levels of statistical power.  
 
KEYWORDS: Statistical power analysis, forest health indicators, tree crown 
condition, tree crown health, tree health indicators, tree crown measurement 
 
 

Introduction 
 
 

The conceptual approach to forest health monitoring in the U.S. includes a 
component to detect long-term regional changes (Detection Monitoring), a 
component for assessing the practical importance and impact of observed changes 
(Evaluation Monitoring), and a component for conducting process-level research 
of cases that remain unresolved (Intensive Site Monitoring). The goal of 
Detection Monitoring is to identify forest ecosystems where conditions might be 
deteriorating in subtle ways over large areas (Riitters and Tkacz 2004). The Forest 
Inventory and Analysis (FIA) Phase 3 sampling frame (Bechtold and Patterson 
2005) contributes to this goal by systematically sampling a set of forest health 
indicators over space and time. Core tables used in FIA reports (e.g., Turner and 
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others 2008) document the status and trends associated with these indicators, and 
analysts look for signals that suggest potential problems. 

 
Most of the indicators currently implemented on FIA Phase 3 plots were 

developed by the Forest Health Monitoring (FHM) Program in collaboration with 
the U.S. Environmental Protection Agency (Alexander and Palmer 1999). One of 
the original goals for indicator development was to provide statistically unbiased 
estimates of status, trends, and relationships with quantifiable confidence limits 
over regional and national scales (Hunsaker and Carpenter 1990). The national 
strategic plan of the FHM program4 states that Detection Monitoring is designed 
to identify forest health changes at multiple spatial scales to adequately describe 
disturbance events that vary in magnitude. Riitters and Tkacz (2004) say that 
“Detection Monitoring accepts a high rate of false positives (i.e., a high Type I 
error rate) as the price of not overlooking change (i.e., a low Type II error rate).” 
 

Statistical power analysis (Castelloe 2000) is one practical tool that can be used 
to evaluate statistical rigor, identify the spatial scale at which an indicator is 
functional, and address Type I and Type II error rates. This technique clarifies 
uncertainties about the ability of an indicator to detect a significant effect by 
examining interactions among the factors contributing to statistical power. Of 
particular interest to FIA, power analysis can identify areas or situations where 
sampling intensity is insufficient. Where grid intensification is an option, it can 
help to establish the appropriate level of intensification. When migrating Phase 3 
indicators to the Phase 2 grid is under consideration, it can quantify the benefits to 
be gained.  

 
Although the application of power analysis to forest health indicators has been 

under-utilized, it has not been ignored completely. Smith and others (1996) used it 
to evaluate the benefits of adding an annual overlap to panel rotation schedules 
when the FHM Program was collecting indicator data. Conkling and others (2002) 
conducted a power analysis to evaluate the use of FHM mensuration and soils 
data to detect changes in forest carbon budgets.  

 
The objective of this paper is to evaluate the statistical power of FIA’s Crown-

Condition Indicator variables (Schomaker and others 2007) and relate the results 
to the Phase 3 sampling grid. 
 
 

Methods 
 
Power Analysis 
 
 

Environmental monitoring often involves hypothesis testing, which is a 
statistical procedure designed to test the premise that a population displays some 

 
4 Available at http://fhm.fs.fed.us/annc/strategic_plan03.pdf [Date accessed: July 28, 2008]. 
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effect (H1), against the null hypothesis that there is no effect (H0). In Detection 
Monitoring, a typical alternative hypothesis is that there is some difference in 
indicator values between groups of observations drawn from a population at 
different points in time. Or the groups may be from the same time period but 
represent different regions, different species, or stands that have experienced 
different disturbances.  
 

There are two types of error associated with hypothesis testing. Type I error is 
a false positive, where the null hypothesis is rejected and the test incorrectly 
concludes there is some significant effect. The probability of a Type I error is 
designated as alpha )(! . The value of !  is selected by the analyst, who decides 
what the risk of Type I error should be. Alpha commonly is set at 0.05, which 
restricts the chance of a false positive to 5 percent or less. Type II error is a false 
negative, where the test misses a true problem by failing to reject a false null 
hypothesis. The probability of a Type II error is designated as beta )(" . The 
statistical power of a test is the probability of detecting a difference of a certain 
magnitude when it indeed exists, and is defined as ( "#1 ). 
 

Most statistical tests are designed to minimize! , while"  is often overlooked. 
Although the consequences of a false positive may be costly in terms of initiating 
unnecessary Evaluation Monitoring studies, the failure to recognize a significant 
forest health problem could be disastrous. In Detection Monitoring, it is important 
to know if the statistical power of an indicator is adequate to support acceptable 
!  and "  probability levels. 

 
We used the SAS POWER procedure (SAS Institute 2004) to examine the 

relationships among Type I and II error, sample size, data variability, and effect 
size. We chose the SAS TWOSAMPLEMEANS option to determine the number 
of plots necessary to detect a difference in mean crown indicator values between 
two independent samples. Independent samples would come into play when 
checking for differences among regions during the same time period, or when 
checking for differences among independent panels5 at different times. We 
selected the SAS PAIREDMEANS option to determine the number of plots 
necessary to detect a difference in mean values between paired observations. The 
paired approach would be of interest when checking for differences involving 
survivor trees from remeasured plots. 
 

A variety of input specifications, outputs, and options are available for both the 
independent and paired procedures. The output of interest for this analysis is the 
number of plots. The inputs are the! probability level, the power level ( "#1 ), 
the effect size (mean difference between groups), the underlying data distribution 
(normal vs. log normal), the standard deviation of the observations; and, for the 
paired analysis, the correlation coefficient. Any of these input values can be 
manipulated to determine the subsequent effect on the number of plots required to 
attain the input specifications. The desired !  probability value, power level, and 
                                                 
5 Details about the FIA panelized inventory system are available in Bechtold and Patterson (2005). 
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effect size are simply specified by the analyst. The underlying data distributions, 
standard deviations, and correlation coefficients can be estimated from data 
already on hand, or from a pilot study. 
 
 
Crown-Condition Data 
 
 

This analysis focuses on the three main indicators of tree crown health 
recorded on FIA Phase 3 plots—crown density, foliage transparency, and crown 
dieback. Crown density is the amount of crown biomass (crown stem, branches, 
twigs, shoots, buds, foliage, and seeds) that blocks light penetration through the 
crown. Foliage transparency is the amount of skylight visible through small holes 
in the live portion of the crown where foliage occurs. Crown dieback is recent 
mortality of branches with fine twigs that begins at the terminal portion of a 
branch and proceeds inward toward the trunk. These three indicators are analyzed 
as continuous variables, although they are actually recorded in 5-percent classes, 
ranging from 0 to 99 percent. More details about the indicators are available in 
Schomaker and others (2007); additional details about related FIA sampling 
protocols are available in the Phase 3 field guide (U.S. Department of Agriculture 
Forest Service 2007). 
 

The data distributions, standard deviations, and correlation coefficients used in 
this analysis were obtained from FHM plots measured between 1992 and 1999. 
FHM data were used because more remeasured plots were available from which 
to obtain correlation coefficients for paired plots. Although the FHM plot network 
was integrated into the FIA sampling grid in 2000, some regions still have limited 
numbers of remeasured panels. For the purpose of power analysis, only 
approximations of the data attributes are needed, and the measurement protocols 
for the crown indicators measured by FIA remain unchanged from those used by 
FHM.  
 

By 1999, the FHM Program was measuring plots in 24 eastern and 8 western 
States. For the East, the latest measurements of each plot sampled between 1994 
and 1999 were used to calculate standard deviations from independent 
observations. To obtain correlation coefficients from paired observations, the 
latest measurement of each plot sampled during this period was paired with its 
previous observation, which was usually 4 years earlier. However, due to 
differences in the way States and panels were implemented, the remeasurement 
period was shorter than 4 years in some States. For the West, the latest 
measurements of each plot sampled between the years 1992 and 1999 were used 
for the independent observations. Again, the latest observation of each plot 
measured during this period was paired with its previous observation, which 
ranged from 1 to 4 years depending on the State. This plot selection method was 
designed to maximize the numbers of observations available to estimate standard 
deviations and correlation coefficients of crown indicators by species group; the 
result was not constrained to represent the actual distribution of species groups in 
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the populations of eastern and western forests. Correlations were slightly higher 
between plot pairs measured less than 4 years apart, but judged insufficient to 
preclude the use of the additional data for the purpose of power analysis.    
 

Power analyses are most commonly applied to experimental designs, but 
extension of the technique to survey designs is appropriate when the intention is 
to use survey data for hypothesis testing. Some adaptation was necessary to 
accommodate FIA’s complex design. The ratio-of-mean estimators used by FIA 
produce variance estimates that accommodate the unbalanced clustering of trees 
on plots, as well as the use of partial plots in the estimation process (Bechtold and 
Patterson 2005). However, calculations of standard deviations and correlation 
coefficients from this design are not as straight-forward. We approximated these 
statistics by first calculating the mean crown condition for each plot, and then 
computing the standard deviations and correlation coefficients from the plot-level 
means. We compared the variance estimates from both methods and obtained 
similar results, so the simplified approach should have a negligible affect on 
prospective hypothesis tests and the power analyses associated with them. 
 
 

Results 
 
 
Crown Density 
 
 

Crown density in the East averages 47 percent with a standard deviation of 7.5 
(table 1). By species group, the means range from 42 to 53 percent, with most 
standard deviations clustered around 10 or 11. Crown density statistics are similar 
in the West, except the standard deviations are slightly higher (table 2). 
Correlation coefficients between paired plots, where mean crown density was 
computed from survivor trees, are also similar between the two regions—equaling 
0.42 in the East and 0.48 in the West. Histograms of data distributions and 
skewness statistics indicated that crown density was approximately normally 
distributed. 
 

Table 3 shows the numbers of plots required to detect differences in crown 
density for various combinations of power-test specifications that conform to the 
ranges of statistics presented in tables 1 and 2. The effect size (mean difference) 
was set to detect changes in crown density values from 10 to 15, with standard 
deviations also fluctuating between 10 and 15. The !  specification alternates 
from 0.01 to 0.05, and the power level ( "#1 ) from 0.8 to 0.9. Given these 
parameters, the number of plots necessary to detect a change in crown density 
from independent observations ranges from 18 to 138, depending on the 
stringency of the specifications. When paired observations are analyzed, the 
number of plot pairs needed to detect the specified effects ranges from 8 to 54 
when the correlation coefficient is 0.25, and from 6 to 37 when the correlation 
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coefficient is set to 0.5. The SAS code used to produce table 3 is provided in 
Appendix A. 
 
 
Foliage Transparency 
 
 

Foliage transparency in the East averages 18 percent with a standard deviation 
of 6 (table 1). By species group, the means range from 13 to 21 percent, with most 
standard deviations between 5 and 10. The correlation between paired 
observations was less pronounced than the results for crown density, with a 
correlation coefficient of 0.19 for all species combined. The correlation 
coefficients for many species groups were not significant at the 0.05 level. Foliage 
transparency statistics for the West (table 2) were very similar to the East. 
 

Histograms of the foliage transparency data revealed some skewness caused by 
outliers in the right tail, and it was not clear whether this variable was normally 
distributed. Skewness tests indicated that the distribution was not normal, but with 
large numbers of observations, statistical tests often find deviations from 
normality that are statistically significant but practically unimportant. Choosing 
the alternative that yields conservative results is usually the most prudent course 
of action in borderline cases. We chose the normal classification because more 
observations were required to attain the specified power than the non-normal 
alternative. Randolph (2006) also noted that the distribution of this variable was 
uncertain, but justified a normal classification on the basis that statistical tests are 
robust against skewness and outliers. 
 

The same !  and power ( "#1 ) specifications used for crown density were 
also used for transparency, but the standard deviations were reduced to 5 and 10 
(table 3). The effect size was also reduced to detect changes that fluctuate from 5 
to 10 because mean transparency was much smaller than mean crown density 
(approximately half). Ideally, effect size should be tied to biological thresholds, 
but none are currently available for many forest health indicators (including the 
crown variables), so expert judgment must be substituted. Given these 
specifications, the number of plots necessary to detect a change in foliage 
transparency from independent observations ranges from 12 to 242. For paired 
observations, the number of plot pairs needed to detect the specified effects 
ranges from 6 to 93, when the correlation coefficient is 0.25, and from 5 to 63 
when the correlation coefficient is 0.5.  
 
 
Crown Dieback 
 
 

Crown dieback differs from density and transparency in that most trees have 
little or no dieback, so the data have a severely skewed log normal distribution. 
Histograms and skewness statistics corroborate this. The SAS POWER procedure 
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requires different input variables when the underlying data distribution is log 
normal (see Appendix A). For the specification of effect size, the ratio of the two 
group means is substituted for the mean difference, and the coefficient of 
variation (CV) is substituted for the standard deviation. 
 

Dieback in the East averages 4.0 percent with a CV of 1.3 (table 1). By species 
group, mean dieback varies from 1.6 to 5.9 percent, with CVs ranging from 1.0 to 
3.5. Crown dieback means and coefficients of variation are similar in the West 
(table 2). At 3.3 percent, mean crown dieback is slightly lower in the West 
because there is a lower proportion of hardwood species there, and dieback tends 
to be more prevalent in hardwoods.  
 

The same !  and power ( "#1 ) specifications used previously are used here 
again, but a relatively large mean ratio is required to detect a meaningful effect 
when the means are close to 0. The mean ratios were thus set to 2 and 2.5 
(specifying changes of 200 and 250 percent), while the CVs varied from 1.5 to 2. 
Given this input, the number of plots necessary to detect a change in crown 
dieback from independent observations spans from 48 to 204 (table 3). When 
paired observations are analyzed, the number of plot pairs needed to detect the 
specified effects range from 16 to 61 when the correlation coefficient is 0.25, and 
from 11 to 36 when the correlation coefficient is set to 0.5. 
 
 
Relating Results to the FIA Plot Network 
 
 

Once the number of plots needed to detect a significant difference is known, 
relating this information to the FIA plot network is simplified by the systematic 
nature of the grid, where the base sampling intensity is 1 plot per 6,000 acres for 
Phase 2 and 1 plot per 96,000 acres for Phase 3. 
  

The following formula can use this information to determine how much area 
must be impacted by a forest health problem before the FIA plot network is able 
to detect it: 
 

n

t

P
PEnIA )($  (1) 

  
where 
 
IA =  the minimum size of an impact area detectable by the FIA plot grid in the 

area of interest,  
 n =  the number of plots or plot pairs (i.e., grid points) needed to detect an impact 

(from the power analysis). For independent observations, n is the number of 
plots; for paired observations n is the number of plot pairs. 

E =  the plot expansion factor in the area of interest (e.g., 6,000 for Phase 2 or 
96,000 for Phase 3),    
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tP =  the total number of panels per measurement cycle in the area of interest, and 

nP =  the number of available panels in the area of interest.  
 

When the detectable impact area is known, basic FIA area statistics can be 
used to evaluate whether the grid intensity is sufficient to recognize the problem. 
For example, suppose that we want to know if the sampling grid is adequate to 
detect a change in crown dieback from remeasured plots. Because mean crown 
dieback is low, usually less than 5 percent, the analyst decides that a doubling of 
mean crown dieback should not be overlooked. This could mean that a lot more 
trees have a little dieback, or some subset of trees developed a lot of dieback. 
Scrutinizing the data from tables 1 and 2, we see that the coefficient of variation 
for dieback averages about 1.8, and the correlation coefficient between paired 
observations is usually around 0.3. Plugging these numbers into a power analysis 
where !  is fixed at .05 and the power ( "#1 ) is set to 0.9, we determine that it 
will take at least 36 plot pairs to flag the specified change as statistically 
significant. This number can then be used for n in equation 1. The crown indicator 
is measured on the Phase 3 plot network, so 000,96$E . FIA has 5 panels in most 
Eastern States, so , and we want the results to apply to a full set of 
remeasured panels, so . Entering these values into equation 1 shows there is 
sufficient power to detect an impact affecting 3.5 million acres of forest (table 4).  

5$tP
5$nP

 
The first two columns in table 4 list the current distributions of total land and 

forest land by region and State from the 2007 RPA statistics6. If we divide the 
detectable impact area for crown dieback (3.5 million acres) by the forest area in 
column 2, we can see what percentage of the plot grid in a given State or region 
must be impacted in order to detect a statistically significant difference. Wherever 
this number is more than 100 percent, the plot grid in the area of interest is not 
sufficient to detect the specified impact. The sampling intensity for crown dieback 
is sufficient in most States, but there are several States in the Northeast and in the 
Great Plains where the grid is obviously insufficient. The sampling intensity of 
Rhode Island would have to be increased by a factor of 10 to be able to detect the 
specified change. 
 

 Table 4 includes similar analyses for crown density and foliage transparency, 
where the data in tables 1 and 2 were scrutinized closely to select one set of 
power-analysis input values that represent a plausible scenario for each crown 
variable. The input specifications for plausible scenarios for these two variables 
revealed that 21 plot pairs were needed to detect an unusual change in density, 
and 31 were needed for transparency. These two variables required fewer plots 
than crown dieback, but still the grid intensity was not adequate in a few States 
with relatively little forest. 
 
  

                                                 
6 Available at http://fia.fs.fed.us/program-features/rpa/default.asp [Date accessed: July 28, 2008]. 
 

 8

USDA Forest Service Proceedings – RMRS-P-56 28.



                                                                                                
 

Discussion 
 
   
Adequacy of the Phase 3 Plot Network 

 
 

When the crown indicators were being developed during the 1990s it was 
speculated that the sampling intensity was probably adequate for regions or 
groups of States, but not sufficient to analyze individual States. Results from 
tables 3 and 4 indicate that about 100 forested plots would be adequate to identify 
a problem in a majority of prospective change scenarios when independent 
observations are used. About 50 plots are adequate when using plots with paired 
observations from two points in time. On the Phase 3 plot network, 50 plots 
translate into 4.8 million acres. There are 15 States that have less than 4.8 million 
acres of forest, so each of these States would have to be combined with other 
States to yield a minimally adequate sample. Considering that crown indicators 
are often analyzed by species group, and that any given species occurs only on a 
subset of the total forest plots, then the original conjecture is confirmed that the 
sampling intensity is not adequate for analysis of many individual States. Power 
analysis verifies that the FIA plot grid yields an adequate sample at the regional 
level, with the possible exception of the Great Plains, where 60 percent of the 
forest would have to be affected. In other regions, less than 4 percent of the 
forests would need to be impacted in order to detect a problem (table 4).  

 
Equation 1 can be incorporated directly into an Excel spread sheet set up like 

table 4 to quickly check the adequacy of the sampling grid for a wide variety of 
scenarios. As presented, table 4 shows how much intensification, if any, is needed 
in each State to support analyses at the State level. This information can be used 
to guide State-level intensifications. Moving some of the forest health indicators 
to the Phase 2 sampling grid has lately been of interest. Changing the expansion 
factor (E) in equation 1 from 96,000 to 6,000 yields a measure of the additional 
power to be gained from this modification. 

 
The detectable impact areas in table 4 are based on a full complement of 

panels. At current rates of implementation it takes 5 to 10 years (depending on the 
State and region) to obtain a complete measurement cycle, and twice as long to 
obtain paired observations. So there is a period of vulnerability where sample size 
may be inadequate during the 10 to 20 years needed to ramp up to a full 
complement of remeasured panels. Equation 1 can be used to investigate the issue 
by reducing the number of panels available for analysis. 

 
The grid adequacy examples discussed so far are all related to the overall grid, 

where plots are contiguous over States and regions. The power analysis can be 
refined to more specific, non-contiguous plots by applying equation 1 to almost 
any FIA area table, such as area by forest type. This approach informs the analyst 
if there is enough power to analyze a specific forest type (or any other area-related 
attribute such as elevation or disturbance history). 
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The detectable impact areas discussed thus far are based on forest area. The 

detectable impact area can be converted to total land area by dividing the 
detectable forest area by the percentage of forest in the area of interest. For 
example, 3.5 million acres of forest must be impacted by the crown dieback 
example in table 4. This means that a problem which is not confined to forests 
(e.g., climate change) must be impacting a larger area than just the forest. In the 
Northeast, where the forests constitute 67 percent of the total land area, about 5.2 
million acres of total land area must be affected to recognize the problem. This 
information could be used in simulation models, where the FIA grid might be 
checked for adequacy to recognize problems dispersed across the total landscape.       
 
 
Independence 
 
 

FIA plots can contribute observations to more than one group, so it is 
important to consider whether the groups being compared consist of independent, 
paired, or mixed observations. Independence is guaranteed only when the groups 
are drawn from mutually exclusive sets of plots, which is usually the case when 
comparing different regions or different panels. Purely paired analyses are 
achieved only when each plot is required to contribute an observation to both 
groups, which is commonly the case when the groups are based on survivor trees 
from plots measured at two points in time. In other situations, the groups will be a 
mixture of independent and paired observations. For example, a plot can 
experience multiple disturbances. For an analysis designed to compare two 
disturbances, a single plot has the potential to contribute an observation to one or 
both disturbance groups, resulting in a mixture. 

 
The SAS TWOSAMPLEMEANS option is most appropriate for independent 

observations, but setting the correlation coefficient to 0 in the PAIREDMEANS 
option yields approximately the same result. So PAIREDMEANS can be  
modified to accommodate mixtures of independent and paired observations by 
adjusting the correlation coefficient. For example, if 40 percent of the 
observations in a prospective analysis are expected to be paired, the correlation 
coefficient could be reduced to 40 percent of the value that would be used if all 
plots were paired. Keep in mind when interpreting results that PAIREDMEANS 
presents output in terms of plot pairs (npairs). When mixtures of independent and 
paired plots are analyzed with PAIREDMEANS, the total number of grid points 
(i.e., independent plots plus plot pairs) necessary to support the analysis can be 
calculated by adjusting npairs for the proportion of paired plots: 

 
))(()1)((2 propnpairspropnpairsn %#$  (2) 

 
where 
 
npairs = the number of paired plots output from PAIREDMEANS, and 
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prop =  the expected proportion of paired plots in a prospective analysis.  
 

All of the results presented here assume that numbers of observations are 
balanced between groups. Statistical power decreases as designs become 
unbalanced. This is not an issue with paired observations, but FIA’s survey design 
can become unbalanced when analyses are based on independent or mixed 
observations. For independent observations, the TWOSAMPLEMEANS 
procedure has a weighting feature to accommodate unbalanced designs. This 
feature is not available with PAIREDMEANS, so the effects of an unbalanced 
design are not readily obtainable when mixtures of independent and paired 
observations are processed with PAIREDMEANS. Sensitivity to imbalance can 
be approximated with TWOSAMPLEMEANS, and estimated power reductions 
could then be extrapolated to results from PAIREDMEANS. For example, the 
number of plots required for independent observations in table 3 increases by an 
average of 11 percent when the sample size in each group is unbalanced by a ratio 
of 2:1. The number of plots resulting from a similar analysis of mixed 
observations with PAIREDMEANS would then be increased by this percent. 
 
 
Strategies to Increase Statistical Power 
 
 

Increasing sample size is one obvious way to gain statistical power. Grid 
intensification is the preferred approach if economically feasible. Sample size can 
also be increased by combining areas, but this must be done carefully. Adding 
adjacent States will increase power if those areas have the same problem as the 
original location.  If not, the analysis could be compromised because adding 
unaffected areas will dilute any effect that may have been present at the original 
location. Sometimes adding more territory is not an option. For example, Hawaii 
is so isolated that it would not be practical to combine Hawaii with any other 
State. Given this, it is noteworthy that the base Phase 3 sampling intensity in 
Hawaii would not support an analysis of crown indicators (table 4). 

 
Power can also be gained by tailoring analyses to more specific subsets of the 

data through stratification. Forest health impacts that have “clumped” 
distributions display a higher variance than impacts that are evenly dispersed. 
Statistical power is adversely affected by increased variance. Stratification can 
help by reducing variation within strata. If a clumped distribution is suspected, 
post-stratify the data to isolate the clumps if possible. 

 
Power might be gained by taking advantage of the “double sampling for 

stratification” technique that FIA uses for standard inventory estimates (Bechtold 
and Patterson 2005). This technique reduces the variance of many FIA inventory 
estimates, and variance reduction always increases statistical power. However, the 
Phase 3 indicators have not yet been incorporated into FIA’s processing engine, 
so the degree to which this procedure might reduce the variance of crown 
indicators is uncertain.    
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Species groups are another important aspect of stratification. Grouping species 

together has the potential to increase power by increasing the number of plots 
available for analysis, but a forest health problem that impacts only a few species 
in a group may go undetected. If a particular species is known to be sensitive to a 
prospective threat, that species should be isolated. Care must always be taken to 
avoid different species mixes between the two groups of observations being 
tested, because effect size could be an artifact of the difference in species mix.  

 
The results presented here are based on two-tailed tests, where the alternate 

hypothesis (H1) is that the mean of Group 1 differs from the mean of Group 2, so 
the analyst can determine whether an indicator is improving or deteriorating. 
Additional power can be attained by using one-tailed tests, where H1 is modified 
to specify that the mean of Group 2 has either increased or decreased. On average, 
when one-tailed tests are used, the number of plots is reduced to 83 percent of the 
required observations listed in table 3. Note that the alternative hypotheses (H1) 
should be specified prior to any testing. It is not valid to look at the data and then 
decide if the variable of interest should be increasing or decreasing. 
 
 

Conclusions 
 
 

Comprehensive power analyses of FIA’s Phase 3 indicators are possible with 
only three pieces of information derived from actual data—the indicator’s 
frequency distribution (normal vs. log normal), its standard deviation, and a 
correlation coefficient for paired observations. The analyst can then solve for 
detectable effect size, !  level, statistical power ( "#1 ), or numbers of 
observations required. Supplied with the number of plots required to detect a 
significant effect, the adequacy of the FIA grid to support prospective analyses 
can be readily evaluated.  

 
For most plausible scenarios involving the crown indicator, about 100 plots (or 

50 paired plots) would be adequate. Paired plots resulting from repeated 
observations over time reduces the number of grid points to less than half the 
observations that would be required from independent observations. These results 
are consistent with previously unverified assumptions that the crown indicators as 
implemented on the Phase 3 grid could reliably support analyses at the regional 
level, but probably not for many individual States. 

 
We recommend that power analyses be conducted for all indicators where 

statistical hypothesis testing is an option. The information needed to accomplish 
this is readily available from existing datasets for indicators that have already 
been implemented. As new indicators are proposed, power analysis should 
become a formal part of the indicator development process. 
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Appendix A. SAS Power Analysis Program 
 
 
/* 
This SAS program performed the Power Analysis resulting in Table 3.   
 
This program produces numbers of observations (ntotal or npairs) as the 
dependent variable. The analysis can be revised to make any of the associated 
variables (power, alpha, stddev, cv, meandiff, meanratio, or corr) into the 
dependent variable by specifying the number of observations available and setting 
the dependent variable of interest to null. 
*/ 
 
title1 'Crown Density - independent observations'; 
      proc power; twosamplemeans 
      outputorder  = syntax 
     test          = diff 
 dist          = normal 
      power          = .80 .90 
      alpha         = .01 .05 
      stddev        = 10 15 
      meandiff      = 10 15 
      ntotal        = . 
      ; 
title1 'Foliage Transparency - independent observations'; 
      proc power; twosamplemeans 
      outputorder = syntax 
     test          = diff 
 dist          = normal 
      power         = .80 .90 
      alpha         = .01 .05 
      stddev        = 5 10 
      meandiff      = 5 10 
      ntotal        = . 
      ; 
title1 'Crown Dieback - independent observations'; 
      proc power; twosamplemeans 
      outputorder = syntax 
     test          = ratio 
      dist          = lognormal 
      power         = .80 .90 
      alpha         = .01 .05 
      cv            = 1.5 2 
      meanratio     = 2 2.5 
      ntotal        = . 
      ; 
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title1 'Crown Density - paired observations'; 
      proc power; pairedmeans 
      outputorder = syntax 
     test          = diff 
      dist          = normal 
      corr          = .25 .5 
      power         = .80 .90 
      alpha         = .01 .05 
      stddev        = 10 15 
      meandiff      = 10 15 
      npairs        = . 
      ; 
 
title1 'Foliage Transparency - paired observations'; 
      proc power; pairedmeans 
     outputorder = syntax 
     test          = diff 
      dist          = normal 
      corr          = .25 .5 
      power         = .80 .90 
      alpha         = .01 .05 
      stddev        = 5 10 
      meandiff      = 5 10 
      npairs        = . 
      ; 
title1 'Crown Dieback - paired observations'; 
 proc power; pairedmeans 
     outputorder = syntax 
     test          = ratio 
      dist          = lognormal 
      corr          = .25 .5 
      power         = .80 .90 
      alpha         = .01 .05 
      cv            = 1.5 2 
      meanratio     = 2 2.5 
      npairs        = . 
      ; run;  
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Species Group n    
trees 

n    
plots

n    
trees 

n    
plots

m s re m s re m cv re

Softwoods:
  South. yellow pine 6,648 441 2,729 219 42.1 8.6 0.37 * 18.8 7.1 0.41 * 2.1 1.9 0.46 *
  East. white pine 1,157 180 604 99 48.6 10.6 0.51 * 20.4 5.8 0.29 * 2.7 1.5 0.72 *
  Red pine 521 37 347 27 50.3 10.5 0.31 18.4 4.0 0.24 1.6 1.5 0.08
  Spruce/fir 2,459 258 1,720 193 51.6 10.3 0.61 * 16.7 4.6 0.21 * 4.4 1.5 0.18 *
  Hemlock 776 130 408 69 53.1 10.8 0.64 * 17.7 5.7 0.35 * 3.0 1.3 0.67 *
  Other Softwoods 1,867 241 1,462 142 48.5 13.7 0.36 * 19.4 7.1 0.27 * 5.0 1.6 0.38 *

Hardwoods:
  Oak 6,088 855 2,532 410 47.0 8.4 0.32 * 17.0 6.2 0.15 * 4.2 1.3 0.24 *
  Elm 576 228 229 99 44.1 11.1 0.30 * 20.2 7.8 0.30 * 5.9 1.9 0.35 *
  Hickory 1,196 391 401 137 51.5 10.4 0.48 * 14.8 6.3 -0.06  2.5 2.3 0.14  
  Birch 1,724 416 1,043 263 50.6 9.9 0.40 * 18.0 5.4 0.15 * 4.5 1.1 0.28 *
  Maple 6,481 916 3,428 502 48.4 9.1 0.46 * 16.8 5.5 0.15 * 3.9 1.5 0.55 *
  Beech 730 201 320 95 51.1 11.6 0.58 * 15.3 4.5 0.17  3.7 1.5 0.30 *
  Sweetgum 1,032 262 440 126 48.2 10.9 0.41 * 13.4 5.7 0.24 * 3.0 2.5 -0.01  
  Tupelo-blackgum 690 237 341 102 47.1 11.8 0.62 * 16.1 9.5 0.03  3.5 2.9 0.81 *
  Ash 1,303 340 680 168 46.7 11.6 0.50 * 19.0 8.4 0.67 * 5.0 2.1 0.82 *
  Quaking Aspen 1,113 192 801 136 47.2 10.3 0.45 * 21.4 5.7 0.07  4.9 1.0 0.51 *
  Basswood 388 98 277 63 48.3 10.7 0.44 * 18.4 6.1 -0.10  4.1 2.2 0.24  
  Yellow Poplar 1,022 282 498 141 51.7 10.2 0.16 15.3 7.7 0.08 2.1 3.5 0.20 *
  Walnut 114 65 44 27 44.4 12.9 0.51 * 19.3 11.6 0.57 * 5.3 3.1 0.00  
  Other Hardwoods 2,900 770 1,310 367 45.5 10.6 0.36 * 18.9 8.1 0.12 * 4.5 1.9 0.18 *

All softwoods 13,428 957 7,270 549 46.9 10.8 0.58 * 18.6 6.4 0.37 * 3.0 1.6 0.46 *
All hardwoods 25,357 1,515 12,344 813 47.7 7.8 0.43 * 17.4 6.3 0.35 * 4.5 1.5 0.47 *
All species 38,785 1,625 19,614 890 47.2 7.5 0.42 * 17.7 5.6 0.19 * 4.0 1.3 0.36 *

  numbers of pairs.

Table 1. Means (m), standard deviations (s), coefficients of variation (cv), and correlation coefficients (r) of 

1994-1999.
crown data collected by the Forest Health Monitoring Program in 24 eastern Statesa, by species group,

a States included: AL, CT, DE, GA, IL, IN, ME, MD, MA, MI, MN, MO, NH, NJ, NY, NC, PA, RI, SC, TN, VT, VA,

Crown 
dieback

Independentb 

observations
Pairedc,d    

observations

e Asterisks indicate significant correlation coefficients, where p-values are < .05. 

Crown density Foliage 
transparency

  coefficients (r). The number of remeasured panels available varies by State. 

  were used to calculate means (m), standard deviations (s), and coefficients of variation (cv).

  WV, and WI.
b Independent observations from the latest set of 4 panels sampled between 1994 and 1999 in each State

c Paired observations from the latest set of remeasured panels sampled between 1994 and 1999 in each

  State. Plot means from survivor trees were paired with their previous values to calculate correlation 

d The numbers of observations represent pairs. The total numbers of observations are twice the listed
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Species Group n    
trees

n    
plots

n    
trees

n     
plots

m s re m s re m cv re

Softwood timberland:
  Douglas fir 3,932 380 2,003 219 50.8 11.4 0.43 * 14.5 4.0 0.10 1.8 1.8 0.23 *
  Ponderosa pine 1,467 192 985 134 46.4 11.4 0.42 * 17.3 6.1 0.24 * 2.1 2.9 0.08
  True fir 3,084 315 1,915 204 51.6 12.4 0.43 * 13.5 4.6 0.11 2.6 1.7 0.48 *
  Western hemlock 962 85 455 45 51.5 10.7 0.38 * 13.9 3.4 0.12 1.7 1.8 0.52 *
  Sugar pine 102 27 76 22 47.8 9.6 0.25 18.1 6.9 0.03 1.1 2.0 -0.21
  Western white pine 82 30 46 17 48.8 12.2 0.69 * 18.4 5.3 0.58 * 3.8 1.4 0.65 *
  Spruce 1,255 138 870 90 50.7 10.5 0.42 * 12.3 4.2 -0.02 2.1 1.3 0.29 *
  Western larch 173 38 77 22 50.1 14.3 0.36 20.0 5.9 -0.06 2.2 1.5 0.40
  Incense cedar 209 41 179 33 47.3 13.4 0.47 * 15.8 4.7 0.17 1.5 2.5 0.05
  Lodgepole pine 2,818 166 2,011 108 43.6 10.0 0.51 * 16.3 4.1 0.17 3.0 1.3 0.51 *
  Western red cedar 431 54 237 29 48.6 12.8 0.49 * 18.1 5.8 0.26 1.7 1.9 0.37 *
  Other softwoods 702 126 396 82 43.5 12.9 0.63 * 16.3 7.2 0.46 * 3.0 1.9 0.20
Softwood woodland 3,321 270 961 100 51.8 13.7 0.64 * 12.3 4.2 0.40 * 4.3 1.4 0.14

Hardwood timberland:
  Quaking aspen 1,246 83 852 51 36.0 9.0 0.06 21.3 6.2 -0.05 5.2 1.6 0.31 *
  Cottonwood/poplar 69 11 64 9 47.9 11.1 0.56 17.6 6.9 0.54 2.4 1.0 0.04
  Red alder 363 42 203 18 48.5 14.4 0.19 23.3 13.1 -0.10 5.2 2.8 0.32
  Timberland oak 1,068 106 874 91 38.0 10.3 0.52 * 18.8 8.5 -0.07 5.8 1.7 0.41 *
  Other hardwoods 921 100 628 63 43.3 12.1 0.18 19.1 8.1 -0.05 4.4 2.1 -0.04
Hardwood woodland 3,321 86 125 29 43.2 14.5 0.58 * 18.2 7.4 -0.10 7.8 1.5 0.66 *

All softwoods 18,538 927 10,211 526 49.5 11.0 0.49 * 14.4 4.8 0.28 * 2.8 1.4 0.20 *
All hardwoods 4,310 361 2,746 219 41.0 11.8 0.30 * 19.5 7.6 0.01 5.6 1.6 0.46 *
All species 22,848 1,000 12,957 581 47.2 11.1 0.48 * 15.0 5.1 0.18 * 3.3 1.3 0.35 *

  numbers of pairs. 

Table 2. Means, standard deviations (s), coefficients of variation (cv), and correlation coefficients (r) of crown data 

collected by the Forest Health Monitoring Program in 8 western Statesa, by species group, 1992-1999.
Crown 

dieback
Independentb 

observations
Pairedc,d    

observations

e Asterisks indicate significant correlation coefficients, where p-values are < .05. 

  Plot means from survivor trees were paired with their previous values to calculate correlation coefficients(r). 

Crown density Foliage 
transparency

  used to calculate means (m), standard deviations (s), and coefficients of variation (cv).

a States included: CA, CO, ID, NV, OR, UT, WA, and WY.

d The numbers of observations represent pairs. The total numbers of observations are twice the listed

b Independent observations from the latest set of 4 panels sampled between 1992 and 1999 in each State were

c Paired observations from the latest set of remeasured panels sampled between 1992 and 1999 in each State.

  The number of remeasured panels available varies by State.
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Variable Independent
Data 

Distribution
Power level  

(1-B )
Alpha 

level (a )
Data 

variabilitya

n plots        n plots 
(r=.25)

n plots 
(r=.50)

Crown density Normal 0.8 0.01 10 10 52 21 16
0.8 0.01 10 15 26 12 9
0.8 0.01 15 10 110 43 30
0.8 0.01 15 15 52 21 16
0.8 0.05 10 10 34 14 10
0.8 0.05 10 15 18 8 6
0.8 0.05 15 10 74 29 20
0.8 0.05 15 15 34 14 10
0.9 0.01 10 10 64 26 19
0.9 0.01 10 15 30 14 11
0.9 0.01 15 10 138 54 37
0.9 0.01 15 15 64 26 19
0.9 0.05 10 10 46 18 13
0.9 0.05 10 15 22 10 7
0.9 0.05 15 10 98 38 26
0.9 0.05 15 15 46 18 13

Foliage transparency Normal 0.8 0.01 5 5 52 21 16
0.8 0.01 5 10 16 8 7
0.8 0.01 10 5 192 74 51
0.8 0.01 10 10 52 21 16
0.8 0.05 5 5 34 14 10
0.8 0.05 5 10 12 6 5
0.8 0.05 10 5 128 50 34
0.8 0.05 10 10 34 14 10
0.9 0.01 5 5 64 26 19
0.9 0.01 5 10 20 10 8
0.9 0.01 10 5 242 93 63
0.9 0.01 10 10 64 26 19
0.9 0.05 5 5 46 18 13
0.9 0.05 5 10 14 7 5
0.9 0.05 10 5 172 65 44
0.9 0.05 10 10 46 18 13

Crown dieback Log normal 0.8 0.01 1.5 2 118 39 25
0.8 0.01 1.5 2.5 70 24 16
0.8 0.01 2.0 2 160 48 29
0.8 0.01 2.0 2.5 94 29 18
0.8 0.05 1.5 2 80 26 16
0.8 0.05 1.5 2.5 48 16 11
0.8 0.05 2.0 2 108 32 19
0.8 0.05 2.0 2.5 64 20 12
0.9 0.01 1.5 2 150 49 30
0.9 0.01 1.5 2.5 88 30 19
0.9 0.01 2.0 2 204 61 36
0.9 0.01 2.0 2.5 118 36 22
0.9 0.05 1.5 2 106 35 21
0.9 0.05 1.5 2.5 62 21 13
0.9 0.05 2.0 2 144 43 25
0.9 0.05 2.0 2.5 84 25 15

dieback).
the listed combinations of input specifications for 3 crown variables (crown density, foliage transparency, and crown 
Table 3. Numbers of independent and paired observations required to detect a statistically significant signal, given

a For variables with a normal distribution the measure of data variability is the standard deviation. For variables with a

Pairedc,d

Effect 

sizeb

Power analysis input specifications Plots required

  of observations required when the correlation coefficient is set to 0.25 and 0.50.
d The numbers of plots listed represent pairs. Each pair represents 1 plot (i.e., grid point) with two observations.

  log normal distribution the measure of data variability is the coefficient of variation.
b For variables with a normal distribution the effect size is specified as the difference between two means. For variables
  with a log normal distribution the effect size is specified as the ratio between two means.
c Paired observations require the additional specification of a correlation coefficient (r). These results show the numbers
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Region / State Total Forest Forest Percent Forest Percent Forest Percent

land land Areaf Forestg Areaf Forestg Areaf Forestg

M acres Percent M acres Percent M acres Percent

  Northeast:
    Connecticut     3,101 1,794 2,016 112 2,976 166 3,456 193
    Delaware        1,251 383 2,016 527 2,976 777 3,456 903
    Maine           19,752 17,673 2,016 11 2,976 17 3,456 20

    Maryland      6,256 2,566 2,016 79 2,976 116 3,456 135
    Massachusetts   5,018 3,171 2,016 64 2,976 94 3,456 109
    New Hampshire   5,740 4,850 2,016 42 2,976 61 3,456 71
    New Jersey      4,748 2,132 2,016 95 2,976 140 3,456 162
    New York        30,217 18,669 2,016 11 2,976 16 3,456 19
    Pennsylvania    28,683 16,577 2,016 12 2,976 18 3,456 21
    Rhode Island    669 356 2,016 567 2,976 836 3,456 971
    Vermont         5,920 4,618 2,016 44 2,976 64 3,456 75
    West Virginia   15,415 12,007 2,016 17 2,976 25 3,456 29
  Total       126,767 84,796 2,016 2 2,976 4 3,456 4
                    
  North Central:     
    Illinois        35,608 4,525 2,016 45 2,976 66 3,456 76
    Indiana         22,980 4,656 2,016 43 2,976 64 3,456 74
    Iowa            35,842 2,879 2,016 70 2,976 103 3,456 120
    Michigan        36,275 19,545 2,016 10 2,976 15 3,456 18
    Minnesota       51,024 16,391 2,016 12 2,976 18 3,456 21
    Missouri        44,093 15,078 2,016 13 2,976 20 3,456 23
    Ohio            26,207 7,894 2,016 26 2,976 38 3,456 44
    Wisconsin       34,791 16,275 2,016 12 2,976 18 3,456 21
  Total        286,819 87,243 2,016 2 2,976 3 3,456 4

South:
  Southeast:
    Florida         35,026 16,147 2,016 12 2,976 18 3,456 21
    Georgia         37,114 24,784 2,016 8 2,976 12 3,456 14
    North Carolina  31,128 18,447 2,016 11 2,976 16 3,456 19
    South Carolina  19,207 12,746 2,016 16 2,976 23 3,456 27
    Virginia        25,626 15,766 2,016 13 2,976 19 3,456 22
  Total        148,102 87,889 2,016 2 2,976 3 3,456 4

  South Central:
    Alabama         32,435 22,693 2,016 9 2,976 13 3,456 15
    Arkansas        33,324 18,830 2,016 11 2,976 16 3,456 18
    Kentucky        25,426 11,970 2,016 17 2,976 25 3,456 29
    Louisiana       27,880 14,222 2,016 14 2,976 21 3,456 24
    Mississippi     30,026 19,622 2,016 10 2,976 15 3,456 18
    Oklahoma        43,954 7,665 2,016 26 2,976 39 3,456 45
    Tennessee       26,390 14,480 2,016 14 2,976 21 3,456 24
    Texas           167,693 17,273 2,016 12 2,976 17 3,456 20
  Total        387,127 126,756 2,016 2 2,976 2 3,456 3

  Great Plains:
    Kansas          52,488 2,106 2,016 96 2,976 141 3,456 164
    Nebraska        49,206 1,245 2,016 162 2,976 239 3,456 278
    North Dakota    44,337 724 2,016 278 2,976 411 3,456 477
    South Dakota    48,434 1,682 2,016 120 2,976 177 3,456 205
  Total        194,465 5,757 2,016 35 2,976 52 3,456 60
Continued…

-------- M acres --------

Table 4. Total land area, forest land area, and detectable impact area for three crown-indicator scenarios
involving remeasured (paired) plots, by region and State.

RPA areaa Detectable impact areab 

Crown densityc     

(21 paired plots)

Foliage 

transparencyd        

(31 paired plots) 
Crown diebacke      

(36 paired plots)
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Region / State Total Forest Forest Percent Forest Percent Forest Percent

land land Areaf Forestg Areaf Forestg Areaf Forestg

M acres Percent M acres Percent M acres Percent

  Intermountain:
    Arizona         72,764 18,671 2,016 11 2,976 16 3,456 19
    Colorado        66,390 22,612 2,016 9 2,976 13 3,456 15
    Idaho           52,909 21,430 2,016 9 2,976 14 3,456 16
    Montana         93,306 25,014 2,016 8 2,976 12 3,456 14
    Nevada          70,446 11,089 2,016 18 2,976 27 3,456 31
    New Mexico      77,674 16,682 2,016 12 2,976 18 3,456 21
    Utah            52,497 17,962 2,016 11 2,976 17 3,456 19
    Wyoming         62,062 11,445 2,016 18 2,976 26 3,456 30
  Total        548,047 144,905 2,016 1 2,976 2 3,456 2

  Pacific Northwest:
    Oregon          61,181 30,169 2,016 7 2,976 10 3,456 11
    Washington      42,609 22,279 2,016 9 2,976 13 3,456 16
    California      99,599 32,817 2,016 6 2,976 9 3,456 11
    Hawaii          4,111 1,748 2,016 115 2,976 170 3,456 198
    Alaska          365,042 126,869 2,016 2 2,976 2 3,456 3
  Total        572,542 213,883 2,016 1 2,976 1 3,456 2

e 36 paired plots are necessary to detect a significant change given: a log normal data distribution;
  power level (1-B)=0.9; a=0.05; coefficient of variation=1.8; correlation coefficient=0.3; ratio of mean difference=2.

  change. Values greater than 100 indicate that the sampling intensity is insufficient.

a Source: 2007 RPA statistics (http://fia.fs.fed.us/program-features/rpa/default.asp).

-------- M acres --------

  area in the listed State or region that must be impacted by a disturbance in order to detect a significant 

b The forest area that must be impacted in order to detect a forest health problem, given a specified number
  of plots.
c 21 paired plots are necessary to detect a significant change given: a normal data distribution;  
  power level (1-B)=0.9; a=0.05; standard deviation=12; correlation coefficient=0.4; mean difference=10.

f Impact area=n(E)*(Pn/Pt) where n = the specified number of plots; E=plot expansion factor=96,000;
  Pn=available panels=5; Pt=total panels=5.

d 31 paired plots are necessary to detect a significant change given: a normal data distribution;

g Percent forest impact area = detectable forest impact area / forest area * 100. This is the percentage of forest

Table 4 continued. Total land area, forest land area, and detectable impact area for three crown-indicator

  power level (1-B)=0.9; a=0.05; standard deviation=6.5; correlation coefficient=0.2; mean difference=5.

scenarios involving remeasured (paired) plots, by region and State.
RPA areaa Detectable impact areab 

Crown densityc     

(21 paired plots)

Foliage 

transparencyd        

(31 paired plots) 
Crown diebacke      

(36 paired plots)
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From Detection Monitoring to Evaluation 
Monitoring—A Case Study Involving Crown 

Dieback in Northern White-Cedar
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Abstract: The Forest Inventory and Analysis (FIA) Phase 3 plot network is a crucial 
part of the U.S. Forest Health Monitoring program’s detection monitoring system, where 
select indicators are monitored for signals that may indicate deteriorating forest health. 
When a negative signal is identifi ed, evaluation monitoring provides a mechanism 
whereby a potential problem can be further investigated. Elevated crown dieback 
was observed among northern white-cedar (Thuja occidentalis L.) trees in Maine and 
Michigan on FIA Phase 3 plots measured between 2000 and 2004. We present results 
of this potential problem through the detection and evaluation monitoring process. We 
discuss the advantages and disadvantages of using FIA data to frame the problem, and 
share lessons learned from all phases of the project—including problem identifi cation, 
project implementation, and results presentation. 

Keywords: Crown condition, FHM, FIA, forest health, Maine, Michigan, Thuja 
occidentalis.

Introduction

The U.S. Forest Service, Forest Health Monitoring (FHM) program institutes 
a tiered strategy to monitor the status, changes, and trends in forest health across 
the United States (Riitters and Tkacz 2004). The fi rst tier, known as detect ion 
monitoring, evaluates the status and change in the condition of forested eco-
systems through analysis of data collected from nationally standardized aerial and 
ground surveys. The second tier, known as evaluation monitoring (EM), seeks to 
determine the extent, severity, and cause of any deteriorating forest conditions 
observed through detection monitoring. A third tier, intensive site monitoring, 
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investigates cause-effect relationships by linking detection monitoring to eco-
system process studies (U.S. Department of Agriculture 2003). Detection 
monitoring activities were begun in 1990 by FHM. In 2000, the network of 
FHM detection monitoring plots was integrated into the U.S. Forest Service, 
Forest Inventory and Analysis (FIA) program. Now known as Phase 3 plots, the 
detection monitoring plots are a subset of FIA’s total network of Phase 2 ground 
plots (McRoberts 2005). In addition to these plots, the U.S. Forest Service, 
Forest Health Protection (FHP) unit also participates in detection monitoring by 
conducting annual aerial and ground-based surveys for forest insects, disease, and 
invasive plants.

Our objectives for this study were to describe the EM process, describe the role 
of FIA in EM, and review our experience with an EM project that originated from 
an unexpected trend observed in FIA Phase 3 data.

FHM Evaluation Monitoring Process

The FHM program funds EM projects under two broad categories: base 
and fi re plan. The purpose of base EM projects is to investigate any issues or 
concerns identifi ed during detection monitoring. The purpose of fi re plan EM 
projects is to investigate and explain the extent, severity, and/or cause of a fi re-
related phenomenon observed during detection monitoring. EM proposals are 
fi rst screened by regional FHM managers and then forwarded to a national selec-
tion committee, which includes the FHM Program Manager and representatives 
from the Forest Service’s National Forest System, State and Private Forestry, and 
Research and Development programs. Selection criteria include: 

• linkage to detection monitoring, 
• signifi cance in terms of geographic scale, 
• biological impact and/or political importance, and
• feasibility of successful project completion within 1 to 3 years.

Listings and descriptions of EM projects funded since 2004 are posted at 
http://fhm.fs.fed.us/em/funded/proposals_base.shtm. 

Problem Identifi cation and Presentation of Results

National reports on forest health conditions are produced annually by the FHM 
program (e.g., Ambrose and Conkling 2007). State-level reports that include 
forest health indicators are produced by FIA on a 5-year basis (e.g. Turner and 
others 2008). Annual Forest Health Highlights (e.g., Washington State Department 
of Natural Resources 2007) are produced for each State by FHP staff and State 
partners. All of these reports are potential sources for identifying unusual or 
deteriorating forest health conditions that require further study. 
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Failure to identify a problem that truly exists has the potential for disaster. 
Thus, the EM process allows a wide range of potential forest health problems to 
be examined so that serious problems are not overlooked. Successful EM projects 
include not only those that confi rm a signifi cant forest health problem but those 
that nullify a suspected forest health problem as well. Both results improve 
knowledge of the resource in question and, in the case of confi rmation, provide 
managers an opportunity to mitigate the threat.

Once an EM project is funded, the FHM management team requires annual 
progress reports. Results based on these reports are also presented in poster format 
at annual FHM working group meetings. Beginning with the 2008 report, sum-
maries of recently completed EM projects will be included in the FHM national 
reports. This provides a structured forum for EM results and guarantees a pub-
lished outlet to EM investigators. The format for these summaries is similar to 
an extended abstract, but it also allows one or two tables or fi gures per summary. 
This abbreviated format is not expected to interfere with other presentation and 
publication outlets, which are encouraged as well.

Role of FIA

Using FIA data as the basis for EM projects has several benefi ts. First, 
researchers have access to a large, long-term, broad-scale dataset. FIA has been 
conducting inventories of the Nation’s forest land for over 70 years. Up through 
the late 1990s, statewide inventories focused primarily on timber-based variables 
and were completed approximately once every 6 to 8 years in the South and 11 to 
18 years in the rest of the country (Gillespie 1999). Since then FIA has switched 
to a panelized annual inventory system (Bechtold and Patterson 2005) and worked 
to reduce inventory cycles to 5 years in the East and 10 years in the West. Further, 
the integration of the FHM detection monitoring plots in 2000 broadened FIA’s 
survey to include more nontimber variables. These FIA data, including the FHM 
detection monitoring data, are available to the public through FIA’s Spatial Data 
Service (SDS) centers or online databases at http://www.fi a.fs.fed.us/tools-data/
default.asp. 

All FHM data from 1990 to 1999 and FIA data from 2000 and beyond are 
available for analysis. One obstacle to integrating these data, however, is that 
even though FHM plots were merged into the FIA Phase 3 network, changes in 
protocols make it diffi cult to follow individual trees across the 2000 integration 
date. For many plots, algorithms must be used to match trees. Population infer-
ences based on matched FHM-FIA detection monitoring data may be tenuous 
because there is a question about the extent to which the subsample of matched 
trees accurately represents the population due to the inability to match all trees.

A second benefi t of using the FIA data is repeated measurements of permanent 
plots. These repeated measurements allow for longitudinal studies at the plot or 
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individual tree level. Though such studies may be complicated by missing or 
temporally irregular observations, most current statistical software packages can 
overcome this diffi culty with careful model specifi cations. Almost all of the detec-
tion monitoring plots were measured more than once between 1990 and 1999, and 
since 2000 most of the FIA Phase 3 plots in the Eastern United States also have 
been remeasured. Within a few years, States in the Western United States will 
begin remeasurement as well. 

A third benefi t to using FIA data for detection monitoring and EM is that 
each plot is georeferenced with latitude and longitude coordinates. This allows 
researchers to look for changes and trends across space as well as over time. 
There are, however, strict regulations regarding the release of plot locations. 
Exact locations are protected as confi dential information under the Food Secu-
rity Act of 1986, Public Law 99-198 [H.R. 2100], so coordinates that accompany 
the publicly distributed plot data have been perturbed (McRoberts and others 
2005). Researchers requiring exact plot locations should contact SDS for possible 
accommodation before submitting EM project proposals. 

Experiences with EM Project NE-07-01

Discovering Dieback among Northern White-Cedar 

As part of the 2006 national FHM report, spatial patterns of crown conditions 
by species group were evaluated to identify potential forest health problems 
within the coterminous United States (Randolph in press). Crown density, foliage 
transparency, and crown dieback averages were calculated by plot for individual 
species groups if the plot contained fi ve or more trees (diameter > 5.0 inches) in a 
given species group. All available data from FIA Phase 3 plots measured between 
2000 and 2004 were included in the analyses. Spatial clusters of plots with high 
crown dieback, high foliage transparency, or low crown density averages relative 
to the other plots were identifi ed as areas with potential forest health problems. 
Clusters of plots with northern white-cedar (Thuja occidentalis L.) crown dieback1 
averaging 10 percent or more were discovered in Maine and northern Michigan. 
Plot averages for northern white-cedar dieback met this threshold for 33 percent 
and 19 percent of the plots with at least fi ve northern white-cedar trees in Maine 
and Michigan, respectively. Such elevated levels of dieback were of concern 
because unlike hardwood trees, conifers often do not exhibit crown dieback unless 
the tree is under serious stress (Millers and others 1992).

In general, northern white-cedar is a species resistant to serious injury from 
insects and disease, so reasons for the elevated levels of dieback were unclear. 
Local foresters, entomologists, and pathologists were questioned about potential

1 Crown dieback is defi ned as “recent mortality of branches with fi ne twigs, which begins at the terminal 
portion of a branch and proceeds toward the trunk” (Schomaker and others 2007).  
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causes. Most had not noticed a deterioration of northern white-cedar, though its 
general poor form and harsh growing conditions were often cited. Drought was 
mentioned as a suspected cause in Maine, where one of the worst droughts ever 
recorded there occurred between 1999 and 2002 (Lombard 2004). Dry conditions 
also occurred between 1998 and 2002 in the Upper Peninsula and northern Lower 
Peninsula of Michigan (Steinman 2004). Thus, drought was considered to be 
a potential explanation. Other suggested causes included unfavorable winter 
weather (Johnston 1990), other severe weather events, and silvicultural practices. 

Stand-level condition data (e.g. disturbances, stand age, presence of water) 
were examined for correlations that might provide an explanation for the elevated 
levels of crown dieback. Residual stress from harvesting and wind disturbances 
explained the elevated dieback levels on two plots in Maine. However, harvesting 
and detrimental weather events did not seem broadly applicable reasons for the 
elevated levels of crown dieback. 

Continuing the investigation, we examined plot averages by broad species 
group to determine if the elevated levels of crown dieback were limited to the 
northern white-cedars. Crown dieback averages were calculated at plot-level 
for groupings of hardwoods and non-northern white-cedar softwoods (hereafter, 
“other softwoods”). We observed that high dieback averages for northern white-
cedars were not necessarily accompanied by elevated averages among the 
hardwoods and other softwoods on the same plots. We therefore decided that 
additional ground work and more indepth data analyses warranted an EM project 
proposal. 

We submitted a base EM project proposal that recommended additional fi eld 
work to verify the original fi eld crew assessments and to search for additional 
evidence of disturbances that may have been below the thresholds at which they 
are recorded by FIA fi eld crews. We also proposed further analysis of the 2000-
2004 FIA data and of FHM data collected during the 1990s. The proposal was 
accepted and funded for 2 years (Randolph 2008).

Field Verifi cation and Data Analysis 

During the summer of 2007, we selected plots to revisit which had average 
northern white-cedar crown dieback > 10 percent (based on the 2000-2004 FIA 
surveys). Thereby, we identifi ed 15 plots (6 in Michigan and 9 in Maine). To 
compare stand and tree conditions, we also revisited fi ve additional plots with an 
average cedar crown dieback of 5 percent or less. Special approval was granted 
by FIA administrators to visit these plots. Working closely with the FIA crews 
in Maine and Michigan, visits were scheduled to coincide with their regularly 
planned visits as much as possible. This was done for three reasons. The experi-
ence and local knowledge of the fi eld crews quickened our ability to fi nd the plots. 
In addition, coincident visits limited the number of times the landowners were 
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contacted, and reduced the potential for plot degradation. Given the time allotted 
for fi eld work we were able to visit 11 plots with the FIA fi eld crews and 7 others 
independently, for a total 18 plot visits (fi gure 1). 

These plot visits enabled us to verify the elevated levels of northern white-
cedar crown dieback and to observe local growing conditions. Disturbances on 
two of the selected plots that previously had been identifi ed by FIA fi eld crews 
were validated also. In addition, on two other plots we found localized wind 
damage < 1-acre in size and a combination of wind and fl ooding damage on still 
another. Besides the plot-level disturbances, many northern white-cedars were 
leaning, had exposed roots, or exhibited strips of dead cambium around the 
bole. These conditions gave insight into the distressed conditions of many trees. 
Readers are directed to Randolph and others (2008) for a detailed summary of the 
plot visits.

The plot visits did not identify any single cause for the high levels of crown 
dieback but did help identify variables to include in subsequent data analyses 
such as stand age, disturbance type, temperature, and precipitation. We began 
the data analysis by obtaining all detection monitoring plots measured in Maine 
and Michigan between 1990 and 2005 through the national SDS center. FHM 
data collection began in 1990 in Maine and in 1994 in Michigan; and it ended in 
both States in 1999. These timeframes are hereafter referred to as the “FHM time 
period.” A total of 259 plots (123 in Maine and 136 in Michigan) were obtained 
for this period of FHM data collection. Northern white-cedar was present on 37 
percent of the plots in Maine and 18 percent of the plots in Michigan. All of the 

Figure 1: Approximate locations of the plots visited in Michigan and Maine 
during the summer of 2007 for EM project NE-07-01.

MaineMichigan
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plots in Maine and 122 plots in Michigan were measured at least twice during 
the FHM time period. Some plots were measured as many as nine times in Maine 
and four times in Michigan. FIA data collection began in both States in 2000. 
Data from a total of 417 plots (201 in Maine and 216 in Michigan) were obtained 
for the period of FIA data collection, 2000-2005 (“FIA time period”). Northern 
white-cedar was present on 34 percent of the plots in Maine and 22 percent of 
the plots in Michigan. Repeated measurements were made on 37 plots in Maine 
and 42 plots in Michigan. Of those remeasured plots, northern white-cedar was 
present on 11 in Maine and 10 in Michigan. Using a tree-matching algorithm, 
we confi dently were able to match 495 northern white-cedar trees from 54 plots 
established in the FHM time period with their corresponding assessments from 
the FIA time period. 

We then used the available data to determine (1) if the level of crown dieback 
in northern white-cedar was signifi cantly higher than it was in other species, and 
(2) if there had been a change over time in the average level of northern white-
cedar crown dieback. An analysis of variance model, with plot-level average 
crown dieback as the response variable and taxa (hardwoods, northern white-
cedar, and other softwoods), measurement year, and the taxa * measurement year 
interaction as the explanatory factors, was applied to answer question (1). This 
was done separately by State for each time period (FHM and FIA). Data from the 
two time periods were not combined due to complications from being unable to 
follow some FHM plots across the 2000 integration date. To accommodate the 
repeated measurements, we analyzed the data using the SAS® procedure MIXED 
(Littell and others 1996) with a REPEATED statement. Correlations between 
repeated measurements are typically larger for observations with shorter measure-
ment intervals. To account for this, an autoregressive order 1 covariance structure 
was used to model the covariance structure within subjects for the FIA time 
period. Because of the unequally spaced time intervals between measurements, 
the spatial power law covariance structure was used for the FHM time period. 
Pairwise, least-squares mean difference comparisons between the taxa means 
were made with a Bonferroni adjusted comparisonwise alpha level of 0.0167 
(overall familywise alpha = 0.05). 

Preliminary analyses revealed that a number of plots were infl uencing the 
results. Weighting the plot observations by the number of trees sampled alleviated 
much of the undue infl uence. However, one plot in Michigan continued to have 
considerable infl uence. This plot (which we visited during our fi eld work) was 
located in an area that experienced extreme fl ooding and wind damage (fi gure 2). 
We concluded that this plot was atypical of the other plots visited in Michigan 
and decided to drop it from the dataset. This case of one plot exerting great infl u-
ence on the analyses highlights the need for researchers to be watchful for such 
possibilities.

USDA Forest Service Proceedings – RMRS-P-56 29.



8

For question (2), the subset of individual northern white-cedar trees with 
matched observations spanning the FHM-FIA time periods were modeled as a 
linear function of measurement year, by State. Again, because of the unequally 
spaced time intervals between measurements, we used the spatial power law 
covariance structure to model the covariance structure within subjects. 

Conclusions about Northern White-Cedar Crown Dieback 

We concluded for question (1) that when signifi cant differences were present, 
northern white-cedar crown dieback levels were higher than the crown dieback 
levels of other softwood species and lower than the dieback levels of hardwood 
species, although such differences sometimes were dependent upon measurement 
year. In Maine, taxa, measurement year, and the taxa * measurement year 
interaction were all signifi cant at the alpha = 0.05 level during the FHM time 
period, but only taxa was signifi cant during the FIA time period (table 1). During 
the FHM time period, average dieback for northern white-cedar was less than 
average dieback for the hardwoods and greater than average dieback for the other 
softwoods, but in most years was not signifi cantly different from either group 
(fi gure 3). During the FIA time period, average northern white-cedar dieback was 
signifi cantly higher than the average dieback of the other softwoods (fi gure 4). In 
Michigan, taxa was the only signifi cant factor at the alpha = 0.05 level during the 
FHM time period, whereas all three factors were signifi cant during the FIA time 
period (table 1). During the FHM time period, average northern white-cedar dieback 

Figure 2: Conditions of the atypical plot in Michigan with flooding and wind damage.

Table 1: Results (p-values) for the analysis of variance testing the effect
of taxa and measurement year on average crown dieback in Maine and 
Michigan between 1990 and 2005

Maine Michigan
Factor 1990-1999a 2000-2005b 1994-1999a 2000-2005b

Taxa < 0.0001 < 0.0001 < 0.0001 < 0.0001
Year < 0.0001 0.0939 0.0754 0.0005
Taxa * year 0.0118 0.4335 0.1584 0.0015

a  FHM time period.
b  FIA time period.
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Figure 3: Least-squares mean estimates of average percent crown dieback by 
taxa and year in Maine. For each year, bars with different letters are significantly 
different at the Bonferroni comparison-wise alpha value of 0.0167.
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Figure 4: Least-squares mean estimates of average percent crown dieback in Maine 
during the FIA time period (2000–2005), by taxa, with standard error bars. Taxa means 
with different letters are significantly different at the Bonferroni comparison-wise alpha 
value of 0.0167.
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Figure 5: Least square mean estimates of average percent crown dieback in Michigan 
during the FHM time period (1994–1999), by taxa, with standard error bars. Taxa 
means with different letters are significantly different at the Bonferroni comparison-wise 
alpha value of 0.0167.
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Figure 6: Least-squares mean estimates of average percent crown dieback by taxa and year 
in Michigan. For each year, bars with different letters are significantly different at the Bonferroni 
comparison-wise alpha value of 0.0167.
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was signifi cantly higher than the average dieback of the other softwoods (fi gure 5). 
During the FIA time period, signifi cant differences among the taxa occurred 
in 2002 only, when average dieback for northern white-cedar was signifi cantly 
higher than the averages of the hardwoods and other softwoods (fi gure 6).  

USDA Forest Service Proceedings – RMRS-P-56 29.



11

For question (2), we were not able to conclude from the available data that 
there was a signifi cant increase in northern white-cedar crown dieback in either 
State during the timeframe we examined. Measurement year was nonsignifi cant in 
the model predicting crown dieback in both Maine (p-value = 0.5962) and Michi-
gan (p-value = 0.1949). The answers to additional questions, e.g., about specifi c 
stand and weather conditions associated with high levels of northern white-cedar, 
will require additional research. 

Conclusion

Though we failed to reject the null hypothesis that northern white-cedar die-
back was unchanged, we did verify that the species tends to have different aver-
age levels of dieback than other taxa. This fi nding supports the argument that 
average crown conditions tend to be species-specifi c, and that species differences 
should be taken into account when analyzing crown-condition data (Zarnoch and 
others 2004).

There are many advantages of using FIA data as the basis for EM projects. 
The broad scale, long-term data provide a wealth of information that can be ana-
lyzed to understand the past, present, and future ecological conditions of our for-
ests. Because FIA has strict defi nitions and data collection protocols, researchers 
engaging in detection and EM activities are encouraged to collaborate or consult 
with FIA personnel throughout their projects’ duration.
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Can Live Tree Size-Density Relationships 
Provide a Mechanism for Predicting Down 

and Dead Tree Resources? 
 

Christopher W. Woodall1 and James A. Westfall2 
 

 
Abstract: Live tree size-density relationships in forests have long provided a 
framework for understanding stand dynamics.  There has been little examination 
of the relationship between the size-density attributes of live and standing/down 
dead trees (e.g., number and mean tree size per unit area, such information could 
help in large-scale efforts to estimate dead wood resources.  The goal of this 
study was to examine the relationship between standing live, standing dead, and 
downed dead trees in the context of size-density attributes using a national 
inventory of forests. Our results indicated that from the lowest to the highest live 
tree relative stand density, the mean biomass/ha of live trees increased by more 
than 2,000 percent while the mean biomass/ha of standing dead and downed dead 
trees increased 295 and 75 percent, respectively.  Correlations between downed 
dead wood and stand/site attributes reached their highest level (r > 0.60) when a 
stand’s relative density exceeded 80 percent.  We propose a model for highly 
stocked stands whereby downed and dead wood biomass may be predicted based 
on live/dead tree size-density attributes, stand age, and climatic factors.  We also 
provide an alternative model for moderate/low stocked stands whereby potential 
maximum live biomass may serve as a limit to dead wood resources with 
stochastic events (e.g., wind/mortality disturbances) as high-impact variables.   
Overall, the size-density attributes of live/dead trees may help guide the 
estimation of downed and dead wood attributes in forests. 
 
Keywords:  Downed dead wood, stand density index, size-density, self-thinning, coarse 
woody debris 
 
 

Predicting Dead Wood Resources at Large Scales 
 

Forest detritus may be defined as dead organic material in forest ecosystems.  
For this study, forest detritus will be limited to standing and downed dead woody 
materials (DDW).  Estimates of forest detritus attributes are critical to numerous 
scientific fields such as carbon accounting (Smith and others 2004, Woodall and 
others 2008), wildlife habitat assessment (e.g., Bull and others 1997, Harmon and 
others 1986, Maser and others 1979), and fuel loading estimation (Woodall and 
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Monleon 2008).  Detritus provides a diversity (stages of decay, size classes, and 
species) of habitat for fauna ranging from large mammals to invertebrates (Bull 
and others 1997, Harmon and others 1986, Maser and others 1979).  Plants use 
the microclimate of moisture, shade, and nutrients provided by DDW to establish 
and regenerate (Harmon and others 1986). Due to the possibility of dwindling 
detritus habitat for native species and increasing fuel loadings across the United 
States, comprehensive large-scale inventories of DDW have been established for 
habitat assessments/wildlife conservation efforts and fire hazard mitigation efforts 
(e.g., Marshall and others 2000, Rollins and others 2004, Tietje and others 2002, 
Woodall and Monleon 2008).  Worldwide, there has been increased effort in 
recent years to inventory detrital resources to address greenhouse gas offset 
accounting and biodiversity concerns (Kukeuv and others 1997, Woldendorp and 
others 2002, Woodall and others 2008).  In 2001, the U.S. began implementing a 
nationwide inventory of DDW on a subset of inventory plots where standing 
live/dead trees are measured.  An impetus exists to predict DDW for all national 
inventory plots based on standing live and dead tree attributes (Woodall and 
others 2008). 

To date, efforts to model DDW attributes have been focused at large scales 
using remotely sensed information and gradient models (e.g., Rollins and others 
2004) and at small scales by trying to relate DDW to stand/site attributes (e.g., 
McCarthy and Bailey 1994, Pyle and Brown 1999, Rubino and McCarthy 2003).  
Spetich and Guldin (1999) found that DDW accumulation corresponded with 
increasing site productivity—a function of increased biomass corresponding with 
increased DDW volume over time.  In contrast, Norden and others (2004) found 
no correlation between DDW volume and basal area in temperate broadleaved 
forests.  Despite the development of models to estimate relationships between 
forest detritus and stand/site attributes, a sizeable knowledge gap remains in 
understanding fundamental relationships between forest detritus and basic stand 
attributes.  How does DDW vary by levels of standing live tree density?  Can the 
size/density attributes of both live and dead trees help predict of DDW resources?   
 

Size-Density Relationships in Forest Stands 
 

The size-density of live trees has formed a basis for interpreting/predicting 
forest stand dynamics for decades (for example see Drew and Flewelling 1979, 
Gingrich 1967, Krajicek and others 1961, Reineke 1933, Woodall and others 
2005).  The concept of self-thinning forms the theoretical basis for developing 
indices of live-tree size-density attributes.  Self-thinning is based on the premise 
that as mean plant size per unit area increases, the number of individuals per unit 
area decreases (Enquist and others 1998).  An inherent component of the self-
thinning process is density-induced tree mortality.  The forest detritus of standing 
dead and downed dead wood (DDW) must originate from the mortality/branch 
shedding of live trees.  How closely related are the size-density attributes of live 
trees in any given forest stand to the attributes of forest detritus? 

The goal of this study was to examine the trends in stand-level DDW 
attributes in relation to the size-density relationships of standing live/dead trees 
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and selected site factors (e.g., climate and stand age) in forests of the United 
States.  The study had three specific objectives:  1) to estimate mean biomass 
(tonnes/ha) of standing live, standing dead, and DDW by classes of relative 
density;  2) to test for correlations between standing live, standing dead, DDW 
biomass, 30-year mean annual maximum temperature, 30-year mean annual 
minimum temperature, 30-year mean annual precipitation, and stand age by 
classes of relative density; and 3) to develop conceptual models for estimating 
DDW by stand/site factors for stands with high and moderate/low relative density. 
 

Data and Methods 
 

The FIA program is responsible for inventorying the forests of the U.S., 
including both standing trees and DDW on permanent sample plots established 
across the country (Bechtold and Patterson 2005).  Sample plots are established at 
an intensity of approximately 1 plot per 2,400 ha.  If the plot lies in a forested 
area, field crews visit the site and measure tree and site variables ranging from 
tree sizes to forest types.  FIA standing live/dead tree inventory plots consist of 
four 7.32-m fixed-radius subplots for a total plot area of approximately 0.07 ha.  
All standing trees greater than 12.25 cm in diameter at breast height (d.b.h.) are 
inventoried on the plot, while trees less than 12.25 cm dbh and greater than 2.54 
cm d.b.h. are measured on a 2.07-m fixed radius microplot on each subplot.   
DDW sampling methods on FIA plots are detailed by Woodall and Monleon 
(2008).  DDW with a transect diameter greater than 7.60 cm are sampled on each 
of three 7.32-m horizontal distance transects radiating from each FIA subplot 
center at 30, 150, and 270 degrees;  DDW pieces of this size are termed coarse 
woody debris (CWD).  Data collected for every CWD piece include transect 
diameter, length, small-end diameter, large-end diameter, decay class, and 
species.  Fine woody debris (FWD) are DDW pieces with a transect diameter less 
than 7.60 cm and are sampled on the 150-degree transect on each subplot.  Fine 
woody debris with transect diameters less than 2.54 cm were tallied separately on 
a 1.83-m slope-distance transect (4.27 m to 6.09 m on the 150-degree transect).  
Fine woody debris with transect diameters of 2.55 to 7.59 cm were tallied on a 
3.05-m slope-distance transect (4.27 m to 7.32 m on the 150-degree transect).  

The Forest Inventory and Analysis program of the U.S. Forest Service 
inventoried standing and down tree attributes across most of the United States 
between 2003 and 2006 on a total of 4,221 permanent inventory plots.  For every 
inventory plot, the biomass/ha of standing live and dead trees was determined 
using procedures detailed by Bechtold and Patterson (2005).  Plot-level estimates 
of DDW were calculated using procedures detailed by Woodall and Monleon 
(2008, section 3.1).  To account for data collection errors across the Nation, 
extreme outliers were removed using 25 times the interquartile range for all 
classes of FWD (IQR=6.88 tonnes/ha) and CWD (IQR=9.95 tonnes/ha).  The 
relative density of live trees on every plot was determined using the Stand Density 
Index (SDI). 

SDI was first proposed by Reineke (1933) as a stand density assessment tool 
based on size-density relationships observed in fully stocked pure or nearly pure 
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stands.  A metric version of SDI is defined as the equivalent trees per hectare at a 
quadratic mean diameter of 25 cm and is formulated as: 

 
                                           SDI = tph (DBHq/25)1.6                   [1] 
 

where SDI is stand density index, tph is number of trees per hectare, and DBHq is 
quadratic mean diameter (cm) at breast height (1.3 m) (Long 1985). SDI has been 
widely used in even-aged stands because it is independent of species composition.  
The SDI of even-aged monocultures is typically compared to an empirically 
observed, species-specific maximum SDI for determining the stand’s relative 
density.  Maximum SDI (SDImax) may be defined as the maximum density (tph) 
that can exist for a given mean tree size (25 cm) in a self-thinning population 
(Long 1985).  To determine relative density (RD), the SDI of any particular stand 
is compared to the SDImax characteristic of the stand’s species composition.  
Woodall and others (2005) proposed a methodology that estimates the SDImax 
for any stand based on the mean specific gravity of all trees in a stand to estimate 
its unique SDImax.  By using the summation method (Shaw 2000) to determine 
the current density of a stand and the Woodall and others (2005) model to predict 
a SDImax, the RD of all study plots was determined (current SDI/SDImax).   

Finally, three climatic variables were selected for correlation with stand-level 
variables in this study:  30-year mean annual precipitation (PRECIP), 30-year 
mean annual maximum temperature (TMAX), and 30-year mean annual minimum 
temperature (TMIN).   Data for PRECIP, TMAX, and TMIN were obtained from 
the Parameter-elevation Regressions on Independent Slopes Model (PRISM) 
dataset (4-km grid cell size; PRISM Group 2004).  Each of these three variables is 
represented by a 30-year climate normal.  As such, annual precipitation is the 
mean annual total precipitation from 1971 to 2000.  TMAX and TMIN are the 
mean daily temperature extremes for that period. 
 

Correlations and Means by Classes of Stand Relative 
Density 

 
The RD of forest stands increased with the mean biomass/ha of standing live 

trees (Table 1).  From an RD of less than 0.10 to more than 0.90, the mean live 
tree biomass (tonnes/ha) increased by nearly 2,080 percent, while standing dead 
tree and DDW increased by approximately 295 percent and 75 percent, 
respectively (Table 1).  It appears that the greatest rates of increase in biomass for 
both standing and DDW were from the moderate to high RD levels (i.e., from a 
RD of 0.7 to 0.9).  In contrast, the biomass of standing live trees had its greatest 
rate of increase when RD was below 0.5.  Using the same RD classes, correlations 
were conducted between DDW and a selection of stand/site attributes (Table 2).  
Generally, as a stand’s RD increased so did stand/site correlations with DDW.  
For RDs between 0.00 and 0.10, no correlation coefficient exceeded 0.25.  In 
contrast, the majority of correlation coefficients exceeded 0.40 when RDs  
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Table 1:  Mean biomass (tonnes/ha) and associated standard errors (tonnes/ha) for standing 
live/dead and downed dead woody materials in forests of the United States by classes of relative 
density, 2003-2006 
 

Relative 
Density 

Downed, 
dead woody 
material 

Std. 
Error 

Standing 
dead 

Std. 
Error 

Standing 
live 

Std. 
Error 

0.0-0.1 13.62 0.90 4.29 0.70 10.19 0.40 
0.1-0.2 12.81 0.76 3.71 0.34 30.08 0.67 
0.2-0.3 14.08 0.74 4.97 0.40 53.22 1.18 
0.3-0.4 16.28 0.81 7.15 0.50 78.50 1.48 
0.4-0.5 16.82 0.70 8.59 0.57 111.12 2.17 
0.5-0.6 16.98 0.88 8.82 0.61 132.02 2.43 
0.6-0.7 17.86 1.28 12.74 1.96 163.54 4.69 
0.7-0.8 13.63 0.81 7.48 0.71 168.33 5.87 
0.8-0.9 21.88 3.42 16.47 2.64 212.85 11.70 
0.9-1.0 23.77 2.25 16.94 3.50 222.22 21.27 

 
Table 2:  Pearson’s correlation coefficients between estimates of downed dead woody material 
biomass (tonnes/ha) and other stand/site attributes in forests of the United States by classes of 
relative density, 2003-2006 (Italicized coefficients have p-values> 0.05) 
 

Relative 
Density 

Standing 
live 
biomass 

Standing 
dead 
biomass 

30-year 
mean max. 
temp 

30-year 
mean min. 
temp. 

30-yr mean 
annual 
precipitation 

Stand age 

0.0-0.1 0.19 0.21 -0.11 -0.07 0.14 -0.03 
0.1-0.2 0.29 0.20 -0.19 -0.12 0.15 0.02 
0.2-0.3 0.20 0.21 -0.24 -0.18 0.12 0.02 
0.3-0.4 0.21 0.32 -0.21 -0.14 0.13 0.01 
0.4-0.5 0.24 0.25 -0.23 -0.21 0.07 0.13 
0.5-0.6 0.25 0.27 -0.25 -0.21 0.17 0.27 
0.6-0.7 0.39 0.36 -0.23 -0.22 0.04 0.21 
0.7-0.8 0.25 0.36 -0.23 -0.19 0.15 0.24 
0.8-0.9 0.68 0.65 -0.26 -0.20 0.17 0.56 
0.9-1.0 0.61 0.56 -0.14 0.01 0.42 0.55 

 
exceeded 0.80.  For example, stand age only had a correlation coefficient with 
DDW of -0.03 (p-value> 0.05) when relative density was below 0.10.  When a 
plot’s RD was between 0.80 and 0.90, the same correlation had a coefficient of 
0.56 (p-value < 0.001).  Based on these results, we hypothesize that only stand-
level live tree biomass increases consistently with increases in a stand’s stocking 
(i.e., RD).  Stand-level biomass for both standing and DDW stand-level only 
increased at very high levels of stocking, which was further confirmed by DDW 
correlation results.  When constructing models to estimate DDW resources based 
on stand/site attributes, we propose two models based on a stand’s RD: 1) 
low/moderate and 2) highly stocked. 
 

Conceptual Models of Downed Dead Wood Accretion 
 

A conceptualization of DDW accretion may be developed using a live tree 
size-density diagram as a framework (Fig. 1).  Lightly or moderately stocked 
stands (in terms of live tree size or biomass) have unpredictable DDW due to 
management and/or stochastic disturbance events (location D and C in Fig. 1).  
For stands located in this live tree size-density zone, perhaps the maximum DDW 
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biomass can be predicted based on an estimate of where the maximum size-
density self-thinning line is located.  The estimate of maximum live tree stand 
biomass can be reduced by stochastic disturbance and management events to 
reflect a stand’s unique DDW.  Although this approach may be “reverse-
engineering” of DDW estimates, it provides a conceptual framework that DDW 
cannot exceed the maximum live tree size/biomass on a site that has been 
impacted by stochastic disturbance events.  When stands are past the zone of 
imminent mortality and experiencing self-thinning, DDW resources may be fairly 
predictable using stand and site attributes (e.g., live tree size/biomass and annual 
precipitation/temperature) (location A and B in Fig. 1).   DDW prediction may be 
relatively straightforward where stands have not been disturbed by stochastic 
events and management effects.    

 
 

 
 

Figure 1:  Live tree size density diagram with notable locations in the development of downed dead 
wood resources: A) high relative density, small live tree size, predictable dead wood resources, B) 
high relative density, large live tree size, predictable dead wood resources, C) moderate relative 
density, medium-size live trees, unpredictable dead wood resources, and D) very low relative 
density, small-size live trees, and highly unpredictable dead wood resources. 

 
Conclusions 

 
Live tree size density attributes of forest stands may provide a framework for 

understanding and estimating DDW resources in forests across the United States.  
For stands that are highly stocked in terms of the maximum size-density 
relationship, DDW resources may be predicted with a reasonable level of 
confidence due to relatively strong correlations with stand/site attributes.  For 
stands with low/moderate stocking of live trees, an alternative model is proposed 
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whereby the maximum potential DDW biomass is predicted with deductions for 
highly improbable but high impact disturbance events.  We suggest continued 
research in the area of stochastic event impacts on DDW resources. 
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Vegetation Inventory Data:  
How Much is Enough? 
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Abstract: Recognition of the value of forest vegetation data has increased in recent years, 

especially when it is collected using consistent methods over many forest types. Because 

the cost of collecting large datasets is substantial, managers must balance the cost of 

collection with the utility of the conclusions that may be drawn from the data analyses. 

There is no single standard for collecting vegetation data; sampling protocols should be 

developed to address clearly defined analysis objectives. We compare the utility of the 

established Phase 3 Vegetation Diversity and Structure Indicator data with the proposed 

vegetation data to be collected with the Forest Inventory and Analysis Program’s Phase 

2 Vegetation Profile. 

 

Keywords: biomass, carbon pools, wildlife habitat potential, fuel characterization, 
diversity, species distribution, plant community classification, spatial scale 
 

 

Introduction 

 
Recognition of the value of forest understory vegetation inventory data has 

increased in recent years. When collected in a consistent fashion over large 
regions, vegetation inventory data allow for quantitative assessments of existing 
conditions across broad areas. Repeated visits to permanent plots permit change 
and trend analyses. The focus of data collection may be relatively simple – such 
as total foliage cover by height layers or the abundance of general growth habits – 
or more detailed vegetation composition, such as which species are present or 
dominate the area sampled. The cost of data collection can be substantial and 
demands a planning process with clearly defined objectives and a balance of cost 
and utility. This is especially important when the inventory is designed to monitor 
trends over time.  

The Forest Inventory and Analysis (FIA) program has traditionally conducted 
timber inventories of the nation’s forests. The enhanced program, organized in 
three phases, is well-suited for collecting vegetation data at different scales and 
intensities. Phase 1 (P1) uses remotely sensed data to stratify the landscape by 
coarse physiognomic filters; at its most basic level, P1 might stratify by forest vs. 
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non-forest lands. Phase 2 (P2) data include the plot-based observations of 
traditional tree variables, with plots established approximately every 2430 
hectares (6000 ac) on forested lands. With this spatial density of plots, population 
estimates can be derived for some county-sized areas (Bechtold and Patterson 
2005), but estimates are more commonly derived for larger land management 
units (e.g., National Forests, National Parks) or state-wide reports. Moving 
beyond its commodity-driven origin, many researchers have recognized the value 
of FIA data to analyze tree species composition and structure that influences 
wildlife habitat, range, recreation, hydrology and more (Rudis 1991, 2003). Phase 
3 (P3) data are collected on a subset of P2 plots (1 out of 16 plots; approximately 
1 plot every 38 880 hectares [96,000 ac]) and include additional measurements for 
monitoring forest health conditions (Bechtold and Patterson 2005). These data are 
used to establish valuable baseline conditions and detect more detailed changes 
not assessed in P2 and to provide indications of potential impacts to ecosystem 
functions that may be worthy of additional investigation. The P3 grid spatial 
intensity affords population estimates at regional and national levels. 

Each FIA regional program has some history of collecting non-tree vegetation 
data in conjunction with timber inventories. In fact, some of these programs have 
long histories of collecting data on understory plants (O’Brien 2003, O’Brien et 
al. 2003). Although methods have been similar among programs, they have varied 
enough that is difficult to compare or combine data across regional boundaries.  

Forest Inventory and Analysis’ P3 Vegetation Indicator (P3VEG) provides a 
method to collect data on all vascular plants growing on forested plots (U.S. 
Department of Agriculture, Forest Service 2005). Estimations of vascular plant 
species richness and the distribution and abundance of those species, including the 
relative abundance of introduced species, may be calculated using the P3 
vegetation data. Pattern recognition, such as indicator species analysis and 
presence/absence of introduced species, may also be performed using P3 species 
composition data. In addition, composition data can be used to compare 
differences in species mix with differences in the physical attributes across plots 
and to develop plant community classifications (Schulz et al. 2008). Data 
collection requires a dedicated crew member with specialized botanical skills.  

Because of the growing recognition of the value of forest understory vegetation 
inventory data, a team was recently assigned to develop a core-optional method 
that could be used on P2 plots by any FIA unit to yield comparable data across 
regions. In order to minimize demands on time, training and staffing and gain 
efficiencies of resources, data collected with the P2 Vegetation Profile (P2VEG) 
will be limited to structure, recorded as cover by growth habit by layer, with an 
option to collect additional information on the “most abundant” species. The 
objective of this effort is to produce estimates of biomass and structural 
characteristics that will allow for evaluation of carbon pools, wildfire fuel hazard, 
wildlife habitat suitability, forage availability, and grazing potential in a 
consistent way across regions. The option to collect information on the most 
abundant species would afford refinements in the above estimates as well as allow 
for plots to be classified beyond forest type using pre-defined community 
classifications. 
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It makes sense in efficiency to take advantage of FIA’s infrastructure to collect 
these valued vegetation data in addition to the traditional tree inventory: logistics 
for training and moving field crews across large regions, and the data 
management to collect, edit, process, manage and store data are in place. 
However, the costs of an extra crew member on plot to collect additional variables 
can be significant and should not be done without careful consideration.  

Clearly defined objectives are required when allocating resources to vegetation 
data collection. Although there is little reason to collect more data than required, 
it is also inefficient to leave the plot without enough data to address the issues at 
hand or looming in the future. When planning vegetation inventories, it is 
important to consider the uses for vegetation inventory data, the level of detail, 
thoroughness, and spatial scale required to produce desired estimates, and the 
benefits of data at each level of detail.  

We discuss a variety of objectives for collecting vegetation data and compare 
how the established P3VEG and proposed P2VEG measurements can support 
these objectives. Differences between the two methods are summarized in table 1. 

 
Table 1: Summary of differences in scale, measured structure, and species data collected with 
P3VEG and the proposed P2VEG methods. 

Species  
Method 

 
Scale 

 
Structure Identify Abundance Arrangement 

P3VEG 1 plot / 38 880 
ha 

Total foliar 
cover by 

layer 
 

All vascular 
plants 

Total cover Cover by layer 

P2VEG 1 plot / 2430 
ha 

Cover of 
growth habit 

by layer 
 

4 most abundant 
per growth habit 
with cover of at 

least 3% 

 
Total cover  

 
Tallest layer 

 

Objectives for Collecting Vegetation Inventory Data 
 

There are many potential uses for vegetation inventory data. The basic 
inventory objective – how much of what is where? – can include: 

• Biomass and carbon pools 

• Fuel characteristics  

• Wildlife habitat  

• Diversity 

• Species distributions 

• Plant community types (species composition and structure) 
 

Both P3VEG and the proposed P2VEG methods, where implemented, will yield 
cover and height distribution measures that can be used to estimate biomass and 
describe structure, which are key elements for the first three objectives listed 
above. Species abundance data can help refine these estimations and assessments, 
even when species data are limited to only the most abundant species present. 
Data from thorough species inventories are used to assess both the species 
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richness and frequency components of diversity, to define both species 
distributions and range, and to develop plant community classifications. 
 

Biomass and carbon pools 

 
The ability to estimate biomass and describe vegetation structure is central to 

estimating standing carbon pools, characterizing fuel conditions, and assessing 
wildlife habitat potential. Estimations of carbon pools in forests is essential to 
understanding carbon cycles, and changes in stored carbon pools, which are 
critical as society develops policies to mitigate emissions of CO2 and other 
greenhouse gasses. Without complete inventories on forest carbon pools and their 
dynamics, it will be difficult to develop effective policy and monitoring systems 
to manage these pools and sustain the services of forest ecosystems to carbon 
sequestration (Ingerson and Loya 2008). Researchers are continually refining 
tools to estimate carbon stocks in U.S. forests (Smith et al. 2007), although 
uncertainties associated with carbon pools in non-tree forest components remain 
admittedly high (Smith and Heath 2008). Above-ground live tree biomass is 
estimated at less than one half of total carbon found in forests (Ingerson and Loya 
2008). Soils and forest floors are hold a large proportion of carbon in most forest, 
followed by standing dead and downed wood.  Understory vegetation is generally 
assumed to contribute a small fraction to the overall carbon stock in most forest 
ecosystems (Birdsey 1992). However, better calibrated estimates will be possible 
with the availability of direct measurements of abundance and height of 
understories from many forest types and to clarify the dynamics. 
 

Fuel characterization 

 
Data on vegetation structure and composition are essential to characterize fuel. 

Understory vegetation influences fire behavior through the quantity of burnable 
biomass, the vertical structure and arrangement of vegetation, and the species 
present (Riccardi et al 2007). Some growth habits and species are particularly 
combustible while other species are very hard to ignite and can act as fire breaks 
(U.S. Department of Agriculture, Forest Service [Online]). Most fuel analysis 
tools require data that describe how much vegetation is present and how the 
existing vegetation is arranged (ladder fuels). For further detailed analysis, 
information on the species present is necessary.  

Many of the same models are currently used to quantify biomass for both 
carbon pools and fuel characterization. Current tools vary in required data inputs 
(e.g., the Carbon Calculator Tool [CCT] [Smith et al.] Fire and Fuels Extension 
[FFE] [Reinhardt and Crookston 2003] of the Forest Vegetation Simulator [Dixon 
2002], the Fire Effects Monitoring and Inventory Protocol [FIREMON] [Lutes et 
al 2006], and the Fuel Characteristic Classification System [Ottmar et al 2007]). 
The most accurate estimates of biomass can be made when abundance, height, 
and bulk density of the species are known, but these data are rarely available. 
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Thus, most models include basic approximations that are based on tree cover data 
to estimate biomass of understory vegetation. Some use direct measurements of 
total cover by life form to account for biomass, but use approximated values for 
bulk density of understory components. Measured attributes of percent canopy 
cover for herbaceous, grassy, and shrubby growth habits could aid in further 
calibration of biomass estimates for both carbon modeling and fuel 
characterization. 
 

Wildlife habitat 

 
Forest management plans often consider impacts and maintenance of particular 

wildlife habitat elements. Important features for assessing wildlife habitat include 
overall vegetation structure; cover by growth forms, canopy complexity, presence 
of dead standing or downed trees, and plant species composition data (Thomas 
and Verner 1986). Habitat may be assessed at a number of scales – broad 
regional, landscape, or fine (plot level) scales. At broad scales, course filters such 
as dominant vegetation type, successional stages, and canopy closure are used to 
assess habitat conditions for particular species. At finer scales, habitat 
assessments are highly dependent on specific features required by a species or 
guild of species at spatial and temporal scales (Noon et al. 2003). Some species 
have particular habitat requirements and others are more generalists.  It is 
impossible to design a single vegetation inventory that is suitable for every 
species. However, additional information generated with the core-optional FIA 
P2VEG methods could be extremely useful for the development of more specific 
models to predict habitat features at spatial scales that are useful for land use 
policy makers. 

 

Diversity 

 
Established baseline levels of diversity are critical for assessing changes over 

time in response to natural succession, disturbance events, or global climate 
change. Diversity can be evaluated at a variety of scales from ecological regions 
to genetic materials. The thoroughness of data collection affects the scale at which 
diversity can be assessed. The FIA program’s P1 and core P2 samples can be used 
to describe regional-scale tree diversity of land cover, forest type, and structure, 
but provide very limited information about the vegetation under the forest canopy. 
The proposed FIA P2 vegetation plot measurements can assess diversity in terms 
of structure (canopy complexity) and growth habit distribution. 

Species richness, the number of species present over a standard area, is a 
fundamental and easily understood measure of diversity. Overall species richness 
and species richness of each growth habit can only be addressed with a complete 
inventory of species on standard-sized sampling areas. A complete inventory also 
allows for the estimation of baseline species richness, comparing native to 
introduced species richness, and the examination of diversity patterns in measured 
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stands and across large regions. Although standard P2 data and the proposed 
P2VEG data can provide information on regional forest type diversity, growth 
habit, and structural diversity, only the P3VEG can address overall species 
richness, species richness by growth habits, and the diversity of native and 
introduced species.  

 

Species distribution 

 
Determining the distribution of individual species or groups of species is a 

common use of vegetation inventory data. Investigators may be concerned with 
invasive species, indicator species, or species with particular characteristics (e.g., 
important as wildlife forage or cover, species that burn readily or act as 
suppressants to fire, subsistence use). Species composition data from multiple 
plots yield frequency and distribution data, affording assessments of where an 
individual species occurs, how abundant it is, and if it co-occurs regularly with 
other species. The types of possible analyses of species distribution again depend 
on the thoroughness of the inventory of species. 

For some purposes, data collection is limited to a finite list of species; for 
example, the top 20 most unwanted invasive species. Researchers can reach some 
conclusions about how widely those particular species are distributed, but can not 
determine how those species interact with other species present such as the 
impacts of introduced species on native flora. For other purposes, species data are 
limited to the most abundant or dominant species present. This method is 
informative about the dominant species present and can be useful for assessing 
wildlife habitat quality and fuel characterizations. However, researchers will not 
know where a species is absent or present with an abundance below a designated 
threshold (e.g. a species must be present with a cover of at least 3% to be 
recorded). This information gap is limiting when assessing species distributions.  

When the inventory includes all species present, data can be used to examine 
any species of interest, including species co-occurrence with other species. If 
many plots over large areas are included in the sample, the distribution of any 
species found in the sample can be estimated. Studying the patterns of species 
distributions and co-occurrences is extremely useful for predicting where species 
occur in places not sampled. 

Finally, FIA Vegetation inventory data based on a grid sampling design is not 
usually very informative about rare or endangered species distribution – these 
species are most often found in rare or unique habitats – which systematic sample 
grids will usually miss. 

For analyzing species distributions, the P3 VEG all-species inventory is more 
valuable than the P2 VEG. Although there is some value in list-based or most 
abundant data, the conclusions that can be drawn from the limited species data are 
restricted. Analyses of broad scale species distribution, relative cover of 
introduced species, indicator species, or patterns of species co-occurrence are 
most informative when all species are recorded and assessed. 
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Plant Community Types 

 
Classification of existing vegetation uses species data and data derived from 

site physical characteristics to group ecologically-like items together. Mapped 
classes of vegetation describe the landscape and provide vital information 
concerning the ecological systems a land manager must consider before taking 
some management action. The ability to describe the plant community where a 
forest health issue has been observed is an important communication tool. 
Although FIA plot locations are confidential and scientists cannot reveal exactly 
where an invasive plant species was located, they can describe the forest plant 
community, thus providing a detailed search tool for locating areas where 
problems could occur. 

There is no single standard technique used to develop vegetation 
classifications, but there are efforts to standardize the data required (Tart 2005). 
The newly revised Federal Geographic Data Committee’s National Vegetation 
Classification System (NVCS) defines standards for classification plots (with 
enough data that help define vegetation types) and occurrence plots, (plots with 
fewer data but sufficient to document the occurrence of a previously defined 
vegetation type) (FGDC 2007). 

There is also a hierarchy of classification levels. At the upper level, 
physiognomic and ecological factors are used to define broad combinations of 
dominant general growth forms adapted to basic physical conditions. At the mid-
level, physiognomic and floristic characteristics define the groups, similar to the 
forest types used by FIA. The lower level units are defined within the above two 
groups, with the alliance level defined by a characteristic range of species 
composition, habitat conditions, and diagnostic species usually found in the 
uppermost or dominant stratum of vegetation, reflecting regional to sub-regional 
climate, hydrology, moisture/nutrient conditions, and disturbance regimes. The 
association is a finer level of detail defined by the characteristic range of species 
composition, diagnostic species occurrences, and habitat conditions reflecting the 
local topo-edaphic climax, geological substrate, and hydrologic conditions. 

NVCS specifies the detail of data required to develop classifications. The 
complete species inventory data collected using the P3VEG protocol is sufficient 
to develop classifications. The limited number of species that can be collected 
with the proposed P2VEG method restricts its use to occurrence plots – that is, to 
describe the plant community based on classifications developed from plots with 
full species inventories. The addition of some species information can increase 
our understanding of the distribution of classified plant communities – allowing 
for the mapping of vegetation types with more detail than just forest cover type. 

USDA Forest Service Proceedings – RMRS-P-56 31.



 8 

 

Summary 

 
The plot-based system of the FIA program provides an excellent platform for 

collecting understory vegetation data. Between the proposed core-optional 
P2VEG and the P3VEG measurements, FIA has the potential to address many 
current and emerging issues that tree data alone cannot (table 2). To answer the 
question “how much vegetation inventory data is enough?” investigators must 
consider the objectives, spatial scales, and level precision and accuracy required.  

 
 

Table 2 – Utility of FIA vegetation measurements to address objectives1 
 

P2 Vegetation Profile 
(1 plot / 2430 ha) 

 
P3 Vegetation Indicator 

(1 plot / 38 880 ha) 

 
Objective 
 

(How much of what 
is where?) 

Cover by 
growth 
habit 

 
Most abundant 

species 

 
Total foliar 

cover* 

 
All species 

Biomass2 

(carbon/fuel) 

Good Good Good More than enough 

Structure 
(fuel/wildlife) 

Good Good Good More than enough 

Diversity 
Structure 

Growth habit 
      Species richness 

 

 
Good 
Good 

--- 

 
Okay 
Okay 

Not possible 

 
Good 

Derived 
  --- 

 
Good 
Good 

Required 

Species distribution --- Presence of most 
abundant only 

  --- Best: 
presence/absence 

with abundance 

Plant community 
classification 

--- Can be used with 
pre-existing keys to 

alliance level 

  --- Can be used to build 
to association level. 

1Assumes at least 30 plots per forest type to reduce variance: small land management units may require 
intensification of sample grid to increase confidence of estimates. 
2Assumes bulk density of growth habit types or species are known or can be approximated: Biomass (kg/m2) 
= Height (m) x Cover (%/100) x Bulk Density (kg/m3)  

 
When evaluating the utility of each set of measures to address specific 

objectives, the difference in spatial scale at which they are collected is just as 
important as the detail of the data collected.  

The spatially dispersed P3 vegetation indicator data is more detailed, providing 
data for the development of vegetation classifications, assessing species 
distributions and impacts of introduced species on native plant communities, as 
well as a better detection measure of change while assessing regional and national 
trends. This information is used to make regional or national assessments for FIA 
reporting as well as by others concerned with national or regional assessments of 
the state of forest ecosystems (e.g., Resource Planning Act, Heinz Center’s State 
of the Nation’s Ecosystems, Wilderness Society Science and Policy briefs) and is 
not designed for establishing baseline data at local levels.  
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Although the proposed core-optional P2 vegetation profile methods will 
provide general structure and less complete species information, it will be 
collected on a higher spatial density than the P3 vegetation indicator and will be 
potentially useful at more localized scales. Land managers can use the data in 
forest planning, monitoring forest plan standards and effectiveness, monitoring 
and management of wildlife habitat, monitoring and management of fuels. 
However, sample size may need to be increased above the intensity of the P2 grid 
in order to decrease variance and increase confidence in the precision of the 
estimates (O’Brien et al 2003). 

Beyond making population estimations based on direct measurements as 
discussed here, implementing both P2VEG and P3VEG data collection would 
provide a wealth of data to help refine current tools and models for estimating 
carbon pools, describing fuel characteristics, and identifying potential wildlife 
habitat. Forest plant community classes can be identified and described, 
improving manager’s ability to map areas of concern and improve their ability to 
monitor the effectiveness of management plans.  
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Combining Panel Data



 

Tree-level imputation techniques to estimate 
current plot-level attributes in the Pacific 
Northwest using paneled inventory data 
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Abstract: The Forest Inventory and Analysis program (FIA) of the US Forest Service 
conducts a nationwide annual inventory. One panel (20% or 10% of all plots in the 
eastern and western United States, respectively) is measured each year. The precision of 
the estimates for any given year from one panel is low, and the moving average (MA), 
which is considered to be the default estimator, can result in biased estimates of current 
conditions. An alternative to the MA is sought, and studies comparing different 
alternatives to the MA approach for estimating current forest attributes in the Pacific 
Northwest are lacking. Paneled data from national forests in Oregon and Washington 
were used to explore nearest neighbor (NN) imputation methods to project all panels to a 
common point in time. When using the most recent ground measurements of the panels 
measured in prior years as ancillary data, tree-level NN imputation outperformed the MA 
estimator in estimating basal area/ha, stems/ha, volume/ha, and biomass/ha in terms of 
bias and root mean square error (RMSE) and plot-level NN imputation in terms of 
RMSE. When basal area/ha, stems/ha, volume/ha, and biomass/ha were summarized by 
three species groups, tree-level NN imputation outperformed plot-level NN imputation in 
terms of both bias and RMSE. Tree-level NN imputation outperformed the MA in terms of 
bias and RMSE for estimating basal area/ha, stems/ha, volume/ha, and biomass/ha for 
species group ‘pine’ and provided comparable results in terms of bias and RMSE for 
species groups ‘Douglas-fir’ and ‘other.’ 
 
Keywords: moving average, nearest neighbor imputation, panel, plot-level, tree-level 
 
 

Introduction 
 

Information on current forest condition is essential to assess and characterize 
resources and to support management and policy decisions. The 1998 Farm Bill 
mandates the US Forest Service to conduct annual inventories to provide annual 
updates of each state’s forest. Only 10% or 20% of all plots in the western and 
eastern United States, respectively, are measured annually. Because only a portion 
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of the full sample is measured annually, the precision of the estimates for any 
given year is low. To achieve higher precision, the Forest Inventory and Analysis 
program (FIA) uses a moving average (MA) as default estimator which combines 
the data of multiple panels. In the presence of trend, biased estimates will result, if 
the MA is applied to the end of the period to estimate current conditions. Other 
approaches to combine data from all panels include: 1) updating unmeasured 
panel data to the current year with growth models (Lessard et al. 2001); 2) using 
time series models (Johnson et al. 2003); 3) mixed estimation (Van Deusen 1996); 
or 4) filling in missing panel data using tree- and plot-level imputation techniques 
(Gartner and Reams 2001, 2002, McRoberts 2001). Since spatial, temporal, and 
forest characteristics differ within and among regions it is unclear if any single 
technique will provide satisfactory results for all regions (Patterson and Reams 
2005). It may be necessary to evaluate different methods for a variety of issues 
and regions. Studies comparing different alternatives to the MA approach for 
estimating current forest attributes in the Pacific Northwest (PNW) are lacking. 

 
Nearest Neighbor (NN) imputation methods are donor-based, which means 

that the imputed value was either observed for another unit or was calculated as 
the average of values from more than one unit. NN imputation can be performed 
on different levels. Eskelson et al. (2009) have shown that plot-level imputation, 
that is plot-level attributes (e.g., basal area/ha) are imputed, can provide more 
accurate results than the MA approach. They found the randomForest (RF) 
imputation method (Crookston and Finley 2008), which is an extension of 
classification and regression tree (CART) methods (Breiman 2001), to outperform 
other NN imputation methods. Imputation can also be performed at the tree-level, 
that is tree-level attributes (e.g., diameter at breast height (DBH in cm)) are 
imputed, and the results of the tree-level imputation are then summarized for each 
plot (e.g., imputed DBH is used to calculate basal area/ha). 

 
Depending on the intended use, tree- and plot-level imputation techniques 

differ in their predictive abilities and suitability (Gartner and Reams 2002). Plot-
level and tree-level NN imputation techniques might have a similar relationship to 
each other as whole stand growth models, which might not apply in 
heterogeneous conditions (Curtis and Hyink 1985), have with single-tree growth 
models, which can provide more detailed information about stand dynamics and 
structure (Burkhart 1992). Tree-level nearest neighbor (NN) imputation 
techniques have been successfully used to estimate tree volumes and heights 
(Korhonen and Kangas 1997), single-tree biomass (Fehrmann et al. 2008) as well 
as 5-year diameter growth and bark thickness (Sironen et al. 2001, 2003, 2008). 

 
The objectives of this study are to: 1) use paneled data from the PNW to 

estimate current forest attributes (see Table 1) using tree-level imputation 
methods and compare their performance against the MA and the estimates based 
only on the data from the current panel; 2) examine the performance of tree-level 
imputation methods to estimate current forest attributes by species groups; and 3) 
compare tree-level and plot-level imputation results. 
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Methods 
 
Data 
 

The data used in this study consist of 618 plots from six national forests that 
were collected as part of the Pacific Northwest Region’s Current Vegetation 
Survey (CVS) of the US Forest Service. The plots were installed between 1993 
and 1997 and remeasured in 2000. The particular national forests sampled were 
the Colville (28), Mt. Hood (111), Ochoco (82), Rogue River (70), Wallowa-
Whitman (199), and Winema (128). 

 
Five plots are installed in each basic CVS sampling unit, which is one hectare 

(ha) in size. Each plot consists of three permanent circular, nested subplots of 
different sizes in which trees are measured depending upon their DBH. For a 
detailed description of the CVS inventory see Max et al. (1996). Tree height (HT 
in m) is only subsampled and missing HTs were filled using height models 
developed in Barrett (2006) for live trees with DBH of 12.7 cm or larger. Volume 
and biomass equations from the US Forest Service were used to calculate gross 
cubic-meter volume and total gross oven dry weight biomass (USDA 2000). For 
each plot, basal area in m2 per ha (BA), stems per ha (SPH), volume in m3 per ha 
(VOL), and biomass in tons per ha (BIOT) were calculated and summarized 
(Table 1). BA, SPH, VOL, and BIOT were also calculated for each of the 
following three species groups: 1) ‘Douglas-fir’; 2) ‘pine’ including all occurring 
pine species; and 3) ‘other’ including other conifers and hardwoods. Basal area in 
larger trees (BAL in m2) was calculated for each tree. Ingrowth for each plot was 
determined by calculating BA, SPH, VOL, and BIOT for all trees that were 
present in 2000 but not present at the first measurement occasion. BA and SPH 
were also calculated for small trees with DBH larger than 2.54 cm and smaller 
than 12.7 cm. 

 
Table 1: Summary of plot-level variables in 2000. 

Variable Minimum Mean Maximum Std 

Basal area (m2/ha) 0.24 24.32 105.35 19.00 

SPH (stems/ha) 1 305 1517 221 

Volume (m3/ha) 0.66 224.82 1444.74 221.04 

Biomass (tons/ha) 0.58 134.09 800.64 132.64 

Canopy cover (%) 0 54 97 29 

Slope (%) 0 23 83 17 

Elevation (m) 274 1389 2377 321 

Annual precipitation (ln cm) (scaled * 100) 577 683 817 48 

Annual mean temperature (ºC) (scaled * 100) 60 579 1067 166 
 

The data set comprises 30,709 trees in 33 species. The most common species 
in decreasing order are Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), 
ponderosa pine (Pinus ponderosa C. Lawson), grand fir (Abies grandis (Douglas 
ex D. Don) Lindl.), lodgepole pine (Pinus contorta Douglas ex Louden), white fir 
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(Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.), and western hemlock 
(Tsuga heterophylla (Raf.) Sarg.) (see Eskelson et al. 2009 for details). 

 
In NN imputation methods, ancillary variables are those variables that are 

measured on all units. Thematic Mapper (TM) images from 2000 were extracted 
from the national land-cover database 2001 [NLCD 2001 (Homer et al. 2004)] 
and used as ancillary data. The raw imagery bands 1 to 5 and band 7 (TM1, TM2, 
TM3, TM4, TM5, TM7) as well as the Tasseled Cap (TC) transformations (TC1 – 
TC6) (Kauth and Thomas 1976) were used. The normalized difference vegetation 
index (NDVI) and three commonly used band ratios (band 4 to band 3 (R43), 
band 5 to band 4 (R54), and band 5 to band 7 (R57)) were calculated. Percent 
canopy cover was extracted from the NLCD 2001 (Homer et al. 2004). 

 
The following climate and topography variables for plot locations were 

additionally used as ancillary data: Annual precipitation and mean annual 
temperature (Table 1) [Data source: DAYMET Daily Surface Weather Data and 
Climatological Summaries (Thornton et al. 1997, Thornton and Running 1999)], 
elevation (EL in m) and transformations (EL2, ln(EL)) [Data source: CVS 
inventory], and slope (%) and aspect (degrees) and transformations 
(cosine(aspect), sine(aspect), cosine(aspect)*slope, and sine(aspect)*slope) [Data 
source: 30 m digital elevation model using Arc Workstation GRID surface 
functions and commands (Environmental Systems Research Institute 1991)]. 
These climate, topography, and satellite variables have been successfully used as 
ancillary data for NN imputation methods in previous studies (e.g., Eskelson et al. 
2009, Ohmann and Gregory 2002). 

 
Imputation techniques 
 

Panel data is a special case of 
inventory data with measurements 
taken at different times. All plots 
were remeasured in 2000. In order 
to mimic a panel system with the 
available data 25% of the plots 
(154) were randomly assigned to 
P4 and the remaining 75% of the 
plots (464) were assigned to P1, 
P2, and P3 based on their year of installation. This resulted in P1, P2, and P3 
having different sizes for each iteration (Table 2). 

Table 2: Number of plots measured by year of 
installation and corresponding panel assignment. All 
plots listed were remeasured in 2000. 

Year of Installation # of Plots Assigned Panel 

1993 7 1 

1994 229 1 

1995 223 2 

1996 158 3 

1997 1 3 

 
The variables of interest (Y) in this study were BA, SPH, VOL, and BIOT. 

Their observed mean value in the year 2000 was calculated as: 
 

        !
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where Yi is the observed Y value of the ith plot in 2000 and n = 618. The 
observed mean value was used as best available estimate of the true mean. 

 
For each plot in P4, BA, SPH, VOL, and BIOT were calculated using the tree 

data from P4. The mean values of Y for the year 2000 (SAMPLE25 estimator) 
were calculated as: 

 
        4
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where Yi is the observed Y value of the ith plot, and n4 is the number of plots in 

P4. 
 

The MA estimator, the FIA default method is: 
 

        $ % ititititMA YYYYY ,,1,2,34 *25.0*25.0*25.0*25.0 &&&" '''  [3]
 
where 3,t iY ' , 2,t iY ' , 1,t iY ' , and ,t iY  are the mean values of the variables of interest 

of P1, P2, P3, and P4, respectively. The MA takes into account that the panels 
include different numbers of plots. Instead of equal weighting of the panels a 
weighted version of [3] is proposed: 

 
        $ % ittittittittWMA YwYwYwYwY ,,11,22,334 **** &&&" ''''''  [4]

 
where wt-3, wt-2, wt-1, and wt are the weights of P1, P2, P3, and P4, 

respectively. Larger weights were chosen for P3 and P4 (wt-1 = wt = 0.3) than for 
P1 and P2 (wt-3 = wt-2 = 0.2). MA(4) and WMA(4) will be referred to as MA and 
WMA, respectively. 

 
Instead of using the previous measurements to fill in the Y values for P1, P2, 

and P3, as is done with MA and WMA, the current Y values of P1, P2, and P3 
were imputed using tree-level RF and plot-level RF imputation. Target data are 
units that have ancillary variables measured only (e.g., trees or plots in P1, P2, 
and P3). Reference data are units where both variables of interest and ancillary 
variables were measured (e.g., trees or plots in P4). RF imputation was employed 
using the yaImpute R package (Crookston and Finley 2008). Details on RF 
imputation can, for example, be found in Hudak et al. (2008).  

 
For tree-level RF, the target trees were assumed to be non-sampled trees 

lacking inventory data in 2000. DBH, HT, and mortality for each target tree were 
imputed using DBH, HT, and BAL at the previous measurement (DBHocc1, 
HTocc1, and BALocc1) as ancillary data. The reference trees constituted the pool 
of potential trees with inventory and ancillary data (P4), which could be selected 
to impute the DBH, HT, and mortality for the target trees. Ingrowth of BA, SPH, 
VOL, and BIOT was imputed at the plot-level using BA and SPH of small trees at 
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the previous measurement as well as the available climate, topography, and 
satellite data as ancillary data. BA, SPH, VOL, and BIOT were calculated for 
each plot based on the imputed tree data and the imputed ingrowth. 

 
For plot-level RF the previous measurements of the four variables of interest 

(BAocc1, SPHocc1, VOLocc1, BIOTocc1) were used as ancillary data since this 
was found to provide better imputation results than using climate, topography, 
and satellite data in a previous study. For more details see Eskelson et al. (2009). 

 
For both tree-level and plot-level RF the overall mean of the variables of 

interest for the year 2000 was estimated as: 
 

        nYYYYY
PYi PYi PYi PYi

itiimpiimpiimpIMP
i i i i

/
1: 2: 3: 4:

,,,, (
)

*
+
,
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where Yimp,i is the imputed Y value for the ith plot and ‘IMP’ refers to either 

tree-level RF or plot-level RF.  

 
SAMPLE25, MA, WMA, and the tree-level and plot-level RF imputation 

methods were compared based on the overall means of the variables of interest in 
2000 (see Equations 2 – 5). The five estimation methods were also compared 
based on their performance of estimating the four variables of interest by species 
groups ‘Douglas-fir’, ‘pine’, and ‘other.’ 

 
The basis of evaluation was accuracy, as expressed by the root mean square 

error (RMSE), and bias, calculated as the mean difference between the estimates 
(Equations 2 – 5) and the observed mean values (Equation 1) from m = 200 
iterations of randomly splitting the data. Two hundred iterations were considered 
sufficient because other studies have found RMSE and bias to stabilize at around 
200 iterations (e.g., Arner et al. 2004). Both RMSE and bias were expressed as 
percent of the observed mean for each variable of interest:  
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Results 
 

The SAMPLE25 estimator provided virtually unbiased estimates for all four 
variables of interest. Its RMSE values ranged from 4.89% for SPH to 6.58% for 
BIOT. The MA estimates had a negative bias with values from -1.93% for VOL 
to -2.58% for SPH. The MA estimator provided very precise estimates with the 
bias contributing most to the RMSE. The WMA estimator reduced both bias and 
RMSE for BA and SPH. For WMA the bias of VOL and BIOT estimates was 
positive and the RMSE was larger than those for MA (Table 3). 

 
Plot-level RF imputation resulted in small negative bias and smaller RMSE 

values than those of the MA estimator. In terms of RMSE, plot-level RF 
imputation only outperformed the WMA for VOL and BIOT (Table 3). 

 
Table 3: Imputation results. 

 BA SPH VOL BIOT 

Method % bias % RMSE % bias % RMSE % bias % RMSE % bias % RMSE 

SAMPLE25 0.05 5.29 -0.20 4.89 0.20 6.53 0.26 6.58 

MA -2.53 2.60 -2.58 2.63 -1.93 2.08 -1.97 2.12 

WMA 0.59 1.03 -1.54 1.72 2.52 2.74 2.62 2.83 

plot-level 
RF 

-0.44 1.50 -0.73 2.52 -0.26 1.78 -0.22 1.66 

tree-level 
RF 

0.44 1.09 -0.60 1.31 0.43 1.36 0.42 1.35 

 
Tree-level RF imputation produced a small positive bias in BA, VOL, and 

BIOT but a small negative bias in SPH. Its RMSE values were smaller than those 
of the MA and the plot-level RF imputation. Tree-level RF imputation 
outperformed the WMA estimates in terms of bias and RMSE for SPH, VOL, and 
BIOT. The variance contributed most to the RMSE for both tree- and plot-level 
imputation (Table 3). 

 
By species group the SAMPLE25 estimator provided virtually unbiased results 

(0.62% or less). RMSE values ranged from 8.52% for ‘pine’ BA to 11.17% for 
‘other’ BIOT (Table 4). 

 
The MA estimator resulted in a larger negative bias for the four variables of 

interest for species group ‘pine’ which contributed most to the RMSE values of 
more than 9%. For the species group ‘Douglas-fir’ and ‘other,’ MA resulted in 
small bias with absolute values ranging from 0.30% to 1.17% and RMSE values 
ranging from 1.00% to 1.68% (Table 4). 

 
WMA estimates were biased for all three species groups with the bias being 

largest for ‘pine.’ The bias contributed most to the RMSE values, which exceeded 
the RMSE values of the MA estimates and the RMSE values for ‘pine’ for the 
SAMPLE25 estimates (Table 4). 
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Plot-level RF imputations resulted in a smaller bias than with WMA for all 
species groups. However, RMSE values for RF exceeded those of WMA for all 
but ‘pine’ (Table 4). 

 
Tree-level RF imputation outperformed SAMPLE25, WMA, and plot-level RF 

imputation in terms of RMSE. Compared to MA, tree-level RF imputation 
provided smaller RMSE values for ‘pine’ and slightly larger RMSE values for 
‘Douglas-fir’ and ‘other’ (Table 4). 

 
Discussion 

 
The performance of the MA estimator in terms of the variance-bias trade-off 

was as expected. As in most other studies (e.g., Arner et al. 2004, Johnson et al. 
2003, Van Deusen 2002), the large bias was found to be more than compensated 
for by the high precision. Hence, MA provided better estimates in terms of 
accuracy than SAMPLE25. MA is a temporal ‘midpoint’ estimator yielding 
biased estimates at the end of a time-series in the presence of trend (Roesch and 
Reams 1999). Giving more weight to the more recently measured panels resulted 
in the WMA estimator, which improved the estimates for BA and SPH in terms of 
bias and hence, also in terms of RMSE. 

 
MA by species groups outperformed WMA in terms of both bias and RMSE. 

The larger weights applied for P3 and P4 for WMA increased the negative bias 
for species group ‘pine’ and resulted in large positive bias for all variables of 
interest for species groups ‘Douglas-fir’ and ‘other.’ This indicates that weights 
applied to the WMA which improve the MA for estimating BA, SPH, VOL, and 
BIOT do not necessarily improve the MA when the variables of interest are 
summarized by species group. Choosing appropriate weights for the WMA 
requires the knowledge of the trend inherent in the data. If the trend inherent in 
BA, SPH, VOL, and BIOT differs from the trend of the variables of interest 
summarized by species group, different weights need to be chosen for the WMA. 
Objective ways for choosing appropriate weights are still lacking. Panels that do 
not change much should receive larger weights than panels that exhibit a lot of 
change. Knowledge about change could possibly be acquired from remotely 
sensed data, growth models, or other information on, for example, fire or insect 
outbreaks. 

 
Tree-level RF imputation outperformed MA in terms of bias and RMSE for 

estimating BA, SPH, VOL, and BIOT. This is due to the lag bias inherent in the 
MA estimator. Tree-level imputation attempts to update the tree data, which 
results in a smaller bias than that observed for MA. Compared to the WMA, 
which tries to adjust the lag bias of the MA estimator, the improvement of tree-
level RF imputation is less pronounced. If the lag bias of the MA could be 
adjusted, MA might outperform RF tree-level imputation in terms of both bias 
and RMSE since the MA estimates are more precise than those of the tree-level 
RF imputation. 
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When the variables of interest were summarized by species groups, the MA 
slightly outperformed tree-level RF imputation in terms of RMSE for species 
groups ‘Douglas-fir’ and ‘other’ because the MA resulted in low bias for those 
variables. For species group ‘pine’ MA resulted in large bias and therefore tree-
level RF imputation provided much better results for the variables of interest for 
species group ‘pine’ in terms of bias and RMSE.  

 
Tree-level RF imputation outperformed plot-level imputation for estimating 

BA, SPH, VOL, and BIOT as well as for estimating the variables of interest 
summarized by species groups. The results of this study suggest that tree-level RF 
imputation should be preferred over plot-level RF imputation for estimating total 
BA, SPH, VOL, and BIOT or for estimating BA, SPH, VOL, and BIOT by 
species group. The same considerations for choosing single-tree growth models 
over whole-stand growth models probably apply for choosing tree-level NN 
imputation over plot-level NN imputation and depend mainly on the demands of 
the user. 

 
In this study, tree-level variables were imputed using reference trees 

irrespective of whether the tree species of reference and target trees matched. 
Imputing only within tree species or species group might improve the results for 
tree species such as Douglas-fir, ponderosa pine, grand fir, lodgepole pine, white 
fir, and western hemlock which occur frequently in the data set. However, results 
for rare tree species would definitely degrade with decreasing number of possible 
reference trees. Overall results could possibly be improved by imputing tree-
variables for frequent tree species within tree species but using the complete 
reference data set for rare tree species.  

 
Conclusions 

 
This study has shown that tree-level RF imputation has the potential to provide 

better results in terms of bias and accuracy for estimating plot-level attributes 
such as BA, SPH, VOL, and BIOT than can be achieved with the SAMPLE25, 
MA, and WMA estimators, or plot-level RF imputation. 

 
Giving more weight to most recently measured panels by using a WMA 

improved the estimates for BA, SPH, VOL, and BIOT compared to the MA 
estimates. When the variables of interest were summarized by species group, MA 
outperformed WMA in terms of bias and accuracy. More research is warranted 
for finding objective methods for choosing appropriate weights. 

 
Tree-level RF imputation outperformed MA and WMA in terms of bias and 

accuracy when BA, SPH, and VOL were estimated. When the variables of interest 
were summarized by species group, MA provided slightly better estimates in 
terms of accuracy than tree-level RF imputation. 
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Tree-level imputation outperformed plot-level imputation. This might be due 
to the fact that tree-level NN imputation requires more information and is based 
on a more detailed representation of the stand than plot-level imputation.  

 
The results of the tree-level NN imputation methods tested in this study 

provide a good argument to further develop the application of tree-level NN 
imputation techniques for estimating current forest attributes from paneled 
inventory data. 
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Opportunities to Improve Monitoring of 
Temporal Trends with FIA Panel Data 

 

 

Raymond L. Czaplewski1 and Michael T. Thompson2 
 

 
 

Abstract: The Forest Inventory and Analysis (FIA) Program of the Forest Service, 

Department of Agriculture, is an annual monitoring system for the entire United States. 

Each year, an independent “panel” of FIA field plots is measured. To improve accuracy, 

FIA uses the “Moving Average” or “Temporally Indifferent” method to combine 

estimates from multiple panels that were measured during recent years. However, time-

series estimators better serve monitoring objectives than temporally indifferent methods.  

 

This paper reviews the Kalman filter, which is a linear, minimum variance, 

sequential, model-based, time-series estimator based on the simple composite estimator. 

The Kalman filter combines predictions from a population dynamics model with the 

observed time-series of annual FIA panel estimates. This combination of design-based 

and model-based methods reduces serious risks from model bias, yet preserves the gain 

in precision from the model. Alternative models in the Kalman filter represent alternative 

hypotheses that may be ranked based on their relative agreement with design-based 

panel estimates. For example, does a model that includes the expected consequences of 

climate change on average rates of tree growth, regenerations and mortality better fit the 

annual FIA design-based panel estimates than a model that assumes no climate change?  

 

The Kalman filter is presented in a tutorial style that relies more on graphical 

examples than mathematical equations. Hopefully, this genre builds awareness and 

confidence in this somewhat unfamiliar statistical estimator. The Kalman filter and 

Moving Average estimators are compared with hypothetical simulations of changing 

populations. A final set of examples is based on annual FIA panel estimates for the State 

of Colorado from 2002 to 2007, where epidemic levels of mountain pine beetle infestation 

are causing catastrophic tree mortality in lodgepole pine forests.  

 

Three analysis questions are addressed. Is there an observable trend in population 

parameters over time? Does the trend make sense? Is the trend significant relative to the 

uncertainty in the population estimates? 

 
 
Keywords: Forest monitoring, Kalman filter, composite estimator, Pinus contorta, 
Dendroctonus ponderosae, population dynamics model, AIC, information-theoretics. 

                                                 
1
  United States Forest Service; Rocky Mountain Research Station; Inventory, Monitoring, and Analysis 

Program; 240 W. Prospect; Fort Collins, CO 80526 rczaplewski@fs.fed.us; http://www.fs.fed.us/rm/ogden/ 
2
  United States Forest Service; Rocky Mountain Research Station; Inventory, Monitoring, and Analysis 

Program; 507 25th Street; Ogden, UT 84401; mtthompson@fs.fed.us; http://www.fs.fed.us/rm/ogden/ 

 

USDA Forest Service Proceedings – RMRS-P-56 33.



 2 

Introduction 
 

The U.S. Forest Service Research and Development branch, through its Forest 
Inventory and Analysis (FIA) program, has long been committed to the delivery 
of current, consistent, and credible information about the status, condition, and 
trends of America’s forests across all land ownerships and conditions. FIA has 
made impressive progress during the past 10 years in annual updates to these 
forest inventories. However, the recent FIA strategic plan for 2007-2011 (U.S. 
Forest Service, 2007a) stresses the importance of monitoring changes over time in 
forest conditions, which goes beyond an annually updated forest inventory. 
Monitoring changes over time is critically important to substantive strategic 
analyses of the nation’s forests and the long-term relevance of the FIA program.  

 
FIA has used “periodic surveys” since its inception in the 1930’s. Bechtold 

and Patterson (2005:82) define a periodic survey as is a “strategy whereby a set of 

inventory panels is measured simultaneously over a short time frame, often 1 to 3 

years in the case of FIA, and there is a time lag, often many years, before the 

panels are remeasured.” During recent years, FIA has re-engineered itself by 
moving from periodic surveys to annual surveys, in which a small sub-sample of 
field plots is re-measured every year in every county. Relative to periodic surveys, 
annual surveys are expected to improve the ability to detect and interpret changes 
in forest conditions (Gadbury and others 2004). McRoberts (2005) highlights the 
need for statistical estimators that combine population estimates or sample units 
measured in multiple years, and this might utilize model-based updating 
techniques. 

 
 

Current Statistical Methods for Annual FIA Inventories  
 
The annual FIA design is organized around a system of 5 “panels” (i.e., 

independent sub-samples) in the eastern USA and 10 panels in the western USA. 
A panel is a systematic sub-sample of all permanent FIA primary sampling units 
(Phase-2, or “P2”, field plots) for which field measurements are conducted on 2 or 
more occasions. Each FIA panel is composed of a spatially balanced, systematic, 
interpenetrating sub-sample of all FIA field plots (Reams and others, 2005). In 
simple terms, FIA treats each panel of field plots as an independent, equal-
probability sample of the entire population. All FIA field plots in the first panel 
are measured during the course of 1 or more years3. After essentially all plots in 
the first panel are measured, field measurements of the second panel commence. 
Afterwards, the 3rd panel is measured, and so forth for the remaining panels. This 
sequence of field plot measurements is repeated over time until all FIA panels are 
measured. This typically takes 5 to 10 years, depending on the region of the 
country and available funding. After the initial 5 to 10 years, this same sequence 

                                                 
3 The annual FIA design originally envisioned measurement of a single panel within a single calendar year. 

However, within the limits of available funds, it often requires more than 12 months to measure a single 
panel. This is termed “panel creep.” 
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of annual panel measurements is repeated in subsequent time periods. The result 
is a cyclic time-series of cross-sectional and longitudinal sample survey 
observations of the population from independent panels of FIA field plots. FIA 
does not use split or overlapping panels (Kish 1987). 

 
FIA does not currently have an officially endorsed estimator that combines 

multiple panel data to improve statistical precision, and it has not yet been 
determined if any single estimator will be fully satisfactory for all regions and 
forest conditions (Patterson and Reams 2005). FIA is currently investigating the 
Moving Average, the Temporally Indifferent Method and model-based estimators 
The latter includes mixed estimators (e.g., Van Deusen 2002), Kalman filters 
(e.g., Brockwell and Davis 1996), and various time series models (e.g., Johnson 
and others 2003). The Moving Average and the Temporally Indifferent methods 
are relatively straightforward, and they closely resemble the estimators used by 
FIA during the past half-century for periodic inventories (Scott and others 2005, 
Patterson and Reams 2005).  

 
Patterson and Reams (2005) discuss a simple approach to monitoring change. 

The net difference between 2 sequential, but different, panels is one simple 
estimate of change. Since each sequential panel is an independent sample by 
design, the variance of the difference is the sum of the variances from each of the 
2 panels. Over time, annual estimates of the net differences produce a series of 
annual estimates for change. However, estimates for the components of net 
change require re-measurement of FIA plots, which occurs after all annual panels 
are measured for the first time (i.e., after 5 to 10 years). Also, variance of the net 
difference can be large at the scale of a state or smaller sub-populations, resulting 
in considerable uncertainty. 
 

The remainder of this section provides more detail on the Moving Average 
and Temporally Indifferent methods4. Later sections look at the Kalman filter as 
an example of a model-based time-series estimator. 

 
 

Moving Average Method: Patterson and Reams (2005) describe the moving 
average method as follows. “Let P denote the number of panels to be combined 

for analysis. Let Yp denote the true quantity for panel P, where p=1,…,P; and let 

Ŷp denote the estimate of Yp obtained using the appropriate technique from Scott 

and others (2005). Note that each panel is treated as an independent estimate, 

which permits (1) the weighting of individual panels; and (2) Phase 1 

stratification instruments to differ among panels (i.e., different maps may be used 

to stratify different panels).” The Moving Average estimator is given by Patterson 
and Reams (2005) and Roesch and Reams (1999) as: 

 

                                                 
4 

 The Moving Average and Temporally Indifferent methods are implicitly “model-based” if the assumption is 
that they are estimators of the current conditions at time t=1 in equation 1. 
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The panel measured most recently is denoted p=1, and panels measured at 
previous P time periods have values p=2,…,P. Patterson and Reams recommend 
equal weighting of panels, i.e., wp=1/P for all p. They give the variance estimator 
for the Moving Average as the corresponding weighted sum of the variances for 
each panel estimate p: 
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Patterson and Reams remark that the Moving Average dampens annual 
fluctuations in the estimates, and estimated changes in the population tend to 
appear smaller than their true values. The Moving Average can cause a “lag bias” 
when the population is not at a static steady state, and this can obscure trends over 
time (Roesch and Reams 1999). However, lag bias can be inconsequential unless 
there is a rapid, widespread catastrophic event (Johnson and others 2003). 

 

Moving Average Residuals: The residual difference rMA between the 
estimator for the current panel and the moving average for the last P panels might 
be used to test the hypothesis that the population is at relative steady state (i.e., 
Y1=YMA,P) If this hypothesis is rejected, then there is empirical evidence from the 
FIA sample that the population measured with panel p=1 does not equal the 
population moving average over the most recent P panels, i.e., the population has 
changed somehow during the last P panel measurements. The variance estimator 
for the residual difference equals:
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The difference between the design-based estimator Ŷ1 for the single panel at 
time t=1 and the Moving Average ŶMA,P over panels p=1,…,P may be 
standardized relative to the estimated standard deviation of the difference from 
equation 3: 
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 [4] 

USDA Forest Service Proceedings – RMRS-P-56 33.



 5 

Given the hypothesis Y1=YMA,P in equation 4, rMA has an expected value of 0 with 
an expected standard deviation of 1 (i.e., unit variance). Assuming the residuals 
have a normal distribution, there is a 32 percent probability that a standardized 
residual be less than -1 or greater than +1, and a probability of merely 5 percent 
that it will be less than -1.96 or greater than +1.96.  

 
A simple metric for the relative efficiency of the Moving Average is its 

variance relative to the variance for the most current panel (p=1): 
 

 

( )
( )1

,

ˆVar

ˆVar

Y

Y PMA=β

 [5] 

β will generally range between 0 and 1 because the estimated variance of the 
Moving Average is usually, but not necessarily, less than the estimated variance 
for any one panel being averaged. The standardized residual rMA in equation 4, 
and the gain in statistical efficiency β in equation 5, subsequently will be used to 
directly compare the Moving Average with the Kalman filter. 
 

 
Temporally Indifferent Method: Patterson and Reams (2005) describe the 

Temporally Indifferent Method, which is very similar to the Moving Average. 
Sampling units in all panels ( p=1,…,P) are pooled as though they were all part of 
a single large periodic inventory.  As with previous FIA periodic inventories, 
Phase 1 post-stratification is applied across sampling units from all P panels. If 
the number of sampling units is virtually the same in each panel, and a single 
source of remotely sensed data are used for post-stratification within each panel, 
then the Temporally Indifferent Method is algebraically equivalent to the (Moving 
Average). 

 
 

Summary: The Moving Average and Temporally Indifferent estimators are 
simple, and simplicity can be good. The Temporally Indifferent estimator can be 
applied with the same familiar approach previously used for decades with 
periodic FIA surveys, and familiarity can be good. The Moving Average and 
Temporally Indifferent estimators produce useful inventory estimates for the 
current state of the nation’s forests, which are updated annually as new panel data 
are acquired. However, these simple and familiar methods have inherent 
limitations in the context of estimation and interpretation of changes over time, 
which is necessary to address the substantive monitoring questions identified in 
the FIA strategic plan (U.S. Forest Service 2007a).  
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An Alternative Estimator for Monitoring 
 
In addition to the Moving Average and Temporally Indifferent methods, 

Patterson and Reams (2005) list model-based time-series methods as alternative 
estimation methods that can combine FIA panel estimates over time. Van Deusen 
(1999) reviews sampling with partial replacement methods, although those have 
concentrated on periodic surveys. One promising approach for panel data is the 
mixed estimator (Theil 1971), which has been studied by Van Deusen (1999, 
2002, 2008) and Roesch (1999, 2007, 2008) for applications to annual forest 
inventory and monitoring. In addition, Patterson and Reams (2005) cite 
Czaplewski (1995) and Brockwell and Davis (1996), who discuss the Kalman 
filter (see Maybeck 1979) as another alternative. As discussed below, the Kalman 
filter combines the advantages of model-based and design-based estimators to 
mitigate risk while reliably improving statistical efficiency. 

 
The remainder of this paper concentrates on the Kalman filter, which has been 

widely used in engineering applications for 50 years to estimate the states of a 
system over time. However, the Kalman filter is not well-known in forest 
inventory and monitoring applications5.  The Kalman filter is conceptually 
intuitive, which, hopefully, will soon become apparent. With this goal in mind, 
the following exposition begins with the univariate Kalman filter, which uses as 
its basic building block a well known and simple statistical method, namely, the 
composite estimator. 

 
 
Composite Estimator 

 
The Kalman filter may be viewed as the sequential application of the 

composite estimator (Gregoire and Walters 1988). Maybeck (1979) is an often 
cited and well written source on the Kalman filter. He begins his 3-volume 
seminal treatise on the Kalman filter with a simple example of the composite 
estimator, which may also be considered an example of the static Kalman filter. 
The following is a slightly modified reproduction of Maybeck’s introduction from 
his section 1.5 in Volume 1: 
 

“Suppose that you are lost at sea during the night and have no idea at all of 

your location. So you take a star sighting to establish your position (for the sake 

of simplicity, consider a 1-dimensional location). At some time t1 you determine 

your location to be z1. However, because of inherent measuring device 

inaccuracies, human error, and the like, the result of your measurement is 

somewhat uncertain. Say you decide that the precision is such that the standard 

deviation (1-sigma value) involved is 
1zσ (or equivalently, the variance or second 

                                                 
5  

For exceptions, see Dixon and Howitt 1979; Gregoire and Walters 1988; Walters and others 1991; Visser and 
Molenaar 1992; Czaplewski 1995; Van Deusen 1987, 1989; Devall and others 1991; Brakel and Visser 1996; 
Gove and Houston 1996; Williams and others 2005; Hurteau and others 2007; Gao and others 2008.  
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order statistic, is 
2

  z1
σ ).  Thus, you can establish the conditional probability of 

x(t1), your position at time t1 conditioned on the observed value of the 

measurement being z1, as depicted in (figure 1). This is a plot of ( ) ( )( )111
zxf

tztx
 as a 

function of the location x: it tells you the probability of being in any 1 location, 

based upon the measurement you took. Note that   z1
σ is a direct measure of the 

uncertainty: the larger   z1
σ is, the broader the probability peak is, spreading the 

probability “weight” over a larger range of x values. For a Gaussian density, 

68.3% of the probability “weight” is contained within the band σ units to each 

side of the mean, the shaded portion in (figure 1). 
 

 “Based on this conditional probability density, the best estimate of your 

position is 

 

 
( ) 11ˆ ztx =

 [6] 

and the variance of the error in the estimate is  

 

 
( ) 2

1
2

1zx t σσ =

 [7] 

“Note that x̂  is both the mode (peak) and the median (value with 1/2 of the 

probability weight to each side), as well as the mean (center of mass).  

 

“Now say a trained navigator friend takes an independent fix, right after you 

do, at time t2~t1 (so that the true position has not changed at all, and obtains a 

measurement z2 with a variance 2

2zσ . Because he has a higher skill, assume the 

variance in his measurement to be somewhat smaller than yours. Figure 2 

presents the conditional density of your position at time t2, based only on the 

measured value z2. Note the narrower peak due to smaller variance, indicating 

that you are rather more certain of your position based on his measurement. 

 

“At this point, you have 2 measurements available for estimating your 

position. The question is, how do you combine these data? It will be shown 

subsequently that, based on the assumptions made, the conditional density of your 

position at time t2~t1, x(t2), given both z1 and z2, is a Gaussian density with mean µ  
and variance σ2

 as indicated in figure 3, with  
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Figure 1: Conditional density of position based on measured value z1 (facsimile of figure 1.4 in 
Maybeck 1979). The distribution extends to both ±∞, but it is truncated in this illustration. 

 
Figure 2: Conditional density of position based on measurement z2 alone (facsimile of figure 1.5 in 
Maybeck 1979). 

 
Figure 3: Conditional density of position based on data z1 and z2 (facsimile of figure 1.6 in Maybeck 
1979). 
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“Note that, from (equation 9), σµ is less than either σz1 or σz2, which is to say that 

the uncertainty in your estimate of position has been decreased by combining the 

2 pieces of information.  
 

“Given this density, the best estimate is  

 

 
( ) µ=2ˆ tx

 [10] 

with an associated error variance σ2
. It is the mode and the mean (or, since it is 

the mean of a conditional density, it is also termed the conditional mean). 

Furthermore, it is also the maximum likelihood estimate, the weighted least 

squares estimate, and the linear estimate whose variance is less than that of any 

other linear unbiased estimate.
6
 In other words, it is the “best” you can do 

according to just about any reasonable criterion.  

 

     “After some study, the form of µ given in (equation 8) makes good sense. If σz1 

were equal to σz2, which is to say you think the measurements are of equal 

precision, the equation says the optimal estimate of position is simply the average 

of the 2 measurements, as would be expected 
7
. On the other hand, if σz1 were 

larger than σz2, which is to say that the uncertainty involved in the measurement 

z1 is greater than that of z2, then the equation dictates “weighting” z2 more 

heavily than z1. Finally, the variance of the estimate is less than σz1 even if σz2 is 

very large: even poor quality data provide some information, and should thus 

increase the precision of the filter output.  

 

“The equation for ( )2ˆ tx

 
can be rewritten as  
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or, in final form that is actually used in Kalman filter implementations [noting 

that ( ) 11ˆ ztx = ] 

 

 
( ) ( )( )
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 [12] 

                                                 
6
  The Kalman filter may also be derived as an Empirical Bayes estimator (Jazwinski 1970, Meinhold and 

Singpurwalla 1983, Cressie and Wikle 2002). 
7
  This is the same assumption made in the FIA Moving Average (Patterson and Reams 2005), namely, each 

estimate from the last P panels is equally accurate in estimating the current condition of the population (or the 
condition at the time panel p=P/2 was sampled). 
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where
8
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“These equations say that the optimal estimate at time t2, ( )2ˆ tx , is equal to the 

best prediction of its value before z2 is taken, ( )1ˆ tx , plus a correction term of an 

optimal weighting value times the difference between z2 and the best prediction of 

its value before it is actually taken, ( )1ˆ tx . It is worthwhile to understand this 

“predictor-corrector” structure of the filter. Based on all previous information, a 

prediction of the value that the desired variables and measurement will have at 

the next measurement time is made. Then, when the next measurement is taken, 

the difference between it and its predicted value is used to `correct’ the prediction 

of the desired variables.  

 

“Using the β … in (equation 13), the variance equation given by (equation 9) 
can be rewritten as 

 

 
( ) ( ) ( )βσσσ 1

2
1

2
2

2
ttt xxx −=

 [14] 

“Note that the values of ( )2ˆ tx  and ( )2
2

txσ  embody all of the information in 

( ) ( ) ( )( )21, ,
212

zzxf
tztztx

. Stated differently, by propagating these 2 variables, the 

conditional density of your position at time t2, given z1 and z2, is completely 

specified.  

 

“Thus we have solved the static estimation problem.” 
 
Hopefully, Maybeck’s example provides intuitive insight into the simplicity, 

efficiency, and flexibility of the composite estimator, which is a special case of 
the Kalman filter. 

 

                                                 
8
 The symbol “β” is used in place of Maybeck’s “K” to draw the analogy to regression estimators in sample 

surveys (e.g., Sarndäl and others 1992). 
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Model-Based Bias with the Composite Estimator 

 
If estimators z1 and z2 for population parameter z are both unbiased by design, 

then the composite estimator, which is a weighted sum of z1 and z2, will be 
design-unbiased. However, the Kalman filter generally assumes that z1 is based on 
an estimate from the previous time period, which is “updated” with a prediction 
model into an estimate for the state of the population at the current time period, 
namely z1=x(t1). This model-based component has the potential to substantially 
improve precision of the composite estimator, but accuracy can be poor if the 
model produces biased predictions. In most applications, the model requires 
assumptions that are difficult to test. Therefore, special attention is required to 
detect and correct failures in model assumptions, which is the topic of this 
section. Otherwise, the composite estimator can produce estimates that are 
apparently very precise, but are, in fact, very inaccurate (i.e., biased). 

 
Successful applications of the Kalman filter require close monitoring of the 

residual difference between x(t1) and z2 to detect likely bias in model predictions 
(Maybeck 1979). Denote this residual as  

 

 
( ) ( )122 ˆˆ txztr −=

 [15] 

Assuming independence, the expected variance of this residual is:  
 

 
( ) ( )1

22
2

2

2
tt xzr σσσ +=

 [16] 

A useful monitoring technique requires standardization of this residual based 
on its expected variance. If the model is an unbiased estimator, then the 
standardized residual in equation 17 is expected to have a distribution with mean 
zero and unit variance: 
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At each time step, assume there is a known model-based prediction of x(t1) 
with a known model-based estimate of its variance. Further assume there is a 
known design-based panel estimate z2 with a known design-based estimate of its 
variance. Under these assumptions, the residual may be computed with equation 
15, the predicted variance of this residual may be computed with equation 16, and 
the resulting residual may be standardized as in equation 17.  

 
One process to monitor the reliability of the model-based estimator is with the 

“size” of this standardized residual. Assuming the standardized residual is 
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normally (Gaussian) distributed, with mean zero and unit variance (i.e., variance 
equal to 1 in equation 17), then there is a 68.3 percent probability that the 
standardized residual will be between -1 and +1, and a 95.4 percent probability 
that it will be between −2 and +2.  

 
Figure 4A provides an example, in which the standardized residual equals 1, 

and the standardized residual is assumed normally distributed with mean zero and 
unit variance. When monitoring residuals under these assumptions, a standardized 
residual as large as 1 is not too surprising because 31.7 percent (i.e., 1.000-0.683= 
0.317) of all residuals are expected to be less than −1 or greater than +1.  

 
As an aside, this example also illustrates that the distribution of random errors 

in the design- and model-based estimators need not be assumed to be Gaussian 
normal. Figure 4 assumes a lognormal distribution, in which feasible variables 
may not have negative values. However, the residual difference between 2 
estimates may have a negative value if the model-based estimate exceeds the 
design-based panel estimate. Therefore, the distribution of standardized residuals 
may be assumed Gaussian normal, although that is nothing more than another 
untested assumption. 

 
Figure 4B is another example, in which the model-based estimate is greater 

than that in figure 4A, but it otherwise shares the same parameter values as those 
in figure 4A. In this example, the standardized residual equals 2. Under the 
assumptions in this example, the probability of a standardized residual less than 
−2 or greater than +2 is only 4.6 percent. This is a relatively low probability, but 
observation of a residual of this magnitude remains plausible under the 
assumptions of the residual analysis. 

 
Figures 4C and 4D are more extreme examples. Again, under the assumptions 

in this analysis of residuals, the probability of the absolute value of the 
standardized residual exceeding the value of 3 is 0.3 percent in figure 4C, and of 
exceeding the value 4 in figure 4D is 0.006 percent. Both are evidence that 1 or 
more assumptions in the residual analysis are suspect. Since the panel estimate z2 
is design-unbiased, the assumptions related to this estimator remain credible, at 
least in the absence of substantial non-sampling errors. It is more plausible that 1 
or more assumptions related to the model-based estimator x(t1) are incorrect.  

 
The model-based estimate might be biased. However, if the magnitude of the 

bias is quantitatively predictable, then the model should include a correction term 
that corrects for the bias. In other words, a model with a bias that could be 
estimated should not be knowingly used in the Kalman filter. Rather, the bias 
correction should be incorporated into the base model.   
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Figure 4: Reliable applications of the composite estimator with a model-based component, which is 
a special case of the static Kalman filter, requires monitoring residuals and adapting to evidence 
that the model assumptions are significantly flawed. 
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The other suspect is the estimated variance of random prediction errors with 
the model, namely ( )1

2
txσ . This variance can be difficult to accurately estimate 

from a priori empirical data when the number of residuals is small or the variance 
is heteroscedastic over time. One solution would be to assume the model-based 
variance estimator is biased, and re-estimate its variance so that the realized 
magnitude of the standardized residual is more plausible given the design-based 
estimate from the most current FIA panel.  

 
One ad hoc adjustment rule could be to increase the estimated variance of the 

model-based estimator by a scalar factor of c so that the absolute value of its 
standardized residual becomes a more plausible value, say rmax. This assures that 
the standardized residuals never exceed ±rmax standard deviation units. For 
example, if rmax=2, then the residual difference between the model-based and 
design-based estimates would be forced to remain within 2 standard deviation 
units of 0. 

 
From equations 16 and 17 and this rule, it will be assumed that a less biased 

estimator for the variance of model prediction errors is ( )1
2

tc xσ , which is 

computed as: 
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 [18] 

 
Figure 4F is an example in which this ad hoc solution is applied to the 

statistics from figure 4D. In figure 4D, the standardized residual has the value of 4 
standard deviation units. The variance of the estimator for x(t1) is re-estimated 
with equation 18, where the maximum plausible value of the standardized residual 
is chosen to be rmax=2, namely, 2 standard deviation units. This increases the 
estimated variance of the model prediction error, resulting in a new standardized 
residual exactly equal to rmax=2, which, in turn, increases the value of β in 
equation 13, which decreases the relative “weight” placed on the model prediction 
in equation 12. The outcome is a composite estimate that more closely agrees with 
the design-based estimator of z2. The new composite estimate in figure 4F has a 
larger variance estimate than the composite estimate in figure 4D, but the estimate 
in figure 4F will be closer to the true value if the new assumptions in the model 
become more accurate. Figure 4E, which has a standardized residual equal to 3 
standard deviation units, is a less extreme example relative to figure 4F. 

 
In summary, the model-based composite estimator can be very efficient, but it 

can also be dangerously biased if the model is inaccurate. Since model parameters 
are typically fit with historical data, substantial deviations of a population from its 
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historical conditions will likely cause biased model predictions. Statistical 
efficiency has an associated risk. There is nothing inherent within the composite 
estimator, and therefore, within the Kalman filter, that protects against model-
based bias9. Monitoring residuals and adapting to anomalous outcomes can 
mitigate the risk of serious bias without foregoing the opportunities for increased 
efficiencies. Kott (2005) advocates a similar view in his paper on randomization-
assisted model-based survey sampling 

 
 
Kalman Filter Estimator 

 
The Kalman filter can be viewed as the sequential application of the 

composite estimator for each encounter of new information. In monitoring 
changes and trends over time with sub-sampled FIA panel data, the first 
component z(t) is the design-based estimator for the most current FIA panel (Scott 
and others 2005). The second component x(t|t−1) is a model-based estimator that 
uses the best FIA estimate from the previous year (t−1), which is updated to year t 
with a model for predicted change between years t and t−1. The Kalman filter is 
simply the sequential application, 1 year at a time (t=1,2,…), of this composite 
estimator and its underlying model. 
 

Recall from Maybeck’s introduction (page 6) that the composite estimator is 
the simple weighted sum of x(t|t−1) and z(t) (see also Sarndäl and others 1992, 
section 9.9.1). Using primarily Maybeck’s notation in the context of the univariate 
time-series (equation 12), the composite estimator x(t|t) at time t is the weighted 
sum of the FIA panel estimator z(t) at time t and the model-based predictor 
x(t|t−1) of the same population parameter at time t given the composite estimator 
at time t−1: 
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The “optimal” weight (1-βt) placed on the model estimate (equations 12 and 13) at 
time t is: 
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The variance estimator for equation 19, which is the time-series version of 
equations 9 and 13, is algebraically equivalent to the following expressions: 
                                                 
9
  There is nothing to protect against similar bias with the Moving Average or Temporally Indifferent methods 

(Roesch, personal communication). 
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The weight βt in equation 21 is algebraically equivalent to the scalar reduction in 
the variance of the design-based panel estimator at time t given the model-based 
estimate at time t. This is analogous to the “design effect” used to evaluate 
efficiency of different sampling designs (Maybeck 1979). 
 

The time-series model in the Kalman filter assumes the population total x(t) at 
time t equals the total x(t−1) at t−1, which is multiplied by the scalar rate of 
change (φt) between t and t−1. This is the difference equation: 

 

 
( ) ( ) ( )ttxtx wt εϕ +−= 1

  [22] 

 
where εw(t) in equation 22 represents the unknown random prediction error from 
time t−1 to t. The model assumes εw(t) is distributed with mean zero and variance 
σw(t). The corresponding model-based predictor for use in the Kalman filter is: 
 

 
( ) ( )11ˆ1ˆ −−=− ttxttx tϕ

  [23] 

 
( ) ( ) ( )ttttt wxtx

2222 111 σσϕσ +−−=−

  [24] 

In successful applications of the Kalman filter, estimates for the standard 
deviation of model-based predictions σw(t) are carefully monitored through the 
realized residuals and adapted if necessary (see above). 

 
 
Sequential Recursive Time-Series Estimation with the Kalman Filter 

 
The following example is intended to explain in a more intuitive fashion an 

application of the Kalman filter for FIA monitoring. Assume a temporal model 
predicts the population parameter x is exponentially increasing over the time 
period being analyzed. More specifically, assume, φt = 1.5 in equations 23 and 24. 
Assume the random prediction error over a single year (equation 22) has a 
heteroscedastic standard deviation equal to 0.25 times the population parameter x 
at time t. In prose, the model assumes that the population parameter increases 50 
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percent each year relative to its value at the previous year, and the random 
prediction error of this model has a standard deviation of ±25 percent at time t 
relative to its condition at t−1 for all t. With these specific assumptions, the 
model-based estimator at time t is specified from equations 23 and 24 as: 
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  [26] 

Assume an FIA panel (i.e., sub-sample) is measured at time t=1. The design-
based estimate of x(1|1) is produced with standard FIA methods as given by Scott 
and others (2005). Given this model, figure 5 illustrates how these initial 
conditions are predicted to change over time in the absence of any further FIA 
data at times t=2,…,6. The model in equation 25 forecasts that the population 
parameter will increase exponentially, and the model in equation 26  predicts the 
uncertainty of this forecast increases nonlinearly over time. The random error 
distributions are assumed to the skewed lognormal, similar to figure 4, in which 
negative values are infeasible. Since the Kalman filter is a minimum variance 
estimator, it does not necessarily depend on the assumption of Gaussian normal or 
symmetric error distributions.  

 
 

 
Figure 5: Predictions of the population parameter and the associated uncertainty (standard 
deviation) from the model in equations 25 and 26 in the absence of new FIA panel estimates at 
times t=2,…,6.. The initial condition at time t=1, which is portrayed by the red box plot, is the 
standard FIA design-based estimate from a single panel (Scott and others 2005). The subsequent 
model-based estimates are illustrated by the blue box plots. The model assumes the random 
sampling and prediction errors have a lognormal distribution to assure that negative values are 
infeasible.. The range of the boxes is the 25

th
 and 75

th
 percentiles, and the range of the “whiskers” 

is the 10
th

 and 90
th

 percentiles. 
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This model is the component of the Kalman filter that links the time series of 
observations over time. Using the simple composite estimator, the Kalman filter 
combines the observation at time t with the model prediction at time t to produce 
a more accurate estimate at time t. 

 
The Kalman filter produces a composite estimate at a single time t based on 

any direct observations of the population at time t (e.g., a design-based estimate 
from a single FIA panel) plus the independent model forecast of the same 
population parameter at time t (e.g., equations 25 and 26, figure 5). This forecast 
uses the best estimate of the population parameter at time t−1 as initial conditions. 
The resulting composite estimate embodies the information available in all 
observations and model predictions up to and including time t. The next operation 
in the Kalman filter sequence uses this best estimate at time t to forecast the state 
of the population at the subsequent time step t+1, and the composite estimator 
combines this forecast with any new independent observations at time t+1 into a 
more accurate estimate at time t+1. And so forth. Figure 6 provides an example.  

 
The red box plots represent the 10th, 25th, 50th, 75th and 90th percentiles of the 

assumed lognormal distribution of sampling errors in the estimate of the 
population attribute. This means that 10 percent of the assumed distribution 
exceeds the upper whisker on the box plot, and another 10 percent is less than the 
lower whisker.  Thus, there is only about 80 percent of the distribution covered by 
the range of each box plot. 

 
 
Simulated Examples of Monitoring Trends over Time 

 
This section provides a variety of examples that compare Kalman filter and 

Moving Average estimates. The “true” population value at each time t is known 
exactly because they were used to generate the simulated estimates from each 
panel10. 

 
The following examples provide a range of departures of the “real world” 

from the assumed model in the Kalman filter, which reveals examples of the 
consequences of those departures on the reliability of annual estimates. However, 
these examples are merely specific realizations. They do not provide valid 
generalizations about bias or efficiency of the estimators. Such generalizations 
require deriving their expected values over all possible samples, or at least a very 
large number of potential samples. 

                                                 
10

  While the true values in these hypothetical populations may be known during these simulations, the true 
values are not known in FIA sampling and estimation of forest populations. 
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Figure 6: An example of the sequential recursive nature of the Kalman filter. Start with figure 6A. 
The design-based panel estimate at time t=2 is denoted with the red box plot. The model-based 
estimate (denoted with the blue box plot) is an independent forecast for time t=2 based on the best 
estimate at time t=1 (see equations 25 and 26, figure 5). The Kalman filter is the composite 
estimate (denoted with the green box plot) of these design- and model-based estimates. Figure 6B 
illustrates the next sequential step at time t=3, which uses the same process in the Kalman filter as 
that at time t=2. The design-based estimate at time t=1 is no longer needed at time t=3 because its 
contribution to the t=3 estimate is completely captured in the Kalman filter estimate at time t=2. 
Figures 6C, 6D and 6E illustrate subsequent steps in this sequential process. Conditional 
lognormal error distributions on the right-hand side supplement the box plots use the same color 
convention as in figure 5, where each box plot portrays the 10

th
, 25
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, 50
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, and 90
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of the modeled distributions. 
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For sake of simplicity and generality, the model chosen for this section makes 

few prior assumptions about the simulated dynamics of the populations. Assume a 
temporal model in the Kalman filter that predicts that the population parameter x 
is at a constant (static) steady-state over time, i.e., φt = 1 in equations 23 and 24. 
Assume the random prediction error over a single year (equation 22) has a 
relatively small but heteroscedastic standard deviation equal to 0.05 times the 
population parameter x at time t. In prose, the model assumes that the population 
is nearly at a constant steady-state that has minor random variations each year 
around a long-term constant value. The model for the standard deviation of this 
natural random variation is ±5 percent at time t relative to its condition at t−1 for 
all t. Under these assumptions, the model-based estimator at time t, which is a 
specific case of the general models in equations 23 and 24, is defined as: 
 

 
( ) ( )11ˆ1ˆ −−=− ttxttx

  [27] 

 
( ) ( ) ( )[ ] 222 1105.0111 −−×+−−=− ttxtttt xx σσ

  [28] 

This particular model in the Kalman filter (equations 27 and 28) approximately 
matches the model implied by the Moving Average, namely, estimates with the 
Moving Average are reliable for the current year if there is negligible change in 
the population over the time period being averaged. 
 

The first example employs a simulated population that is at a true steady-state, 
in which there is no change over time. A single realization of a simulated sample 
from this population is given in figure 7A, in which the design-based sampling 
errors (red box plots) have a coefficient of variation of 15 percent. Figure 7B 
illustrates a second independent realization, in which the design-based sampling 
errors have a coefficient of variation of 30 percent. The Kalman filter with the 
static steady-state model in equations 27 and 28 produces nearly identical 
estimates x(t) as the Moving Average. Both estimators reduce the standard 
deviation of their estimates (σ) by approximately 50 percent (i.e., 25 percent 
decrease in variance σ2) relative to the corresponding estimate from a single 
panel. The model in the Kalman filter ultimately reduces the estimation variance 
by 75 percent (1−β=1.00−0.25) in figure 7. The time-series of standardized 
residuals from the 2 estimators are virtually identical, with a distribution that is 
seemingly consistent with its expected mean of zero, unit variance, and a random 
temporal pattern. The standardized residuals vary between positive and negative, 
and they reveal no obvious non-random temporal trends. These results come as no 
surprise because the model in equations 27 and 28 agrees well with the true trend 
for this hypothetical population. 

 
In figure 7, as in following figures, the distribution of simulated random errors 

from the design-based estimator for each FIA panel at time t is denoted by the red 
box plots and trend lines. Trend lines for the Moving Average estimator are 
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identified in cyan, and those for the Kalman filter in green. Unlike figure 6, the 
box plots for error distributions from these 2 estimators are omitted to reduce 
clutter. Instead, their standard deviations are graphed separately. Likewise, the 
distributions of model prediction errors over each time step, which are portrayed 
with the blue box plots in figure 6, are also omitted to reduce clutter. “Saw tooth” 
patterns in estimated standard deviations for the Kalman filter are a consequence 
of model prediction errors (equation 24) that are propagated from time t−1 to t, 
immediately followed by the composite estimate (equation 21) at time t.  

 
Relative efficiency shown in figure 7 is defined as the estimated variance of 

the Kalman filter estimate divided by the computed variance of the design-based 
estimate from the single FIA panel measured at time t. Relative variance is used 
as shorthand for the 1−β term in equations 19 to 21 for the Kalman filter. β 
represents a value between 0 and 1 that weights the design-based estimate, while 
the weight placed on the model-based estimate is 1−β. Therefore, as 1−β nears 1, 
more weight is placed on the model estimate, which increases statistical efficiency 
attributable to the model. While there is no analogous interpretation for 1−β with 
the Moving Average (equation 5), it is graphed along with the 1−β for the Kalman 
filter as a basis for comparison. For both estimators, efficiency increases 
proportionally as 1−β approaches 1. The dashed line at 0.9 represents the relative 
efficiency expected if the sample size in the single annual panel at time t were 
10−times larger, as would be the case if a periodic survey were conducted each 
and every year at time t.  

 
Finally, the bottom panels in figure 7 graph the standardized residuals for the 

Kalman filter (equations 17 and 21). By definition, standardized residuals are 
expected to have a zero mean with unit variance and no temporal patterns if the 
model is accurate11. While there is no basis for this same expectation with 
residuals from the Moving Average (equation 4), they too are graphed along with 
the Kalman filter residuals for comparison. 

 
 

                                                 
11

  An inaccurate model can also produce residuals with the same expected distribution. Therefore, the 
distribution of residuals, by itself, is not a sufficient basis for a reliable test of model accuracy. 
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Figure 7: Comparison of Moving Average and Kalman filter estimates for a simulated population 
that does not change over time. The standard deviation of the estimation error is 15 percent of the 
population value in figure 7A (left-hand side), and 30 percent in figure 7B (right-hand side). Given 
these 3 realizations in the time-series of simulated sample estimates, the 2 estimators produce 
nearly identical results, at least in this case study of a static hypothetical population. The 
standardized residuals agree well with their expected values of zero mean and unit standard 
deviation, with no obvious trends over time in positive or negative residuals. 
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A second hypothetical example is given in figure 8. Unlike figure 7, this 

population is not static. Instead, there is an abrupt, perhaps catastrophic, 50 
percent decline in the population parameter at year t=6. In figure 7A, the 5-year 
Moving Average exhibits “lag bias” during years 6≤t≤9, but it recovers as an 
unbiased estimator when the 5-year period rolls beyond the abrupt change. 
However, the estimated standard deviations from the Moving Average remain 
deceptively low, which produces seemingly very precise estimates during years 
6≤t≤9, but, in reality, these same estimates are very inaccurate. On the other hand, 
the Kalman filter produces more accurate estimates during this anomalous time 
period, even though this particular implementation of the Kalman filter uses the 
static steady-state model. The Kalman filter estimate departs rapidly from the pre-
change status quo at year t=6 because the Kalman filter combines the model-
based estimate at year t=6 with the relatively precise estimate from the design-
unbiased panel estimate at year t=6. This response is reflected by the decrease in 
“relative efficiency” at year t=6 as less weight is placed on the model-based 
estimate. However, the standardized residuals for both estimators are suspiciously 
extreme at year t=6, with eye-popping values of approximately −5 standard 
deviation units. 
 

Figure 8B shows another estimation realization for the same simulation 
population. The difference being that the standardized residuals from the Kalman 
filter are arbitrarily (but consistently) constrained to values within ±2 standard 
deviations units (rmax=2 in equation 18). These Kalman filter estimates are 
remarkably accurate, especially considering that the static steady-state model is 
used in this particular implementation of the Kalman filter. This response to major 
deviations from the static model is associated with lesser weight being placed on 
the model-based estimates (i.e., reductions in relative efficiency from the model-
based estimator) and realistically larger values for the standard deviations. On the 
other hand, the Moving Average estimates are very inaccurate (i.e., “lag bias”) 
immediately after the abrupt change, with stunningly extreme residuals between 
−4.9 and −3.2 standard deviation units during years 6≤t≤8. Despite these obvious 
inaccuracies, the estimated standard deviations of the Moving Average estimates 
remain misleadingly low, which a well recognized known problem that is fully 
acknowledged by Patterson and Reams (2005).  
 

Even with the constraint on the maximum standardized residual, the time-
series of residuals from the Kalman filter in figure 8B exhibit an apparent 
temporal pattern, with consistently negative values between years 5≤t≤8. This 
provides weak evidence that an alternative to the static steady-state model 
warrants consideration, even though the Kalman filter produces reasonably 
accurate estimates with a misspecified model. The model-based Kalman filter can 
be robust even when the model is inaccurate, especially when independent design-
based panel estimates are closely linked to monitoring of residuals to detect 
deviations from their expected distribution. 
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Figure 8: Comparison of Moving Average and Kalman filter estimates simulated population that 
changes very abruptly at year t=6. The Moving Average estimates in these 2 realizations are 
obviously inaccurate at year t=6 even though their estimated precisions remain relatively high. In 
figure 8A, both estimates exhibit improbably negative standardized residuals, although the Kalman 
filter is slightly better. In figure 8B, the standardized residuals for the Kalman filter are constrained 
to remain within rmax=±2 standard deviation units (equation 18). This improves the fit of the Kalman 
filter estimates to the true population values in this realization, but suspicious temporal trends in the 
standardized residuals from the Kalman filter remain. 
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A more problematic example is given in figure 9. As in figure 8, the 

population has a strong and variable pattern of change over time, while the model 
used in this particular implementation of the Kalman filter assumes a static 
steady-state. In figure 9A, the Moving Average estimates are very inaccurate, 
while the Kalman filter estimates are even less accurate. The standardized 
residuals are implausibly positive during years 2≤t≤6, and curiously distributed in 
subsequent years. This is another example of very precise estimates that are very 
inaccurate. However, the results are much better in figure 9B, where same panel 
estimates are used, but constraints are imposed on the maximum standardized 
residuals for the Kalman filter (equation 18). While accuracy is not exceedingly 
good, the Kalman filter does produce more accurate estimates than the Moving 
Average, especially for years 8≤t≤10. Even so, the standardized residuals from the 
Kalman filter exhibit strong temporal patterns, with values consistently near +2 
standard deviation units during years 2≤t≤6, and consistently near −2 standard 
deviation units during years 7≤t≤9. This may be interpreted as evidence that the 
static steady-state model poorly represents the true temporal trends in the 
population. More plausible models based on independent information should be 
investigated. 

 
Finally, figure 10 provides yet another example in which the population is 

truly changing while the model within the Kalman filter assumes a static steady-
state population. The population attribute decreases 5 percent per year in figure 
10A, and 10 percent per year in figure 10B. The Moving Average and Kalman 
filter produce nearly identical estimates. Standardized residuals from the Kalman 
filter are constrained by equation 18, but they are not excessive, and they reveal 
no obvious temporal patterns. The realized time-series of estimates and 
standardized residuals for the exponentially decreasing populations in figure 10 
do not appear remarkably different than those for the static population in figure 7. 
The constraint on the Kalman filter residuals does decrease estimated efficiency 
relative to the Moving Average. This loss is a cost of mitigating the risk of model-
based bias while preserving the potential gains from model-based efficiency with 
the Kalman filter. Annual panel data and estimators might not offer sufficient 
accuracy to detect gradual changes in a population, although even slow monotonic 
trends should eventually become obvious after a long time-series of panel data. 
However, these results should not be over-interpreted because they are merely a 
few realizations of sampling and estimation for several hypothetical populations.  
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Figure 9: Both the Moving Average and the Kalman filter can appear to be very precise (i.e., low 
estimated standard deviation of prediction errors). However, their estimates can be very inaccurate 
(figure 9A). The Moving Average and the static steady-state model within the Kalman filter 
(equations 27 and 28) do not fit the time-series of FIA panel data very well. Constraining Kalman 
filter residuals to remain within rmax=±2 standard deviation units improves the fit in figure 9B, even 
though the static model remains unchanged. However, a suspicious temporal pattern remains in 
the residuals (all positive for 2≤t≤6 and all negative for 7≤t≤10). The large residuals might indicate 
model misspecification rather than rare chance events. An alternative is to use independent 
information to select a more realistic model without the steady-state assumption. 
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Figure 10: The Moving Average and Kalman filter can produce very similar estimates as in figure 
10A, where the population is decreasing 5 percent per year and in figure 10B, where the population 
is decreasing 10 percent per year. There are no strong clues among the residuals that the static 
steady-state model (equations 27 and 28) is inaccurate. Annual design-based FIA panel data might 
not always be insufficient to detect true changes in a population. Constraining the Kalman filter 
residuals to remain within rmax=±2 standard deviation units (equation 18) does not notably improve 
the fit, although it does increase the estimated standard deviation of the predictions and reduce the 
efficiency offered by the model within the Kalman filter. Mitigation of risks inherent with the model-
based Kalman filter (e.g., equation 18) can reduce statistical efficiency. 
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In “real world” applications, the true population trends are unknown. 
Therefore, any advantages of the Kalman filter, and the relative costs and benefits 
from constraints on its residuals, will generally be unknown. However, these 
examples suggest that the Kalman filter might have desirable characteristics 
compared to the Moving Average. In ill-behaved situations, it appears that the 
model-based Kalman filter estimator can be more accurate if residuals are 
faithfully monitored to reveal model failures. In well-behaved situations, it 
appears that both estimators can yield very similar results. These preliminary 
impressions have not been verified with rigorous consideration of the 
mathematical statistics of the expected values of these 2 estimators, which is the 
primary tool to make generalizations about efficiency and bias (e.g., Johnson and 
others 2003). 

 
 

Monitoring Lodgepole Pine Decline in Colorado 
 
For the last set of examples, we depart from the hypothetical and proceed to 

an actual time-series of annual FIA estimates. From 2002 to present, a severe 
epidemic of the mountain pine beetle (Dendroctonus ponderosae) has been 
devastating Colorado’s lodgepole pine forests at an alarming rate. Figure 11 
illustrates individual tree mortality in the foreground, and the extent of landscape-
scale mortality in the background. Figure 12 maps the spread of the epidemic 
between 2002 and 200712. 

 
The following example uses annual FIA panel estimates for Colorado to 

interpret the magnitude of lodgepole pine mortality caused by the mountain pine 
beetle outbreak. The annual FIA survey of Colorado uses 10 independent panels, 
each of which is a 1/10th sub-sample of all FIA field plots. The spatial distribution 
of sample plots within each panel is uniform over the entire state. One panel is 
measured in the field during each year. Each panel includes approximately 400 
forested FIA field plots (table 1).  

 
The annual FIA survey in Colorado began in 2002. There are 6 annual 

estimates currently available from the initial implementation of the annual FIA 
survey (see the first two columns in table 1). Each of the 6 design-based sample 
survey estimates is based on an independent sub-sample of FIA field plots (i.e., a 
different FIA panel). However, no sample plot occurs in more than 1 panel. 
Therefore, the data available for monitoring state-wide trends for any single 
indicator of lodgepole pine condition is limited to 6 observations, namely, 1 
statewide design-based panel estimate for each year.  

                                                 
12

  Due to the nature of aerial surveys, the data on the maps in figure 12  will only provide rough estimates of 
location, intensity and the resulting trend information for agents detectable from the aerial sketchmapping 
surveys.  The data presented on this map should only be used as a partial indicator of mountain pine 
beetle activity, and should be validated on the ground for actual location and casual agent.  Shaded areas 
show locations where tree mortality or defoliation were apparent from the air.  Intensity of damage is 
variable and not all trees in shaded areas are dead or defoliated. 

 

USDA Forest Service Proceedings – RMRS-P-56 33.



 29 

 

 
 

Figure 11. Since 2002, the epidemic of mountain pine beetle infestations has caused catastrophic 
levels of lodgepole pine mortality throughout Colorado. Dead trees are shown in the foreground, 
and landscape-level mortality is apparent on the red slopes in the background. Image courteously 
of William Ciesla (U.S. Forest Service, retired). 

 
Three indicators related to recent episodic lodgepole pine mortality are 

considered here: number of live trees, number of mortality trees, and number of 
damaged trees (table 1). The sampling distributions are assumed to be skewed 
because negative values are infeasible, and the distributions are assumed to be 
lognormal.13 As will be seen shortly, none of the standardized residuals greatly 
exceeded ±2 standard deviations units; therefore, the rmax limit (equation 18) is 
not applied in this example. Unlike the hypothetical examples above, the true 
population trends are unknown in the these examples, but independent aerial 
sketchmapping (e.g., Johnson and Wittwer 2006) demonstrates that the extent of 
lodgepole pine mortality is extensive (figure 12). 

 
 

                                                 
13 A gamma distribution might also be appropriate, and future analyses should conduct goodness of fit tests to 

select the most representative distribution. 
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Figure 12. Epidemic spread of lodgepole pine tree mortality between 2002 and 2007 caused by 
mountain pine beetle in north-central Colorado

12
. The area of infestation is approximately bounded 

by Denver, Glenwood Springs and the border between the States of Colorado and Wyoming. Areas 
of heavy mortality are shaded red. These areas were identified through aerial sketchmapping (e.g., 
Johnson and Wittwer 2006), which is a remote sensing technique that is independent of the FIA 
annual sample data. National Forests are shaded in green, and areas omitted from each annual 
survey are shaded in gray. Cartographic products were provided by Jennifer Ross (U.S. Forest 
Service, Rocky Mountain Region, Forest Health Management Service Center, Lakewood, CO). 
 

50 
miles 

2007 2006 

2005 2004 

2003 2002 

USDA Forest Service Proceedings – RMRS-P-56 33.



 31 

Table 1: Lodgepole pine statewide estimates for Colorado from 6 annual FIA panels. These are 
include all sufficient statistics necessary to apply the Moving Average and Kalman filter estimators 
in figure 13 to figure 15. 

 
Design-based 

estimator  
Model-based time-series estimators using annual FIA 

panels 

Annual FIA panels
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Average number of live trees per forested acre
h
 

2002 26.30 4.50  26.30 4.50    26.30 4.50   362 

2003 27.47 4.25  26.89 3.10 0.13 0.47  26.94 3.15 0.45 0.18 387 

2004 36.48 6.17  30.08 2.91 1.14 0.78  29.18 2.99 0.77 1.35 409 

2005 28.79 4.91  29.76 2.51 -0.21 0.74  29.06 2.73 0.69 -0.06 407 

2006 20.13 3.48  27.83 2.12 -2.25 0.63  25.12 2.31 0.56 -1.92 391 

2007 20.49 4.14  26.67 2.09 -1.61 0.74  23.72 2.28 0.70 -0.93 411 

Average annual number of mortality trees per forested acre averaged over 5-year period
i,j
 

2002 0.10 0.06  0.10 0.06    0.10 0.06   362 

2003 0.09 0.03  0.10 0.03 -0.06 0.05  0.10 0.03 0.13 -0.56 387 

2004 0.16 0.07  0.12 0.03 0.67 0.78  0.15 0.05 0.54 0.06 409 

2005 0.13 0.05  0.12 0.03 0.26 0.73  0.16 0.04 0.31 -1.05 407 

2006 0.31 0.12  0.16 0.03 1.47 0.93  0.27 0.07 0.67 0.42 391 

2007 0.63 0.24  0.26 0.06 1.85 0.94  0.44 0.11 0.80 0.84 411 

Average number of live trees per forested acre damaged by insects
k,i,l

 

2002 0.20 0.10  0.20 0.10    0.20 0.10   362 

2003 0.67 0.41  0.44 0.21 0.63 0.74  0.35 0.14 0.88 0.86 387 

2004 1.17 0.57  0.68 0.23 0.98 0.83  0.61 0.21 0.86 1.07 409 

2005 0.46 0.19  0.63 0.18 -0.71 0.08  0.57 0.17 0.24 -1.16 407 

2006 1.88 0.71  0.88 0.20 1.71 0.92  1.04 0.31 0.81 1.31 391 

2007 2.11 0.90  1.26 0.27 1.14 0.91  1.69 0.44 0.76 0.54 411 

              
a
 These design-based FIA panel estimates (Scott and others 2005) are sole sufficient statistics used to apply 

the Moving Average and Kalman filter.  
b
 Moving Average defined in Equations 1 and 2. 

c
 Univariate Kalman filter defined in equations 19 to 24. 

d
 The standardized residual for the Moving Average (rMA) is defined in equation 4. 

e
 Relative efficiency (1-β) is defined for the Moving Average in equation 5. 

f 
The relative efficiency for the Kalman filter is defined with equation 21. 

g
 The standardized residual for the Kalman filter is defined in equation 17. 

h
 Kalman filter estimates for total live lodgepole pine tree use the static model with low prediction error 

(equations 27 and 28, graphed in figure 13). 
i
 Kalman filter estimates for lodgepole pine mortality and damage use exponentially increasing model with 

moderate prediction error (equations 25 and 26). 
j
 Graphed in figure 14C. 
k
 Graphed in figure 15C. 

l
 Tree damage estimates are the basis for examples in figure 5 (2002 only) and figure 6 (2002 to 2007). 
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Total Numbers of Live Trees  
 
The estimated total numbers of live lodgepole pine trees in Colorado for each 

year are graphed in figure 13 on page 35. The graph symbolism remains the same 
as that described on page 20. The initial analysis of this indicator with the Kalman 
filter used the static steady-state model in equations 27 and 28, which resembles a 
null hypothesis in which there is zero net change over time.  

 
Both the Moving Average (equations 1 and 2) and the Kalman filter produce 

very similar time-series estimates (figure 13, table 1). After the initial few years 
of relatively scant panel data, the variances of the annual estimates average about 
33 percent of those for the design-based estimates from each panel, meaning the 
time-series of Moving Average and Kalman filter estimates have about the same 
precision as a single sub-sample with 3-times the number of field plots. 

 
The downward trending design-based panel estimates in figure 13 are 

consistent with the mountain pine beetle epidemic in Colorado. However, the 
static steady-state model in the Kalman filter fits these data reasonably well. 
There is nothing obviously askew with the magnitude and temporal trends in the 
standardized residuals. However, it is very possible that an alternative model 
would better fit the annual panel estimates, although this possibility was not 
investigated here. 
 

 
Tree Mortality 

 
The annual panel estimates for 2006 and 2007 suggest an increasing mortality 

rate in figure 14 on page 36. However, the spread of the design-based estimation 
error for any single panel is somewhat broad relative to the apparent trend. Recall 
from page 20 that the red box plots in figure 14A mark the 10th, 25th, 50th, 75th and 
90th percentiles of the assumed lognormal distribution with the first 2 moments 
estimated from the panel data each year. There is a small but plausible chance that 
the panel estimates in 2006 and 2007 could have been observed even if mortality 
did not increase beyond the levels in 2002 to 2005. However, the standardized 
Kalman filter residuals in 2006 and 2007 are suspiciously large (standard 
deviation units of 1.55 and 2.08 respectively). Under the steady-state model 
assumed in this case for the Kalman filter, and assuming an expected normal 
distribution of residuals with zero mean and unit variance, the individual 
probabilities of each standardized residual are 6 percent and 2 percent 
respectively. However, had there been an a priori hypothesis that the panel 
estimates would have shown unusually high mortality rates in 2006 and 2007, the 
single-tailed joint probability of both events would have been  (0.06/2)X(0.02/2), 
or roughly 0.02 percent. That joint probability is unlikely given the steady-state 
model and other assumptions. 
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One alternative hypothesis retains the assumption that the population variable is at 
a static steady-state (i.e., φ=1 in equation 22), but assumes the annual prediction 
error is very high instead of very low, which would be characteristic of a dynamic 
population with annual perturbations that range widely around a constant level. 
Based on professional judgment, and independent of the observed annual panel 
estimates, assume a coefficient of variation of 1.00 for the random prediction 
errors over 1 year prediction interval. Recall that the previous model assumed a 
coefficient of variation of 0.05. The result is the exact same model for the 
population variable as equation 27 and figure 14A, but replacing the variance 
propagation model in equation 28 with:

 
 

( ) ( ) ( )[ ] 222 1100.1111 −−×+−−=− ttxtttt xx σσ

 
 [29] 

The outcome is given in figure 14B. The Kalman filter fits the 2006 and 2007 
panel estimates notably better than under the model used for figure 14A. They 
also fit better than the Moving Average estimates. Furthermore, the time-series of 
6 standardized residuals with the modified model does not reveal as strong of an 
apparently non-random temporal pattern. While the estimated precision from the 
Kalman filter decreases, the predictions are more plausible given the design-based 
panel estimates. Unfortunately, the precision with the Kalman filter is not much 
better than that with the annual FIA panel estimates before the mountain pine 
beetle epidemic. The model used by this particular Kalman filter contributes little 
to increased statistical efficiency, at during early stages of the beetle outbreak, and 
the gain is only marginal thereafter. Most of the information derives from the 
annual design-based panel estimates, and very little information is gained from 
model predictions based on past panels. 

 
A third hypothesis is that lodgepole pine mortality is increasing during the 

beetle epidemic. Based on independent observations, for example forest health 
reconnaissance with aerial sketchmapping (figure 12) and expert judgment, 
assume an exponentially increasing model for lodgepole pine mortality between 
2002 and 2007, where the mortality rate increases 50 percent (1.5 times) per year, 
with a coefficient of variation for the random prediction errors over 1-year of 0.25 
(i.e., a standard deviation equal to 25 percent the magnitude of the number of 
mortality trees). This is the same model as that defined in equations 25 and 26 and 
used to build figure 6, which provides a more detailed example of how the 
Kalman filter works. 

 
The results for the Kalman filter with the exponentially increasing model from 

equations 25 and 26 are given in figure 14C and table 1. The fit to the annual 
design-based panel estimates improves to a modest degree, and surpasses that 
from the Moving Average. The relative efficiency is intermediate between that 
from the unrealistic static model (figure 14A) and the uninformative static model 
(figure 14B). The 6 standardized residuals more resemble their expected 
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distribution, which has zero mean and unit variance, and their temporal pattern 
appears more random. However, strong inference regarding the distribution of 
standardized residuals is rarely possible with only 6 observations. 

 
The model coefficients used in this example are based on expert judgment, 

and they are not empirically fit to FIA panel data. This process of model 
parameterization preserves the scientific process in hypotheses formulation and 
avoids “data mining.” With small datasets, there is a risk of misinterpreting a 
pattern that is caused, in reality, by random processes. For example, sampling 
error with a small number of annual panel estimates can cause apparent temporal 
trends in a population that is truly at a static steady-state (e.g., figure 7A and the 
first 5 years in figure 8). Data mining has a more valid role in the analysis of 
much larger datasets, where this risk can be less. 

 
This example helps illustrate that no single model or estimator is necessarily 

“correct.” However, there can be a difference when trying to interpret the trends. 
The Moving Average fits the data (figure 14A), but how does that help answer 
important analysis questions regarding tree mortality? The static model fits the 
data when the uncertainty of model predictions is assumed high (figure 14B), but 
how does that offer any more insights than the Moving Average? The 
exponentially increasing model also fits the data (figure 14C and table 1), perhaps 
somewhat better than the alternative hypotheses. However, this final hypothesis 
suggests that tree mortality measured at time t is about 1.5 times that measured at 
time t-1, which is an increase of about 50 percent per year. This provides a more 
meaningful interpretation of the trend data than the alternative models 
(hypotheses) considered here. If a model is not a meaningful representation of the 
scientific hypothesis of interest, then “everything is compromised” (Anderson 
2008). 

 
 

Tree Damage 
 
FIA field crews assess damage and insect or pathogen activity that seriously 

affects live trees with diameter at breast height >5.0 inches (U.S. Forest Service 
2007b). Based on judgment of the field crew, such damage will likely prevent the 
tree from living to maturity, or surviving 10 more years, if already mature; or the 
damage will likely reduce the quality of the tree’s products (e.g., potentially 
resulting from lightning strike, excessive lean, tree rot). Whenever feasible, field 
crews subdivide insect damage into more specific agents, including mountain pine 
beetles, bark beetles, defoliators, terminal weevils, and Ips engraver beetles. 
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Figure 13: Estimated total number of lodgepole pine trees in Colorado from 2002 to 2007 using 
independent annual FIA panels. These are actual design-based FIA estimates (Scott and others 
2005), and the true population trend is unknown. Both the Moving Average and the Kalman filter 
yield very similar annual estimates. There is no strong indication from the standardized residuals 
that the static steady-state model in the Kalman filter (equations 27 and 28) is inaccurate. If there is 
a true change in the number of lodgepole pine trees in Colorado between 2002 and 2007, then the 
observed data and the chosen estimators are not powerful enough to detect the change. This figure 
is discussed on page 32. 
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Figure 14: Estimated lodgepole pine tree mortality in Colorado. The Kalman filter with the static 
steady-state model (equations 27 and 28) does not accurately fit the annual FIA panel estimates in 
2006 and 2007 (figure 14A). The fit in figure 14B improves assuming a static model with a much 
larger random forecasting error (equations 27 and 29). A similar fit in figure 14C is achieved 
assuming an exponential rate of increase with a moderate degree of forecasting error (equations 
25 and 26). The exponentially increasing model has somewhat more plausible residuals. More 
importantly, it provides the most useful interpretation of the trend in the panel data, which is 
consistent with the epidemic of pine beetle mortality that is obvious across Colorado. This figure is 
discussed on page 32. 

  

0 

 Moving Average 

0 

 Kalman filter 

 Moving Average 

 Kalman filter 

 Moving Average 

 Kalman filter 

0 

 Standard deviation 

1 

0 

 Relative efficiency 

-2 
 

0 

2 

 2002  2007   Year  

 Standardized residual 

 Standard deviation 

 Relative efficiency 

 2002  2007  Year  

 Standardized residual 

 Standard deviation 

 Relative efficiency 

 2002  2007  Year  

 Standardized residual 

B C A 

Moving Average estimate  Design-based panel estimate  Kalman filter estimate 

 r  

 σ   

 x(t)   

 x(t)   

  1-β   

USDA Forest Service Proceedings – RMRS-P-56 33.



 37 

 

 

Figure 15: Estimated tree damage in Colorado. Results are very similar to those for tree mortality 
in figure 14, and the same models are used in figure 15. A multivariate Kalman filter could be 
formulated that simultaneously predicts total number of trees, tree mortality and tree damage. A 
multivariate population dynamics model in the Kalman filter might account for the expected 
biological processes during a pine beetle epidemic. This might improve the accuracy of the time-
series estimates and the power to differentiate among alternative models within the Kalman filter. 
This figure is discussed on page 34. 
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The estimated time-series of mountain pine beetles damage to live lodgepole 

pine trees in Colorado is given in figure 15 on the previous page. The results are 
qualitatively very similar to those for tree mortality. The precise static model 
(equations 27 and 28) poorly fits the annual FIA panel estimates in figure 15A, 
while the imprecise static model (equations 27 and 29) fits about as well as the 
Moving Average (figure 15B), but the model does not markedly help improve 
statistical efficiency. On the other hand, the exponentially increasing model in 
equations 25 and 26 fits slightly better (figure 15C and table 1). More 
importantly, interpretation of the exponentially increasing model in terms of the 
beetle outbreak is more useful for analyses than the Moving Average and Kalman 
filter with an imprecise steady-state model. 
 

 
Discussion 

 
The exposition and examples given above are primarily intended to introduce 

the reader to the Kalman filter and its relevance to FIA strategic goals and 
objectives for annual monitoring (U.S. Forest Service 2007a). We hope this helps 
every reader understand the Kalman filter, at least in an intuitive sense, while 
providing sufficient, yet simple, mathematical details to serve as an introduction 
to statisticians. The remaining few sections touch upon more technical issues that 
warrant future study by FIA analysts and statisticians. The purpose is to suggest 
possible approaches to improve statistical accuracy, analyses of residuals, 
quantitative comparisons of alternative hypotheses and statistical estimators, and 
implementation within FIA information management systems. 

 
 

Analyzing Trends with Annual FIA Data  
 
Three immediate questions arise when temporal trends are interpreted with 

annual FIA panel data: 
 

1. From a simple graphical display, is there an observable trend in population 
parameters over time? 

2. If so, does the trend make sense? For example, increased mortality would 
be expected as the result of a known catastrophic disturbance event, such 
as bark beetle outbreaks, severe weather, etc. 

3. Is the trend significant relative to the uncertainty in the population 
estimates? 

 
For lodgepole pine mortality in Colorado caused by mountain pine beetle, the 

answer seems to be “yes” for all three questions. The third question has been 
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addressed in previous studies14 with analysis of variance and regression. A simple 
statistical regression with annual panel data verifies there is a significant upward 
trend in mortality and damage between 2002 and 2007. Analysis of variance 
identified two combinations of panels that were significantly different from each 
other. But can the Kalman filter add value beyond the more traditional 
approaches?  

 
The analyses with the Kalman filter can estimate the temporal trend in tree 

mortality and damage. Although the Moving Average and regression can 
accomplish this same task, the results from the Kalman filter may be more 
interpretable. Furthermore, the Kalman filter can fit the annual panel estimates 
more accurately. This addresses the first and second questions. 

 
The Kalman filter weights each annual FIA panel estimates with a ratio of 

variances, which intuitively makes sense and is easy to understand. The Kalman 
filter can accommodate quantitative models that are based on theory, and 
alternative models can compare alternative theories and their relative fit to 
empirical data. This also addresses the second question. 

 
The Kalman filter can compare alternative models with the static steady state 

model, which resembles a null hypothesis in analysis of variance and regression 
analyses. This addresses the third question. However, more meaningful 
hypotheses, in the form of annual transition models (e.g., φt in equation 22), may 
be captured within the Kalman filter. In this context, ranking of alternative 
hypotheses is discussed in the next section. 

 
 

Selecting Among Alternative Hypotheses and Estimators  
 
The analyses illustrated in figures 7 to 10 and 13 to 15 employ two different 

time-series estimators: the Moving Average and the Kalman filter. In addition, the 
Kalman filter employs intrinsically different temporal models for a population 
parameter (e.g., static steady state v. exponentially increasing state).  

 
If the Moving Average is used as an unbiased estimator of the current 

population parameter, then a static or steady-state model is likely implied, in 
which there is no net change in the population over time. If the Moving Average 
is assumed to be the minimum variance estimator, then this likely implies 
temporal homoscadasticity of sampling and prediction errors.  

 
The Kalman filter model used in some of the above analyses shares the same 

steady-state model with the Moving Average estimator, although the Kalman 
filter utilizes additional assumptions about the magnitude of time-invariant model 
prediction errors. Steady-state equations 27 and 28, which are the basis for figure 
7 to 13, 14A and 15A, assume a temporally indifferent distribution of random 

                                                 
14

 M.T. Thompson, in review, Western Journal of Applied Forestry. 
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prediction errors with a relatively small standard deviation of annual prediction 
error (i.e., 5 percent coefficient of variation). Steady-state equations 27 and 29, 
which are used for figure 14B and figure 15B, assume much more variable annual 
prediction errors (i.e., 100 percent coefficient of variation). The models used in 
the Kalman filter analyses for figure 14C and figure 15C, which are defined with 
equations 25 and 26, hypothesize an exponentially increasing rate of 50 percent 
per year with modest variability in random annual prediction errors (i.e., 25 
percent coefficient of variation). 

 
Which Kalman filter model best fits the annual FIA panel estimates? Is the 

Kalman filter a more precise estimator than the Moving Average? These 
questions may be conditionally answered if simplifying assumptions and models 
are correct. Unfortunately, assumptions and models are virtually always incorrect 
to varying and unknown degrees. Figure 8A and figure 9A are obvious examples, 
where it is assumed that prediction error is low because the model is very 
accurate. Apparently, this assumption is exceedingly overoptimistic because the 
standardized residuals are suspiciously large15, with values ranging between -6 
and -8 standard deviation units during certain time periods.  

 
The ad hoc rule in equation 18 increases the estimate of model prediction 

error variance based on the analysis of residuals. This rule assures that the 
residual difference between the model-based prediction and the design-based 
panel estimate never exceeds 2 standard deviation units, which makes this rule an 
integral (non-linear) part of the model for prediction errors within the Kalman 
filter. This rule improves the agreement between the Kalman filter estimates and 
the true population trends in the hypothetical examples, which is illustrated in 
figure 8B and figure 9B. But the true trend is never known in actual applications, 
and this rule was not invoked in the example of annual FIA data for lodgepole 
pine mortality in Colorado (figures 13 to 15). 

 
Again, how do we select the best hypothesis and estimator among a set of 

alternatives? Anderson (2008) provides a particularly useful view of comparisons 
among competing hypothesis and models. This view might help guide analyses of 
residuals from alternative estimators and models. The following section uses 
heuristics to briefly explore this train of thought. However, these comments are 
intended merely to invoke further investigation, and not as a prescription for data 
analysis. 

 
Entropy and Information-Theoretics: Van Deusen (1999) suggests that 

alterative hypotheses regarding polynomial temporal trends within the mixed 
estimator may be compared with the Akaike information criterion (AIC) of 
Akaike (1974) or the Schwarz information criterion (SIC) of Schwarz (1978)16. 
Burnham and Anderson (2001) review a closely related method from information-
theoretics that ranks the fit of alternative models to representative observations, 

                                                 
15

  Deceivingly implausible residuals are possible when the model is accurate, at least in rare cases. 
16

  Van Deusen (1999) recommends the Schwarz information criterion in his setting. 
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where the models represent alternative hypotheses and the fit is measured by 
observable residuals.  

 
As an embellishment to the likelihood perspective, Burnham and Anderson 

(2001) describe an AIC method based on residual statistics that are assumed to be 
normally distributed. This method might be applicable to residuals from the 
Moving Average (equation 3) and the Kalman filter (equations 15 to 17). If it is 
applicable, then this method would allow ranking among models (i.e., hypotheses) 
based on the Moving Average, the steady-state Kalman filter with low prediction 
error (equations 27 and 28), the steady-state Kalman filter with high prediction 
error (equations 27 and 29), and the exponentially increasing Kalman filter with 
moderate prediction error (equations 25 and 26).  

 
The relevant AIC statistic is given by Burnham and Anderson (2001, 2004) as 
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Now consider the afore mentioned heuristics. Let the residuals from the 
Moving Average estimator be defined as rMA in equation 4, and residuals from the 
Kalman filter as r(t2) in equation 15. If each residual were divided by its estimated 
standard deviation from the design-based panel estimator, then perhaps one might 
approximate equation 30 with17: 
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Multivariate vector residuals may be similarly normalized through matrix 

multiplication by the inverse Cholesky square root of the covariance matrix for 
estimation errors from the design-based annual panel estimates. Under the 

                                                 
17

  Residuals are not available at the time of initial conditions (t=1). 
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assumption of negligible model bias and adequate estimation precision, residuals 
so normalized may be treated as orthogonal with unit variance, and summed 
together under the assumption that they where all independent and identically 
distributed. Simultaneous analyses of orthogonal multivariate residuals would 
provide more observations and stronger evidence when comparing alternative 
hypotheses and univariate estimators.  

 
Burnham and Anderson (2001) state that the “AIC (equation 30) is not a test 

in any sense: no single hypothesis (model) is made to be the ‘null’, there is no 

arbitrary α level, and there is no arbitrary notion of ‘significance’. Instead, there 

are concepts of evidence and a ‘best’ inference, given the data and the set of a 
priori models representing the scientific hypotheses of interest. … Akaike's 

general approach allows the best model in the set to be identified, but also allows 

the rest of the models to be easily ranked.”  
 
Burnham and Anderson’s ranking method only considers hypotheses that are 

identified explicitly during the analysis. There is no guarantee that some other 
hypothesis, which was not considered during the analysis, is a better fit to the 
observed data. For example, the static steady state model in equations 23 and 24 
for total number of live lodgepole pine trees provides a reasonable fit the annual 
FIA panel estimates (figure 13). This model is much like a null hypothesis. 
However, there is independent evidence from aerial sketchmapping that strongly 
suggests that the number of live trees should be decreasing (figure 12), not static. 
An alternative model that predicts a decline in the number of live trees might fit 
the panel data better that the static model, but the model that predicts a decline 
was not included in this particular analysis. This is an example of an undesirable 
omission. 

 
The examples of indictors of lodgepole pine demographics demonstrate the 

potential inadequacy of tests for a null hypothesis of no change. The null 
hypothesis may fail to be rejected based on the available data, even when some 
other hypothesis may have better fit the same data. Therefore, any meaningful 
analysis should include a set of reasonable a priori alternative hypotheses that can 
be ranked relative to their agreement with independent observations. However, 
inclusion of a model that mimics a null hypothesis, such as the static steady state 
model in equations 23 and 24, can provide a relative “baseline” when comparing 
the differences among AIC statistics for alternative hypotheses. For example, 
compare 3 models (hypotheses) that predict a percent per year decline in live trees 
of 25, 50 and 75 percent. The AIC statistics in this hypothetical example are given 
in table 2. Is the difference in their AIC statistics relatively large or relatively 
small? Comparisons of these AIC statistics relative to the AIC statistic for the 
static model (i.e., no annual change) can help answer this question.  

 
In the absence of a model that assumes a static steady state, the AIC statistics 

in table 2 seem to strongly highlight the model with a 50 percent annual rate of 
change because the relative AIC for that model is high relative to the other 
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alternatives (25 and 75 percent per year change). However, the differences among 
dynamic models (25, 50 and 75 percent per year) are less striking when the static 
steady state model (0 percent annual change) is used as the baseline18 The latter 
comparisons suggest that there is a decline in number of live trees, as would be 
expected, but there is not strong evidence for estimating the actual rate of change 
(25, 50 or 75 percent per year). 

 
 

Table 2 Hypothetical ranking of alternative hypotheses for annual rate of change with the AIC 
statistic (equations 30 and 31).  

No static model  
Static model 
included

18
 

Change 
rate per 

year 
AIC Difference   AIC Difference 

0%      10,000 0 

25% 10,200 0  10,200 200 

50% 10,250 50  10,250 250 

75% 10,225 25  10,225 225 
 

 
 

Multivariate Kalman Filters 
 
Multivariate versions of the Kalman filter can improve the accuracy and 

reliability of time-series estimates, and accommodate more realistic models of 
ecosystem processes. Some of these issues are briefly covered in this section. 
Though the complexity of a multivariate approach can be initially intimidating, 
the basic concepts behind complex Kalman filters are just as simple as the 
univariate version considered above.  

 
Complex Tree- and Stand-level Models: Tree damage is a leading indicator 

of tree mortality, and tree mortality is negatively correlated with the number of 
live trees. This suggests a multi-response model in the Kalman filter that 
simultaneously considers the demographics of the statewide lodgepole pine tree 
population, where the average number of trees per forested acre at time t equals 
the tree density at t−1, plus the average number of ingrowth trees and minus the 
average numbers of new mortality and removal trees per acre between t−1 and t.  

 
More accurate and detailed model predictions may be available from 

deterministic growth and yield models. In principle, any deterministic population 
or ecosystem model can be linked to the Kalman filter to improve estimates and 
the analysis of broad-scale trends (e.g., Van Den Brakel and Visser 1996, 
Williams and others 2005, and Tian and Xie 2008). Multivariate predictions from 
a complex nonlinear model can be made for each FIA plot or tally tree, using the 
most recent field measurements as initial conditions. Examples include the Forest 
Vegetation Simulator (Crookston and Dixon 2005, Miles 2008) and models fit to 

                                                 
18

 Recall that the static model for live trees fit the annual FIA panel data reasonably well in figure 13 
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FIA plot data by Lessard and others (2001) for updating annual forest surveys. 
Imputation can be viewed as an empirical multivariate prediction model, which 
has already been applied in the context of annual FIA surveys (Van Deusen 1997, 
Reams and McCollum 2000, McRoberts 2001, Gartner and Reams 2002, and 
Eskelson and others 2008). However, if alternative hypotheses will be compared 
during analysis, then deterministic models, such as the Forest Vegetation 
Simulator, should be used rather than purely empirical methods, such as 
imputation. Deterministic models can capture assumptions about future 
population dynamics, whereas purely empirical methods use past observations to 
predict future conditions. 

 
Imputations or predictions from the model for each tree or FIA sample plot 

can be used to estimate the predicted state vector at the population level. This is 
accomplished with design-based sample survey methods, exactly like those used 
with actual field measurements. Those multivariate sample survey estimates are 
then assimilated into the Kalman filter through a multivariate transition matrix, 
which is analogous to the univariate φt in equations 23 and 24. One challenge 
would be estimation of the covariance matrix that describe model predictions 
error, analogous to the scalar variance σw

2(t) in equation 24 plus any quantified 
estimation error associated with the transition matrix (Ni and Zhang 2008).  

 
Such models could be formulated to compare alternative hypotheses that are 

related to forest health. The Forest Vegetation Simulator can model effects of 
disturbance agents, including insects, pathogens, and fire (Crookston and Dixon 
2005). Hypotheses may be based on climate change scenarios, the consequences 
of which are modeled with the Forest Vegetation Simulator (e.g., Malmstrom and 
Raffa 2000; Crookston and others 2008). Hypotheses may be formulated with a 
demographic model that predicts the spatial dynamics of a pest population and the 
associated damage to trees (e.g., Logan and others 2003). Ranking the degree of 
agreement between model predictions and direct observations, such as annual FIA 
panel estimates, is briefly covered on page 39. 

 
 
Standardization of Multivariate Vector Residuals: If all assumptions 

incorporated into a Kalman filter are approximately correct, then the standardized 
residuals should be approximately distributed with a zero mean, unit variance, and 
mutual independence over time (Maybeck 1979). If there is a convincing 
deviation of the standardized residuals from their expected distributions, then 
there is evidence of model misspecification. It can not be overemphasized that 
close scrutiny of residuals is essential to mitigate the risk from a model-based 
approach, such as the Kalman filter, while preserving the gains in efficiency that 
are possible with the model-based approach.  

 
In a large and complex governmental statistical system like FIA, this level of 

scrutiny would have to match that already conducted to detect other sorts of non-
sampling errors (e.g., Pollard and others 2006). FIA database software could be 
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augmented with a hypothesis test that the set of standardized residuals from recent 
FIA panels and annual estimates fits a normal distribution with mean zero and 
unit variance; the Kolmogorov-Smirnov test is an example. The database could 
include a test that the time-series of recent residuals from the composite estimator 
in the Kalman filter fulfill the expectation of mutual independence over time; the 
non-parametric Wald-Wolfowitz runs test is an example. 

 
If population-level estimates from the deterministic models demonstrate a 

good fit to the time-series of FIA panel estimates, and analyses of residuals reveal 
no suspicious deviations from expectations, then the accuracy of the statistical 
estimates with the Kalman filter will likely improve. If the fit is mediocre, at least 
the Kalman filter is robust against modest levels of model misspecification. 
Furthermore, any lack of fit, assuming it is actually discovered during an analysis, 
provides the opportunity to learn more about the system and improve the models. 
Monitoring and analysis of vector residuals from the Kalman filter could assist in 
this learning process.  

 
 
Remotely Sensed Data: Ancillary remotely sensed data can improve the 

estimated area of forest, including separation of estimates into forest area with 
and without severe insect damage (e.g., Wulder and others 2005 2006a 2006b, 
Goodwin 2008). The Kalman filter can combine multi-response process models 
for land use, land cover and forest condition, with the time-series of annual 
design-based multivariate panel data, and with multivariate ancillary data from 
remotely sensed censuses and sample surveys (Czaplewski and others 1988, 
Czaplewski 1990, 1995, 1999, 2001). This approach does not require stratification 
of individual FIA panels based on remotely sensed data and geopolitical 
boundaries, such as counties (Czaplewski 2001). Therefore, the Kalman filter can 
avoid problems inherent with detailed stratification and when the sample size is 
small, which is a problem particularly acute with the Moving Average method 
(Patterson and Reams 2005).  

 
In a sense, the composite estimator in the Kalman filter improves precision by 

“borrowing” relevant information from the past. Likewise, the Kalman filter can 
improve precision by “borrowing” ancillary information from remotely sensed 
sources. Therefore, the Kalman filter is potentially well-suited for complex 
monitoring systems that include multiple time-series of multivariate remotely 
sensed data and field data. An example is the Nevada Photo-based Inventory Pilot 
(NPIP), which is one attempt to implement the national FIA strategic plan (U.S. 
Forest Service 2007a). 

 
 
Improving Accuracy of Time-Series Estimates: The mountain pine beetle 

example in figure 14C and figure 15C used “expert opinion” to quantify model 
parameters. However, the “extended” Kalman filter (Jazwinski 1970) can 
simultaneously estimate population attributes and model parameters. Rather than 
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a priori expert judgment used to model lodgepole pine damage and mortality as a 
50 percent increase per year (figure 14 and figure 15), a potentially more accurate 
rate parameter could be estimated from the annual panel data, in addition to the 
estimated mean number of trees per acre. The model form (e.g., exponential rate 
of change) would need to be identified from independent external sources, but the 
parameter values (e.g., 50 percent per year increase) for the model could be fit 
empirically without impairing valid inference.  

 
Since forest populations are integrated systems, there can be strong isotropic 

temporal correlations among variables at proximate points in time, both past and 
future. More advanced versions of the Kalman filter can act as linear smoothers 
over multiple time increments (Jazwinski 1970). It is possible that current panel 
data can improve composite estimates for past conditions in addition to current 
conditions. This kind of extra effort seems worthwhile when addressing important 
analysis questions with a relatively short time-series of annual cross-sectional 
panel data. After all, the cost is over $500,000 for each annual datum point in 
Colorado. 

 
Multivariate versions of the Kalman filter employ matrix algebra and inverse 

covariance matrices. Unfortunately, covariance matrices can be ill-conditioned or 
even singular, especially when the dimensions of the vector estimates are large. 
These pragmatic circumstances frequently cause numerical instability in large 
applications of the Kalman filter. In many cases, the numerical results from the 
Kalman filter will be dominated more by numerical round-off errors than random 
sampling and prediction errors. This vulnerability can produce disappointing, 
inaccurate or even infeasible results (e.g., negative variance estimates) with the 
Kalman filter. Aberrant numerics may not be obvious from the vector estimate 
alone, which is especially dangerous. Fortunately, variations of the Kalman filter 
are numerically robust, even with singular covariance matrices (Maybeck 1979). 
These numerical solutions employ various types of matrix square roots, matrix 
decompositions or matrix factorizations when combining vector model 
predictions with design-based vector panel estimates. Bierman (1977) is a 
particularly useful source for effective solutions to numerical hazards with large, 
ill-conditioned covariance matrices. While these solutions add complexity during 
implementation of the Kalman filter, they should not be allowed to distract from 
the fundamental and intuitive simplicity of the Kalman filter. If there were 
numerically perfect computers, then the complexity needed to solve numerical 
problems would not be necessary. 

 
 

Comparison of FIA Annual and Periodic Surveys for Monitoring 
 

During the 1960s to 1990s, the FIA periodic design produced relatively 
precise estimates for a “snapshot” in time, but these same estimates often lost 
much of their value well before the FIA Inventory Unit was re-measured during 
the following periodic cycle. Users tended to lose confidence in FIA periodic data 
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about 5 years after the field work was completed. Since periodic surveys were 
repeat only once every 10 to 20 years (AFPA 1998), FIA period surveys had 
limited value for half or more of their life cycle. How does the current annual FIA 
design compare with the previous periodic design for monitoring applications? 

 
An annual FIA survey in the Interior West essentially uses the same field plots 

as the periodic survey. However, those plots are systematically sub-sampled into 
10 mutually exclusive FIA panels in the western USA (Bechtold and Patterson 
2005). Any single panel includes 1/10th of all FIA field plots. The precision, as 
measured by the standard deviation of the sample mean, from a single panel 
equals (1/√10)=0.32 of the precision from a full periodic survey if both were 
measured during the exact same time. Therefore, confidence intervals from a 
single panel are about (0.32-1)=3.1 times broader than those from a periodic 
survey conducted in the same year. While there is sufficient funding to measure a 
single panel in 1 year, there are not enough resources to measure the ten-fold 
increase in plots every year that would be required for a periodic survey. The 
annual design sacrifices precision to gain timeliness, although precision remains 
important in monitoring changes over time. 

 
In order to assess FIA monitoring programs with the current annual design 

relative to the prior periodic design, hypothetically assume that a periodic FIA 
survey of Colorado was completed in 2002, with approximately 4,000 forested 
field plots measured. Therefore, the variance of this hypothetical periodic survey 
in 2002 would be about 1/10th that of the actual 2002 annual survey. To complete 
this scenario, visualize annual FIA surveys, each of which measures about 400 
forested field plots during a single year, between 2002 and 2007.  

 
Assume that the statewide total number of lodgepole pine trees remains at an 

approximate steady-state between 2002 and 2007, as described by the model in 
equations 27 and 28 and used with the Kalman filter for figure 13. Under this 
model, Figure 16 shows the expected standard deviation of the hypothetical 
periodic survey in 2002 as an estimate for each year between 2003 and 2007. 
Figure 16 shows that after 3 years the data quality, as measured by the standard 
deviation of random estimation errors (σ), of the hypothetical 2002 periodic 
survey for live trees is approximately the same as the Kalman filter estimate that 
uses the same model with the much smaller annual surveys from 2002 to 2005. In 
the absence of new periodic data, and given the stated assumptions, the precision 
of the Kalman filter estimates for live trees with annual panel data surpasses that 
of the hypothetical 2002 periodic survey in years 2006 and beyond. 
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.  

Figure 16: The standard deviation of annual estimates, each with a sample size of n/10, compared 
to that expected from a hypothetical periodic survey in 2002, with a sample size of n. A full periodic 
survey is more accurate (i.e., smaller σ) immediately after all field data are measured, 
hypothetically in 2002. However, unobserved changes in the population can quickly accumulate 
after the periodic survey is completed. After 1 to 3 years, the estimated precision of the annual 
estimates, which are combined with the Kalman filter, equals or surpasses that which would be 
expected from the corresponding periodic FIA survey, which has 10-times the sample size of a 
single annual panel. The temporal propagation of error in the design-based periodic survey 
estimates assumes the same model used for the corresponding annual estimates with the Kalman 
filter with annual panel data. The model for live lodgepole pine trees assumes a steady-state (figure 
13, equations 27 and 28). The models for lodgepole pine tree mortality and damage assumes an 
exponential increase (figure 14 and figure 15 equations 25 and 26, figure 5). Only the first 5 years 
after the hypothetical periodic survey are illustrated here. Thereafter, the precision of a periodic 
survey further deteriorates relative to an annual FIA survey. Likewise, the value of estimates from 
the periodic survey declines, at least until the next periodic survey. Historically, periodic surveys 
were conducted once every 10 to 20 years. 

 
 
As another example, assume that statewide lodgepole pine mortality from 

mountain pine beetles increases exponentially 50 percent per year between 2002 
and 2007. This model is expressed in equations 25 and 26, which is the same 
model used with the Kalman filter for figure 14C. Assuming this model is 
approximately true, Figure 16 shows the expected standard deviation of the 
hypothetical 2002 periodic survey as an estimate of tree mortality for years 2003 
through 2007. An example of this same expectation is shown in more detail in 
figure 5. Almost immediately, the data quality from the annual FIA panels and the 
Kalman filter exceeds that of the hypothetical periodic survey in 2002, at least 
under the very dynamic circumstances caused by the mountain pine beetle 
epidemic in Colorado.   

 
Assuming the same exponential rate of increase in insect damage to live trees, 

the annual FIA panels with the Kalman filter estimator produces more precise 
estimates than the hypothetical 2002 periodic survey after only 3 years (figure 
16).  This hypothetical example demonstrates the potential advantage of the 
annual FIA design, when coupled with appropriate time-series estimators, for 
monitoring important changes in a broadly distributed forest population. 
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Conclusions 
 

The daunting migration by FIA from periodic to annual surveys has improved 
the timeliness of FIA forest inventory statistics. These have very been useful in 
strategic analyses of the current state of forests at the national, state and multi-
county scales. These results are routinely produced with simple and familiar 
statistical estimators, namely, the Moving Average or the closely related 
Temporally Indifferent method. However, a successful monitoring program 
requires more than production of updated inventory reports (Moffat and others 
2008). The Kalman filter not only can improve annual inventory updates when the 
forest population is undergoing rapid change, the Kalman filter can also improve 
the ability to monitor, quantify and interpret broad changes in the nation’s forests. 
This is a high priority the FIA strategic plan (U.S. Forest Service 2007a). 
Hopefully, the descriptions and examples in our paper reveal the benefits and 
intuitive simplicity of Kalman filter. 

 
The Kalman filter offers other advantages over the Moving Average and 

Temporally Indifferent methods. The model-based Kalman filter estimator can be 
more accurate for populations that are rapidly changing, especially if residuals are 
faithfully monitored to reveal model failures. In populations that are static or 
change very slowly, it appears that both the Moving Average and Kalman filter 
estimators yield very similar estimates of current forest inventories.  

 
A properly implemented Kalman filter, which includes analyses of residuals, 

combines the statistical efficiency of a model-based estimator with the reliability 
of a design-based estimator. Therefore, the Kalman filter is less vulnerable to 
temporal “lag bias” (Patterson and Reams 2005) when population dynamics are in 
a relatively rapid state of flux. This is precisely the situation in which accurate 
monitoring is most important. This also means that the Kalman filter can be less 
risky than other model-based estimators when there is a chance that the model is 
inaccurate. 

 
Unlike the Moving Average and Temporally Indifferent methods, alternative 

implementations of the Kalman filter can incorporate predictions from alternative 
deterministic models, which, in turn, are the manifestations of alternative sets of 
hypotheses. The Akaike information criterion (AIC), which quantifies the 
agreement between Kalman filter estimates and purely design-based FIA panel 
estimates, might be used to rank the fit of alternative models to FIA panel data. 
Therefore, the analyst can quantitatively evaluate alternative a priori hypotheses 
that are intended to explain temporal trends in forest populations. For example, 
does a model that includes the consequences of climate change better fit the 
annual FIA design-based panel estimates than a model that assumes no such 
affects? 

 
The Kalman filter can incorporate deterministic models that consider the 

population demographics of growth, mortality, regeneration, stand succession, 
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and changes in land use. The Kalman filter can assimilate time-series of diverse 
remotely sensed data, without the burdensome constraints of post-stratification 
(Czaplewski 2001). These capabilities can improve precision of inventory and 
monitoring estimates relative to the Moving Average and Temporally Indifferent 
methods. 

 
The analyst is initially interested in 3 basic questions: Is there an observable trend in 

population parameters over time? Does the trend make sense? Is the trend significant 
relative to the uncertainty in the population estimates? The Kalman filter, much like the 
Moving Average and Temporally Indifferent methods, can address the first 
question, at least through the qualitative judgment of the analyst and the temporal 
series of estimates (see figures 7 through 13).  

 
The time series of estimates from the Moving Average or Temporally 

Indifferent methods, in concert with the analyst’s professional judgment, can 
address the second question: Does the trend make sense? The Kalman filter is capable 
of the same. In addition, the Kalman filter, which can objectively rank alternative 
deterministic models, can progress beyond qualitative judgment, and provide 
quantitative evidence to answer the second question.  

 
Quantitative evidence is needed to answer the third question: Is the trend 

significant relative to the uncertainty in the population estimates? The Kalman filter can 
include a static model in which the population is assumed to be at a steady state, where 
there the net change over time is zero. The relative fit of this static model compared to 
alternative dynamic models can be used to make inferences about the third question. The 
Moving Average and Temporally Indifferent methods do not provide comparable 
information. Therefore, the Kalman filter improves upon the Moving Average and 
Temporally Indifferent methods when analyzing temporal trends with FIA annual 
panel data. 

 
In principle, the Kalman filter offers the opportunity to improve FIA 

monitoring and analyses. However, this opportunity has not been rigorously 
tested. Although the fundamental concepts in the Kalman filter are intuitively 
simple, implementation of the Kalman filter is more complex than current 
methods used in FIA information management systems. Complexity inescapably 
incurs risk.  

 
One of the Guiding Principles of the FIA strategic plan (U.S. Forest Service 

2007a) is to “take the lead in inventorying and monitoring changes in the nation’s 

forests, forest resources, and forested ecosystems.” This guidance suggests that 
additional statistical research by FIA should be directed towards time-series 
methods that monitor changes in the nation’s forests using annual FIA data. The 
Kalman filter is one such method. 
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Spatial-Temporal Models for Improved County-Level 
Annual Estimates 

 
Francis A. Roesch1 

 

 
Abstract: The consumers of data derived from extensive forest inventories often seek annual estimates at 

a finer spatial scale than that which the inventory was designed to provide. This paper discusses a few 

model-based and model-assisted estimators to consider for county level attributes that can be applied 

when the sample would otherwise be inadequate for producing low-variance estimates in the smaller 

counties. I present and demonstrate simple spatial and/or temporal estimators that draw strength from 

neighboring counties and/or years in order to increase confidence in the county level annual estimates.  

The spatial estimators are restricted to those that do not require knowledge of exact plot locations in 

order to enable their use with privacy protected, publicly available data.  A series of simulations is used 

to compare and contrast the performance of these estimators relative to position in the time series of 

interest under various variance prescriptions. Although none of the estimators is shown to be superior in 

terms of minimum mean squared error (MSE) overall, a few general conclusions are drawn.  The first is 

that estimators that draw strength through consecutive measurements of the same set of field plots show a 

significant reduction in MSE under a wider variety of circumstances than those that draw strength from 

plots in neighboring counties. The second conclusion is that of the estimators that rely on a temporal 

model, a simple, centralized weight-adjusted moving average (with weights specific to time-series 

position) often was the most robust. 

 

Keywords: Small-area estimation, weighted moving average, mixed estimation, forest inventory. 

 

 

Introduction 

 

The consumers of publicly available data from extensive forest inventories, such as the one 

conducted by the USDA Forest Service’s Forest Inventory and Analysis (FIA) program, often 

express a desire for annual estimates at a finer spatial scale than that which the inventory was 

designed to provide.  For example, many users want estimates at the county level even though 

the sample is inadequate for producing low-variance sample-based estimates of many variables 

in the smaller counties. The effort can be complicated when the relative sample plot locations are 

masked in order to protect landowner privacy, such as they have been with FIA data.  FIA 

developed a “fuzzing and swapping” procedure to prevent disclosure of any information that 

would link individual landowners to specific inventory plot information.  During “fuzzing,” the 

reported geographic locations of the plots are randomly perturbed by up to 805 m.  (Lister et al., 

2005).  During “swapping,” plot data are exchanged by location between plots of similar 

characteristics.  These fuzzed-and-swapped locations are then published in the Forest Inventory 

and Analysis Database (FIADB).  Because FIA cannot release the exact “swapping” rules, the 

procedure effectively reduces the reliability of the spatial locations of the plots to a county scale.  

I present and demonstrate simple spatial and/or temporal estimators that draw strength through 

                                                 
1
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Using Landsat Imagery and FIA Data to 
Examine Wood Supply Uncertainty 

 
Curtis A. Collins1 and Ruth C. Seawell2 

 
 
Abstract: As members of the forest products industry continue to reduce their 

landholdings, monitoring reliable future timber supplies becomes an increasingly 
important issue.  This issue requires both spatial and forest inventory information to meet 
the strategic planning needs of these entities.  Increased depth in the archival span of 
imagery available from the Landsat program in conjunction with timber estimates from 
FIA data have been used by Larson and McGowin, Inc. to fill this information gap in the 
southern U.S. by further refining timber supply projections. 

 
In generating this information for various clients, Landsat MSS and TM (including 

ETM+) data have been used to create forest age and type maps with temporal origins as 
early as 1972 to as recent as 2007.  By using forest type and age layers, spatial products 
can be created that have matching attributes to those presented by FIA.  In doing so, FIA 
volumes can be adjusted to generate expected total volumes for regions by using the 
remotely sensed/image processed type and age acreages.  Once volumes by type and age 
classes are established, the SubRegional Timber Supply (SRTS) model can be use to 
analyze supply/demand relationships between multiple products, endogenous land use, 
varying growth and yield components and regional and local demand estimates. 

 
Results from a sampling of these projects will be presented in such a way as to share 

image processed accuracies and overall project results.  Special attention will be given to 
the nature of the results and how our clients have found them helpful.  Examples will also 
be presented showing how the integration of GIS operations can be utilized along with 
the spatial data product to glean further results that are more widely applicable. 
 
Keywords: Landsat, change detection, SRTS, supply, remote sensing. 
 
 

Introduction 
 
With the large-scale shift of private forest ownership in the U.S. ongoing, 

many changes are occurring as public and private entities adapt to answer 
evolving problems.  One obvious problem with the ownership shift is noted in the 
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reduction of integrated land holding entities within organizations that consume 
wood and timber.  With no more company lands, procurement personal are 
quickly adapting to rely heavily on outside sources of material that, in some cases, 
were marginalized in the past.  One developing tool of importance to many of 
these procurement personnel involves wood basin analysis where regional mill 
consumption basin(s) are identified and analyzed to yield information for strategic 
planning purposes. 

 
Use of these techniques and resulting information is not new.  While many 

mills are having reliable company land bases removed from the equation, some 
have been successfully operating without these holdings for some time.  In doing 
so, these firms relied on forest analysts to monitor supply/demand trends at the 
multiple scales, not the least of which being the basin from which a mill of 
interest relied upon for raw material.  Uses of FIA data and reports were 
paramount in performing these analyses, but many users, knowing the limitations 
of FIA, desired additional information and at finer scales, temporally and 
spatially, than FIA intended. 

 
One way where FIA data accentuation was explored and achieved involved the 

most successful space-borne remotes sensing program, the Landsat program, 
which gives the public access to data from 1972 to the present.  Using this large 
bank of data, FIA results could be updated in longer lag periods between field 
measurement periods.  This data could also be used to accentuate or even replace 
age class estimates as FIA is a sampling approach that, in smaller areas in 
particular, may not yield as accurate results as Landsat-based products.  Similarly, 
Landsat data can be used to map broad forest type classes which, again, could be 
used to crudely update or replace FIA forest type area estimates. 

 
With FIA and Landsat estimates in hand, various approaches can be taken to 

yield viable supply/demand/consumption information that can be used to analyze 
regional timber supply situations as well as inform existing timber supply models.  
The widely adopted SubRegional Timber Supply (SRTS) model is one such 
model that was developed to examine southern timber markets (Abt et al., 2000), 
and has been applied both in the southern and northern U.S. to examine timber 
supply and prices. Over the last five years, SRTS’ capability has expanded to 
include the analysis of multiple products, as well as endogenous land use and the 
integration of growth and yield components and regional/local demand estimates. 
The model provides ending inventories, annual removals, and price indices for the 
analysis of future timber supply scenarios.  

Methodology 
 

Landsat Data and Analyses 
 
With the launch of Landsat 1 on July 23, 1972, the U.S. embarked on a 

program that has and continues to yield continuous and comprehensive earth 
surface science information for various mapping projects.  The data yielded from 
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this ongoing program includes Multispectral Scanner System (MSS) data with 
~60m resolution data in visible green, visible red, near-infrared (NIR), and mid-
infrared (MIR) bands; Thematic Mapper (TM) data with ~30m resolution data in 
visible blue, visible green, visible red, near-infrared (NIR), and two mid-infrared 
(MIR) bands; and Enhanced Thematic Mapper+ (ETM+) data with the same 
capabilities as TM data plus a ~15m panchromatic layer covering 0.52-0.9 !m.  
For the purpose of this paper, these data were used in two analyses: forest age 
mapping and forest type mapping. 

 
The forest age mapping approach used by Larson and McGowin currently 

utilizes a post-classification comparison approach (similar to Collins et al., 2005).  
In this methodology, a current forest/non-forest map, usually derived from 
unsupervised classification techniques and interpretation, is manipulated in 
descending years through a temporal dataset of derived “cut” layers until each 
forested pixel is tagged with a year of origin, unless this origin is beyond the 
scope of Landsat (earlier than 1972).  Similarly, a harvest layer was built by 
ascending, again using cut layers, from a forest/non-forest layer that was ~10 
years old, using the forest class, to the current forest/non-forest layer, using the 
non-forest class.   

 
The age determination process is designed to detect clearcut areas, not partial 

harvest or thinning operations.  However, if these partial harvests or thins are 
heavy enough they may trigger an origin set inappropriately.  With regards to 
temporal resolution, datasets are targeted to be acquired from every 1 to 5 years 
usually throughout the span of Landsat data (usually 1972-1973, depending on 
data quality) depending on site and growing conditions.  It is also worth noting 
that while leaf-off data, data collected after deciduous leaf senescence has 
occurred, can be useful in this process; leaf-on data is targeted as it typically 
better discriminates forest from non-forest.  The creation of cut layers from 
individual Landsat images from the temporal dataset is usually done through 
independent unsupervised classification or applying image thresholds using a 
variety of image transforms incorporating individual Landsat bands and/or 
Normalized Difference Moisture Index (NDMI) and/or Normalized Difference 
Vegetation Index (NDVI). 

 
The forest type mapping approach uses the same current forest/non-forest layer 

to mask out non-forest pixels.  In the remaining forested areas, a current Landsat 
leaf-off dataset is acquired.  This dataset is next either passed through an 
unsupervised classification and interpretation routine or interpreted for and 
classes via NDVI thresholds in order to derive deciduous (usually hardwood), 
evergreen (usually softwood), and mixed deciduous-evergreen classes. 

 
Timber Supply Analyses with SRTS 

 
Traditionally, USFS FIA periodic inventories have been the data source for the 

SRTS model.  However, because of the increasing age between FIA surveys and 
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dramatic shifts in harvest patterns, remote sensing-based classification and change 
detection techniques for forest timber types have been used as a means to update 
these estimates as well as to refine FIA area assessments.  Typically, the area 
estimates by broad timber types and five-year age classes are used in conjunction 
with FIA per-acre estimates to derive timber inventories.  

 
While the inventories in the study basins may not necessarily be too old for 

timber supply assessment, there could exist some conditions that merit an update 
using satellite imagery.  Dramatic shifts in harvest patterns since the FIA survey 
or damage activities like hurricanes, ice storms, insect infestation, etc., can be 
detected in a satellite update.  Also, permanent losses in timberland due to 
urbanization can be measured and trends observed.  Finally, the satellite image 
area assessment is oftentimes a more accurate estimate of the area than the FIA 
estimates. 

 
In the previous versions of the SRTS model, harvests were held constant, 

sometimes creating unrealistic price projections.  In this “harvest” mode the 
annual harvest levels input by the user are assumed constant and harvest does not 
react to higher or lower prices.  Because of that the model can only adjust the 
price needed to achieve the desired harvest given the inventory levels thus 
creating what appear at times unrealistic price trends. 

 
The latest version, MP SRTS, now allows users to specify a demand curve to 

find the equilibrium solution between supply and price.  Demand is modeled at 
the aggregate level; however, through the inventory shifts by product, region and 
owner, a solution for equilibrium price simultaneously determines harvest shifts 
across regions and owners.  Demand can either be held constant as in a harvest 
run or increased through time.  The goal program then harvests across 
management types and age classes to get the projected target mix, while 
harvesting consistently with historical harvests for the region.  The difference is 
that harvest and price react to the change in demand. The effect of an increasing 
demand on harvest and price depends on the supply, i.e. inventory.  Other things 
being equal, an increase in demand will raise price and harvest; but harvest will 
not increase proportionately since the price increase dampens some of the harvest. 

 
Results and Discussion 

 
Landsat Data and Analyses 

 
One set of resulting Landsat classifications were compared to client provided 

stand data in order to get a notion, albeit not definitive, with regard to accuracy 
for a specific project.  The data and client were situated in the southeastern U.S.  
The client provided stand data came in the form of a polygon vector layer with 
each delineated stand attributed with management species composition (usually a 
target management composition, not necessary what was present), age (actually 
year of establishment), and size (acres).  The data was last updated in June 2006 
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and covered approximately 400,000 acres of land being actively managed for 
loblolly pine (Pinus taeda).  After receiving the data, it was cleaned to better 
match existing GIS stand types, mainly from the management composition field, 
with the Landsat derived classifications.   

 
In cleaning the data, the management classes were re-classed to better match 

the deciduous/hardwood, evergreen/pine, and mixed forest classes as well as open 
(there were some fields and wildlife foodplots) and harvest non-forest classes.  In 
addition to these classes, this cleanup also used observed histogram data to note 
that rather consistent forest type given age distributions were heavily, and 
inappropriately, favoring the deciduous type in the youngest age classes (Figure 
1).  For this reason, young forested areas were stripped of a class designation and 
assigned as a “regeneration” class.  These data were next overlaid on overlapping 
forest age and type layers, created with current data from 2007, with zonal 
attributes being calculated so as to indicate the majority type and age of each 
stand with respect to the two classified products.  The observed age attributed to 
the stands and the zonal extracted ages were then rescaled to 5 year age classes to 
better match an FIA matching scenario.   
 
Figure 1. The distribution of proportion of forest type within six younger age classes shown in 
forest type bundles. 

 

 
 

With types and ages scaled to similar classes, the acreages in each stand were 
assigned to the appropriate age and type error matrix cells as indicated in Tables 1 
and 2, respectively.  The resulting two error matrices illustrate results from a 
process that, using these test data, performs well in the age determination aspect 
and below expected in the forest type classification aspect. 

 
 

$!
!

USDA Forest Service Proceedings – RMRS-P-56 35.



Table 1: Age comparison (error matrix) by stand polygons (acres), making sure only to compare 
ages in stands noted as forested stand layer 

 
  Classified Landsat Data  

  0-5  6-10 11-15 16-20 21-25 26-30 31-35 > 35    

R
ef

er
en

ce
 D

at
a 

0-5  56,707 9,248 53.9 52.7 449.1 274.3 251.5 709 67,744 

6-10 16,708 53,933 1,744 8.4 9.6 77.8 1146.1 2,219 75,847 

11-15 8.4 14,544 20,608 262.3 8.4 33.5 6 2,859 38,329 

16-20 316.2 673.1 8,532 16,768 796.4 28.7 34.7 4,278 31,425 

21-25 2,238 1,814 16.8 3,353 9,513 162.9 58.7 1,628 18,786 

26-30 1,943 1,569 2.4 25.1 725.7 2,529 326.9 2,562 9,681 

31-35 789.2 959.3 13.2 13.2 2.4 232.3 1,266 942.5 4,219 

> 35  6,224 7,921 1,720 1,402 1,965 3,965 2,905 106,807 132,910 

  84,933 90,661 32,690 21,886 13,471 7,304 5,996 122,002 378,941

           
         Percent psKHAT 

 Overall % 71% 63% 
 
Table 2: Type comparison (error matrix) by stand polygons (acres) 

 
  Classified Landsat Data   

   Harvest Regen  Open Pine Mixed Hdwd   

R
ef

er
en

ce
 D

at
a 

Harvest 3,853 5,702 5,497 4,465 4,970 13,344 37,830 

Regen  
31,432 78,338 10,158 1,529 713.8 1,635 123,806 

Open 
35.9 704.2 3,917 257.5 470.7 1039.5 6,424 

Pine 480.2 18,431 6,149 75,162 5,739 2,638 108,599 

Mixed 445.5 2,047 268.3 4,361 23,674 396.4 31,193 

Hdwd 358.1 5,927 1,309 7,020 9,078 66,713 90,406 

  36,606 111,150 27,298 92,793 44,646 85,767 398,258 

         

       Percent psKHAT  

     Overall % 63% 53% 

 
Note that the age results in Table 1 show a fairly good overall agreement at 

71% with a pseudo-Kappa-hat of 63% (this is a pseudo measure as penalizing 
chance agreement, which is the goal of the Kappa statistic, assumes certain 
sample allocation practices that were not employed in this loblolly management-
focused forestland ownership test data).  In further analyzing the data, it was 
noted that the age classification process seemed to have a bias so that regenerated 
forests were being assigned an age of zero even after they had already been 
regenerated (Figure 2).  This was first noted in the elevated off diagonal cells in 
the Table 1 error matrix (highlighted in gray) where large area amounts were 
noted in younger classified classes than observed. 

 
 

%!
!

USDA Forest Service Proceedings – RMRS-P-56 35.



Figure 2. The distribution areas, in acres, of age bias (observed minus classified), in one year age 
bias classes, for the forested stands in the polygon vector test dataset. 
 

 
 

With regard to the type classification (Table 2), the results were below 
expected at 63% overall agreement with a pseudo-Kappa-hat of 53%.  These poor 
results, however, can be refined if the regeneration and harvest classes, which are 
very close in meaning, are merged (new diagonal matrix value derived from gray 
shaded area), yielding a refined overall agreement proportion of 73%.  Further 
refinement involving only looking at the forested stands (the error matrix region 
with individual cells bordered) reveals an overall agreement of 72%.  Aside from 
these results, it is worth echoing the previous statement involving the nature of the 
stand data itself.  This problematic nature is primarily focused on the management 
species attribute field, which again, is sometimes a management target as opposed 
to what is actually present, and the one year age difference between the stand data 
(last updated in June 2006) and the classification (based off of leaf-on Landsat 
data from 2007).  Also, this data, again, is biased toward actively managed 
loblolly pine plantations, thus, it is not representative of the wood basin as a 
whole. 
 
Timber Supply Analyses with SRTS 

 
Because most regional southern timber supply analyses focus significantly on 

pine plantation availability, the forest type accuracy bias toward pine in the 
satellite classification processes is not as restrictive as it might be if supply was 
equally influenced by other forest types.  Likewise timely and improved updates 
of regeneration and harvest classes can provide more critical information than 
improved allocation of five year age classes through time in the SRTS model.  In 
other words it is more important to know how many acres are cut and planted in a 
given period than the exact age class distribution of them through time when 
projecting future supply.  

&!
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However, because of the difficultly in distinguishing between “regenerating” 

or “harvested” classes these two forest types were combined in their age class 
group and the average forest type ratios between pine, hardwood and mix for the 
age classes 5-15 were used to allocate their “type”.  In essence this assumes that 
the reforestation trends of the last fifteen years are still applicable. This may or 
may not be the case. This includes acres that were “changed” or “harvested” but 
that are not designated as timberland yet either.  Similarly, because of the age of 
the Landsat data, the oldest age class able to be determined by the satellite 
classification is 30-35.  Because the SRTS model utilizes the FIA inventory five 
year age classes up to 50, the FIA age class proportions are used to allocate the 
satellite acres accordingly for the 35 and older group. 

 
The SRTS model uses FIA’s five broad management types as well as two 

ownership groupings: corporate and private.  Because the satellite classification 
can only distinguish “forest cover types”, assumptions must be made to allocate 
these three forest cover types (pine, mix and hardwood) into the five FIA/SRTS 
management types (pine plantation, natural pine, mix/hardwood, upland 
hardwood, and bottomland hardwood).  In the above client dataset the satellite 
classification estimated 3% more overall timberland acres than was provided in 
the SRTS inventory data files. The allocation of the satellite acres after 
adjustment for the age class 0-5 was 49% pine, 11% mix, and 39% hardwood. 
This compares to a SRTS allocation of 44% pine, 11% mix and 44% hardwood. 
The SRTS percentages between planted and natural pine and upland and 
bottomland hardwood were used to further allocate the satellite pine and 
hardwood acres within their age class groupings (Table 3). 
 
Table 3:  A comparison of the original FIA/SRTS acreage allocation to adjusted (using FIA/SRTS 
ratios/proportions) classified satellite acreages.  

       
 FIA/SRTS Type and Age Area Estimates
   

Age 
Class 

Planted 
Pine 

Natural
Pine Mix 

Upland 
Hardwood 

Bottom 
Hardwood 

Grand 
Total 

0-5 %!'(%)! (*'&*%! #%'++* !()'%))! "*'!!*! %"('"%#!

6-10 !!)'$*$! *+'%+!! &)'&+) +&#'"+&! !!'")+! $&*'$"$!

11-15 !))'++&! +!*'*"&! %%'$(! +"$'"%*! ")'+(#! $%!'+(*!

16-20 !$+'"+#! **'$++! $)'%#& (!'*%)! +#'%**! #**'+"!!

21-25 !**'&*$! +)('""#! %)'*#* *#'$%%! +&'+!"! $()'&%(!

26-30 +(+'%"%! +""'##&! $+'#!% (+'("+! "#'(#*! #("'+(*!

31-35 &#'+)$! *)'&%!! %&')$" (*'#*(! +('*&%! "#)'"*#!

36-40 !%'"%%! %%'$((! $#'$"( +!*'$&!! $+'#+%! "!('#()!

41-45 +&')$$! +)"'+(&! %)')!# ++('&$*! !%'+"(! "!$'+%"!

46-50 )! &$'$)!! #!'+%* +&&'%&&! +#'*+*! "+)'!%%!

>50 )! !+*'"!(! *!'&!" (#!'*)#! !!"'*$)! +'"&('*)$!

Total +'#$"'%)$! +'!)('))#! %%!'*"* !'!)(')$$! #*"'&("! %')!%'"(%!
% Total 24% 20% 11% 37% 8%  

       

(!
!
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Adjusted Satellite Classified Type and Age Area Estimates  

         
Age 

Class 
Planted 

Pine 
Natural

Pine Mix 
Upland 

Hardwood 
Bottom 

Hardwood 
Grand 
Total 

0-5 +*!'%(#! *#'&#$ #%')($ ++)'%)$ +$'#%!! #$*'$(+
6-10 "%)'%!*! +#*'&%(! ("'!(% +*('#"$! !$'"(%! (+&'$)"!

11-15 !$)'&)"! +%!'&(!! %)'&)$ +"*'++*! "+')!)! %##'"!*!
16-20 !%&'(#&! +)%')$&! %$'(%% +#('*&(! !%'"*%! %+$'+##!
21-25 ")+'*%)! +)*'++%! "%'&%$ (!'#"&! +#'*!&! $#$'!)%!
26-30 (*'##+! %$'&++! ##'!** +)&'"+&! #$'&)"! "$!'#&!!
31-35 #!'*%$! $!'%!!! "+'(!* ++%'&)*! !#'&#%! !%('(&+!
36-40 #"'#%!! +)*'&%#! %$'%&& ++"'%%)! #$'+)!! "&&'%%%!
41-45 !('++#! +&)')*$! &!'!(" +)#'+&$! !!'*!(! "*&'$*#!
46-50 )! +!#'#$*! $)'&(+ +$$'($&! +"')(%! "##'+("!
>50 )! "%+'$##! +++'%%+ &"*'"*)! +*%'##(! +'#)*')#!!

Total +'$&&'()$! +'$)%'%%! %%*'!"% !')+%'%(+ #%+'!)$! %'!"+'$(*
% Total 25% 24% 11% 32% 7%  

 
Using the FIA per acre averages with the new satellite acres a revised 

inventory can then be used in the SRTS model runs. Likewise additional spatial 
constraints such as SMZ or slope restrictions, urban growth projections, 
transportation limitations can be derived to be used in conjunction with 
availability or sensitivity analysis.  Figure 3 compares the growth/removal ratios 
for such a sensitivity analysis looking at harvest increase, land loss assumptions 
and increased federal land supply. 
 
Figure 3: Growth and removal rates for a test wood basin of interest using various scenarios for 
sensitivity analysis purposes. 
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Conclusions 
 
With regard to overall project performance there is still, as always, room for 

improvement.  When the practices of application and science meet, compromises 
are usually made, as was the case here.  Had more time been available, the results 
could have been further refined and, as one might expect, the accuracy of the 
products would have been improved.  With this said, from a remote sensing 
aspect, lessons from this process include thrusts to improve efficiency; reduce 
costs (which is tied to efficiency of course); address bias in classified age; 
examine the classification of forest types at varying ages, removing the trend to 
over-classify the deciduous type in younger classes; and generally work to better 
align classified products with FIA data.  These improved classification techniques 
in conjunction with improved application of per acre inventory averages and 
growth rates should help to provide inventory estimates that are more reflective of 
current market conditions for SRTS model runs. Likewise, because spatial 
analysis is available using the classification and its classed acreage distribution, 
sensitivity analysis can also be more reflective of future market scenarios 
improving strategic forest planning opportunities. 
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Mapping Upland Hardwood  
Site Quality and Productivity  

with GIS and FIA in the  
Blue Ridge of North Carolina 
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Abstract: The forested ecosystems of the southern Appalachians are some of the most 
diverse in North America due to the variability in climate, soils, and geologic parent 
material coupled with the complex topography found throughout the region. These same 
characteristics cause stands of upland hardwoods to be extremely variable with regard to 
site quality and productivity.  Site index has been the tool most commonly used to 
measure existing site quality and productivity, but measured site index may not 
accurately quantify potential site quality and productivity, largely due to ubiquitous 
disturbance and variable land-use history.  Because of this, environmental factors may 
hold merit in predicting the quality of a forested site in the southern Appalachians.  To 
assess the accuracy of existing methods, three indices developed within the region were 
used to predict the site quality of the upland hardwood forests throughout a six-county 
study area in the Blue Ridge physiographic province of western North Carolina.  We 
hypothesized that predictions of site quality generated by the indices would correlate with 
similar estimates from Forest Inventory and Analysis (FIA) plots.  We also predicted that 
the indices that included multiple types of information would produce higher correlations 
with FIA estimates.  Finally, we felt we would be able to reasonably predict site index, 
but not basal area or volume increment.  The environment of the study area was derived 
from a layered GIS that depicted variables related to water availability.  FIA data and 
actual plot locations were compared to the predictions.  Results indicated a moderate 
correlation between one index and site quality.  The index with multiple layers of 
information did not produce a higher correlation, and there was no relationship among 
any of the indices to basal area or volume increment.  Future research will include finer-
scaled estimates of soil information and estimates of water inputs as well as usage. 
 
Keywords:  Upland hardwood forests, site quality, site productivity, GIS, Blue Ridge. 
 
 
Introduction 
 

Quantifying site quality and upland hardwood productivity is a major 
challenge for accurate growth and yield modeling in the upland hardwood forests 
of the southern Appalachians.  These ecosystems are some of the most complex 
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and diverse in North America due to the many combinations of topography, 

geology, climate, and landform found throughout the region.  These attributes 

lead to a wide range of site quality and productive capacity from the stand to the 

region, driven largely by topographic controls on water availability.  Site index 

(Frothingham 1917) has been the standard for measuring site quality and 

productivity, but accuracy is affected by disturbance, variable land-use history, 

the presence of suitable trees to measure, and measurement error.   

 

Traditionally, site classification has addressed the landscape by analyzing the 

vegetation, measuring site index, and inferring relationships of water and nutrient 

availability based on the current vegetation.  However, due to problems with site 

index accuracy, this methodology often does not capture the true site quality and 

consequently, estimates of stand growth and yield may be inaccurate.  A more 

precise approach would be to identify the primary environmental variables found 

to significantly influence the availability of water and nutrients in upland 

hardwood forests, determine how the variables influence the measured site 

quality, and then use these relationships to develop a model to predict the quality 

and productivity of a site.   

 

Site quality is assumed here to be a measure of potential productivity.  Site, in 

silviculture terms, can be expressed qualitatively through the local climate, soil, 

and vegetation present, and quantitatively through the local productivity, or 

potential wood production per unit land area per unit of time (Helms 1998; 

Johnson et al. 2002).  Site quality and productivity can be predicted with 

reasonable accuracy in small areas using measured site index, but the prediction is 

costly and requires specific vegetation to be present.  Field-measured site index is 

not feasible for use across the entire southern Appalachians.  However, previous 

research has shown that site quality can be interpreted through topographic, 

edaphic, geologic, and vegetative characteristics for discrete areas (Elliott et al. 

1997; Fralish 1994; McNab et al. 2004; Smalley 1984, 1986; Whittaker 1956; 

Williard et al. 2005).  More recently, advances in digital terrain modeling and 

mapping have allowed us to combine and analyze the landscape with higher 

accuracy and precision (Bolstad et al. 1998; Host et al. 1996; Iverson et al. 1997; 

Kelley et al. 2005; Simon et al. 2005).   

 

By increasing the accuracy of our site quality estimations, we may identify 

sites with the highest potential productivity, focus our management efforts onto 

these sites, and reduce the land base used for commercial wood production.  As 

our forests are becoming increasingly important, this work could improve the 

efficiency with which we utilize our forested resource.  In order to manage a 

forest for any reason, it is imperative to have an accurate inventory. 

 

The objective of this study was to determine if environment-based geospatial 

estimates of site quality and productivity within a six-county study area in the 

Blue Ridge of western North Carolina were correlated with estimates from the 

Forest Inventory Analysis (FIA) data from that area. We hypothesized that site 
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quality predictions generated from three recent indices based on topography and 

soils would be correlated with estimates taken by the USFS Forest Inventory 

Analysis plots.  A second hypothesis predicted that multiple layers of data 

(topography and soils) would produce a higher correlation with the validation 

data.  Finally, we felt we would be able to reasonably predict height-driven 

productivity estimates (site index), but not those derived from diameter (basal 

area and volume increment). 

 

Methods 
 
Study Area 
 

The six counties chosen for the study included Buncombe, Haywood, Jackson, 

Madison, Swain, and Yancey, and are located in the mountainous western area of 

North Carolina known as the Blue Ridge (Figure 1).  The terrain is heavily 

dissected, resulting in maximum elevations around 2000 meters (m).  The six 

counties cover approximately 780,000 hectares, or 34% of the Blue Ridge within 

North Carolina. 

 

 

 
Figure 1:  The six counties included in the study area located within the mountains of western 

North Carolina. 

 

The mean annual temperature is 8 to 16
o
C and ranges from 3.3

o
C in January to 

24
o
C in July (USDA NRCS 2006).  Precipitation varies widely in the study area 

Asheville 
Coweeta 
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and is controlled for plant uptake by the topography.  For instance, Asheville, NC, 

located in the Asheville Basin, receives as little as 900mm of annual rainfall 

because it is in a rain shadow created by the surrounding mountains (Figure 1).  

On the other hand, Coweeta Hydrological Laboratory, less than 100 km from 

Asheville, can receive over 2000mm of annual precipitation, one of the highest 

rates in the eastern United States. A growing season of 135 to 235 days prevails 

(USDA NRCS 2006).  From the many combinations of topography and landform 

in the area, aspect significantly affects microclimate, which in turn influences the 

type and vigor of the vegetation communities.  South and west facing slopes are 

warmer and drier than those found on north and east aspects, as well as those that 

are shaded by neighboring landforms (USDA NRCS 2006).   

 

General Approach 
 

Several layers of geospatial maps, based on widely available spatial data, were 

generated.  Second, three existing indices were used to predict site quality as a 

function of the environment for specific locations where there was available FIA 

data.  Finally, the predictions were compared to FIA estimates of productivity. 

 

GIS 
 

An elevation mosaic for the study area was created from 10-meter (m) Digital 

Elevation Models (DEM’s) that were obtained from the USGS National Map 

Seamless Server.  Basic surface analyses, including aspect, slope percent and 

degree, curvature, and hillshade, were derived from the DEM.   

 

In order to get a measure of slope position (summit, backslope, footslope, etc.) 

we used the hydrological characteristics of the area.  We filled sinks in the DEM 

and derived flow direction and flow accumulation, in succession.  The flow 

accumulation grid was classified into classes of ! standard deviation, and a 

threshold was established to mark the beginning of the streams.  The result was 

then reclassified to create a mask that separated water (NoData) from land (1).  

The masked flow accumulation was then multiplied by the original flow direction 

grid, which created a masked flow direction.  This was done to allow the water 

flow to go to the stream edge and stop instead of traveling onto the stream outlet.  

In essence, we wanted slope position of the land and not the water.  Two flow 

length grids were calculated for downhill and uphill flow length using the masked 

flow direction.  The two length rasters (downhill and uphill) were then used in the 

formula: 

 

Downhill flow length / (Uphill flow length + Downhill flow length)   

 

This calculation allowed for an estimate of slope position as a percent of the 

slope, where 0% slope position represented the bottom of the slope at stream edge 

and 100% was at the ridge top.  
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Indices Used to Predict Site Quality 
 

Three indices were used to predict the site quality of the study area.  They were 

chosen because they represented site quality and productivity based on water 

availability, which has been cited as the most limiting factor to tree growth in the 

southern Appalachians (Smith 1994). 

 
Terrain Shape Index (McNab 1989):  The simplest algorithm for 

determining upland hardwood productivity, the TSI provided a measure of the 

concavity or convexity of the land that surrounded the plot center.  It is defined as 

the mean slope gradient of the plot boundary as viewed from the plot center 

(McNab 1989).  High values indicated maximum convexity (ridges, spur ridges, 

nose slopes), and minimum values indicated maximum concavity (creek beds, 

coves, bottoms). The original development of the model related the TSI to yellow-

poplar site index in the Blue Ridge.  The formula of the TSI is as follows: 

 

 TSI = mean elevation of the plot boundary / plot radius 

 

In ArcGIS, a grid of the TSI function was calculated in raster calculator as: 

 

 TSI = [DEM-focalmean (DEM, annulus, 3,4)]  / 35 

 

The focalmean is a neighborhood function, which allows a cell-to-cell comparison 

to determine the answer to the command.  The “3,4” portion specified that the plot 

boundary was to be determined between 30-40m from the plot center and would 

produce a radius of 35m.    
 

Forest Site Quality Index (FSQI) (Meiners et al. 1984):  Meiners and others 

(1984) examined the effect of topography on available water in the Ridge and 

Valley of southwestern Virginia and the result was the FSQI.  It combined slope 

position, slope percent, and aspect to determine topographic position as it affected 

water availability for forest growth.  Once the index number was determined it 

was then correlated to the upland oak site index.  This was the only index that 

categorized all variables and outputs into specific productivity classes.   

 

In ArcGIS, the aspect, slope percent, and slope position grids were reclassified 

to reflect the assigned FSQI score (Table 1).  Adding the three grids together in 

raster calculator produced the final index grid, which had a potential value range 

of 3 - 16.  A high index value indicated high site quality. 
 
Table 1: Values assigned to the input variables in the FSQI productivity model. 

FSQI Value Aspect % Slope Slope Position 

1 196-260 >=60 Shoulder 

2 166-195; 261-280 45 - 59 Backslope 
3 146-165; 281-340 30 - 44 Summit 
4 0-20; 341-360 15 - 29 Footslope 
5 81-145 0 - 14 Toe Terrace Floodplain 
6 21-80   
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Integrated Moisture Index (IMI) (Iverson et al. 1997):  The most complex 

index of the three, the IMI combined topographic and soils data to get an index of 

site quality.  It was developed in the Alleghany Plateau in Ohio, which should be 

considered when assigning weights to the input variables.  It is the only index that 

was originally created in a digital environment.  From a 10m DEM, we derived 

hillslope, curvature, and flow accumulation, and from a 1:250,000 STATSGO 

map, we derived whole-profile available soil water (cm).  The four variables were 

weighted and added in raster calculator to produce a final map of IMI.  The 

authors were able to correlate the index to upland oak site index, and high index 

numbers indicated high site quality. 

 
FIA Database 
 

Productivity estimates from the North Carolina FIA database were compared 

to predictions of site quality in the study area (Figure 2).  We obtained, for the 

entire state of North Carolina, the tree, plot, and condition tables for the years of 

1982 (Cycle 5), 1990 (Cycle 6), and 2002 (Cycle 7).  As part of a Privacy Policy 

Study Group Memorandum of Understanding, the Southern Research Station FIA 

unit provided the actual plot locations.   

 

 
Figure 2:  FIA plots used to test the accuracy of the site quality predictions generated by the 
TSI, FSQI, and the IMI.  

 

FIA productivity estimates used to test the accuracy of the predictions included 

site index and basal area increment from Cycle 7, and volume increment from a 
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six-year difference between Cycles 5 and 6.  A larger increment was preferred but 

could not be obtained due to a change in survey methodology between Cycles 6 

and 7 (from periodic to annual).  This resulted in an inability to match trees and 

plots between the two cycles.   

 

Some stratification of the database was done to ensure that the FIA plots were 

forested, mostly hardwood, and minimally disturbed (Table 2).  Note that Table 2 

reflects the number of usable FIA plots within the entire Blue Ridge portion of 

North Carolina; for the plot sample size that covered the six-county study area, 

please refer to Table 3.  According to the FIA database, stand age is subject to 

large error because it is difficult to quantify (Forest Inventory and Analysis 

Program 2008).  For this reason, age was not used as a rigid exclusion criterion.   
 
 
Table 2: FIA database screening criterion and details for forested plots in the Blue Ridge 
physiographic province for cycles 5, 6, 7, and Merged 5 & 6. 

Cycle 5 Criterion 
Initial 

Plot n 

Plot n after 

screening 

Difference (# Plots 

Deleted) 

Percent of initial 

plot n kept 

forested land in Bl. Ridge 1025 804 221   

water or balance plot 804 733 71   

>20% conifer BA in plot 733 546 187   

removed tree in plot 546 495 51 48.3 

        

Cycle 6 Criterion 
Initial 
Plot n 

Plot n after 
screening 

Difference (# Plots 
Deleted) 

Percent of initial 
plot n kept 

forested land in Bl. Ridge 1022 793 229   

water or balance plot 793 735 58   

>20% conifer BA in plot 735 553 182   

removed tree in plot 553 499 54 48.9 

        

Cycle 7 Criterion 
Initial 

Plot n 

Plot n after 

screening 

Difference (# Plots 

Deleted) 

Percent of initial 

plot n kept 

forested land in Bl. Ridge 930 767 163   

water or balance plot 767 767 0   

one condition only 767 507 260   

no lat/lon recorded 507 482 25   

>20% conifer BA in plot 482 370 112   

removed tree in plot 370 355 15   

stand treatment 355 347 8 37.3 

 
Merge 5 & 6 Total initial Plot n after % of Total initial   

Criterion merged plot n Screening
a
 merged plot n kept No. Counties 

Merge Cyc 5 & 6 575 376 65.391 23 
a
Screening criteria include unmatching plots and age difference of 6 years, after individual cycle    

  screening criteria were applied 

 

Statistics 
 

Pearson’s correlation coefficient (r) was calculated to determine the 

relationship between the FIA productivity estimates (site index, standing basal 

area, and volume increment) and the predicted site quality estimates which were 

generated by the TSI, FSQI, and IMI.   
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Results and Discussion 
 

Digital Imagery of the Productivity Models 
 

The first step of the analysis involved predicting site quality using the TSI, 

FSQI, and IMI.  Maps of predicted site quality were generated in ArcGIS using 

each of the indices (Figures 3, 4, and 5). 

 

 
Figure 3:  The digital representation of the TSI across the study area. 

 

The TSI model was best represented as a continuous black-to-white grid where 

high, or light, values indicated maximum convexity, or areas where water would 

not be stored.  Dark, or low values represented maximum concavity, or areas 

where water would be more accessible for tree uptake and growth.  This could 

translate to a continuous grid of site quality, where high TSI values served as a 

proxy for low site quality, and low TSI values for high site quality. 
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Figure 4:  The digital representation of the FSQI across the study area. 

 

The FSQI model was represented as a categorical grid to mirror the final index 

scores, with cooler colors (blue and green) reflecting higher site quality and 

warmer colors (red and orange) indicative of lower site quality.  This map 

represents the combination of aspect, slope percent and slope position as they 

affected water availability, and in turn, site quality. 

 

 
 

Figure 5:  The digital representation of the IMI across the study area. 
 

High 
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Forest Site Quality Index 

Integrated Moisture Index 

 
High 
 
 
 
Low 
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The IMI model was represented as a continuous color map to show the wide 

variation of site qualities across the study area.  The color scheme mirrored that of 

the FSQI, where high index scores (demonstrating to high site quality) were 

depicted in blue and low index scores (low site quality) were in red.  The final 

model grid was a weighted combination of flow accumulation, curvature, whole-

profile available water holding capacity, and hillshade.  We felt the IMI would 

have the most power in reflecting the true site quality of the study area; however, 

it predicted high site quality in the Asheville Basin, which has low site quality due 

to its landscape position within a rain shadow.  Questions emerged at this 

juncture, in particular, what else was affecting the site quality besides topographic 

and edaphic conditions? 

 

Correlation Analysis 
 

Of the three FIA estimates of productivity (site index, standing basal area, and 

volume increment), site index alone was somewhat predictable (Table 3).   This 

was expected since any measure of productivity that is diameter-based will be 

highly influenced by stand conditions, such as density, stage of succession, 

management practices, and disturbance history.  Comparative analysis through 

correlation revealed a moderate relationship between the FSQI and FIA site index 

(Figure 6).   
 

Table 3: Summary of Pearson’s correlation coefficients and sample sizes (in parentheses) for 
predicted versus actual site productivity. 

 Predictive Index 

FIA Productivity Estimate TSI FSQI IMI 

Site Index -0.25 (127) 0.38 (143) 0.09 (125) 

Standing Basal Area 0.05 (127) -0.01 (143)  0.18 (125) 

Volume Increment -0.03 (137) -0.04 (138) 0.05 (148) 

 

 
Figure 6: Scatter plot showing the correlation between FIA Site Index and the FSQI. 

 

r = 0.38 
n = 143 
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The correlation between FIA site index and the FSQI could have been higher 

had the FIA site index not been capped at 99 feet (Figure 6).  Discussions with 

FIA personnel indicated that at some point site index values had been allocated 

only two numeric digits, limiting site index to a maximum of 99 (pers. comm., 

Ray Sheffield, USFS SRS FIA).  Further, considering that we were working with 

a wide range of hardwood species as well as age classes, we felt that 0.38 was a 

reasonable correlation.   

 

The TSI did not correlate with any of the FIA estimates of productivity (Table 

3). We could not use this model to predict the actual site index for the study area 

because of the larger area, more extreme terrain values, and issues with 

replicating the index digitally, which produced more extreme values than what 

McNab originally derived in his model development.  Because of this, a decision 

was made to use the calculated index values versus the model calculated site 

index for all of the correlations to maintain consistency.   

 

Unexpectedly, the addition of soils information did not improve the predictive 

ability of the IMI (Table 3).  This was likely a result of the scale of the STATSGO 

data layer (1:250:000).  This particular index may have had more power if finer-

scale data, such as SSURGO, (scale of 1:25,000) could better reveal differences 

that may exist among the mapping units.  Additionally, it is necessary to account 

not only for the capacity of a soil for water storage, but for usage and inputs to 

that system as well, as was exemplified with high IMI value for the rain-

shadowed Asheville Basin.  We feel by incorporating all aspects of the water 

cycle (inputs of climate, usage in the form of evapotranspiration, and storage as 

defined by the environment and soils), we will come closer to predicting the true 

site quality of these forested ecosystems. 

 

Overcoming Issues to Progress Forward 
 

Productivity and site quality research shows promise using FIA data but there 

are some issues that need to be resolved in order for this database to be truly 

workable in such an environment.  Specifically, the inability to match trees 

between the periodic and annual surveys restricts the calculation of any 

reasonable growth increment to capture productivity.  The site index estimates as 

taken in the field are subject to considerable error, but they are the best we have 

for this study.  Changed plot numbers between the two survey methods also 

hinders analyses between cycles.  Finally, a consistent way to capture plot age 

would be helpful when dealing with stands of mixed-species and mixed-aged 

hardwoods.  This is a subjective task at best, but perhaps if a protocol were 

established by the FIA, our site quality predictions for upland hardwoods would 

be more robust.   
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Conclusions 
 

As hypothesized, site quality predictions generated by the FSQI were 

reasonably correlated with the FIA data.  Second, we were able to predict site 

index but not basal area or volume increment.   Finally, additional information 

about soils did not improve the predictive ability of the Integrated Moisture Index, 

mainly due to the coarse scale of the data. 

 

These findings indicate that more work is needed to predict site quality as a 

function of environment in the upland hardwood forests of the southern 

Appalachians.  Future efforts to capture this model include the incorporation of 

water usage and inputs in the form of evapotranspiration and climate, 

respectively.  Further, the use of more detailed and different types of soils 

information, such as SSURGO, may allow for better explanation of how water is 

stored in the forest, and how it affects site quality. This data may also refine the 

predictions by providing a measure of nutrient availability through the 

characteristics of soil organic matter content, texture, and depth.  Along these 

lines, geofertility classes based on parent material are being considered as well. 

 

Site quality and productivity work in the southern Appalachians has been 

continuous for at least the past one hundred years.  The significance of this work 

is even more important now as our forests are valued for multiple products, such 

as a timber, clean water, wildlife habitat, carbon stores, and recreation.  As our 

estimates of site quality increase, we will be able to more effectively partition the 

forest into efficient management units so all usage objectives may be met for the 

long term.  It is imperative we sustain our forests for future generations, and this 

work will directly affect that goal.   
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Tennessee with Satellite Imagery and Forest 

Inventory Data 
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Abstract: Ecoregions are large mapped areas of hypothesized ecological uniformity that 

are delineated subjectively based on multiple physical and biological components. 

Ecoregion maps are seldom evaluated because suitable data sets are often lacking. 

Landsat imagery is a readily available, low-cost source of archived data that can be used 

to calculate the normalized difference vegetation index (NDVI), which is associated with 

seasonal and annual vegetation conditions. This paper reports on a study designed to test 

the use of NDVI as an integrating variable for detecting differences among mapped 

ecoregions and determine if NDVI was associated with biological components within 

ecoregions using USDA Forest Service Forest Inventory and Analysis (FIA) field data. 

Published 1.1 km resolution georeferenced NDVI imagery was obtained at the beginning 

(June 22) and end (September 23) of the summer growing season for 11 years (1989-

1999). Public domain GIS software (WinDisp4) was used to determine NDVI values at 

5,399 georeferenced, forested plot locations in Kentucky and Tennessee that are 

periodically inventoried by FIA. Plots were grouped by ecoregions of various scale and 

tested for significant differences. Analysis of variance revealed significant (P<0.001) 

differences in mean NDVI between the two macro-scale ecoregions (divisions) and 

among most of the next lower ecological units (provinces). Regression analysis indicated 

that NDVI was associated (P<0.01) with season of sampling, elevation, and forest stand 

basal area of the inventory plots. At the ecoregion analysis scale, NDVI values 

consistently increased with higher elevation and forest basal area at the plot locations. 

We concluded that NDVI determined at FIA plot locations has potential for testing 

differences among ecoregions. Satellite imagery has often been used to determine 

classification accuracy within small mapped ecosystems; results from our study suggest 

that imagery may also be used to test for hypothesized overall differences between large 

mapped ecosystems. 

 

Keywords: AVHRR, ecoregionalization, NDVI, Palmer drought severity index, remote 
sensing. 
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Introduction 
 

Ecoregions are "any large portion of the Earth's surface over which the 
ecosystems have characteristics in common" (Bailey 1998). When mapped, they 
can be considered as hypotheses for testing and refinement (Rowe and Sheard 
1981). Ecoregionalization is  the process of knowledgeable integration of spatial 
environmental physical factors to form regions of hypothesized ecological 
uniqueness (Bailey 1998).Recently, this process has been used  by conservation 
and land-management agencies in the planning, analysis, and assessment of 
resource-related issues (Griffith and others 1999). Maps of ecoregions have been 
produced by state (Homoya and others 1985, Hargrave 1993) and federal (Keys 
and others 1995, Griffith and others 1997) agencies, and by conservation 
organizations (The Nature Conservancy 2001). Ecoregional delineations have 
been used for many purposes, including development of forest growth models 
(Huang 1999) and ecosystem-based management plans (Haynes and others 1998), 
selection of research areas (Snyder and others 1999), assessment of forest 
resources (Rudis 1999), and analysis of water quality (Griffith and others 1999). 
Although questions have been raised about the appropriateness of ecoregional 
delineations for these purposes (Wright and others 1998), little attention has been 
given to validation of them (Rowe and Sheard 1981, Bailey 1984, Omernik 1995, 
Smith and Carpenter 1996, Brown and others 1998). 

 
Validation of ecoregional delineations differs in several important ways from 

the process of testing conventional classifications such as soil maps or maps of 
vegetation cover types (Edwards and others 1998). First, the "real" taxonomic 
identities of ecological units on many maps are often unknown because these 
units are characterized subjectively by consensus during delineation and review. 
However, objective, quantitative methods have been investigated (Host and others 
1996, Hargrove and Hoffman 1999) and criticized as inefficient (Rowe and 
Sheard 1981). Second, ecoregional delineations are generalizations and syntheses 
of many environmental components (Bailey 1998) and are not delineated for a 
specific purpose that provides a convenient basis for testing. Finally, and perhaps 
most importantly, obtaining a suitable dataset for an appropriate response factor is 
difficult and costly because ecoregions extend over large areas ranging from 
hundreds of thousands to millions of km2 (Bailey 1984). Vegetation is typically 
used as a response variable for testing ecoregional delineations (Bailey 1984, 
Edwards and others 1998, Schreuder and others 1999), and water quality has been 
employed in this way (Bailey 1984). Remote sensing is an economical means of 
acquiring data bases and satisfies some of the identified problems of testing and 
validation of ecoregional delineations (Loveland and others1991, Brown and 
others 1998). 

 
Remote sensing has often been used to develop classifications of vegetation 

types, but has seldom been employed to test for differences between hypothesized 
ecosystems. Ramsey and others (1995) found that normalized difference 
vegetation index (NDVI) was associated significantly with five ecoregions in 
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Utah mapped by Omernik (1987), each of which occupied a distinct elevation 
zone and was dominated by a characteristic type and abundance of xerophytic 
vegetation. The NDVI, a ratio of the red and near-infrared spectral bands, is 
correlated with the amount of actively photosynthesizing biomass. Since being 
devised in the 1970s, the use of NDVI has largely dominated vegetation analysis 
by remote sensing (Loveland and others 1991), although a number of other 
indices have been evaluated (Gutman 1991). NDVI has been associated with a 
number of climatic and vegetation parameters, including drought (Singh and 
others 2003), wildland fire risk (Maselli and others 2003), land degradation 
(Wessels and others 2004), forage production (Hill and others 2004), leaf area 
index (Wang and others 2005), stand age and density (Sivanpillai and others 
2006), continental-scale vegetation type classification (Loveland and others 
1995), and net primary production (Handcock 2000, Meng and others 2007). It is 
reasonable to think that NDVI data obtained by remote sensing could be used to 
test for vegetational differences among ecoregions. 

 
Forest Inventory and Analysis (FIA) plot data constitutes another data base 

that has characteristics desirable for use in the validation of ecoregional 
delineations. Schroeder and others (1997) found that FIA plots provided suitable 
data for regional estimates of biomass production. Schreuder and others (1999) 
reported that inventory data provides a suitable basis for a system of forest 
monitoring. Plot and tree level data are readily available for inventory plots, field 
locations are known with reasonably acceptable accuracy, and the network covers 
a broad geographic area (Hansen and others 1992). 

 
Testing of ecoregional delineations by means of remote sensing has not been 

reported for the eastern U.S. The eastern U.S. has more precipitation, less 
topographic relief, and less contrast between forest cover types than the western 
landscape studied by Ramsey and others (1995). We think it probable that 
remotely sensed NDVI integrates the quantity, composition, and condition of 
vegetation in eastern forests in response to environmental relationships as it does 
in Utah. Effects of exposed soil on NDVI (Huete 1988) should be considerably 
less in the eastern U.S. because canopy cover is almost complete over forested 
sites. This paper reports on a study designed to test the use of NDVI as an 
integrating variable for detecting differences among mapped ecoregions in the 
relatively humid eastern U.S. We addressed two questions: (1) Does mean NDVI 
vary among ecoregions within a hierarchical framework of ecological units and 
(2) How does NDVI vary in relation to environmental and biological factors? We 
used software, data sets, and techniques that would be readily available to 
ecological researchers having an understanding of remote sensing but who lack 
extensive technical training in the discipline. 
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Materials and Methods 
 

NDVI Data 
 

Imagery, which originated from the AVHRR (advanced very high resolution 
radiometer) sensor on the NOAA-11 satellite, is retrieved daily and processed by 
the U.S. Geological Survey (Loveland and others1991, Burgan and Hartford 
1993). The 1.1 km resolution imagery was georeferenced and made into weekly 
or biweekly composite images of generally cloud-free data bases of several 
spectral wavelength bands (Holben 1986). Data from two of the five spectral 
channels are used for calculation of NDVI: 

 
 NDVI = (Channel 2 - Channel 1)/(Channel 2 + Channel 1) 
 

where Channel 1 is the red, visible portion of the electromagnetic spectrum (0.58 
to 0.68 microns) and Channel 2 is the infrared portion of the electromagnetic 
spectrum (0.725 to 1.10 microns). The underlying premise of the NDVI is that 
incoming radiation in the visible spectrum (0.58-0.68) is absorbed by chlorophyll 
in vegetation and that infrared wavelengths are reflected. Thus, NDVI is directly 
correlated with the quantity of green, photosynthesizing vegetation.  Values of 
NDVI, which can range from -1.0 to 1.0, were recoded from 0 to 255. Values < 
100 indicate the presence of clouds, snow, bare soil (i.e. fallow agricultural 
fields), and land surfaces naturally lacking vegetation. Values 100 indicate the 
presence of varying quantities of photosynthesizing vegetation biomass. Water 
bodies were coded as 255. We used 11 years (1989 - 1999) of stock, "off-the-
shelf," NDVI imagery that had been retrieved from the EROS data center by the 
USDA Forest Service and published as annual archives primarily for use in fire 
danger rating (Burgan and Chase 1997a-1997h, Burgan and Chase 1998, Burgan 
and others 1999, USDA Forest Service 2000). The georeferenced imagery 
consisted of weekly or biweekly composites of cloud-free pixels of the highest 
NDVI value. None of the NDVI imagery had been corrected for atmospheric 
effects (Song and others 2001). We used public domain image display and 
analysis software, WinDisp4 (FAO 1999), to extract and merge blocks of NDVI 
images from the data sources and to determine median NDVI within ecoregions. 
Because our analysis did not involve classification, change detection, time series 
analysis, or other highly specialized use of imagery, we did not consider that data 
manipulation or transformation, such as tasseled cap or Fourier, was necessary to 
achieve our objectives. 

 
Area Studied 
 

Vegetation: We utilized data for ecoregions within the southeastern portion of 
the upland oak-hickory (Quercus-Carya) forest type of the Eastern U.S, also 
known as the Central Hardwood region (Braun 1950). This is the most extensive 
forest type of the conterminous U.S., occupying about 46 million ha (Burns 
1983). The oak-hickory type occurs in the east-central U.S., from the prairie 
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borders in Texas northward to the Dakotas and eastward to the Appalachian 
Mountains from Georgia to southern New England. It is most extensive in 
Kentucky, Tennessee, and the Ozark and Ouachita Highlands. The type is 
characterized by deciduous hardwoods that form a nearly closed canopy 
consisting of four or more layers on mesic sites: a tall (25-30 m) tree overstory, an 
open midstory of immature canopy and shade-tolerant tree species, a low (1-5 m) 
shrub layer of ericaceous species, and an herb layer. Northern red oak (Q. rubra 
L.), black oak (Q. velutina Lam.), and white oak (Q. alba L.) occur throughout the 
range of the type; other species of local importance include chestnut oak (Q. 
prinus L.), post oak (Q. stellata Wangenh.), and scarlet oak (Q. coccinea 
Muenchh.). Hickory species include pignut (C. glabra (Mill.) Sweet) and 
mockernut (C. tomentosa (Poir)Nutt.). Species in the midstory include sourwood 
(Oxydendrum arboreum (L.) DC.), eastern redbud (Cercis canadensis L.), and 
flowering dogwood (Cornus florida L.). The shrub layer consists of rosebay 
rhododendron (Rhododendron maximum L.) and mountain laurel (Kalmia latifolia 
L.). The oak-hickory type predominates on almost all landscape positions 
throughout its range. In mountainous areas, however, lower slopes and coves 
often have a greater proportion of mesophytic species, including yellow-poplar 
(Liriodendron tulipifera L.) and red maple (Acer rubrum L.). The type grades into 
northern hardwoods in the higher elevation and northern parts of its range and the 
oak-pine type in its southern range. 

 
Climatic regime of the oak-hickory region is humid continental with generally 

short, cool winters and long, warm summers (Burns 1983). In the central part of 
the area occupied by the type, mean daily temperature averages about 12.8 oC and 
the frost-free period is around 180 days. Annual precipitation in the central part 
averages from 75 to 100 cm, about half of which occurs during the growing 
season. Periods of moisture deficit lasting from 2 to 6 weeks are common during 
the late summer. Annual snowfall averages about 25 cm. 

 
The topography of the area consists mostly of low, open hills, although areas 

of steep relief occur in the Appalachian, Cumberland, and Ozark Mountains. The 
oak-hickory type is restricted to elevations below about 1,650 m on exposed 
slopes and ridges in the Southern Appalachians. Geologic parent material consists 
mostly of glacial material, residual sandstone, shales, and limestone, although 
gneisses and schists also occur. Soils range from cool-moist Spodosols to warm-
dry Alfisols. 

 
The data utilized in our study are for the central portion of the oak-hickory 

type in Kentucky and Tennessee, an area of about 213,000 km2. The oak-hickory 
type in these states consists of areas where the plurality of tree species are upland 
oaks or hickory, and where associated species include yellow-poplar, elm (Ulmus 
L spp.), maple, and black walnut (Juglans nigra L.). 

 
Ecoregions: This area includes ecoregions delineated at the upper three levels 

(i.e. domain, division, province) of the USDA Forest Service hierarchical 
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framework of ecological units (Cleland and others 1997) (figure 1). In this 
framework, domains occupy millions of hectares, divisions within a domain 
occupy hundreds of thousands of hectares, and provinces in a division occupy 
tens of thousands of hectares. Ecoregion delineation and nomenclature follow 
Keys and others (1995). 

 
The Humid Temperate Domain, 200, includes all of the study area. This 

domain is characterized by sufficient precipitation to support forests of broadleaf 
deciduous and needleleaf evergreen trees, which constitute the dominant 
vegetation. This domain is subdivided into divisions based on characteristics of 
the climate during the winter (Bailey 1995). The study area contains two 
divisions: 220 and 230. Divisions delineate major changes in temperature regimes 
(Bailey 1995) and tend to be oriented in an east-west direction. The Hot 
Continental Division, 220, delineates an area of hot summers and cool winters and 
supports winter deciduous forest vegetation characterized by tall broadleaf trees. 
The climate of the Subtropical Division, 230, which lies south of 220, is 
characterized by lack of cold winters and by high humidity during the summer 
and also by a higher proportion of conifers (primarily Pinus L.spp.) in the forest 
vegetation. The dividing line between the 220 and 230 divisions represents an 
isotherm of about 22 oC for the warmest month. Most of the study area consists of 
division 220, which includes three provinces. 
 

 
 
Figure 1: Ecoregions at the domain, division, and province hierarchical levels in the study area, 
which consisted of the states of Kentucky and Tennessee. Only ecoregions at the province level 
are identified. In the hierarchical structure of the Forest Service classification framework (Cleland 
and others 1997), domain 200 and divisions 220 and 230 are implicitly represented by the 
taxonomic structure of the numbering system. Thus, the entire area is contained in domain 200 and 
the wide boundary line along the southern and western parts of Tennessee separates divisions 220 
and 230. 
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Provinces are components of a division that correspond to broad vegetation 
regions, and that conform to climatic sub-zones controlled primarily by 
continental weather characteristics such as length of dry season and duration of 
cold temperatures (Bailey 1995). Provinces are also characterized by similar soil 
orders and potential natural vegetation. Five provinces are represented in the 
study area, one mountainous (M221) and four with planar or plateau-type surfaces 
(P221, P222, P231, and P234). 

 
Province M221 extends across the western slope of the Appalachian 

Mountains in Tennessee and includes a small part of the Cumberland Mountains 
in Kentucky. A landscape of high relief is characteristic of this province. Geologic 
formations generally consist of Precambrian metamorphosed gneisses and schists, 
although the Cumberland Mountains were formed by differential erosion of level-
bedded sandstones. Vegetation is dominated by species of Quercus, although 
mesophytic species predominate in mountain valleys. Annual precipitation is 
greater here than in other provinces, primarily as a result of orographic effects. 
Nine percent of the study area is contained in M221. Except for the heavily 
populated broad intermountain basins, most of the province is forested, 
particularly the steep, mountainous slopes. 

 
Province P221, Eastern Broadleaf Forest (Oceanic), is in the eastern part of 

the study area and makes up about 22 percent of the study area. Precipitation here 
is less than in M221, but greater than in the adjacent province to the west. 
Geology is variable, ranging from level-bedded sandstones on the Cumberland 
Plateau to the carbonate rocks of the Ridge and Valley geologic province. Parts of 
P221 have been weathered and dissected to present mountainous terrain. Altitude 
ranges from about 200 to 800 m. Vegetation consists of arborescent species 
dominated by oaks. Forests have been cleared from 30 to 40 percent of the land 
area for urban, pasture, and agricultural land uses. 

 
Province 222, Eastern Broadleaf Forest (Continental), is the largest of the 

ecoregions under consideration, occupying 63 percent of the study area. Its 
geology consists of Paleozoic level-bedded sandstones and siltstones that have 
weathered to form topography of low, rolling hills and dissected plateaus. 
Vegetation is dominated by oaks and hickories. Forest cover ranges from about 45 
percent in the eastern and central part of this province to 70 percent in the west. 

 
A small part of P231 (Southeastern Mixed Forest) occurs along the southern 

boundary of Tennessee, and constitutes 4 percent of the study area. Geologic 
formations are irregularly bedded Quaternary and Cenozoic sands and clays. 
Forest canopy vegetation consists mostly of oaks and hickories; pines (Pinus 
L.spp.) are more prevalent here than in neighboring provinces. Land use is mostly 
forestry and agriculture.  

 
Province 234 (Lower Mississippi Riverine Forest), the smallest of the five 

ecoregions included in the study (2 percent of the study area), borders the 
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Mississippi River and is characterized by flat, alluvial plains that are flooded 
periodically. Areas of late Pleistocene, wind-deposited loess occur and form a 
distinctive boundary with P222. A large portion of this province was formerly 
utilized for agricultural purposes, particularly areas that had more favorable soil 
moisture relations, but reforestation is now occurring (Schweitzer and Stanturf 
1997). Forest vegetation includes a number of mesophytic species that can 
withstand periodic flooding, such as water tupelo (Nyssa aquatica L.), blackgum 
(N. sylvatica Marsh.), sweetgum (Liquidambar styraciflua L.), some oaks, and 
baldcypress (Taxodium distichum (L.) Rich.). The physical characteristics and 
vegetation of P234 are quite distinct from those of the other provinces. 

 
In summary, the natural vegetation of the ecoregions studied consists 

primarily of forests with an upper and mid-canopy cover of arborescent species 
dominated by oaks. Divisions are most clearly distinguished by physiography and 
differences in vegetative composition. Vegetational differences among provinces 
within a division are less distinct. Bailey (1995), Griffith and others (1997), and 
Delcourt and Delcourt (2000) provide more information on ecological 
relationships in the study area. Ecoregions delineated at the division and province 
scales, unlike ecological units at lower hierarchical levels, are not repeated across 
the landscape. Approximately half of the two-state study area is forested. 

 
Experimental Design 
 

We designed our study with the assumption that the ecoregion (e.g. division, 
province) is the experimental unit, or the smallest portion of the study that 
receives a treatment. Treatments are the environmental conditions and biological 
processes used to define each ecoregion. Treatments are defined by physical 
factors -- climate (e.g. temperature, precipitation), geology, landform, and soils. 
Forest vegetation is the relatively stable biological characteristic that responds to 
the physical environmental treatment. NDVI was employed to quantify the 
biological response. The environmental treatment of each ecoregion was assumed 
to be a random effect.  

 
Climate varies both with location within the study area and over time. 

Therefore, because NDVI quantifies the phenological state of vegetation, which 
we hypothesize varies among ecoregions as a function of climate, it was measured 
at two fixed times during the growing season. 

 
Replication of the experimental units for statistical testing is problematic 

because ecoregions at the division and province hierarchical levels are unique and 
thus do not repeat across the landscape. We used years as replications and 
considered their effects to be random. Experimental error for testing treatments 
consisted of unexplained variation in NDVI resulting from phenological 
differences in vegetation at the measurement dates, unmeasured atmospheric 
conditions, and other variation that was not accounted for by treatments. 
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Ecoregion Analyses 
 
The population of NDVI values within each ecoregion was sampled as values 

for the areas around the FIA inventory plot locations (Hansen and others 1992). 
The FIA plots were utilized to identify forested sample sites for determination of 
NDVI and to exclude landcover associated with nonforest uses (e.g. metropolitan, 
agricultural). A total of 5,399 forested plots were available for which the 
geographic coordinates had been determined to the nearest 100 seconds of latitude 
and longitude. One hundred seconds of latitude equals approximately 1.6 km. The 
median of nine NDVI values was determined from a 3x3 grid (3.3 x 3.3 km) 
centered at each FIA inventory plot to ensure inclusion of the plot in the sample 
area. 

 
We determined NDVI at the FIA plot locations for 11 years. Each year, NDVI 

was sampled at the summer solstice (June 22) and the fall equinox (September 
22). In the study area, these dates generally correspond to full expansion of 
foliage at the highest altitudes in late spring and also before initiation of leaf 
abscission, near the end of the growing season. In addition, the June date is 
representative of the annual period before soil moisture generally becomes 
limiting, and September is the period when moisture deficits may become 
maximized. The Palmer drought severity index (PDSI) was used to account for 
variation in annual and seasonal NDVI associated with meteorological drought 
(Palmer 1965). Published values of PDSI that had been calculated for each of the 
four climatic divisions in each state were used in the analysis. 

 
We used analysis of variance to determine if variation in the response variable 

(NDVI) was affected by differing treatments, which were represented by 
ecoregions. We restricted tests of significance to ecoregions within the 
hierarchical structure of the classification. For example, we first used all data to 
compare divisions, and then conducted separate analyses of provinces within each 
division (i.e. two data sets were formed by subsetting on division). Orthogonal 
contrast tests were used to determine all differences among divisions and 
provinces. 
 
NDVI Modeling 

 
We used multiple regression on the linked FIA and NDVI data bases to 

investigate the effects of selected topographic, geographic, and vegetational 
variables on NDVI. We followed Hansen and others (1992) in selecting altitude 
and stand basal area as vegetational and topographic variables to characterize 
each inventory plot. Plot latitude and longitude were included as surrogate 
variables to account for variation in climate associated with geographic location 
within ecoregions. The response variable was NDVI averaged by season over the 
11 years studied. Other variables in the FIA data set (i.e. aspect and slope 
gradient) were excluded from analysis because of the broad area represented by 
each sample plot (10.1 km2). 
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Results 
 

Inventory Plot Characteristics 

 
A total of 5,399 FIA inventory plots (3,049 in Kentucky and 2,350 in 

Tennessee) were used in the analysis (table 1). Plots were well distributed 
throughout each ecoregion. Mean topographic elevations were greatest (563 m) in 
M221, the mountainous province, and least (90 m) in P234, near the Mississippi 
River. Elevations in P222 and P231 were similar, but variation was greater in 
P231. Stand basal area was about 2.8 m2/ha higher for division 230 than for 
division 220. Among provinces, stand basal area was greatest (20.3 m2/ha) in 
M221 and least (13.2 m2/ha) in P222. 

 
NDVI and Ecoregions 

 
Mean summer (June) NDVI averaged 155.8 among provinces for the 11-year 

period studied (figure 2). The range in average summer NDVI across all 
ecoregions varied from about 167 in 1990 to 127 in 1994. M221 had the highest 
summer NDVI in most years, and P234 had the lowest summer NDVI every year. 
Annual direction and magnitude of change in NDVI was generally consistent 
among provinces for most years of the study, although there were notable 
exceptions in 1996 and 1997. The mean summer PDSI averaged across all 
provinces ranged from -0.6 to 4.4 during the study period. The PDSI pattern 
agreed with the pattern of NDVI for about half of the years, but differed visibly 
for other years (e.g. 1989, 1994, and 1997). 

 
Ecoregions accounted for highly significant differences in average NDVI 

between divisions and provinces within divisions for the summer growing season 
(table 2). Similar patterns were apparent in the fall (September) data, but the 
relationships were not as strong. The multiple coefficient of determination (R2) 
values of the analyses of variance for the summer and fall seasons were R2 = 

 
Table 1: Mean (±SD) topographic, geographic, and vegetation characteristics of forest inventory 
and analysis sample plots by ecoregion hierarchical level. 
——————————————————————————————————————————— 
Ecoregion Plots Elevation  Latitude Longitude Basal area 
——————————————————————————————————————————— 
 number meters - - - - - degrees - - - - - m2/ha 
Domain 200 5399 299(161) 36.8(1.0) 85.5(1.9) 15.7(10.7) 
Divisions in domain 200 
  220 5222 302(161) 36.8(0.9) 85.4(1.8) 15.6(10.8) 
  230 177 195(123) 35.3(0.5) 88.4(1.4) 18.4(8.4) 
Provinces in division 220 
  M221 624 563(212) 36.4(0.7) 83.2(0.9) 20.3(10.0) 
  P221 1479 380(105) 36.7(0.9) 84.0(0.9) 18.6(9.7) 
  P222 3119 214(70) 36.9(1.0) 86.4(1.5) 13.2(10.8) 
Provinces in division 230 
  P231 145 217(124) 35.1(0.1) 88.1(1.4) 18.8(7.2) 
  P234 32 90(17) 36.3(0.6) 89.4(0.3) 16.5(12.3) 
——————————————————————————————————————————— 
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Figure 2: Mean normalized difference vegetation index (NDVI) and regional Palmer drought 
severity index (PDSI) at the summer solstice (June 22) by ecological province over the 11 years of 
the study. The long-term (11 years) mean summer NDVI is indicated by the horizontal dashed line. 
 

0.9068 and R2 = 0.7436 respectively. The mean summer division-to-division 
difference was approximately 10 NDVI units, which was significant at the 
P<0.0001 level. The three provinces in division 220 were M221, P221, and P222. 
Mean summer NDVI of M221 did not differ from that of P221 (P=0.1560). 
However, NDVI of P222 was significantly different from that of M221 (P<0.001) 
and that of P221 (P=0.002). The two provinces in division 230 were P231 and 
P234. Mean summer NDVI of P231 (154.7) was significantly different 
(P<0.0001) from that of P234 (141.1). NDVI for P231 and NDVI for P234 were 
not significantly different (P=0.7511) for the fall season. 
 

Inclusion of PDSI as a covariable in the analysis of variance for the summer 
season explained a small but significant (P=0.0032) portion of the variation in 
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Table 2: Seasonal mean (±SD) NDVI and orthogonal contrasts among hierarchical ecoregions. 1 
——————————————————————————————————————————— 
Ecoregion Summer Fall  
 (June 21) (September 21) 
——————————————————————————————————————————— 
Divisions in domain 200 
  220 157.2(6.1)a 153.8(6.2)a 
  230 147.0(9.2)b 151.6(5.6)b 
Provinces in division 220 
  M221 159.4(6.4)a 155.6(7.3)a 
  P221 158.1(5.7)a 153.8(6.1)ab 
  P222 154.1(5.4)b 151.9(4.8)b 
Provinces in division 230 
  P231 154.7(6.7)a 151.8(6.1)a 
  P234 141.1(5.6)b 151.3(5.3)a 
——————————————————————————————————————————— 
1Within hierarchical ecoregion groups, means followed by the same letter are not significantly 
different (P<0.001). 
 

mean NDVI within and between provinces. The coefficient for PDSI was 1.9998, 
and the value of R2 increased from 0.907 to 0.926. PDSI was not significant 
(P=0.1689) when included as a covariable in an analysis of variance model for fall 
NDVI, and had a coefficient of -0.9708. 

 
NDVI and Environmental Data 

 
Regression analysis indicated that phenological, topographic, vegetative, and 

geographic variables were highly significant (P<0.001) sources of variation in 
NDVI at all levels of the hierarchical framework (table 3). Among provinces, 
variation in NDVI explained ranged from R2=0.206 for P222 to R2=0.553 for 
M221. Among the independent variables, time of measurement during the 
growing season (i.e. June 22 or September 22) explained the largest proportion of 
variation, followed by elevation and stand basal area. Effects of season, elevation, 
and stand basal area were generally consistent in magnitude and sign of the 
variable coefficients: NDVI increased with increasing elevation and stand basal 
area primarily as a result of greater quantities of green vegetation. 

 
Season of determination was not significant for division 230 because of an 

interaction between the two provinces. As indicated by the signs of the 
coefficients for season, NDVI decreased from summer to fall for P231, but 
increased for P234. Effect of season was consistent among the other ecoregions. 

 

Discussion 
 

NDVI and Ecoregions 

 
This study demonstrated that ecoregions explained significant variation in 

NDVI at several levels of a hierarchical classification framework in the humid 
eastern US, where landcover consists of forests dominated by relatively uniform 
arborescent vegetation. Our results parallel those reported by Ramsey and others 
(1995), who found that nonhierarchical ecoregions of the arid environments of 
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Table 3: Regression coefficients of season, topographic, vegetation, and geographic variables and 
fit statistics (R2, coefficient of correlation; S Y·X  standard error of mean) in models of NDVI by 
hierarchical ecoregion.1 
——————————————————————————————————————————— 
Ecoregion Season Elevation B.A. Latitude Longitude R2 S Y·X 
——————————————————————————————————————————— 
 meters m2/ha - - - - degrees - - - - - 
Domain 200 -2.901* 0.010* 0.091* -0.231* 0.306* 0.313 4.212 
Divisions in domain 200 
 220 -2.972* 0.009* 0.095* -0.220* -0.276* 0.319 4.134 
 230 -0.714 0.031* 0.016* -1.917* -0.537 0.320 5.562 
Provinces in division 220 
 M221 -3.745* 0.010* 0.046* 1.723* -2.186* 0.482 2.889 
 P221 -4.241* 0.013* 0.039* 2.681* -1.678* 0.474 2.924 
 P222 -2.215* 0.025* 0.115* -0.618* -0.066 0.265 4.388 
Provinces in division 230 
 P231 -2.928* 0.029* -0.032 -5.515* -0.750* 0.430 4.166 
 P234 10.438* 0.181* 0.123* -15.680* 23.661* 0.468 7.156 
——————————————————————————————————————————— 
1Level of significance: *=P<0.01. 
2B.A.: Basal area of stand. 
 

Utah were significantly related to NDVI. Mean NDVI was higher and more 
variable in our study than in the Utah study.  NDVI in the oak-hickory type 
averaged about 156(±9s.d.) for summer and 153(±8s.d.) for fall whereas NDVI in 
the Utah study was about 118(±5s.d.) (Ramsey and others 1995). Minimum NDVI 
was similar for both areas, about 100, indicating a lack of photosynthesizing 
vegetation. Maximum NDVI, however, ranged from 169 to 178 across the 
deciduous forested ecoregions and from 115 to 148 in the ecoregions in Utah. 
Because NDVI is a surrogate variable for on-site quantification of vegetation 
(Loveland and others 1995), our results suggest that there are ecological 
differences among most ecoregions in our study area.  

 
One might draw useful conclusions from a single year's results if by-province 

NDVI rankings did not change from year to year. Ramsey and others (1995) 
found little annual variation in NDVI, but we found substantial switching in year-
to-year rankings of ecoregional NDVI means. This variation served as the 
experimental error in our tests of significance. We hypothesize that year-to-year 
differences in NDVI at the season date of measurement could result from a 
combination of varying annual temperature and precipitation regimes. Spring 
temperatures that are cooler or warmer than normal would affect development of 
foliage by the June 22 measurement date, resulting in less or more green 
photosynthesizing vegetation than average for imaging based on NDVI. In a 
similar manner, annual variation in the soil moisture regime affects the quantity of 
vegetation present. 

 
Atmospheric effects are a possible cause of annual variation in NDVI values 

within and among ecoregions. The NDVI imagery used in our study was 
uncorrected for atmospheric effects of water vapor, ozone, and Rayleigh 
scattering. NDVI band 2 (0.75-1.1m) is particularly sensitive to increased levels 
of atmospheric water vapor, which tends to reduce estimated NDVI values. The 
use of biased values of NDVI can reduce the accuracy of estimates of vegetation 
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moisture content and other predictions. NDVI was not used for predictive 
purposes in our study. Also, the use of biweekly NDVI composites tends to 
reduce atmospheric effects because the greenest pixel is used in such composites, 
which suggests that the image was made when there was the least amount of 
water vapor in the atmosphere. Clearly, however, use of atmospherically 
corrected NDVI values is desirable. 

 
Our use of PDSI to quantify meteorological drought accounted for small but 

significant variation in annual NDVI. Walsh (1987) also found that NDVI was 
correlated with PDSI. A measure of air temperature for each season by year 
would likely account for additional variation in NDVI. Annual variation in soil 
moisture availability may account for some of the variation in NDVI in our study. 
The PDSI indicated a surplus of soil moisture (PDSI>0.5) for broad, state climatic 
divisions in 6 years and a deficit (PDSI<-0.5) in 3 years. Availability of refined 
values of PDSI from the weather station nearest each FIA plot would likely have 
shown stronger relationships in the analysis of covariance. 

 
Because FIA plots are established in forested locations, we were able to use 

the locations of FIA plots to subsample NDVI values within ecoregions. 
However, the positional accuracy of these plots to only 0.01 seconds is an 
important limitation in their usefulness. This lack of accuracy caused us to expand 
our sample area to the eight neighboring cells surrounding the cell in which the 
FIA plot supposedly fell. Despite the relative lack of accuracy of inventory plot 
location and the greater likelihood of including nonforested areas for NDVI 
determination in the expanded sample area, we consider this method as superior 
to the total polygon method. That method uses all cells in a polygon for analysis, 
which could include many that are nonforested, such as urban areas and 
agricultural fields, thereby potentially increasing variation. Marked improvement 
in results should be possible with increased location accuracy of plots. One 
possible drawback to this rationale, however, is exclusion of NDVI values 
associated with land uses other than forests, a classification factor included in 
some ecoregion map delineations (Omernik 1995). 

 
NDVI and Environmental Variables 

 
Our study demonstrates a significant association between NDVI and 

characteristics of field inventory plots. Stand basal area consistently and 
significantly accounted for small amounts of variation in NDVI. We assume that 
the relationship would have been stronger if sampling had been restricted to a 
single 1.1 km cell, instead of the 3.3 km2 grid that was used. Our findings agree 
with those of Kremer and Running (1993) who found that characteristics of 
vegetation on ground-sampled plots were correlated with 1.1 km NDVI imagery. 

 
The explanation of the significance of the other topographic and geologic 

variables is logical. Elevation was directly associated with NDVI in all of the 
ecoregions we studied, and is associated with length of growing season, initiation 
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of spring growth, and onset of winter dormancy, as have been reported in other 
studies (Ramsey and others 1995, Burgan and Hartford 1993, Loveland and others 
1995). Latitude is likely related to variation in temperature within ecoregions and 
to variation in NDVI. The effect of longitude on NDVI variations is probably 
related to precipitation, which tends to increase from west to east. In our study 
area, longitude is probably more closely associated with precipitation than with 
temperature. 

 

Conclusions 
 

Remote sensing data can be used to test the relatively uniform, humid 
environments of the eastern U.S. for uniqueness in some vegetational 
characteristics. Our test was designed to determine if ecoregions differed based on 
measurements of NDVI, which quantifies the amount of photosynthesizing 
vegetation present. Other characterization criteria of ecoregions, including plant 
species composition and water quality, have proven useful for ground-based 
validation testing, but NDVI is one of the few variables that can be applied using 
remote sensing. We found that one difficulty associated with the use of NDVI in 
the forested eastern U.S. is annual variation in its magnitude. This variation could 
result from subtle year-to-year climatic effects on vegetation attributable to annual 
variation in temperature and moisture regimes, or to varying atmospheric 
conditions associated with a humid climate. Multiple years of NDVI data are 
needed both to avoid possible bias arising from analysis of atypical data and as a 
source of experimental error. Results of our study in deciduous hardwoods 
confirm and extend those of other studies in which NDVI was used to test 
ecoregion maps in arid environments.  

 
The use of FIA plot locations provides data of sufficient sensitivity for testing 

and reducing variation between ecological map units. Other studies have used 
polygons in which all cells are utilized for computation of a single average value 
of NDVI for a particular time period. This total polygon method adds variation in 
NDVI that comes from nonforest conditions. However, the large number of 
sample sites based on inventory plot locations provided data for testing of the 
within-polygon relationship NDVI has with environmental factors. FIA plots also 
provided a large amount of useful ancillary information. 

 
NDVI should not be the sole criterion for testing ecoregion hypotheses. 

However, NDVI evaluation could be used to identify parts of ecoregions 
warranting further investigation or review. NDVI should be considered a tool for 
preliminary screening. NDVI and inventory plot analysis is a relatively 
inexpensive and readily available tool that could be used by persons who do not 
have knowledge of GIS techniques and expensive GIS software. Although we 
used relatively simple methods, additional more sophisticated techniques are 
available, such as correcting for variation in atmospheric conditions. 
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In conclusion, our study provides methodology for using inventory data and 
remote sensing imagery for testing hypotheses about ecoregion map units. The 
use of FIA inventory plots to provide specific locations for sampling and 
information on the vegetation present, in conjunction with NDVI data obtained by 
remote sensing, provides a method suited to testing of ecoregion maps. The 
purpose of this investigation was not to develop or refine mapped ecological 
units, but to examine the potentials of NDVI data as a tool for use in the future 
development and testing of map units. Our results suggest that NDVI may be well 
suited for this purpose. 
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Abstract: Thousands of published equations purport to estimate biomass of individual 
trees. These equations are often based on very small samples, however, and can provide 

widely different estimates for trees of the same species. We addressed this issue in a 

previous study by devising 10 new equations that estimated total aboveground biomass 
for all species in North America (Jenkins et al. 2003). We selected 318 total biomass 

equations (out of 2,626 identified in the literature), based on applicability for estimating 

biomass from only diameter measurements, and used a modified meta-analysis to develop 

new equations. This was done by using regression analysis on data generated from those 
318 equations for tree sizes within the diameter bounds of the original data. We also 

included two sets of ratio equations, for hardwood and softwood species, to separate out 

biomass of different tree components—foliage, branches, bark, and roots. 

The Joint Fire Science Program funded this work to create more generalized biomass 

equations for regional fire-fuels managers by extending our literature synthesis. We are 

updating our work with literature published through 2008. We will devise new equations 
to allow for more differences within North American regions and provide greater 

accuracy for local use. The new analysis will use equations from the literature that 

include height as well as diameter, but will result in biomass equations that do not 

require height as an input variable. 

The results of our analyses to date suggest that allometric scaling theory may be 

applied in future studies to more accurately estimate tree biomass from diameter and 

whole-tree density measurements. 
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Introduction 

We previously developed a series of national-scale tree biomass estimation 
equations that can be used with inventory data for producing forest carbon 
budgets. We are updating this work for the Joint Fire Science Program, in an 
effort to develop generalized estimators for regional land management use. In the 
future, we plan to use allometric scaling theory to resolve issues associated with 
estimation of forest biomass. 

Previous Study 

Equation Compilation 

In our previous work (Jenkins et al. 2003), we compiled biomass equations 
from literature published through 1999. Our resulting database included 2,626 
biomass equations for either total tree biomass or tree components including bole, 
bark, branches, foliage, and roots. From the equation database, we determined 318 
diameter-based equations for over 100 species from 104 published sources were 
useful for our analysis for estimating total aboveground biomass. In a modified 
meta-analysis, we generated data for each published equation at 5-cm intervals 
within the diameter ranges of the original equations—resulting in what we called 
“pseudodata” (following the concept pioneered by John Tukey on jackknife 
estimation [Mosteller and Tukey 1977]). We then fit these pseudodata into 10 
species-group-specific equations by using regression and log transformation.  

Modeling pseudodata 

Using a simple log form (Eq. 1) we modeled pseudodata with 5 equations for 
conifer species groups (cedar and larch, Douglas fir, pine, spruce, and true firs 
and hemlocks), 4 equations for hardwood groups (aspen, alder, and poplar; soft 
maple and birch; maple, oak, and hickory; and mixed hardwood), and a woodland 
equation including both conifer and hardwood dryland forest species. 

dbhbaBM lnln      (1) 
Where  

BM = total biomass, 
dbh = stem diameter at breast height 

Pine Pseudodata 

Data from the pine species group illustrate our rationale for combining species 
into broad groups that corresponded to overlapping ranges within the pseudodata. 
The widely planted loblolly pine in the Southeastern United States has a biomass 
range that includes that of the much different pinyon and lodgepole pines found in 
the Western United States (Figure 1). This observed variation does not seem to be 
explained by other factors such as tree growth form, site, or climate; three distinct 
patterns would have been expected. 
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Because collecting new biomass samples across the full continental range of 
species and regions would be impractical, we concluded that fitting new equations 
using species-grouped pseudodata represented the most reasonable option for 
producing a consistent set of biomass equations for all North American species. 
We sorted through all pseudodata and distinguished 10 species groups for final 
equation development. 

 
 

Figure 1: Modeled pseudodata depicting aboveground biomass of pinyon, lodgepole, and loblolly 
pines show no distinct pattern for separating species (biomass expressed in kg as a function of 
stem diameter at breast height; from Jenkins et al. [2003]). 

Component ratio equations 

We also developed generalized hardwood and conifer ratio equations to 
partition the estimates into foliage, stem bark, stem wood, and coarse root 
components (Figure 2). The hardwood and conifer models are similar except the 
conifer model shows less branch variation with diameter and more foliage 
variation. 

 
 

Figure 2: Biomass component ratios for conifer and hardwood species as a function of stem 
diameter at breast height, from equations in Jenkins et al. (2003). 
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Because pseudodata for biomass components were much more variable than 
for total biomass, and because there were few studies that measured biomass 
components in a consistent fashion, all pseudodata were grouped into two general 
models (hardwood and conifer). The resulting ratio equations serve as a first 
approximation until more data are available for detailed modeling of component 
biomass. The woodland species group, which included both conifer and hardwood 
species, was omitted from this analysis; there were not enough component 
equations in the literature for analysis with these species. 

FIA Data Comparison 

We compared tree-level data results from the ten equations against county-
scale biomass calculations from the old Eastwide FIA database from the 1990s 
(Hansen et al. 1992) by subtracting Hansen et al. (1992) biomass estimates from 
the Jenkins et al. (2003) biomass estimates, and then dividing by the latter and 
multiplying by 100 to express the results as a percentage (Figure 3). 

 
 
 

Figure 3: Amount Jenkins et al. (2003) biomass estimates generally exceed those of FIA (Hansen 
et al. 1992), expressed as a percent of Jenkins et al. (2003) estimates. 

It is difficult to say which equations are better. Jenkins et al. (2003) equations 
used consistent methodology throughout, which is a plus, but unidentified, 
unquantified biases for certain species may exist. In the FIA approach, each FIA 
unit uses the best methods for a particular state or region. However, this is less 
consistent, particularly when equations change at state boundaries. For example, 
the map patterns in Figure 3 showing straight-line boundaries—particularly in the 
southeastern United States—suggest variation introduced by biomass equation 
choice. Also, FIA estimates should theoretically be a little smaller than those of 
Jenkins et al. (2003) because they do not include foliage, but foliage should 
account for only about 5%. 
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Current Work 

Our current objective is more focused toward regional biomass estimation for 
fire fuels managers, and will likely result in more than 10 equations. We are 
updating the literature synthesis to include data published through 2008. 

We are also going back to the earlier literature to include previously omitted 
equations that use both diameter and height as predictor variables. Our initial plan 
is to generate pseudodata as before—based on diameter only—but to use a height-
to-diameter equation for inclusion of height variation. We plan to use FIA data to 
develop a series of simple height-to-diameter equations for this purpose. This will 
allow use of biomass equations that include height but will also allow us to fit 
final regression equations from pseudodata from diameter only. Equations for 
predicting shrub biomass may be added to our analyses if resources permit. 

Allometric Scaling Theory Applied To Biomass Estimation 

Allometric Scaling Theory 

Allometric scaling theory may hold promise for biomass estimation. This 
theory explains why dimensions of biological organisms are scaled in proportion 
to one another (Enquist et al. 1998, 1999; West et al. 1997, 1999a, 1999b). An 
analysis based on this theory could greatly improve our meta-analysis work. Tree 
biomass and volume are proportional to dbh, as are a host of other tree measures, 
but to date there is no coherent theory explaining exactly why this might be true. 
Allometric scaling theory uses fractal dimensions of tree architecture and physics 
of fluid transport up a tree to offer an explanation in terms of a generalized 
biomass model. Parameterization of this model is postulated to hold regardless of 
tree species and regardless of tree size. 

Generalized Tree Biomass Equation 

The biomass equation described by allometric scaling theory (Eq. 2) suggests 
that the exponent on dbh is not a parameter to be estimated; rather, it is fixed at 
eight-thirds or 2.67. 

Biomass = (C ρ) dbh2.67    (2) 
Where 

C = proportionality constant 
ρ = component-integrated tree specific gravity 

The measure of specific gravity included here is not specific gravity of bole 
wood commonly reported, but a measure of specific gravity integrated over the 
entire tree and including bark, wood, branches, and foliage. We refer to this as 
“component-integrated tree specific gravity,” or “CIT specific gravity.” It would 
be difficult to obtain CIT specific gravity for every tree species in the United 
States. However, as the scaling theory is postulated to hold for small and large 
trees, CIT specific gravity might be measured for saplings of each species rather 
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easily and cost-effectively. The proportionality constant C is postulated to be a 
constant independent of species. 

Allometric Theory Equation Applied 

The 10 equations from Jenkins et al. (2003) can be expressed as a constant (α) 
times dbh raised to β, where β is the scaling coefficient in the allometric scaling 
model (Table 1). In 9 of our 10 biomass equations, the scaling parameter 
estimated from pseudodata is fairly close to the theoretical eight-thirds or 2.67 for 
the allometric scaling model. Only the woodland equation differs markedly; this is 
likely due to inconsistent biomass measurements for a diverse group of evergreen 
hardwood and some softwood species that grow in Southwestern U.S. dryland 
forests. Thus, anecdotal evidence indicates that allometric scaling theory may 
provide a sound theoretical basis for tree biomass estimation, but field 
measurements of biomass and whole-tree specific gravity of some trees are 
needed in order to apply it.  

Table 1: Estimated +-values for Jenkins et al. (2003) equations expressed in the form of the 

allometric scaling equation: Biomass = 7 dbh+
, where dbh = stem diameter at breast height. In 

the generic allometric scaling model equation, + = 8/3 or 2.67. 
 

Conifer Hardwood 
Species Group ! Species Group ! 
Cedar and Larch 2.3 Aspen and Alder 2.4 
Douglas Fir 2.4 Soft Maple and Birch 2.4 
Pine 2.4 Maple, Oak, and Hickory 2.4 
Spruce 2.3 Mixed Hardwood 2.5 
True Fir and Hemlock 2.5   
  Woodland (both conifer and 

hardwood) 
1.7 

 

Summary 

The goal of our work is to improve forest biomass estimates. To that end, we are 
pursuing the following: 

 An update of our earlier database and synthesis of individual tree biomass 
equations for North America 

 Development of regional-scale biomass equations that will include both 
diameter and height variation 

 Future research considering allometric scaling theory as the basis for 
biomass estimation 
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Abstract: Engelmann spruce forests are structurally and compositionally diverse, occur 
across a wide range of physiographic conditions, and are the result of varying 
disturbance histories such as fire, wind and spruce beetle. The spruce beetle is a natural 
disturbance agent of spruce forests and has population levels that fluctuate from endemic 
to epidemic. Conceptually, structural and compositional diversity of Engelmann spruce 
forests are thought to provide resistance to spruce beetle activity, and have traditionally 
been used to assess stand risk to the beetle. We used FIA data from nine states in the 
Intermountain West to test the effect of stand structure, composition, and site attributes 
on the occurrence of spruce beetle. A suite of independent variables from FIA data were 
used to predict the presence or absence of spruce beetle. Results suggested structural 
variables such as trees per acre and stand density index ratio were influential in the 
model. Similarly, compositional variables such as percent stand density index of aspen, 
lodgepole pine, Douglas-fir, and subalpine fir were also influential. Co-occurrence of 
multiple species with Engelmann spruce helped explain some of the patterns of spruce 
beetle occurrence. Ubiquitously occurring species such as subalpine fir and Douglas-fir 
explained less of the variation in model predictions. Elevation and latitude were 
significant predictors of spruce beetle occurrence; however, co-variation made direct 
interpretation of these independent variables difficult. Although statistically weak, the 
model results were ecologically interpretable and provided a range-wide context in 
explaining spruce beetle activity at some sites in the Intermountain West.  
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Introduction  
 

Engelmann spruce (Picea Engelmannii Parry es. Engelm.) forests are 
widespread in the Intermountain West at higher elevations and are effectively 
southern extensions of the boreal forest. They occur from approximately 105° to 
118° west in longitude and from approximately 33° to 50° north in latitude and 
range in elevation from less than 3,000 ft in northern Idaho to almost 12,000 ft on 
the Colorado Plateau. These forests occur across a wide range of physiographic 
conditions and are typically structurally and compositionally diverse (Peet 2000). 
Structurally, Engelmann spruce forests are commonly multi-aged, exhibiting a 
wide range of tree sizes (Aplet and others 1988). Compositionally, many other 
species co-occur with spruce, its most common associates are subalpine fir (Abies 
lasiocarpa (Hook.) Nutt.) and Douglas-fir (Pseudotsuga menziesii var. glauca 
(Beissn.) Franco), and more regionally common species such as aspen (Populus 
tremuloides Michx.), limber pine (Pinus flexilis James), whitebark pine (Pinus 
albicaulis Engelm.), and lodgepole pine (Pinus contorta Dougl. ex. Loud.) (see 
Figure 1).  
 

Both low- and high-severity disturbances influence the structure and 
composition of Engelmann spruce forests (Veblen and others 1994). Windthrow, 
root and butt rots, and endemic spruce beetle (Dendoctronus rufipennis Kirby) all 
act locally to create low-severity canopy gaps in spruce forests. In contrast, crown 
fires, wind storms, and spruce beetle outbreaks, while infrequent, are high-
severity disturbances that occur at much larger scales.  
 

The spruce beetle is a host-specific bark beetle native to Engelmann spruce 
forests across the Intermountain West (Holsten and others 1999). Endemic 
populations of the beetle can build to epidemic (outbreak) levels in recently 
downed material such as logging slash, wind throw, or avalanche debris (Schmid 
1981). Transition from endemic to epidemic population levels can be facilitated 
by warmer-than-average summer temperatures allowing univoltine beetles to 
reproduce successfully (Hansen and others 2001a) and, in combination with 
semivoltine beetles, overwhelm their host.  

 
It is commonly though that composition and structure of Engelmann spruce-

dominated stands influence the potential for spruce beetle activity. For example, a 
commonly used stand-level spruce beetle risk-rating (Schmid and Frye 1976) 
suggests dense (high basal area), pure (greater than 65 percent Engelmann 
spruce), old (large diameter) stands on well-drained creek bottoms (high site 
productivity potential) are most likely to be attacked by the spruce beetle. The 
Schmid and Frye (1976) risk-rating in effect quantifies the view that 
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compositionally and structurally diverse stands have less potential for spruce 
beetle activity, including the shift from endemic to epidemic population-levels.  

 
We use FIA data to explore the relationships between stand structure, 

composition, site attributes, and spruce beetle occurrence in Engelmann spruce 
forests across the Intermountain West. We examine the putative relationship 
between compositional and structural diversity and spruce beetle occurrence and 
explore whether stand and site variables in fact have potential for use in the 
construction of predictive models of spruce stands susceptible to the spruce 
beetle.  
 
 
Methods  
 

Forest Inventory and Analysis (FIA) data from nine Intermountain West states: 
Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, eastern 
Washington, and Wyoming (Table 1) were used to explore the relationship 
between structure, composition, site attributes, and spruce beetle occurrence. The 
nationwide hexagonal sampling strategy implemented in 2000 provided most of 
the data for this analysis while the remaining data came from previous periodic 
plots. Each hexagon is 5937 acres or, 1 plot per approximately 6000 acres, 
national sampling precision. Each plot will be visited on a 5 (east) or 10 (west) 
year return interval. (FIA Fact Sheet Series, online http://fia.fs.fed.us/library/fact-
sheets/default.asp). Because the FIA data is unbiased and systematically collected 
it is appropriate for analyzing spruce beetle occurrence patterns in the 
Intermountain West.  
 
 
Data preparation  
 

Phase 2 data (inventory data) from plots which had the presence of Engelmann 
spruce were used in this analysis. Data indicating the occurrence of spruce beetle 
in FIA came from two sources: the tree table and the condition table. If spruce 
beetle was found on a measurement tree the recorder assigned that tree an Agent 
Code of 10. Similarly, if spruce beetle activity was found on or near the FIA plot, 
Disturbance Code = 10 was designated in the conditions table (USDA 2007). 
Therefore reference to spruce beetle activity or occurrence in this paper is 
interpreted as Engelmann spruce activity and/or mortality as a result of the spruce 
beetle. For the analysis we assumed both designations indicated beetle activity 
and collectively analyzed them as spruce beetle affected stands. Final data 
preparation included filtering so that re-measurement plots were only represented 
once (most recent) and only plots with Condition Proportion = 1.0.  

 
A suite of independent variables characterizing structural, compositional, and 

site-level attributes for each plot (Table 2) were calculated from the filtered data. 
Although a total of 41 species co-occurred with Engelmann spruce across the 

USDA Forest Service Proceedings – RMRS-P-56 39.



 4

Intermountain West we limited calculation of compositional variables to the 13 
species that shared at least 100 plots with spruce (Figure 1). As an example, 
individual species contribution to total stand basal area and stand density index as 
a percent were calculated to describe stand composition. To characterize 
structural attributes we calculated trees per acre, quadratic mean diameter, basal 
area, and the stand density index ratio (SDIr). SDIr is the ratio of stand density 
index calculated using the summation method (Shaw 2000) to stand density index 
calculated using the average method (Reineke 1933). SDIr is interpreted as an 
index of structural diversity from least (greater than 0.9) to most diverse (less than 
0.78) (Shaw and Long 2007). With the exception of aspect value (Roberts and 
cooper 1989), site variables were taken straight from the FIA data.   
 
 
Data analysis  
 

The presence/absence nature of the dependent variable, spruce beetle 
occurrence, lent itself to the logistic regression approach to model fitting. We 
initially predicted the presence/absence of spruce beetle in Engelmann spruce 
stands using compositional, structural, and site-level variables individually and 
their interactions (Table 2). To accurately reflect pre-beetle conditions 
reconstruction of stand attributes was done for plots that had beetle-caused 
mortality. One shortcoming with the binary nature of the dependent variable 
(spruce beetle occurrence) was that it could indicate either endemic or epidemic 
beetle populations. Therefore the results are interpreted as spruce beetle activity 
or occurrence in Engelmann spruce stands, and differentiation between population 
levels was not made. Models were evaluated for goodness-of-fit using pseudo-R2, 
or deviance (D2). Pearson’s correlations (r2) were used to further evaluate the 
significant independent variables.  
 
 
Results  
 

Both Engelmann spruce plots and plots with spruce beetle were wide ranging 
across the Intermountain West (Figure 2). Therefore it was not surprising that 
generally the logistic models explained very little of the overall variance in spruce 
beetle occurrence, with a range of D2 from 6 percent to 19 percent. However, the 
models did indicate independent variables with statistical significance and we 
evaluated these further.  
 

Of the 13 species that co-occurred with Engelmann spruce, four were 
influential in predicting spruce beetle activity: basal area of aspen, basal area of 
lodgepole pine, and percent stand density index of aspen, lodgepole pine, 
Douglas-fir, and subalpine fir. Aspen and lodgepole pine basal areas were 
negatively related to spruce beetle occurrence, whereas aspen and lodgepole 
percent stand density index were positively related. The contradiction in signs was 
difficult to explain; however, the fact that both these species perform the same 
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role ecologically, although primarily at different latitudes, suggested this pattern 
was not spurious. Both Douglas-fir and subalpine fir had a positive relationship 
with spruce beetle occurrence, occurred nearly ubiquitously with Engelmann 
spruce across the Intermountain West, and were weakly inter-correlated (r2 = 
0.23). Subalpine fir, because of its near complementary relationship with corkbark 
fir, was weakly correlated with latitude (r2 = 0.28) which likely drove its 
significance in the model.  
 

Structural variables significant in the prediction of spruce beetle occurrence 
were: trees per acre, stand basal area, stand density index, and SDIr. Trees per 
acre and basal area were positively related to beetle occurrence whereas stand 
density index and SDIr had negative relationships. Trees per acre and basal area 
were highly correlated (r2 = 0.60) and probably co-varied in the model. However, 
the difference in sign between trees per acre and stand density index was suspect 
since they were strongly positively correlated (r2 = 0.74).  
 

Site-level variables significant in the prediction of spruce beetle occurrence 
were elevation and latitude. Unfortunately latitude, longitude, and elevation were 
highly inter-correlated (range of r2 = 0.79 – 0.81) in this study so isolating the 
effect of one from the other was difficult. Model results indicated either latitude 
or elevation was significant individually, but not simultaneously. Furthermore, 
although they appeared to proxy one another their signs differed. The difference 
in sign between these two variables in the model (elevation was positive, latitude 
was negative) can be explained by the inherent negative relationship between 
latitude and elevation. Individually, their patterns with spruce beetle occurrence 
were ecologically explainable. The number of spruce beetle plots decreased with 
decreasing latitude (Figure 3) but did not occur disproportionately to the total 
number of spruce plots (data not shown). In contrast, the number of spruce beetle 
plots generally increased with increasing elevation but for the 9,000 – 11,000 foot 
elevation range spruce beetle plots occurred disproportionately more than the 
number of spruce plots (Figure 4).  
 
 
Discussion  
 

The large variation in compositional, structural, and site-level attributes for 
Engelmann spruce forests across the Intermountain West proved only marginally 
useful in predicting the occurrence of spruce beetle activity. Regardless, 
ecologically meaningful patterns between the independent variables and observed 
spruce beetle activity were revealed by the data. The weakness in statistical 
results generally provides support for the complex, non-linear nature of spruce 
beetle populations which exhibit shifts from endemic to epidemic levels that are 
catalyzed by specific events and therefore not reliably predictable. The 
geographically unbiased FIA data revealed the spruce beetle generally occurred 
across the entire range of Engelmann spruce (Figure 2), suggesting it is a normal 
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part of spruce forests but also complicated efforts to identify useful predictors of 
future outbreaks.  
 

Understanding the relationships between co-occurring species and spruce 
beetle in Engelmann spruce forests is important because mixed stands are much 
more common than pure stands. For example, when the FIA data were filtered for 
nearly pure Engelmann spruce composition (greater than 80 percent stand density 
index), approximately 13 percent of the spruce plots met the criteria. All 
significant composition variables were early successional species with the 
exception of subalpine fir. Perhaps more interesting was that the stocking of all 
four species was positively related to spruce beetle occurrence. This is 
counterintuitive to our expectation that compositionally simple stands of 
relatively pure spruce are more susceptible to beetle activity. The biogeographical 
patterns of aspen, lodgepole, and subalpine fir were interesting and somewhat 
predictable, for example, corkbark fir gave way to subalpine fir at approximately 
38° latitude. Similarly, aspen shifts from common to rare at approximately 44° 
latitude where lodgepole pine becomes common and remains so to the Canadian 
border (Figure 2). This is consistent with the observations along the Colorado 
Front Range made by Peet (1978) who suggested aspen yielded to lodgepole as 
the early successional player in spruce stands as one moved north in latitude. 
Biogeographical patterns for the other common species that co-occurred with 
spruce such as limber pine, whitebark pine, and grand fir (Figure 1) were also 
predictable from site and structural variables but were not influential in the spruce 
beetle models.  
 
 Structural variables such as spruce basal area and spruce mean diameter greater 
than 10 inches are commonly used to interpret stand risk to a beetle outbreak. 
However, only stand-level variables that ignored the spruce component were 
indicated in our analysis. Based on previous research the positive relationship 
between basal area and spruce beetle occurrence was expected (Schmid and Frye 
1977). What was less intuitive was the significance of tree density on beetle 
occurrence, except that it likely co-varied with basal area. One explanation is that 
stand basal area was highly correlated with spruce basal area (r2 = 0.53) but only 
weakly correlated with trees per acre (r2 = 0.19). Furthermore, to reconcile the 
difference in signs between stand density index and trees per acre it helps to 
understand stand density index and spruce basal area were correlated (r2 = 0.48). 
An index of structural diversity, SDIr, did not co-vary with any of the other 
structural indices. Lower SDIr indicates stands that are irregular in structure, for 
instance, stands with an index of greater than 0.9 have a unimodal diameter 
distribution, stands of approximately 0.75 exhibit a reverse-J distribution, and 
stands with an index below 0.7 exhibit increasingly bimodal or irregular 
structures. The negative relationship of SDIr with spruce beetle occurrence found 
here is counterintuitive to our expectation that stands of simple structure would 
have more beetle activity. This result is likely driven by the non-linear nature of 
the distribution of SDIr across the Intermountain West range of spruce and the 
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possible effects of elevation on the relationship due to the correlation between 
these variables on the spruce beetle plots (r2 = 0.28, see below).  
 

Other variables such as stand age and site quality (xeric versus mesic) have 
traditionally been used in combination with composition and structure to predict 
the risk of spruce beetle populations shifting from endemic to epidemic (Schmid 
and Frye 1976). While some compositional and structural variables were 
significant in predicting spruce beetle occurrence in this study, the strongest 
pattern that emerged was the disproportionate number of spruce beetle plots at 
high elevation (Figure 4). Generally the proportion of spruce beetle plots 
increased with increasing elevation with the exception of the 11,000 – 12,000 foot 
elevation bin (Figure 4). This increasing relationship can be partially explained by 
the relatively strong relationship between elevation and Engelmann spruce stand 
density index (r2 = 0.41) which is not inconsistent with the idea that increasing 
spruce composition increases spruce beetle activity. However, this does not fully 
explain the spike in spruce beetle observations in the 9,000 – 11,000 foot 
elevation range. As for the 11,000 – 12,000 foot elevation range perhaps the 
spruce that occur here are very small, for example krumholz stands, and climatic 
extremes are such that it is relatively inhospitable for spruce beetle populations.  
 
 Climatic and weather variables have been found to exert a heavy influence on 
insect populations including the family Scolytidae (Logan and Bentz 1999; 
Hansen and others 2001b). If changes in climate were manifest at varying levels 
across an elevation gradient we would have reason to suspect the higher than 
expected numbers of spruce beetle in the 9,000 – 11,000 foot range would be 
influenced. We suggest the unpredictability of spruce beetle activity from 
structural and compositional attributes in this study is likely due to the influence 
of an overriding factor, climate. Indeed, climate, and specifically temperature, has 
surfaced as the controlling factor in spruce beetle populations in Alaska (Berg and 
others 2006) and the recent explosive mountain pine beetle (Dendroctonus 
ponderosae Hopkins) outbreak in Colorado (Kulakowski and Veblen, 
unpublished paper). Since temperature controls insect populations, we 
hypothesize climatically sensitive areas, such as those found at high elevations, 
will exhibit the most pronounced response to spruce beetle activity. Compounding 
this problem is the observation that strong temperature-precipitation interactions 
control the range limit for Engelmann spruce, and climate modeling under various 
global climate change scenarios revealed the bioclimatic window for spruce is 
likely to close for populations at high elevations and lower latitudes (Rehfeldt and 
others 2006). Since both beetle populations and the realized niche for Engelmann 
spruce are controlled by temperature, perhaps increased spruce beetle activity at 
higher elevations is exacerbating the predicted shift in spruce range limits.  
 
 
Acknowledgements  

USDA Forest Service Proceedings – RMRS-P-56 39.



 8

 We wish to thank the T.W. Daniel Endowment, Ecology Center, and the Forest 
Health Monitoring Analysis and Reporting Program, agreement number 08-CA-
11046000-610, for financial support of this project.  
 
 
References  
 
Aplet, G. H.; Laven, R.D.; Smith, F.W. 1988. Patterns of community dynamics in 

Colorado Engelmann spruce-subalpine fir forests. Ecology. 69: 312-319.  

Berg, E.E.; Henry, D.J.; Fastie, C.L.; De Volder, A.D.; Matsuoka, S.M. 2006. Spruce 
beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and 
Reserve, Yukon Territory: relationship to summer temperatures and regional 
differences in disturbance regimes. Forest Ecology and Management. 227: 219-232.  

Hansen, E.M.; Bentz, B.J.; Turner, D.L. 2001a. Physiological basis for flexible voltinism 
in the spruce beetle (Coleoptera: Scolytidae). The Canadian Entomologist. 133: 805-
817.  

Hansen, E.M.; Bentz, B.J.; Turner, D.L. 2001b. Temperature-based model for predicting 
univoltine brood proportions in spruce beetle (Coleoptera: Scolytidae). The Canadian 
Entomologist. 133: 827-841.  

Holsten, E.H.; Their, R.W.; Munson, A.S., Gibson, K.E. 1999. The spruce beetle. Forest 
Insect and Disease Leaflet 127. U.S. Department of Agriculture, Forest Service, 12 p. 

Logan, J.A.; Bentz, B.J. 1999. Model analysis of mountain pine beetle (Coleoptera: 
Scolytidae) seasonality. Environmental Entomology. 28: 924-934.  

Long, J.N.; Shaw, J.D. 2005. A density management diagram for even-aged ponderosa 
pine stands. Western Journal of Applied Forestry. 20: 1-11.  

 
Peet, R.K. 1978. Latitudinal variation in southern Rocky Mountain forests. Journal of 

Biogeography. 5: 275-289. 

Peet, Robert K. 2000. Forests and meadows of the Rocky Mountains. In: Barbour, 
Michael G.; Billings, William Dwight, eds. North American Terrestrial Vegetation. 
Second edition. Cambridge University Press. p 75-121. 

Rehfeldt, G.E.; Crookston, N.L.; Warwell, M.V.; Evans, J.S. 2006. Empirical analyses of 
plant-climate relationships for the western United States. International Journal of 
Plant Science. 167: 1123-1150. 

Reineke, L.H. 1933. Perfecting a stand-density index for even-aged forests. Journal of 
Agricultural Research. 46: 627-638. 

Roberts, D.W.; Cooper, S.V. 1989. Concepts and techniques of vegetation mapping. Gen. 
Tech. Rep. INT-257. U.S. Department of Agriculture, Forest Service, 90-96 p. 

Schmid, J.M. 1981. Spruce beetles in blowdown. Research Note RM-141, U.S. 

USDA Forest Service Proceedings – RMRS-P-56 39.



 9

Department of Agriculture, Forest Service, 4 p.  

Schmid, J.M.; Frye, R.H. 1976. Stand ratings for spruce beetles. Research Note RM-309 
U.S. Department of Agriculture, Forest Service, 4 p. 

Schmid, J.M. and Frye, R.H. 1977. Spruce beetle in the Rockies. Gen. Tech. Rep. RM-49 
U.S. Department of Agriculture, Forest Service, Report, Rocky Mountain Forest and 
Range Experiment Station: 38 p.  

Shaw, J.D. 2000. Application of stand density index to irregularly structured stands. 
Western Journal of Applied Forestry. 15: 40-42.  

Shaw, J.D.; Long, J.N. 2007. A density management diagram for longleaf pine stands 
with application to red-cockaded woodpecker habitat. Southern Journal of Applied 
Forestry. 31: 28-38.  

USDA. 2007. Interior West Forest Inventory and Analysis field procedures. Version 3.01. 
U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 
420 p.  

Veblen, T.T.; Hadley, K.S.; Nel, E.M.; Kitzberger, T.; Reid, M.; Villalba, R. 1994. 
Disturbance regime and disturbance interactions in a Rocky Mountain subalpine 
forest. Journal of Ecology. 82: 125-135.  

 
 

USDA Forest Service Proceedings – RMRS-P-56 39.



 
8

 
T

ab
le

 1
: 

 F
or

es
t I

nv
en

to
ry

 a
nd

 A
na

ly
si

s 
da

ta
 fr

om
 E

ng
el

m
an

n 
sp

ru
ce

 p
lo

ts
 b

y 
st

at
e.

  

S
ta

te
 

# 
p

lo
ts

 
S

p
ec

ie
s 

p
re

se
n

ta  
T

re
es

 p
er

 a
cr

e 
 

B
as

al
 a

re
a 

(f
t2 ) 

 
S

ta
n

d
 d

en
si

ty
 in

d
ex

 
S

ta
n

d
 d

en
si

ty
 in

d
ex

 r
at

io
 

 
 

 
- 

- 
- 

ra
ng

es
 -

 -
 -

 
A

riz
on

a 
10

5 
W

F
, C

F
, S

F
, L

M
, P

P
, D

F
, A

S
  

36
 –

 7
05

 
54

 –
 3

38
 

54
 –

 5
75

 
0.

39
 –

 0
.9

8 
C

ol
or

ad
o 

58
7 

W
F

, C
F

, S
F

, L
P

, L
M

, P
P

, D
F

, A
S

  
12

 –
 8

60
 

6 
– 

36
7 

12
 –

 6
40

 
0.

06
 –

 0
.9

9 
Id

ah
o 

54
8 

G
F

, S
F

, W
L,

 W
B

P
, L

P
, L

M
, W

W
P

, 
P

P
, D

F
, W

R
C

, W
H

, A
S

  
12

 –
 6

25
 

5 
– 

34
8 

8 
– 

45
2 

0.
06

 –
 0

.9
8 

M
on

ta
na

 
81

9 
G

F
, S

F
, W

L,
 W

B
P

, L
P

, L
M

, W
W

P
, 

P
P

, D
F

, W
R

C
, W

H
, A

S
  

3 
– 

82
1 

7 
– 

32
7 

10
 –

 5
28

 
0.

04
 –

 1
.0

 

N
ev

ad
a 

4 
W

F
, L

M
, D

F
, A

S
  

88
 –

 4
12

 
63

 –
 2

23
 

99
 –

 3
46

 
0.

25
 –

 0
.5

5 
N

e
w

 M
ex

ic
o 

10
1 

W
F

, C
F

, S
F

, L
M

, P
P

, D
F

, A
S

  
30

 –
 8

76
 

18
 –

 3
54

 
32

 –
 6

48
 

0.
35

 –
 0

.9
8 

U
ta

h 
34

5 
W

F
, S

F
, L

P
, L

M
, P

P
, D

F
, A

S
  

7 
– 

95
0 

8 
– 

28
0 

13
 –

 4
98

 
0.

06
 –

 1
.0

 
W

as
hi

ng
to

n 
6 

G
F

, S
F

, W
L,

 L
P

, W
W

P
, D

F
, W

R
C

, 
W

H
,  

19
9 

– 
54

2 
77

 –
 1

38
 

13
2 

– 
27

4 
0.

48
 –

 0
.8

3 

W
yo

m
in

g 
38

8 
S

F
, W

B
P

, L
P

, L
M

, P
P

, D
F

, A
S

  
12

 –
 7

62
 

11
 –

 3
43

 
16

 –
 5

50
 

0.
04

 –
 0

.9
8 

a 
Sp

ec
ie

s c
od

es
: E

S 
– 

En
ge

lm
an

n 
sp

ru
ce

, S
F 

– 
su

ba
lp

in
e 

fir
, C

F 
– 

co
rk

ba
rk

 fi
r (

Ab
ie

s l
as

io
ca

rp
a 

(H
oo

k.
) N

ut
t. 

va
r. 

ar
iz

on
ic

a 
(M

er
ria

m
) L

em
m

on
 A

S 
– 

as
pe

n,
 W

B
P 

– 
w

hi
te

ba
rk

 p
in

e,
 L

M
 –

 li
m

be
r p

in
e,

 L
P 

– 
lo

dg
ep

ol
e 

pi
ne

, D
F 

– 
D

ou
gl

as
-f

ir,
 W

L 
– 

w
es

te
rn

 la
rc

h 
(L

ar
ix

 o
cc

id
en

ta
lis

 N
ut

t.)
, W

F 
– 

w
hi

te
 fi

r (
Ab

ie
s c

on
co

lo
r (

G
or

d.
 A

nd
 G

le
nd

.) 
H

ild
eb

r.)
, G

F 
– 

gr
an

d 
fir

 (A
bi

es
 g

ra
nd

is
 (D

ou
gl

. e
x 

D
. D

on
) L

in
dl

.),
 P

P 
– 

po
nd

er
os

a 
pi

ne
 (P

in
us

 p
on

de
ro

sa
 D

ou
gl

. e
x 

La
w

s.)
, W

H
 –

 w
es

te
rn

 h
em

lo
ck

 (T
su

ga
 h

et
er

op
hy

lla
 

(R
af

.) 
Sa

rg
.),

 W
R

C
 –

 w
es

te
rn

 re
dc

ed
ar

 (T
hu

ja
 p

lic
at

a 
D

on
n 

ex
 D

. D
on

). 
 

  U
S

D
A

 F
or

es
t S

er
vi

ce
 P

ro
ce

ed
in

gs
 –

 R
M

R
S

-P
-5

6
39

.



 10

 
 

Table 2:  Independent variables describing structure, composition, and site used in logistic 
regression models  
Independent variable Description  
Structural  

Trees per acre  Absolute density  
Stand density index (summation) Relative measure of stand density (Shaw 2000)  
Stand density index ratio  Ratio of summation stand density index to Reineke stand 

(Long and Shaw 2005) density index (Reineke 1933), 
index of structural diversity  

Stand basal area  Measure of stocking  
Quadratic mean diameter  Geometric mean of stand diameter  

Compositional  
Species basal area Individual species basal area  
Percent stand density index by 
species  

Percent composition of each species present on the 
spruce plot  

QMD of Engelmann spruce  Geometric mean diameter for spruce component only  
QMD of Engelmann spruce 
greater than 10 inches 

Mean of stand diameter for all Engelmann spruce greater 
than 10 inches  

Site  
Elevation  Height above sea level  
Site index  Measure of site potential productivity based on tree 

height and age 
Aspect value  Moisture index*  
Slope  Steepness of the plot 
Stand age  Age of the plot  
Latitude  North  
Longitude  West  

*Aspect value = [Cos((aspect-30)/180*3.14)+1]/2 (Roberts and Cooper 1989)  

 

USDA Forest Service Proceedings – RMRS-P-56 39.



 11

 

 
 

Figure 1:  Representation of species which co-occur with Engelmann spruce on at least 100 of the 
FIA spruce plots (total spruce plots, n = 2093). For species identification see Table 1.  

 

USDA Forest Service Proceedings – RMRS-P-56 39.



 12

 
 
Figure 2:  Map of the distribution of Engelmann spruce in the Intermountain West based on FIA 
data (n = 2093). Plots with spruce beetle, aspen, and lodgepole pine are also shown.  
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Figure 3:  Frequency distribution of Engelmann spruce plots (n = 2093) juxtaposed with 
Engelmann spruce plots that had spruce beetle (n = 175) over latitude.  
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Figure 4:  Frequency distribution of Engelmann spruce plots (n = 2093) juxtaposed with 
Engelmann spruce plots that had spruce beetle (n = 175) over thousand foot elevation bins. Spruce 
beetle plots as a percent of total Engelmann spruce plots by elevation bin in red showing the 
disproportionate number of spruce beetle plots in the 9000 – 11000 elevation range.  
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Evaluating Cypress Sustainability—FIA Data 
“In the Hot Seat”

Mark J. Brown1

Abstract: The use of cypress (Taxodium species) for mulch boomed during the 1990s, 
and its growth in popularity created concerns about the sustainability of cypress forests 
in the Southern United States. A combination of factors, including Hurricane Katrina, 
cypress harvesting practices, and the unique requirements for successful regeneration of 
cypress drew media attention and fueled debates over sustainability of cypress forests.  
The wood industry, Federal, State, and local governments, academia, environmental 
and conservation organizations, and retailers all became entangled in the issue. 
This eventually culminated in proposed legislation to place a moratorium on cypress 
harvesting and the decision by at least one large retailer to cease selling cypress mulch 
that was produced in Louisiana. These factors launched an intensive search for viable 
data about the cypress resource. Requests for Forest Inventory and Analysis (FIA) 
cypress data escalated. This paper describes the challenges FIA encountered in meeting  
the need to quantify trends in the cypress resource despite changes in inventory methods, 
forest-type defi nitions, plot design, processing algorithms, sample intensity, etc. The 
paper explains the constraints that were overcome to report region-wide cypress data and 
to develop a Southwide cypress factsheet. It also shows how FIA data was used to provide 
State level cypress trends, focusing on Florida as an example. 

Keywords: Cypress-tupelo forest type, cypress volume, factsheets, FIA, forums, mulch, 
sustainability.

Introduction—Background on Cypress Mulch

 Traditionally, cypress has been used for lumber. Popular uses included 
siding, decking, and trim work. Entire houses and even boats were built with 
cypress lumber. More recently, the use of cypress as a mulch has increased. 
Originally composed of cypress edgings, shavings, and mill residues, its increased 
popularity, due to its perceived durability, increased demand. This led to the 
use of low quality saw log and small diameter whole tree utilization for mulch. 
Ironically, old growth cypress heartwood lumber earned the decay-resistant 
reputation, yet evidence exists that second growth wood does not possess these 
qualities to the same degree (U.S. Department of Agriculture Forest Service 
Forest Products Laboratory). Cypressene is the natural oil in the wood that resists 

1 United States Forest Service; Southern Research Station; Forest Inventory and Analysis; 4700 Old Kingston 
Pike; Knoxville, TN 37919 USA; mbrown03@fs.fed.us
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insects and decay (Campbell and Clark 1960) and is the basis of the heartwood 
reputation. Decomposition rates suggest that much of the cypress mulch was 
actually little better than some other types of mulch, such as pine bark (Duryea 
and others 1999). Nevertheless, the cypress mulch industry boomed and demand 
for cypress mulch persists. 

The Controversy—Sustainability

 Opposition to the use of cypress for mulch has swelled among environmental 
organizations since the 1990s. Media attention was drawn to the issue and focused 
on the perceived threat to survival of the forest type. This concern emanates 
from two basic premises surrounding the species. First, there is a perception that 
cypress stands are not being regenerated after harvest. This is fueled by the unique 
silvics of cypress and the sites on which they occur. Cypress is one of the few 
softwoods capable of stump sprouting, but not all stumps resprout. Resprouting 
ranges from one-quarter to one-half of the former stand (Randall and others 
2005). Natural regeneration from seed varies greatly and is keyed to unpredictable 
water level fl uctuations (Brandt and Ewel 1989). Although guidelines exist for 
planting cypress (Vince and Duryea 2004), there is little evidence that it occurs on 
a large scale.

 Second, the facts that cypress typically grows on wetland sites and that many 
of these sites fall under federal jurisdiction (Section 404 of the Clean Water Act), 
complicate the issue and highlight environmental sensitivities. 

 The quest for accurate information on Southwide trends in the cypress 
resource developed from all sides of the controversy. Immediately apparent was 
the limited data available to track cypress forests and a paucity of research 
beyond the species’ physiology, wood value, and regenerative capabilities. This 
gap in knowledge was unlike that for other softwoods in the South, especially 
the southern yellow pines (loblolly, slash, and longleaf). Hanging in the balance 
and threatening the cypress mulch industry, were important decisions by major 
retailers involving the sale of cypress mulch and by some State governments 
concerning moratoriums on cypress harvesting. Any suspension of sales or 
harvesting would likely lead to the demise of the cypress mulch industry. 

 Demands for data to establish the facts about the extent of and trends in the 
cypress resource were signifi cant enough to cause the U.S. Forest Service (USFS) 
Southern region to seek a rapid assessment of the cypress resource. 

Analysis of Constraints—Solutions

 The USFS Forest Inventory and Analysis (FIA) program was the main and 
obvious source for broadscale data related to forests. Therefore, the Southern 
region requested FIA data regarding cypress sustainability for use in the rapid 
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assessment. However, only limited information was available in the FIA data. One 
reason this occurred is that FIA historically collected cypress acreage information 
based on the oak-gum-cypress forest-type category. Use of this category always 
overestimates actual cypress forest acreage because it includes acres of all 
bottomland hardwood stands, gum stands, cypress stands, and various other 
mixtures. FIA developed a cypress-tupelo forest-type defi nition, but it included 
pure tupelo stands along with pure cypress and any mixed stands. The cypress-
tupelo forest type essentially captures all stands where cypress or tupelo equal 25 
percent or more of the stocking (U.S. Department of Agriculture 2007). 

 In order to address issues identifi ed with the burgeoning cypress mulch 
industry, a preliminary defi nition of the cypress type fi rst materialized in FIA 
with the 1995 Florida’s Forests report (Brown 1999). Stocking levels were used 
to establish a threshold beyond which a stand would be called a cypress type. 
This format was similar to the threshold used to change an oak-pine type to 
one of the individual pine forest types and was based on 50 percent and greater 
stocking of the particular species. The new cypress forest-type data was limited 
to Florida. Pre-1995 cypress data for Florida was developed solely for the 1995 
report and did not exist previously. As a result, recent requests for trends in area 
of cypress have been limited even in Florida and diffi cult to address across the 
remaining southern States. Eventually, interest in cypress led FIA to implement a 
permanent cypress forest-type defi nition in the early 2000s. However, many States 
were either between surveys or in transition to annual inventories and all did not 
implement the type simultaneously. Thus, the solution for the rapid assessment 
was to use the cypress-tupelo type for a general area trend analysis of the extent of 
cypress in the South. At least the cypress-tupelo type would represent all the acres 
in a cypress forest type plus a (typically) small percentage in tupelo. In addition, a 
map was produced depicting the distribution of all sample plots with one or more 
cypress trees recorded (fi gure 1) in the 13 States of Alabama, Arkansas, Florida, 
Georgia, Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, South 
Carolina, Tennessee, Texas, and Virginia. Except for west Texas, the distribution 
emulated the native range of cypress (Burns and Honkala 1990).

 Volume of cypress could be ascertained because FIA had the capability of 
tracking volume of any individual species by compiling estimates from single 
trees throughout the sample base. Therefore, trends in volume were obtainable 
and sourced from the FIA database (FIADB) through the FIA mapmaker Web 
application (Miles 2008). The former lack of a cypress forest type is probably 
why volume was used in a similar analysis of the status of southern cypress in the 
1970s (Sternitzke 1972). At that time, evidence suggested the cypress resource 
was increasing after bottoming out during the housing boom shortly after World 
War II. Sternitzke touched on growth and removals for baldcypress, highlighting 
changes in Florida and Louisiana, while combining that for the remaining States. 
At the time of his analysis, baldcypress growth Southwide was 2.5 times that of 
removals. In 2008, FIA data showed that growth of all cypress in the South was 
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2.1 times that of removals. There was substantial variation among the States, as 
evidenced by Florida’s cypress growth at 1.5 times that of removals versus 0.8 
in North Carolina, 1.7 in Georgia, 2.3 in South Carolina, and 12.4 in Alabama. 
However, even State level data disguised large differences between subregions 
of a State. For instance, in the four regions of Florida, cypress growth ranged 
from 4.4 times removals in the northwest panhandle, 2.9 in central Florida, 1.3 
in northeast Florida, and just 0.6 times removals in south Florida. These are 
growing-stock numbers that can be compared with Sternitzke’s use of growing 
stock. In order to avoid any subtle inaccuracies in applying growing-stock 
standards, FIA’s all-live volumes were used in the rapid assessment for current 
reporting purposes. 

 Bald and pondcypress were combined in the assessment to avoid two potential 
pitfalls in the data. First, this precludes misidentifi cation between the bald and 
pondcypress species, particularly in light of some intergrades between the two. 
Second, Florida contains sizable populations of pondcypress compared with other 
southern States. 

 Immediately obvious were the differences between the States in year of 
inventory data available for use in the assessment. On an individual State basis, 
analysis of the cypress resource within a State was easier and mostly limited 
by the timeframe of the surveys which determined if any trends in area could 
be established. Whether considering area or volume, the validity of individual 
State analysis was dependent on the degree of prevalence of cypress within 
that State. If cypress occurrence were minimal, as was the case in Oklahoma, 
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Figure 1: Distribution of FIA sample plots where one or more cypress trees were recorded.
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Kentucky, Virginia, and Tennessee, then sampling errors around the data were 
too high for statistically reliable estimates to stand alone. This justifi ed the 
Southwide approach to reporting on the cypress resource. However, since Florida 
and Louisiana contain more than one-half of the South’s cypress resource, both 
in area and in volume, either of these States could be evaluated individually 
with some degree of reliability. The disparity in date of surveys among the 13 
States precluded declaration of Southwide trends between two specifi c years. It 
required stating any Southwide trends between an aggregation of the 13 States’ 
“latest” surveys to an aggregation of the 13 States’ “previous” surveys’ data. 
This problem and solution was not limited to area, but involved the otherwise 
preferable volume comparison method as well. 

 It was diffi cult to ascertain trends in area because of the historical lack of a 
cypress forest-type defi nition and the varying dates per State at which a defi nition 
was fi nally enacted in the data collection. The randomness of the timing and date 
of the previous periodic surveys dictated whether or not a particular State would 
have a valid area trend for cypress. Interest was higher among data seekers and 
lay people for area information, thus inclusion of “best we could” area estimates 
and trends into the assessment output despite all the anomalies involving the 
use of area (fi gure 2). Confi dence intervals were withheld for area trends due to 
variances in obtaining the older data.

State and year
AL AR FL GA KY LA MS NC OK SC TN TX VA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

´00 ´06 ´95 ´06 ´95 ´06 ´97´05 ´88 ´05 ´91´05 ´94 ´06 ´02 ´05 ´93 n/a ´01´06 ´99 ´05 ´92´06 ´92´06

Ar
ea

 (m
illi

on
 a

cr
es

)

Figure 2: Area trends of cypress-tupelo timberland by State (based on available data) and 
year.
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 Trends were more easily obtained for cypress volume, which is why the rapid 
assessment relied on volume to best indicate sustainability trends. Confi dence 
intervals were included in the portrayal of volume information (fi gure 3). To 
reiterate however, State level volume data often subdued differences between 
subregions of a State. As in the case of Florida, where more of the cypress volume 
occurred in the Northeast and Central regions, between the latest two surveys 
it increased slightly in the Northwest region while remaining almost stable in 
the Central part of the State and decreasing in the Northeast and South regions 
(fi gure 4). 

 Throughout FIA reporting and with the FIADB, clients are cautioned against 
using small subsets of the data. Ironically, analysis of cypress was a subset of FIA 
survey data in that the cypress-tupelo forest type comprised < 2 percent of the 
total timberland in 11 of the 13 southern States. Even in the two States where it 
was most prevalent, it comprised < 7 percent of the total timberland present. 

 In the initial analysis, we planned to assess the growth and removal situation 
for cypress at localized levels. However, these further subsets of data were too 
troublesome to contend with for a rapid broadscale general assessment of the 
resource. These factors are part of the reason why the analysis was limited to 
area of cypress-tupelo forest type and volume of cypress species and ownership. 
Incorporating growth and removals further reduced the sample to a smaller and 
less reliable subset of data. As it were, just with volume and area, several States 
declined in cypress-tupelo area but their volume of cypress rose or remained 
almost steady. These trends were inexplicable or defi ed logic. The many 
differences between the periodic surveys and the annual surveys complicated or 
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Figure 4: Volume of cypress in Florida, by region and year.

hindered accurate analysis of survey data. For example, in contrast to the fi xed 
radius plots of the newest surveys, samples in many of the older surveys were 
based upon variable radius plots and a 37.5 factor prism for inventory. In addition, 
in 5 of the 13 southern States administered by the old Southeastern Forest 
Experiment Station, sample intensity was considerably higher. Instead of the 
current 5,700 acres per plot sample intensity implemented in annual inventories 
across the South, samples in Coastal Plain regions of the fi ve southeastern States 
occurred on every 2,800 acres.
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Conclusions

 Between the latest two surveys, area of cypress forest type declined in 8 of 13 
States, rose in 3, and there was insuffi cient data for 2 (Kentucky and Oklahoma). 
Volume of cypress was up in 8 of 13 States, down in 4, and there was no data in 
1 (Oklahoma). Broadscale fi ndings such as these, often are unable to illuminate 
possible localized countervailing trends in both area and volume. Increases in 
a few areas of the South offset losses in others and ameliorated totals at the 
regional or State level. For instance, growth exceeded removals at the State level 
in Florida, but in south Florida removals were in excess of growth, which poses 
some concern for continued sustainability of the resource at the former levels of 
utilization in that part of the State. 

 Southwide, the cypress resource appears stable. Ultimately, the sustainability 
of the cypress resource will largely be driven by what happens to it in Florida 
and Louisiana. Together, these two States contain more than one-half of all 
cypress acreage and volume in the South. Southwide, one-fourth of the cypress-
tupelo area is publicly owned and somewhat less subject to change. Most of 
the sustainability issues will be related to what happens on the three-fourths of 
the cypress-tupelo acreage and the cypress volume that is privately owned. The 
broadscale regional and even State level data do mask declines in some sub-
State areas. Even in Florida and Louisiana, sub-State evaluations quickly became 
weaker due to diminishing sample sizes. There also are some indications that 
stability of the resource wanes in some sub-State areas. 

 Ultimately, the constraints of weaknesses at small scales or subsets along with 
inconsistent availability of surveys with cypress forest type defi ned, required that 
the assessment be limited to trends in area and volume and adhere to the more 
broad State level and Southwide facts regarding the cypress resource. Although 
growth and removals relationships are in demand, to increase reliability, we 
focused on trends in total volume, and used area changes as a way of grasping the 
extent to which changes occur to the cypress resource. In lieu of a publication per 
se, a more concise and highly graphic factsheet format (Greis and Brown 2008) 
was chosen to quickly portray the status of the South’s cypress resource. 
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Use of Damage Surveys and Field Inventories 
to Evaluate Oak and Sugar Maple Health in 

the Northern United States 
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Abstract: Oak species (Quercus spp.) and sugar maple (Acer saccharum) are substantial 

components of the forest ecosystems in the 24-state region spanning the northern U.S.  

During recent decades, both damage surveys and forest inventories have documented 

declines of sugar maple and oak health.  In order to more fully assess the status of oak 

and sugar maple health, we examined correlations between damage detected by aerial 

survey data, a soil dryness index, and field-based forest conditions.  Study results 

indicated that aerial damage surveys were correlated with an overstory attribute: percent 

standing dead basal area.  Additionally, we present a state-level analysis as an example 

of how this study could be replicated for inclusion in a Forest Inventory and Analysis 

state report. 

 

Keywords: FIA, forest health, aerial damage surveys, oak decline, sugar maple decline, 

Acer saccharum, Quercus spp. 

 

 

Introduction 
 

Oak species (Quercus spp.) and sugar maple (Acer saccharum) are substantial 

components of the forest ecosystems in the 24-state region spanning the northern 

U.S.  During recent decades, both forest inventories and aerial damage surveys 

have documented declines in sugar maple and oak health. 

It has been suggested that North America’s oak forests may be in an extended 

period of poor growth and susceptibility to invasive pests and droughts (Kessler 

1992), a situation that has been a national forest health problem since 1960 

(Thomas and Boza 1984).  Oak decline results from the interaction of 

predisposing stress factors (defoliating insects, drought, frost/ice damage, poor 
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ABSTRACT: Optimal locations for biomass facilities that use mill residues are identified 
for 13 southern U.S. states. The Biomass Site Assessment Tool (BioSAT) model is used to 
identify the top 20 locations for 13 southern U.S. states. The trucking cost model of 
BioSAT is used with Timber Mart South 2009 price data to estimate the total cost, 
average cost, and marginal costs for biomass facilities that use mill residues for up to 1.5 
million dry tons of annual consumption. Demand locations are based on the U.S. Census 
Bureau zip code tabulation areas (ZCTA). There are 9,353 zip code tabulation areas 
(ZCTA) in the 13-state study region. Demand point location based on a ZCTA offers an 
improvement in truck cost estimates when compared to demand point location based on a 
county centroid. The top 20 ZCTAs in the study region are located in south Mississippi, 
southeast Georgia, southeast Oklahoma, southwest Alabama, and east Texas. Costs in 
these areas range from $25 to $38 per dry ton for up to 1.5 million annual dry tons. 
 
Additional research on BioSAT is forthcoming for 33 eastern U.S. states. These studies 
will include more types of woody and agricultural biomass (e.g., logging residues, 
pulpwood, corn stover, etc.).  Additional cost models for transportation such as truck 
combinations with rail and barge will be components of BioSAT. 
 
 
KEYWORDS: Biomass, economic availability, siting model, BioSAT, mill residues. 
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INTRODUCTION 
 

The 20th century was marked by rapid growth and an increase in prosperity 
throughout the world.  Even though there is a current global economic recession 
with declines in oil and other fossil fuel prices, fossil fuel supply chains remain 
sensitive to disruption from unanticipated geo-political events.  A resurgence of 
emerging economies in the future will most likely increase the future demand for 
fossil fuels that exist in complex geopolitical areas.  By 2030, some experts 
predict the world’s energy consumption will be 50 percent higher than it is today 
(International Energy Outlook 2008).  As noted in the USDA Forest Service 
Woody Biomass Utilization Strategy, using woody biomass for renewable energy 
contributes to the Nation’s energy independence (USDA Forest Service 2008).  
The woody biomass removed during ecological restoration, wildfire risk 
reduction, and conventional silvicultural activities can become a source of energy 
that are renewable and contribute to U.S. energy independence (USDA Forest 
Service 2008).        
 
The forest products industry is an established user of wood wastes and residues 
for energy generation and is the major supplier of bioenergy in most of the 
developed world (Sedjo 1997).  The proximity of wood wastes to forest products 
mills makes it a sensible solution for energy production.  The emerging bioenergy 
industry can learn from the forest products industry in the procurement of forest-
based biomass.  Economic benefits may arise from a synergistic coexistence 
between the established forest products industry and the emerging bioenergy 
industry. 
 
The development of any new industry involves the establishment of many 
relationships (Altman and Johnson 2008).  Assessing the economic capability and 
stability of the bioenergy supply infrastructure is essential for market organization 
of this emerging industry and is addressed by this study.  Perlack et al. (2005) 
indicate that the nation’s forests represent a strategic asset in meeting the national 
goal of replacing 30 percent of the domestic petroleum consumption by 2030.  
Even though research has been conducted which estimates the economic 
availability of biomass (Young and Ostermeier 1989, Young et al. 1991; Lunnan 
1997; Walsh 1998, 2000; DiPardo 2000; Ugarte et al. 2000, 2006, 2007; Western 
Governors Association 2008; Biomass Research and Development Board 2008), 
additional research on the economics of biomass energy in the context of web-
based user tools would benefit bioenergy research and provide practitioners with 
useful information.  An emphasis on the development of web-based information 
tools for policy makers, planners, and investors is essential for facilitating market 
organization. 
 
The study presented in this paper develops estimates of the marginal costs curves 
and supply curves for mill residues, and identifies optimal sites for mill residue 
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using facilities for 13 southern U.S. states.2  Future studies will be expanded for 
20 additional eastern U.S. states.3  The resolution of the study is the “zip code 
tabulation area” or ZCTA (U.S. Census Bureau 2000).   
 
The study is on-going and all objectives are not complete.  The objectives of the 
overall study are: 1) develop a Microsoft SQL database of resource data (forest, 
mill residue, and agricultural feedstocks); 2) develop resource costs for the 
database; 3) develop a transportation cost model for database; 4) develop a 
harvesting cost model for database; 5) develop a web-based software of the 
system (e.g., www.BioSAT.net); and 6) update of key input data, e.g., diesel 
prices, mill residue prices, FIA data, etc., as necessitated. 
 

METHODS 
 
A model for siting biomass processing facilities (“BioSAT”) is developed in the 
study (Figures 1A, 2A, and 3A in Appendix).  The model has three cost 
components (i.e., resource, harvesting, and transportation) which are discussed in 
more detail this section.  Forest resource data are obtained from the USDA Forest 
Service current FIA inventory data (U.S. Department of Agriculture, Forest 
Service 2008).  Agricultural resource data development is on-going and will be 
obtained from state and federal reporting agencies.   
 
Forest Resource Data 
 
County level estimates of all-live total biomass, as well as average annual growth, 
removals, and mortality are obtained from the Forest Inventory and Analysis 
Database (FIADB) version 3.0 (U.S. Department of Agriculture, Forest Service,   
2008).  The latest complete cycle of data for each state is used (Table 1).  New 
FIA data, when available, will be updated in the BioSAT model.  Estimates of 
mill residues, urban waste, logging residuals, thinnings, and other removals are 
obtained from the Billion Ton 2 (BT2) study (Perlack et al. 2005).  All data in 
green tons are converted to dry tons in the analyses.   
 
County level estimates are allocated to “zip code tabulation areas” (ZCTA’s) 
based on area proportionality, e.g., if a ZCTA accounts for ten percent of a 
county, ten percent of the county’s data are assigned to that ZCTA.  If a ZCTA 
boundary crosses multiple counties, proportions for each county are summed.   
 
ZCTA’s are based on the 2000 census definition and are obtained from the U.S. 
Census Bureau (U.S. Census Bureau 2000).  Area proportionality is performed 
using ArcGIS (http://www.esri.com/software/arcgis/ Accessed January 5, 2009), 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, 
Oklahoma, South Carolina, Tennessee, Texas, and Virginia. 
3 Connecticut, Delaware, Illinois, Indiana, Iowa,  Maine, Maryland, Massachusetts, Michigan, 
Minnesota, Missouri, New Hampshire, New Jersey, New York, Ohio, Pennsylvania, Rhode Island, 
Vermont, West Virginia, and Wisconsin 
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which produces a file containing ZCTAs, county Federal Information and 
Processing Standard (FIPS) codes, and the percentage each county has in the 
ZCTAs.  An ORACLE™ database (http://www.oracle.com/database/index.html  
Accessed January 5, 2009) is created for this file of FIA and BT2 county level 
data.  ZCTA level estimates are derived from the information in this database. 
 
TABLE 1.  State and year of USFS FIA inventory data. 

State Year State Year 

Alabama 2007 Nebraska 2006 

Arkansas 2007 New Hampshire 2006 

Connecticut 2005 New Jersey 2006 

Delaware 2006 New York 2006 

Florida 2006 North Carolina 2006 

Georgia 2007 North Dakota 2007 

Illinois 2006 Ohio 2006 

Indiana 2007 Oklahoma 1993 

Iowa 2006 Pennsylvania 2006 

Kansas 2006 Rhode Island 2006 

Kentucky 2006 South Carolina 2006 

Louisiana 2005 South Dakota 2007 

Maine 2006 Tennessee 2006 

Maryland 2006 Texas 2007 

Massachusetts 2006 Vermont 2006 

Michigan 2007 Virginia 2007 

Minnesota 2007 West Virginia 2006 

Mississippi 2006 Wisconsin 2007 

Missouri 2006 

 
As ZCTAs do not account for all zip codes, a file containing all possible zip codes 
as of January 31, 2008 is used from zip-codes.com (http://www.zip-codes.com/ 
Accessed January 5, 2009).  This file contains the zip code, latitude, and longitude 
of the mail office associated with each zip code.  These points are then assigned to 
the corresponding ZCTA.  Users can query using any zip code, although the 
results are based on ZCTAs. i.e., there are 33,568 zip codes and 24,795 ZCTAs in 
the 33-state study region. 
 
Confidence bounds of individual county level FIA data can be wide.  Therefore, 
estimates of individual ZCTAs are not used in this study, but ZCTAs are 
aggregated together into larger groupings or “biosheds” where confidence bounds 
may be comparable to aggregate county groupings.  Confidence bounds of the 
resource supply in any given bioshed which is a grouping of ZCTAs do not offer 
any improvement over existing studies which aggregate county-level resource 
supply data.  However, using the ZCTA of a demand point offers improvement of 
confidence bounds of cost estimates when compared to existing studies which 
rely on estimates using the county centroid as a demand point.  Counties can be 
large and have geographic barriers that impact transportation time and distance 
(e.g., bridges over large waterways, mountains, large metropolitan areas, etc.).  
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Using the ZCTA of a demand point with the transportation network from a 
grouping of supply ZCTAs will improve the estimate of costs relative to using the 
centroid of the county as the demand point. 
 
Land use of both counties and ZCTAs are not considered in the current study, i.e., 
a zip code may be predominately urban, but it will receive the amount of 
resources assigned to it based solely on area proportion.  Future studies and 
enhancements of the BioSAT model will attempt to recognize county and zip 
code land type, and hence the allocation of resources to a ZCTA.  All areas 
classified as water and unproductive lands are removed from all datasets before 
the area proportionality process is performed. 
 
Resource Costs 
 
Resources cost data (e.g., stumpage, mill residue prices, log prices, etc.) for the 
southeastern U.S. are obtained from Timber Mart South (TMS), see 
http://www.tmart-south.com/tmart/ (Accessed January 12, 2009).  TMS mill 
residue price data (e.g., hardwood sawdust, pine sawdust, and pine shavings) for a 
state are allocated equally to all ZCTAs.  There are currently no estimates for 
logging residue stumpage in the model. 
 
Resource cost data in the northern U.S. are obtained from multiple sources (Table 
2).  A significant constraint for resource cost data in these northern regions is the 
absence of a regional price reporting system similar to TMS.  This research is on-
going and results for the northern regions are not reported in this paper.  
 
Transportation Costs 
!
Transportation Network: 
 
Microsoft© MapPoint® 2006 (http://www.microsoft.com/MapPoint/en-
us/default.aspx  Accessed January 5, 2009) is used in BioSAT to provide the 
shortest travel time routes and distances between ZCTAs.  Road networks in 
MapPoint® are a combination of the Geographic Data Technology, Inc. (GDT) 
and Navteq data.  GDT data are used for rural areas and small to medium size 
cities.  Navteq data are used for major metropolitan areas. 
 
The GDT data are based on “Tele Atlas Dynamap Streets” which is designed for 
address level geocoding (http://www.teleatlas.com/index.htm Accessed January 
12 2009).  When an address level geocode is not available the GDT data set uses 
cascading accuracy at the ZIP+4, ZIP+2, and ZIP Code centroid to return the 
highest level of geocode for the address.  ZIP code boundary data are based on the 
Dynamap/5-Digit ZIP code Boundary data from Tele Atlas North America.  It is 
designed to identify the boundaries of United States Postal Service ZIP Codes.   
 
Navteq maps provide a highly accurate representation of the detailed road 
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network including up to 260 attributes like turn restrictions, physical barriers and 
gates, one-way streets, restricted access, and relative road heights 
http://www.navteq.com/about/whatis.html Accessed January 12 2009). 
!
 
TABLE 2.  Price reporting sources in the northern 20 U.S. state region. 
State/Region Report Data Frequency weblink 

Connecticut Southern New 
England 

Stumpage 
Price 

Stumpage: 
Sawtimber (multiple 
species), fuelwood, 
pulpwood, biomass 

Quarterly http://forest.fnr.umass.edu/sne
spsr/reports/all%20reports.htm

 

Illinois Illinois Timber 
Prices 

Stumpage, FOB: 
Sawtimber (multiple 
species), pulpwood 

Bi-annual 
 

http://web.extension.uiuc.edu/f
orestry/il_timber_prices/index.

html
Indiana Indiana Forest 

Products Price 
Report 

Delivered: 
Sawtimber (multiple 
species), pulpwood 

Annual 
 

http://www.fnr.purdue.edu/exte
nsion/pricereports.shtml

Kentucky Kentucky 
Delivered 

Prices 

Delivered: 
Sawtimber (multiple 
species), pulpwood 

Quarterly 
 

http://www.forestry.ky.gov/prog
rams/utilize/Kentuckys+Growin

g+Gold+Bulletin.html
Maine Maine Annual 

Price Report 
Stumpage: 

Sawtimber (multiple 
species), fuelwood, 
pulpwood, biomass 

Quarterly 
 

http://www.state.me.us/doc/mf
s/pubs/annpubs.htm#stump

Massachusetts Southern New 
England 

Stumpage 
Price 

Stumpage: 
Sawtimber (multiple 
species), fuelwood, 
pulpwood, biomass 

Quarterly http://forest.fnr.umass.edu/sne
spsr/reports/all%20reports.htm

 

Michigan Michigan 
Stumpage 

Price Report 

Stumpage: 
Sawtimber (multiple 
species), fuelwood, 
pulpwood, biomass 

Quarterly 
 

http://www.michigan.gov/dnr/0,
1607,7-153-10368_22594-

81536--,00.html
http://www.michigandnr.com/ft
p/forestry/tsreports/Stumpage
PriceReports/12_Month_Stum

page_Price_Reports/
Minnesota Minnesota 

Forest 
Resources 

Report 

Stumpage: 
Sawtimber (multiple 
species), pulpwood 

 

Annual 
 

http://www.dnr.state.mn.us/for
estry/um/index.html

 

Missouri Missouri 
Timber Price 

Trends 

Stumpage: 
Sawtimber (multiple 

species) 

Quarterly 
 

http://mdc4.mdc.mo.gov/applic
ations/MDCLibrary/MDCLibrar

y2.aspx?NodeID=854
New 
Hampshire 

New 
Hampshire 
Average 

Stumpage  

Stumpage: 
Sawtimber (multiple 
species), pulpwood 

 

Bi-annual 
 

http://www.nh.gov/revenue/mu
nc_prop/avgstumpval.htm

 

Ohio Ohio Timber 
Prices 

Delivered: 
Sawtimber (multiple 

species) 

Bi-annual 
 

http://www.oardc.ohio-
state.edu/ohiowood/

 
Pennsylvania Pennsylvania 

Timber Market 
Report 

Stumpage, 
Delivered: 

Sawtimber (multiple 
species) 

Quarterly http://www.sfr.cas.psu.edu/TM
R/TMR.htm

 

Vermont Vermont 
Forest 

Quarterly 

Stumpage: 
Sawtimber (multiple 
species), fuelwood, 
pulpwood, biomass 

Quarterly 
 

http://stumpage.uvm.edu/stum
page.php

 

West Virginia West Virginia 
Timber Market 

Report 

Stumpage: 
Sawtimber (multiple 

species) 

Quarterly 
 

http://ahc.caf.wvu.edu/index.ph
p?option=com_wrapper&Itemi

d=116
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Trucking Costs:  
 
The current transportation cost model estimates trucking costs.  The analysis in 
this paper assumes dry-van storage trailers for trucking given that mill residues 
are the biomass type being hauled.  Other trailer types are planned in the trucking 
model for different biomass types, e.g., pulpwood, corn stover, switchgrass, etc.  
The final study will include additional truck/rail, rail, and barge cost models.    
 
The trucking cost model given in equations (1), (2), (3), and (4) is an adaptation 
of the model by Berwack et al. (2003).  Diesel fuel cost efficiencies; tire variable 
costs; tax and license fees; and management and overhead costs of the Berwack et 
al. (2003) model are modified for the BioSAT model.  Modifications to Berwack 
et al. (2003) model are made from a review of the model in October 2008 by three 
trucking companies4 and one wood-using company that requested anonymity.  
The trucking cost model is assumed to be for contract carriers of the biomass 
consuming company.  In most cases, contract carriers are the least cost form of 
truck transportation for a biomass consuming facility (personal communication: 
see footnote 2).   
 
Trucking costs are a function of: variables costs which are dependent on haul 
time; variable costs which are dependent on haul distance; fixed costs which are 
dependent on haul distance; and the quantity demanded at a ZCTA demand point.  
The following equations are presented for the cost model: 
  
    (1) 

 
where,   

 !
 , 

/ , r = 1….z,!
Cs = legal trailer capacity for s, 

 (i = 1….m), 
d = round-trip travel distance (i,j), 
i = demand ZCTA, i = 1…..m, 
j = supply ZCTA, j = 1…..n, 
m = total number of biomass supply ZCTAs, 
n = total number of biomass supply ZCTAs, 
r = route (i, j), r = 1….z, 
s = U.S. state, q = 1….33, 
t = round-trip travel time (i,j). 

  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"!Pemberton Truck Lines, Inc. (Knoxville, TN); Skyline Transportation, Inc. (Knoxville, TN); and Mason Dixon, 
Inc. (Scottsboro, AL). 
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      (2) 
 

where,   = diesel fuel cost for d for s of (i, j), 
  = maintenance and repair cost for d for (i, j), 

 = tire cost for d for (i, j). 
  
         (3) 

 
where,  = labor cost for t for s of (i,j), 
 

 ! (4) 
 

where,  = equipment cost for d for (i,j), 
 = tax for s for (i,j), 
 = license fee for s for (i,j), 
 = management and overhead cost for d for (i,j), 

 = insurance cost for s for (i,j). 
 
The variable cost inputs for the trucking model (e.g., diesel fuel, labor wages, 
etc.) are updated bi-monthly in the BioSAT model.  Minimum transportation 
travel times and distances between ZCTAs in a bioshed are estimated from 
Microsoft© MapPoint® 2006 (http://www.microsoft.com/MapPoint/en-
us/default.aspx Accessed January 5, 2009). 
 
Trucking costs of the BioSAT model are estimated using equations (1), (2), (3), 
and (4) between each supply ZCTA(j) and demand ZCTA(i) within a bioshed Qi.  
Trucking costs are sorted by least cost between each supply ZCTA(j) and demand 
ZCTA(i).  Trucking variable costs are a function of travel time between ZCTAs 
and trucking fixed costs are a function of travel distance between ZCTAs.  The 
least cost set of supply ZCTAs to meet a demand quantity are generally dependent 
on shortest travel time between a supply ZCTA(j) and demand ZCTA(i). 
!
Harvesting Costs 
 
Logging Residues: 
 
The BioSAT model uses the Subregional Timber Supply (SRTS) model to 
estimate and project logging residues in the southeastern U.S.  SRTS uses U.S. 
Forest Service FIA data to project timber supply trends based on current 
conditions and the economic responses in timber markets (Abt et al. 2000).   Abt 
et al. (2000) note SRTS is a partial equilibrium market simulation model that can 
be used to analyze various forest resource and timber supply situations.  It uses a 
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biological inventory projection model and a conventional supply/demand 
framework to project future timber prices and inventories given exogenous 
assumptions about land area and demand.   
SRTS was developed initially to provide an economic overlay to traditional 
timber inventory models, e.g., ATLAS (Mill and Kincaid 1992), and to develop a 
consistent methodology for disaggregating the impacts of national and global 
models, e.g., TAMM (Adams and Haynes 1996), that treated the South as a 
homogenous supply region (Abt et al. 2000).  Timber market and inventory 
modules are the two major SRTS model components.  Market parameters are first 
used to solve for equilibrium price changes, where the market is defined by all of 
the included subregions.  Price and supply shift information from the individual 
regions are used to calculate harvest change by subregion.   
 
The internal inventory module in SRTS is based on the GRITS model (Cubbage 
et al. 1990).  GRITS extrapolated forest inventories based on USDA Forest 
Service FIA estimates of timberland area, timber inventory, timber growth rates, 
and timber removals.  GRITS classifies data into 10-year age class groups by 
broad species group (softwoods and hardwoods) and forest management type 
(planted pine, natural pine, oak-pine, upland hardwood, and lowland hardwood). 
FIA data by species group, forest management type, and 10-year age class are 
summarized for each relevant region in the analysis.  Land area trends by forest 
management type are exogenous to the model.  Within a management type, the 
model can allocate harvest across age classes based on starting harvest 
proportions, current inventory proportions, or oldest age class first (Abt et al. 
2000).!
 
Logging Residue Costs: 
 
Even though logging residue estimates are not presented in this paper, the Fuel 
Reduction Cost Simulator (FRCS) as modified for the Billion Ton Study (Perlack 
et al. 2005) by Dykrsta (2008) will be used in future estimates from BioSAT to 
estimate the cost of harvesting logging residues (Fight et al. 2006; Stokes 1992).  
The original FRCS model was designed to simulate fuel-reduction treatments in 
the Interior West, where wildfire is a significant problem (Dykstra 2008).  The 
FRCS was substantially revised by Dykstra (2008) including the development of 
new procedures to simulate harvests in the North (North Central and Northeast), 
the South, and the coastal West as well as the Interior West.   
 
In the modified FRCS model the following harvesting operations are considered 
to collect biomass (Dykstra 2008):  
  

! Manual felling and whole-tree extraction, either with conventional  
skidders or with cable systems; the simulator uses cable systems if the 
average ground slope is 40% or more; 

! Mechanized felling and whole-tree skidding where mechanized felling 
is not used with cable yarding. 
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For ground-based logging, the FRCS model calculates the production rates and 
costs for both of the possible alternatives (manual felling and mechanized felling). 
The model then selects the lower-cost alternative for use in deriving the supply 
curve for the Billion Ton Study which is the same approach that will be used in 
the BioSAT model. 
 
The variable cost inputs for the FRCS model (e.g., diesel fuel, labor wages, etc.) 
are updated bi-monthly in the BioSAT model.  Forest resource input data is 
obtained from the USDA Forest Service current FIA inventory data and logging 
residue estimates are obtained from the SRTS model (Abt et al. 2000). 
 

RESULTS 
 

Mill Residue Economic Supply 
 
The physical supply of mill residues from U.S. Forest Service data indicates 
distinct regions in the 13-state study region that have high densities of mill 
residue for potential biomass using facilities (Figure 1).  BioSAT estimates the 
economic availability of such residues and is discussed in this paper. 
 

 
FIGURE 1.  Mill residue density by ZCTA for southern U.S. 

 
The trucking cost model component of the BioSAT model is used to generate 
total cost, average total cost, and marginal costs for up to 1.5 million dry tons of 
annual consumption of mill residues for 9,353 ZCTA demand points within the 
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13-state study region.  Marginal cost curves for trucking costs only are also 
generated from the model by ZCTA (Figures 2 and 3). 
 

 
FIGURE 2.  Marginal cost curves for trucking of mill residues by ZCTA in Alabama and Georgia for 
up to 1.5 million dry tons of consumption per year. 

 

 
FIGURE 3.  Marginal cost curves for trucking of mill residues by ZCTA in Mississippi and Louisiana 
for up to 1.5 million dry tons of consumption per year. 

 
A comparison of the marginal curves in Figures 2 and 3 for trucking costs indicate 
significant differences in marginal costs for some demand ZCTAs due to trucking 
expenses.  A key assumption of the BioSAT model is that transportation costs are 
a key cost factor in the location of biomass consuming facilities.   
 
This is illustrated in Figure 4 in the marginal cost curves for ZCTA 31305 
(Darien, GA) that includes trucking costs and TMS 2009 mill residue prices for 
that region.  For an annual consumption of up to 1.5 million dry tons of mill 
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residues the cost of procuring mill residues declined from $29.65 per dry ton in 
September 2008 (diesel price of $4.068 per gallon) to $28.67 per dry ton in 
January 2009 (diesel price of $2.228 per gallon).  This differential of $0.98 per 
dry ton may be a significant cost for a biomass facility in a highly competitive 
market.  The cost per ton for ZCTA 31305 (Darien, GA) for consumption 
between 500,000 and 1.5 million dry tons of consumption per year is given in 
Table 3.  Note that ZCTA 31305 (Darien, GA) is ranked in the 13-state study 
region as a low cost demand point for mill residues.   
 
There is more than 1.5 million dry tons of available mill residues in the bioshed 
for ZCTA 31305 (Darien, GA) but for illustration purposes only 1.5 million dry 
tons are presented in Figure 4.  The distinct shifts in the marginal cost curve in 
Figure 4 occur from larger travel times between the demand ZCTA(i) and supply 
ZCTA(j) after mill residues are procured from the preceding lower cost supply 
ZCTA(j).  It is assumed that mill residues are economically available if the 
demand ZCTA(i) buyer is willing to pay an additional price from the supplier.  
Given the 2008-2009 economic recession and the many mill curtailments and 
shutdowns of residue suppliers, the next version of the BioSAT model will allow 
the user to select a percentage of mill residues physically available before starting 
a cost estimation and search by ZCTA for a bioshed (e.g., 100%, 80%, 75%, 50%, 
etc.).       
   
 

 
FIGURE 4.  Marginal cost curves for trucking and mill residue costs for ZCTA 31305 (Darien, GA) 
for consumption up to 1.5 million tons per year. 
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TABLE 3.  Cost of mill residues in dry tons for ZCTA 31305 (Darien, GA). 

Dry Tons 
diesel $4.068/gal 

(Sept. '08) 
diesel $3.453/gal 

(Oct. '08) 
diesel $2.228/gal 

(Jan. '09) 

557141 $27.76 $27.43 $26.77 

564667 $27.78 $27.45 $26.79 

576221 $27.81 $27.48 $26.82 

607967 $27.89 $27.55 $26.90 

620670 $27.92 $27.59 $26.93 

624046 $27.93 $27.60 $26.94 

640828 $27.97 $27.64 $26.99 

641696 $27.98 $27.65 $26.99 

653744 $28.01 $27.68 $27.02 

656039 $28.02 $27.69 $27.03 

658074 $28.02 $27.69 $27.03 

675445 $28.07 $27.74 $27.08 

712447 $28.16 $27.83 $27.17 

712542 $28.16 $27.83 $27.18 

730901 $28.21 $27.88 $27.22 

888725 $28.55 $28.22 $27.56 

893656 $28.56 $28.23 $27.57 

893879 $28.56 $28.23 $27.57 

926886 $28.63 $28.30 $27.64 

938242 $28.65 $28.32 $27.66 

1009023 $28.78 $28.45 $27.80 

1016134 $28.80 $28.47 $27.81 

1029843 $28.82 $28.49 $27.83 

1045151 $28.85 $28.52 $27.86 

1080692 $28.91 $28.58 $27.92 

1111794 $28.97 $28.64 $27.98 

1151927 $29.04 $28.71 $28.05 

1204321 $29.12 $28.79 $28.14 

1266766 $29.22 $28.89 $28.23 

1267444 $29.22 $28.89 $28.24 

1268084 $29.22 $28.89 $28.24 

1268184 $29.22 $28.89 $28.24 

1278278 $29.24 $28.91 $28.26 

1282717 $29.25 $28.92 $28.26 

1286112 $29.26 $28.93 $28.27 

1292726 $29.27 $28.94 $28.28 
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1512672 $29.65 $29.32 $28.67 

1538662 $29.70 $29.37 $28.71 

1539276 $29.70 $29.37 $28.71 
 

Optimal Sites for Biomass Facilities that use Mill Residues  
 
Twenty low cost demand ZCTAs of mill residues for the 9,353 ZCTAs in the 13-
state study region are presented in Figure 5.  Southern Mississippi is a low cost 
region for a facility that consumes mill residues up to 1.5 million dry tons per year 
(ZCTAs 39653, 39436, and 39059).  There are also low cost ZCTAs for mill 
residue consumption of 1.5 million dry tons per year in southeast Georgia (ZCTA 
31305), southeast Oklahoma (ZCTA 74737), and southwest Alabama (ZCTA 
35448).  East Texas has two low cost ZCTA locations (ZCTAs 75534 and 77657) 
for mill residue consumption up to 1.5 million dry tons per year.       
 
 

FIGURE 5.  Top 20 ZCTA locations with county boundaries for mill residue consumption up to 1.5 
million tons consumption per year in the 13-state study region. 
 
 
A strength of the BioSAT model is that it estimates trucking costs as a function of 
the MapPoint® road network.  This is illustrated in Figure 6 for ZCTA 31305 
(Darien, GA) for annual consumption of mill residues of up to 1.5 million dry 
tons.  Some ZCTAs are located in very close proximity (gray color) to the east of 
the demand ZCTA (highlighted in blue) but are excluded from the model given 
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lack of mill residues and/or long travel-time road networks that incur high 
trucking costs.     
 
 
 

 
FIGURE 6.  Bioshed for ZCTA 31305 (Darien, GA) with road network for consumption of mill 
residues up to 1.5 million tons per year. 
 
 

CONCLUSIONS !
 

A study using the Biomass Site Assessment Tool (BioSAT) model for 
procurement of mill residues for 13 southern U.S. states is presented in this paper.  
The BioSAT model for mill residues assumes truck transportation with dry-van 
storage for a maximum one-way haul distance of five hours.  Mill residue prices 
are obtained from Timber Mart South.   
 
BioSAT has a trucking cost model that estimates costs as a function of the road 
network provided by MapPoint®.  Road networks in MapPoint® are a combination 
of the Geographic Data Technology, Inc. (GDT) and Navteq data.  County level 
estimates of all-live total biomass, as well as average annual growth, removals, 
and mortality are obtained from the Forest Inventory and Analysis Database 

15 
 

USDA Forest Service Proceedings – RMRS-P-56 42.



(FIADB) version 3.0.  The latest complete cycle of data for each state are used. 
Data in BioSAT are organized by 24,975 zip code tabulation areas (ZCTA) in 33 
eastern U.S. states.  ZCTAs are based on the U.S. Census Bureau 2000 census 
definition.           
Confidence bounds of the resource supply in any given grouping of ZCTAs 
(“bioshed”) does not offer improvement over existing studies which aggregate 
county-level resource supply data.  However, using the ZCTA as a demand point 
may offer improvement in cost estimates when compared to studies which use the 
county centroid as a demand point.  Counties can be large and have 
geographic/economic barriers that impact road networks (e.g., bridges over large 
waterways, mountains, large metropolitan areas, etc.).  Such geographic/economic 
barriers can increase the travel time and costs for transportation.   
 
Twenty low-cost ZCTA demand-points for annual consumption of mill residues 
up to 1.5 million dry tons are located in southern Mississippi, southeast Georgia, 
southeast Oklahoma, southwest Alabama, and east Texas.  Costs for these ZCTAs 
range from $25 per dry ton to $38 per dry ton for up to 1.5 million dry tons of 
annual consumption. 
 
Research on BioSAT is on-going and studies are forthcoming for 33 eastern U.S. 
states.  These studies will include different types of woody and agricultural 
biomass (e.g., logging residues, pulpwood, corn stover, etc.).  Additional cost 
models for transportation by truck with rail and barge intra-modal transfer will 
also be forthcoming. 
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Figure 1A: Illustrative flow chart of BioSAT data and models. 
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Figure 2A.  Flow Chart 1A, cost calculations for BioSAT model (trucking model only). 
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Figure 2A (cont).  Flow Chart 1A, cost calculations for BioSAT model (trucking model only). 

Figure 3A.  Draft of BioSAT model input page (www.BioSAT.net) 
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Mixed Multi-Scalar Methods to Assess Wood 
Biomass Availability on Family Forests in 

Virginia’s Southside 
 

M.D. Brinckman and J.F Munsell 
 
 

ABSTRACT: Interest in wood-based bio-energy production systems is increasing. Multi-
scalar, mixed-method approaches focusing on both biophysical and social aspects of 
procurable feedstock are needed. Family forests will likely play an important role in 
supplying forest-based biomass. However, access depends in large part on the 
management trends among family forest owners. This paper outlines proposed research 
to estimate feedstock availability in Virginia’s Southside using United States Forest 
Service Forest Inventory Analysis data, cluster modeling, silviculture guidelines, 
property-level samples, and landowner management intentions. Aims are to contrast 
property-level volumes as mediated by owner intentions with values derived using a 
landscape level analysis. 
 
KEYWORDS: Bio-energy, Forest Inventory Analysis, Theory of Planned Behavior, 
wood biomass, ethanol, family forests, disproportionality, silviculture. 
 
 

Introduction 
 

Rising energy costs, climate change, geopolitical instability, and widespread 
uncertainty about the future of fossil fuel are profoundly influencing energy 
strategies in the United States (US) (Duffield and Collins 2006). Expanding 
production of domestic renewable energy is gaining traction as a potential 
approach (Dincer 2000). As a result, interest in using wood to generate large-scale 
bio-energy has resurfaced. Forest-based biomass from private, family forests 
constitutes an increasingly popular component of wood-based energy solutions in 
the US (Munsell and Germain 2007).   

Forest-based bio-energy is advantageous for several reasons. Using food 
crops, such as corn, to produce bio-energy is highly controversial (Pimentel 
2003). Wood has a higher energy return than other popularized feedstock and 
conversion technologies are improving (Amidon 2006; Keolian and Volk 2005; 
Shapouri et al. 2002). Biomass markets are needed to facilitate management on 
much of the nation’s family forests (Munsell et al. 2008). All told, procurement of 
wood biomass from family forests seems quite appealing. Yet accessing large 
feedstock volume on family forests may not be entirely straightforward.       

Family forest owners are diverse (Butler and Leatherberry 2004). Objectives 
vary and are increasingly amenity- rather than commodity-based (Kendra and 
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Hull 2005). Moreover, exurbanization is shaping a new period defined by smaller 
parcels and more owners (Sampson and DeCoster 1997; Butler and Leatherberry 
2004). If forest-based bio-energy production systems are to succeed in regions 
dominated by family ownership, multi-scalar, mixed-method approaches focusing 
on both biophysical and social aspects of procurable feedstock are needed. The 
basic premise is that, regardless of scale, available volume does not supersede 
owner intentions to supply it and vice versa.  

To estimate feedstock availability in Virginia’s Southside, we plan to use 
multi-scalar, mixed-method evaluations within the context of an impending bio-
energy plant in Mecklenburg County. Our research will estimate supply within a 
30-mile road distance woodshed around a proposed ethanol plant. We will use US 
Forest Service Forest Inventory Analysis (FIA) data, cluster modeling, and 
silvicultural guidelines to estimate above-ground sustainable yield. We will also 
survey landowners about their intentions to commercially harvest and inventory 
their forests to assess above-ground wood biomass potential. We will then 
contrast this potential with owner intentions to estimate a margin of error for 
potential accessibility. Our ultimate goal is to contrast the insight gained from 
landowner surveys and property assessments with FIA estimates of wood biomass 
availability. 

   
 

Rationale 
 

Erroneous estimates of wood biomass availability can be detrimental. Financial 
investors, potential processors, energy consumers, forest owners, and resource 
managers stand to lose. For example, in 2007 the Nevada Department of 
Corrections invested 8.3 million dollars in forest-based bio-energy. Adjacent 
federal forests were assessed and deemed to house sufficient volume. One prison 
and two local communities expected to receive resulting energy. In the end, 
however, the actual supply fell dramatically short.  
 

Officials from the Nevada Department of Corrections had predicted that the plant would 

replace energy from electricity and natural gas at Northern Nevada Correctional Center and 

the neighboring Stewart Conservation Camp. The plant, however, has not run more than three 

days straight since it opened six months ago.  "Wood continues to be an issue for us," said Lori 

Bagwell, department director of support services. "We do not have an adequate and 

appropriate supply."  -Nevada Appeal, March 2, 2008. 

 

Much was blamed on public input policies for federal forest management. 
Adequate stock did not beget adequate supply due to social processes 
unaccounted for when deriving initial estimates. And though the Nevada example 
pertains to public forests, its general lesson resonates in terms of family forests. 
Volume means little if owner inclinations preclude procurement. This is 
particularly relevant in the eastern US, where most forests are family owned and 
management objectives and behavior vary widely (Butler and Leatherberry 2004). 
Thus, forest-based bio-energy systems in the eastern US should be careful to 
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calibrate volume-based feedstock estimates using management trends among 
family forest owners. 
 
 

Context 
 

In Virginia, close to 65% of the forests are family owned (Virginia 
Department of Forestry 2008). A sizeable percentage of these forests are located 
in its southern region, or “Southside”. Southside Virginia is loosely defined as the 
area of the state that lies east of the Blue Ridge Mountains and south of the James 
River. Tobacco production has historically been the dominant economic 
enterprise. However, tobacco quotas and production have steeply declined over 
the past decade, leaving local economies in question and forcing landowners to 
look for profitable alternatives.   

In 1999, the Virginia General Assembly created the Virginia Tobacco 
Indemnification and Community Revitalization Commission (VTICRC) to help 
address the challenges Southside and Southwest communities face when 
transitioning out of tobacco production. The VTICRC’s regional classifications 
are displayed in Figure 1. Among many diverse awards, VTICRC, along with 
Virginia Block Grant, recently allocated $650,000 to install a 12-inch water main 
to the site of a future 100 million gallon per year Bluestone Bio Energy LLC 
ethanol plant in Southside’s Mecklenburg County.   
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 1: VTICRC’s classification of Virginia’s Southside and Southwest regions. Available at: 
http://www.tic.virginia.gov/tobmapupdated.shtml 

 
Bluestone Bio Energy LLC was born from Osage Bio Energy, which 

primarily manages barley to ethanol production. Located in Glen Allen, Virginia, 
Osage Bio Energy is an auxiliary of Osage Incorporated, which is the largest 
motor-grade ethanol distributor in the eastern US. Bluestone primarily plans to 
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procure and process hull-less barley biomass, though substantial interest in wood 
biomass also exists.   

Given Bluestone’s attention to wood, forest-based biomass seems like a 
potentially promising management option in Virginia’s Southside. Many former 
tobacco farmers and other landowners in the area possess ample woodlands and 
could supply considerable volumes of feedstock. What is more, wood biomass is 
presently on hand in great quantities, whereas other feedstock, such as the hull-
less barley, may take some time before sufficient biomass volumes are obtainable.  

Before forest-based bio-energy systems can take root in the Southside, 
immediate and long-term availability must be understood. To do this, we propose 
using biophysical and social metrics at different scales to capture both the human 
and biological constraints on supply. We believe the combination will help 
construct realistic procurement strategies that are sustainable in light of the 
region's potential to provide wood biomass. Using this underlying principle within 
the Southside case described above, our primary research question is to determine 
the extent to which landscape-level estimates of procurable, above-ground wood 
biomass correspond to property-level estimates derived using biophysical and 
social measurements.  
 
 

Objectives 
 

We will pursue 5 objectives to answer the primary research question. They 
are: 1) use selected FIA attribute data, cluster modeling, and silvicultural 
guidelines to estimate immediately available wood biomass across the Bluestone 
case study woodshed; 2) survey 40 randomly selected family forest owners with 
20 acres or more in the case study woodshed about their intention to 
commercially harvest wood within the next 5 years using sociopsychological 
scales; 3) measure corresponding FIA attributes within the 40 forests held by case 
study owners and use aggregated data to estimate immediately available wood 
biomass across property-level cases; 4) Combine owner intention measurements 
and property-level wood biomass estimates to explore disproportionate 
relationships between biophysical and social measurements and adjust aggregated 
estimates to reflect differences; and 5) compare the adjusted property-level 
estimate with the original FIA-based, landscape-level estimate to determine 
potential error range. 
 

 

Theory 
 

FIA 
 
FIA is managed by the United States Department of Agriculture (USDA) 

Forest Service. It uses a three-phased sampling protocol to measure and monitor 
the nation’s forests in a standardized manner. In phase one, a uniform pattern of 
plots is overlaid across the US. Remote sensing data is then used to stratify plots 
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into groups based on similar condition or cover. On-the-ground measurements of 
attributes are taken at each plot during phase two. Phase three estimates are then 
calculated using phase two data and the total area represented by each plot (Forest 
Inventory and Analysis Program 2008). Using FIA data, it is now possible to 
make large, landscape estimates from national to county levels.  
 

Silviculture 
 

Silviculture is a system wherein healthy communities of trees and other 
vegetation are established and maintained for the benefit of people (SAF 2001). It 
consists of three interdependent component treatments – regeneration, tending, 
and harvesting. The appropriate and timely use of these treatments should 
ultimately improve tree and vegetation stability and quality, optimize benefits to a 
landowner, shorten investment periods, contain costs, and sustain ecological 
health and productivity (Nyland 2002). Forestry practices based on silviculture 
can balance a wide variety of commodity and non-commodity values over time. 
Sawtimber, pulp fiber, small-scale fuelwood, soil stability, ecological habitat, and 
aesthetics are achievable ends. We will use silviculture’s sustainable tenets to 
guide our landscape- and property-level evaluations.  
 

Theory of Planned Behavior 
 

Several studies characterize management intentions among family forest 
owners as a way to estimate timber availability (Birch 1994; Karppinen 2005; 
Kuuluvainen et al. 1996; Young and Reichenbach 1987). We will build upon 
these sociopsychological investigations by modeling the intentions of case study 
family forest owners to commercially harvest wood in the next 5 years. Model 
results will highlight significant social and psychological drivers of harvesting 
aims on case study forests and, in doing so, help calibrate wood biomass estimates 
as well as allude to potential political and marketing strategies that may 
effectively encourage increases in commercial harvests to sustainably supply 
forest-based bio-energy. We will use Azjen’s (2005) Theory of Planned Behavior 
to structure our model (Figure 2).  

The Theory of Planned Behavior states that an individual’s attitudes, 
normative beliefs, and control perceptions about a behavior predict their reported 
intention to perform it. Intention can then be used as a proxy for predicting actual 
behavior. In other words, a family forest owner’s future harvesting behavior can 
be predicted by measuring their intention to harvest and their behavioral beliefs 
and attitude towards doing so (i.e., cost benefit analysis), normative beliefs and 
how they feel important peers will perceive the behavior, and whether and to what 
extent they perceive external controls (what barriers they feel may prevent them 
from performing the behavior). Lastly, the relationship between behavioral 
intention and actual behavior is influenced by exogenous behavioral controls. 
Controls, such as a law or the availability of a needed service, can alter an 
individual’s ability to act on their behavioral intention.  
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FIGURE 2: The Theory of Planned Behavior (Ajzen 2005).  

 

Disproportionality 
 
Disproportionality in social science is typically associated with between-group 

variability. For instance, environmental justice researchers often compare racial 
groups to identify if one group is disproportionately located in areas with 
environmental problems. Nowak et al. (2006) argues that it is helpful within 
natural resources sustainability to examine disproportionality within groups 
because it is possible to more closely examine how group members influence 
outcomes. That is, a few outliers within a group may help explain a great deal 
about aggregated group characteristics.  

We plan to use within-group variability to explain disproportionality between 
the social and biophysical aspects of case study wood biomass supply at the 
property-level. Said differently, we plan to test the extent to which an owner’s 
intention to commercially harvest wood proportionally relates to forest size and 
procurable wood biomass. Figure 3 displays a hypothesized relationship between 
mixed, multi-scalar variables. In this hypothesis, a landowner’s intention to 
harvest is proportionally related to parcel size and volume per acre.  

The hypothesis stems from trends indicating that owners of larger parcels are 
more likely to engage in management (Butler and Leatherberry 2004). Yet family 
forest parcel size continues to decrease and management objectives are changing 
(Sampson and DeCoster 2000; Kendra and Hull 2005). For example, many case 
study forests may be ready for harvesting according to silviculture, yet only a 
small amount of these owners intend to harvest. What is more, those intending to 
harvest may have disproportionate acreages, which would further affect 
aggregated wood biomass availability. Such a result would suggest levels of 
future supply may differ from estimates gleaned using only generalized 
biophysical capacity or gauging family forest accessibility by solely relying on 
models of owner harvesting intentions.   
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FIGURE 3: Hypothesized relationship between variables effecting wood biomass availability. 

 
 

Methods 
  

A Geographic Information System (GIS) was used to create the case study’s 
30-mile road distance woodshed polygon. Bluestone’s future location constitutes 
the polygon’s center point. The 30-mile distance was chosen based on Bluestone’s 
procurement interests. A woodshed area polygon was created in ArcMap® using 
network analyst and ESRI Street Map USA (Figure 4). The polygon totals 
1,022,397 acres and includes portions of Mecklenburg, Lunenburg, Charlotte, 
Halifax, and Prince Edward Counties in Virginia and Warren, Granville, and 
Vance in North Carolina.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4:  Case study polygon, overlaid on a map of Virginia and North Carolina.  Plant location is 
symbolized by a star and is located in Mecklenburg County, Virginia. 

 
To select FIA plots, point locations surveyed between 2000 and 2007 were 

projected and then chosen using an error threshold of no more than one mile 
beyond the woodshed polygon boundary. The error was allowed because all FIA 
plot coordinates have been altered (or fuzzed) up to 0.5 miles. For this reason, an 
uncertainty analysis using 0.5 mile buffers around all plots was conducted to 
determine upper and lower estimate bounds. For the base estimate, all plot centers 
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located within the polygon were used. Plots centers located in the polygon with 
0.5 mile buffers intersecting the polygon boundary were removed for the lower 
bound estimate. Plots located outside the polygon, but with buffers intersecting 
were added and used in the upper bound estimate. The number of plots selected in 
the uncertainty analysis are annotated in Table 1. 

 
TABLE 1: Number of FIA plots included in the uncertainty analysis. 
 

Selection # of plots selected 

Base Estimate 242 

Lower Bound 221 

Upper Bound 267 

 
Estimates of wood biomass per acre will be reported for each of the three FIA 

plot groups listed in Table 1. Each FIA plot is adjusted based on the forested acres 
it represents. In terms of wood biomass estimations, pre-calculated, easily 
obtainable biomass values also exist for each FIA tree. At the landscape level, key 
case study FIA attributes will be used in the cluster analysis to assemble plots into 
like groups for silvicultural evaluation. Attributes include forest type, site index, 
growing stock or stocking, and average diameter at breast height (DBH). We will 
use these data and silviculture stocking guides following Roach and Gingrich 
(1968) to estimate immediately sustainable wood biomass yield for even-aged 
conditions. In uneven-aged circumstances, we will estimate wood biomass yield 
using the Arbogast (1957) curve to distribute sustainable removals across tree 
diameters. 

To identify property-level cases, we will draw a random sample of 
approximately 1000 case study family forests from the supply woodshed. Real 
property data from each county and a spatial query using GIS will be used to 
identify the names and mailing addresses of owners with qualified forested 
properties. A letter will be sent to each sampled owner to inquire about 
willingness to participate.  

Sampled owners will be able to reply to the letter using a self-addressed 
stamped postcard. On the card, respondents will indicate their willingness to 
participate and confirm acreage, forest type, and property location. We will send a 
reminder letter two weeks following the first mailing and assess non-response 
bias after six weeks. Property selection will be purposive and based on available 
information about regional forest characteristics and sampled properties. We will 
strive to include cover types and property sizes at rates that reflect Southside 
trends.   

For each forest, we will measure corresponding FIA attributes at the property 
level following Munsell and Germain’s (2007) field survey method. The field 
survey consists of a randomly placed grid system oriented to cover the forested 
area. Measurements will be taken in 1/10th acre fixed-area circular plots randomly 
selected within the grid. Sampling will cease if the margin of basal area error per 
plot is !20% around the mean basal area at the 95th percentile. If not, plots will be 
added until reaching this threshold. We will use data and silvicultural guidelines 
to estimate wood biomass yield from sampled family forests.  
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We will survey owners in person or over the phone with a Likert-type 
instrument designed using the Theory of Planned Behavior. The instrument will 
use summated rating scales to measure and operationalize constructs within a 
theoretical model that will explain an owner’s intention to commercially harvest 
timber in the next 5 years. Summated rating scales allow for a more accurate 
differentiation among respondents (Spector 1992). We will assume that intention 
to harvest commercially acts as a proxy for potential to supply wood biomass. 
Behavioral, normative, control, and intention variables will be measured using bi-
polar, multiple response statements on a scale from 1 to 5.  

We will use verbal protocol focus groups to test statement validity. The 
protocol allows researchers to test if questions or statements invoke desired 
thought processes among respondents using an interpretative-qualitative method 
(Sudman et al. 1996). We will also use expert review. Cronbach’s Alpha will be 
used to test summated scale reliability. Reliability (which is also referred to as the 
internal consistency of the instrument) measures the survey instrument’s ability to 
convey the same meaning to the entire sample population. 

We will also measure owner characteristics, such as demographics, land 
acquisition, length of ownership, management plan use, and previous 
management activities to name a few. We will use these variables when modeling 
latent aspects of the Theory of Planned Behavior to account for external factors. 
To measure internal validity, each survey will end with questions involving 
hypothetical management tradeoffs. We will present owners with a range of 
tradeoffs to gauge which objectives more strongly affect harvest intentions. Our 
aim is to test whether the theoretical measurements remain constant when faced 
with realistic management decisions. 

A K-means cluster analysis will be used to group case study FIA plots into 
types based on selected attributes. K-means cluster analysis clusters samples into 
a pre-specified number of groups using Euclidean distances between sample and 
cluster means and multiple iterations to achieve sufficient group convergence. 
Stepwise multiple regression will be used to model owner intentions. One 
component model will be tested to identify statistical significance and assess 
overall change in R2. Final outputs will include beta coefficients, t-values, F 
values, R2, and model significance. Forest size, sustainable wood biomass 
estimates, and owner intentions will be cross-tabulated to characterize 
disproportionality.  

 
 

Implications 
 

Case study results will test the extent to which attitudes, beliefs, objectives, 
and general landowner characteristics predict an owner’s willingness to 
commercially harvest. Insights will help explain drivers of disproportionate 
relationships between social and biophysical aspects of potential wood biomass 
supply. Benefits include gaining a better sense of potential supply relative to a 
future ethanol plant and demonstrating a multi-scalar, mixed-method approach for 
assessing wood biomass availability more generally.  
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Abstract: The Western Governors’ Association assessment of biofuels potential in 
western states estimated the location and capacity of biofuels plants that could 
potentially be built for selected gasoline prices in 2015 using a mixed integer 
programming model. The model included information on forest biomass supply curves by 
county (developed using Forest Service FIA data), agricultural biomass supply curves, 
transportation networks, and capital and operating costs of selected conversion 
technologies. Results indicate biofuels could potentially provide between 5 and 10 
percent of projected transportation fuel demand in the region with fuel price between 
$2.40 and $3.00 per gasoline gallon equivalence (gge) excluding local distribution costs 
and taxes. At a target price of $2.40/gge, forest biomass could supply an estimated 11 
million oven dry tons per year, or about 9 percent of total feedstock supplied. 
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Introduction 
 

The technical feasibility of producing biofuels in the western United States is 
assessed in a set of reports by the Western Governors’ Association (2008a–d) 
using spatially explicit biomass resource supply curves, a detailed transportation 
network model for the region, and costs for converting biomass to refined 
biofuels. The study addresses the widespread concern over environmental, 
geopolitical, and economic effects of U.S. dependence on petroleum. The study is 
responding to state and federal legislative bodies who are setting goals for 
reducing consumption of fossil fuels in the transportation sector using targets for 
the infusion of so-called low-carbon biofuels into the transportation fuel market. 
The use of biomass from municipal waste streams, forest thinnings, and 
herbaceous agricultural residues or energy crops for biofuels production can 
significantly reduce the net life cycle emissions of greenhouse gases in 
comparison with crude oil; the benefits from grain and other crops are less certain. 
This report and the accompanying models represent a significant step forward in 
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understanding the potential for meeting policy goals based on near-term 
technological and infrastructure parameters. The report presents biofuel supply 
curves estimating potential future supplies of liquid fuels from biomass in the 
western United States as a function of market price. The combined GIS network 
analysis and biorefinery optimization model was developed to  
! spatially resolve biomass resource quantities and distributions throughout the 

Western Governors’ Association region for major feedstock types,  
! map supporting transportation and biofuel-handling infrastructure to estimate 

biorefinery gate feedstock costs and biofuel distribution costs, and 
! optimize biorefinery types, sizes, and locations for competing conversion 

technologies based on the objective of maximizing producer profit under a 
market price constraint. 

Overall, the analysis estimates biofuel supply curves for the year 2015, and 
biofuels production capacity is estimated at the regional and state levels.  
 

This paper focuses on describing the methods used to estimate forest biomass 
supply curves and describing selected overall results of the analysis, including 
information on all forest and agricultural supply sources and maps indicating the 
estimated location of biofuels plants using cellulosic feedstocks that would 
include forest biomass feedstocks. Complete results on biomass supply sources, 
conversion technologies, spatial analysis with construction of biofuels supply 
curves, and evaluation of alternative scenarios may be found in Western 
Governors’ Association reports (2008a–d). 
 

Methods and Results for Forest Biomass Supply  
 
Sustainability 
 

Estimates of forest biomass supply were developed for several sources by first 
identifying sustainability principles to guide their use. Specific guidelines are 
noted for each source discussed. In general terms, sustainability means today’s 
management actions will not degrade the ecological functioning of a natural 
system (Helms 1998). In the context of biomass removal from forests, the 
question of sustainability requires consideration of a wide range of issues, 
including nutrient cycling and soil productivity, maintenance of biodiversity, 
water quality, and wildlife habitat. These factors, and resulting constraints on 
forest operations to address concerns, are generally very site-specific. Soil 
productivity in certain soil types, for example, may be more sensitive to micro-
nutrient levels and thus require retention of some level of woody residue. Wildlife 
habitat requirements may stipulate retention of snags or maintenance of coarse 
woody debris. Again, ecological factors including wildlife and endangered 
species need careful site-specific evaluations in determining biomass availability. 
 

Sustainability is explicitly addressed in this analysis through several 
assumptions. On Federal lands, vegetation management projects are implemented 
within the framework of environmental analyses and regulations that ensure 
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consideration of ecological effects and sustainability. Although less restricted, 
treatments on private lands are also constrained through various environmental 
laws and regulations (Ellefson et al. 1997). The potential forest biomass supply 
that is modeled here is a secondary output of other management objectives. We 
consider biomass that would be available from forest health treatments, fire 
hazard reduction work, or treatment of activity fuels after logging where questions 
of sustainability are addressed in the larger management plan. 
 

The present assessment also assumes ecological considerations and practical 
limitations would have the effect of reducing the amount of biomass available for 
removal and utilization. The process used models silvicultural treatments and 
estimates total available biomass. The total available biomass is then further 
reduced to reflect material left on site to meet ecological constraints or that is 
otherwise impractical to remove. The reduced amount is the net biomass available 
for removal. For example, a previous study (USFS 2003) with limited 
environmental screens estimated 345 million oven dry tons (odt) of biomass may 
be available from fire hazard reduction thinnings, whereas with our additional 
screens—for our Base Case—we estimate 114 million odt tons are currently 
available. For each estimate, it is assumed these amounts would be harvested over 
a period of years. 
 

As a final gross check on sustainability, the net annual growth in western forest 
types was calculated from Forest Inventory and Analysis (FIA) plot data and 
compared to the estimated biomass removal volumes. While growth, mortality, 
and removal are not holistic measures of ecological integrity, they provide a 
benchmark of management intensity and impact. For 2002, the total net annual 
growth of growing stock on timberland in western states was about 97 million odt 
per year, and of this 43 million odt was removed (Smith et al. 2003). Growing 
stock growth does not include growth in tops and branches or in nongrowing 
stock trees. Our Base Case would use about 13 million odt of biomass per year, 
which is an amount less than 25% of currently unremoved net growth of growing 
stock (13/(97 – 43) = 0.24). The estimated fraction would be less if we included, 
in the denominator, the growth of tops of growing stock trees and growth of 
nongrowing stock trees. 
 
Biomass Sources 
 

In general terms the forest biomass sources include the following: 
! Thinning of timberland with high fire hazard 
! Logging residue left behind after anticipated logging operations for 

conventional products 
! Treatment of pinyon juniper woodland 
! General thinning of private timberland 
! Precommercial thinning on National Forest land in western Oregon and 

Washington 
! Unused mill residue 

 3

USDA Forest Service Proceedings – RMRS-P-56 44.



 
Our analysis includes supply of biomass from federal lands. But this supply 

from federal land may not be a viable, because the Energy Independence and 
Security Act of 2007 would not allow biofuels made using biomass from most 
federal lands to count toward the biofuels RFS (renewable fuels standard). Supply 
would be allowed from tribal lands held in trust by the federal government and 
from all lands in “the immediate vicinity of buildings and other areas regularly 
occupied by people, or of public infrastructure, at risk from wildfire.” The RFS 
requires that 21 billion gallons of “advanced biofuels” need to be supplied by 
2022 and only certain biomass sources may be used in meeting this standard. The 
only one of our sources that would not be notably reduced by this restriction 
would be the estimated 2.7 to 4.3 million od tons of biomass per year from 
general thinning on private land. 
 

Biomass supply estimates were made for each county in selected western 
states. We make a Base Case supply estimate for each source and for some 
sources we make a High Case estimate to cover a range of uncertainty about 
supply from the source. Supply estimates include amounts available at roadside in 
each county for each of several successively higher costs. 
 

Base Case and High Case estimates of total potential annual supply by source 
are shown in Table 1. Base Case by state and roadside cost are shown in Table 2 
and in Figure 1. 
 
Thinning on Timberland with High Fire Hazard 
 

Thinning of timberland with high fire hazard contributes to forest sustainability 
by reducing the risk of uncharacteristically severe fire. By conducting a thinning, 
the intent is to move toward a natural fire regime pattern with natural recurrence 
of less severe fire. Supply was estimated by simulating thinnings on federal and 
non-federal land using the FTE 3.0 model (Miles 2005, Skog et al. 2006) and 
Forest Service FIA plot data (USFS 2008a). It is assumed that timberland with 
current high fire hazard will be thinned over a period of years with either (1) an 
uneven-aged thinning (where some trees of all size classes may be taken) or (2) an 
even-aged thinning (where small-diameter trees are taken first followed by 
successively larger trees until the hazard reduction target is met). A series of 
screens were applied to identify about 23 million federal and non federal acres 
that would receive simulated treatment. One screen excluded from treatment is 
those forest types where stand replacement fire is the norm (lodgepole pine and 
spruce-fir). An additional screen excluded treatment of wet climate counties in 
western Oregon and Washington (see separate source below). These areas were 
excluded because such treatments would not be consistent with our ecological 
objectives.  
 

For federal lands, it is assumed that even-aged and uneven-aged treatments are 
used equally, but for non-federal land, it is assumed only uneven-aged treatments  
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Table 1: Potential annual wood biomass supply from selected western states (million 
oven-dry tons). 

 Source 
Base 
Case 

High 
Case 

WGA 
CDEACa BTSRa 

A Fire hazard thinning on timberland 5.2 7.5 7.2  

B Logging residue 4.7 4.1 5.3 5.3 

C Treatment of pinyon-juniper woodland 7.6 11.5   
D General thin on private timberland  2.7 4.3   

E Pre-commercial thin on National 
Forest in western counties of Oregon 
and Washington  

0.3 0.3   

F Mill residue  0.2 0.2 0.3 0.3 

 TOTAL 20.7 27.9   

 Thinning to reduce fire hazard on 
timberland  

   10.8 

 Thinning on other forest land    9.2 9.2 

 TOTAL    22 25.6 
a BTSR, Perlack et al. (2005); WGA CDEAC, WGA (2006). 

 
 
 

Table 2: Base Case cumulative forest biomass supply by state and roadside cost 

Biomass supply (oven dry tons/year) at various roadside costs (in $/oven dry ton) 

State $10 $20 $30 $40 $50 $75 $100 
Arizona 53,313 154,025 222,599 225,198 228,874 2,092,106 2,094,275 

California 1,271,547 3,366,681 3,966,745 4,046,998 4,104,845 4,263,956 4,268,243 

Colorado 82,812 193,561 279,369 324,313 341,516 1,542,596 1,552,011 

Idaho 778,692 1,005,643 1,478,387 1,592,434 1,669,077 1,803,476 1,824,399 

Kansas 8,720 8,720 8,720 8,720 8,720 8,720 8,720 

Montana 628,548 1,053,812 1,554,616 1,694,996 1,768,144 1,850,486 1,882,451 

Nebraska 4,971 4,971 4,971 4,971 4,971 4,971 4,971 

Nevada 4,799 7,043 7,122 7,195 7,195 1,370,524 1,370,524 

New 
Mexico 

68,897 135,084 299,745 326,263 352,722 1,675,499 1,680,423 

North 
Dakota 

265 265 265 265 265 265 265 

Oregon 924,418 1,628,936 1,712,498 1,764,367 1,824,752 1,850,106 1,851,089 

South 
Dakota 

95,407 98,503 112,224 112,224 112,224 112,224 112,224 

Texas 3,022 3,022 3,022 3,022 3,022 3,022 3,022 

Utah 32,670 48,437 101,966 118,102 128,534 1,776,062 1,787,916 

Washington 916,029 1,437,920 1,657,948 1,757,994 1,803,262 1,820,173 1,826,722 

Wyoming 81,784 123,925 185,505 204,620 211,075 298,320 301,136 

Total 4,955,893 9,270,549 11,595,702 12,191,683 12,569,199 20,472,506 20,568,392 
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Figure 1: Base Case forest biomass supply by state. 

 
 
are used. For this source and sources C, D, and E in Table 1, it was assumed 
biomass volumes identified would be harvested over a period of years. Over this 
period of harvest, tree growth and mortality will continue and—depending on 
these growth and mortality rates—additional material would be available for 
harvest beyond the estimated harvest period. For the Base Case, for sources A and 
E, we chose a harvest period of 22 years. This time period was previously chosen 
so fire hazard reduction treatments (source A) would be done on about 500,000 
acres per year. For sources C and D, we chose a harvest period of 30 years to 
match the harvest period used in the DOE/USDA “Billion Ton Supply” report 
(Perlack et al. 2005) for thinning treatments. 
 

For the source A Base Case, it is assumed that tops and branches of all trees 
and main stem of trees up to 7 inches diameter at breast height (dbh) are supplied 
for biofuels, and for the High Case, trees removed up to 9 inches are also supplied 
for biofuels. Main stems of larger trees not used for biofuels are assumed to be 
used to make lumber or other higher value products. The cost to remove tops and 
branches to roadside was assumed to be covered by the cost of removing the 
whole tree. At roadside there is an assumed $8/dry ton chipping cost. The cost for 
removing the main stem of trees supplied for biofuels was estimated using the 
FRCS model (Biesecker and Fight 2006) for wood removals from each FIA forest 
plot. It was assumed stumpage cost would be $2/odt on private land and $0 on 
public land. Using these data, wood biomass supply curves were estimated for 
each county in 12 Western states—Arizona, California, Colorado, Idaho, 
Montana, Nevada, New Mexico, Oregon, South Dakota, Utah, Washington, and 
Wyoming. 
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Logging Residue Left behind after Anticipated  
Logging Operations for Conventional Products 
 

Wood harvested and left on the ground at harvesting sites (or land clearing 
sites) may be taken to a certain degree subject to limits including (but not limited 
to) the need to maintain nutrients on site and to retain habitat. For the Base Case 
supply estimate, we use the allowable removal fractions from the DOE/USDA 
billion-ton-supply report—65% for logging residue is available for biofuels from 
harvest sites and 50% from land clearing sites. The High Case is the same as the 
Base Case for this source because only a Base Case exists for this source. Data on 
logging residue and land clearing are from the Forest Service 2002 RPA Timber 
Product Output data base (USFS 2008b). To estimate the roadside cost we assume 
that whole tree removal will be used (where not already used) to bring out tops 
and branches to roadside. The cost for removing tops and branches to roadside 
will be covered by the cost of removing the main stem material. That is, the only 
cost to provide the wood at roadside will be to chip for $8/odt. It is assumed 
stumpage cost would be $2/odt on private land and $0 on public land. It is 
recognized logging residues come from current logging operations that provide 
sawlogs, pulpwood, posts, and poles. It is assumed if thinning to reduce fire 
hazard expands and general thinning on private land expands (including biomass 
for fuels), then the extent of traditional operations will decrease along with 
associated logging residue. Given the uncertainty about the degree of 
displacement, we decrease logging residue use for fuels by one-quarter unit for 
each unit increase in biomass for fuels coming from new thinnings. 
 
Treatment of Pinyon-Juniper Woodland 
 

Pinyon-juniper is a category of woodland forest that produces less than 20 ft3 
per acre per year. Pinyon-juniper forest type has expanded extensively beyond its 
historic range, and our ecological objective in treating this area over time is to 
bring the extent of this forest type closer to its historic range. For the Base Case 
supply estimate, we use allowable removal fractions from the DOE/USDA 
billion-ton-supply report (table A-6)—45.9% of wood on these public pinyon-
juniper lands is available for biofuels and 61.2% of wood on private pinyon-
juniper lands is available. This study excludes wood supply from other woodland 
categories in the West because we could not cite an ecological reason for such 
treatment. 
 

For the Base Case, we estimate 1/30 of the total volume would be supplied 
each year (as assumed in the billion-ton-supply report). We made a general 
estimate that the average cost of harvest would be $60/odt and roadside chipping 
would cost $12.60/odt, for a total of $72.60/odt. The chipping cost for pinyon-
juniper trees is estimated to be higher than for tops and branches of other trees 
based on case studies that indicate chipper throughput is lower for pinyon-juniper. 
This is thought to be due in part to the irregular form of pinyon-juniper trees. It 
was assumed stumpage cost would be $2/odt on private land and $0 on public 
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land. For the High Case, we assume that the treatments would occur over 20 years 
and costs would be subsidized at $20/odt based on proposed legislation. 
 

Note that Figure 1 shows that large quantities of biomass from pinyon-juniper 
land become available in several states when price reaches $72.60. This is 
because we have a single price estimate for removing this biomass. In reality, the 
supply would increase more gradually over a range of prices we estimate would 
be centered on a price of $72.60. 
 
General Thinning on Private Land 
 

It is presumed that as demand and prices for biomass for fuels increase, there 
will be an increase in operations to harvest both woody biomass and 
sawlogs/pulpwood in combined operations on private land. Some private land is 
excluded from this source because it is already treated under the fire hazard 
reduction thinnings noted above. This source estimates supply from private land 
acres that have sufficient stocking to warrant thinning but have lower fire hazard. 
For the Base Case supply estimate, we simulated an uneven-aged thinning on 
private land FIA timberland plots that were not treated by a fire hazard thinning 
procedure (source A). The estimation procedure is the same used to estimate 
biomass from thinning U.S. timberland for the billion-ton-supply report (stands 
with density greater than 30% of maximum stand density index are thinned back 
to 30%). Because the thinnings may be heavier than appropriate for lodgepole 
pine and spruce-fir forest types—they are subject to wind throw if thinned too 
heavily—we did not treat those forest types.  
 

The Base Case supply is assumed to be provided in equal annual amounts over 
30 years. The supply costs were estimated in the same way as for the fire hazard 
reduction thinnings (source A). For the High Case, trees removed up to 9 inches 
are also supplied for biofuels and the annual supply is assumed to be provided in 
equal amounts over 20 years. It is assumed stumpage cost would be $2/odt. 
 
Precommercial Thinning on National Forest Land  
in Western Counties in Oregon and Washington 
 

We did not simulate fire hazard reduction thinnings on National Forest 
timberland in counties west of the Cascade Mountains in Oregon and Washington 
where the thinning objective would not be focused on reducing fire hazard but on 
maintaining appropriate stocking and habitat conditions. Instead, for source E, we 
simulated a precommercial thinning of FIA plots to remove trees five to 9 inches 
dbh in stands up to 40 years old. For the Base Case, it is assumed that 1/22 of this 
volume could be harvested each year (the same as for source A). The cost to 
harvest and move wood to roadside was estimated for each treated FIA plot using 
the FRCS model. Harvest costs for individual plots ranged from a low of $22/odt 
to about $70/odt for many plots, with some plots costing over $500/odt. It is 
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assumed stumpage cost on National Forest land is $0/odt. The High Case supply 
is the same as the Base Case. 
 
Unused mill residue 
 

Forest Service surveys of wood products mills (e.g., lumber, plywood, pulp) 
periodically estimate amounts of coarse and fine wood and bark residue generated 
by county and how much goes for various uses (e.g., fuel, fiber input for pulp or 
panels.) Source F is the estimate of mill residue that goes unused. We assume this 
entire unused amount is available to make biofuels. The amount supplied is the 
same for the Base Case and High Case. It is assumed the cost at the mill is $0/odt. 
 

Additional Results and Discussion 
 

The WGA Biofuels Assessment reports used the forest biomass supply curves, 
supply curves for additional lignocellulosic biomass sources, supply curves for 
grease and tallow, information on transportation networks, and costs for 
conversion technologies in a mixed integer programming model to identify the 
location for biofuels plants given different offered prices for biofuels at fuel 
terminals. 
 

Additional sources of lignocellulosic feedstocks include corn stover, straw, 
herbaceous energy crops (e.g., switchgrass), orchard and vineyard waste, and 
several types of municipal solid waste. Supply curves for lignocellulosic biomass 
sources are shown in Figure 2. Table 3 shows amounts of all feedstocks supplied 
when the offered price for biofuels is $2.40/gge at terminals. The types of biofuels 
produced include ethanol and biodiesel. At $2.40/gge, forest biomass contributes 
11.4 million odt of feedstock per year, or about 9% out of a total supply of 130 
million odt.  
 

At $2.40/gge, the 130 million odt of feedstocks would produce 7.6 billion 
gge/year (Figure 3). If each ton of feedstock produces about the same amount of 
biofuel, then forest biomass would produce 0.6 to 0.7 billion gge of biofuels. The 
conversion efficiency varies by feedstock, so this is a rough estimate.  
 

The locations of the biofuels plants using lignocellulosic feedstocks are shown 
in Figure 4. Biomass supply curves in Figure 1 indicate that forest biomass would 
be supplying plants that are located in California, Oregon, Washington, Idaho, 
and Montana.  
 

The modeling framework developed for this assessment constitutes a 
comprehensive framework for spatially explicit integrated analysis of the entire 
biofuel supply chain. As with any model, its foremost limitation is in the quality 
of the input data. The results of this modeling effort indicate that there is 
significant potential to expand biofuels production in the West. Exclusive of 
resource competition from other energy and product markets, there is the potential  
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Figure 2. Lignocellulosic biomass feedstock supply by roadside or farm gate cost. 

 
 

Table 3: Feedstock consumed (million odt) at a biofuels target 
price of $2.40/gge 

Feedstock 
Feedstock 

consumption 
Percentage of 

total 
Corn 43.9 33.8 

Herbaceous energy crops 43.1 33.2 

Municipal solid waste 19 14.6 

Forest biomass 11.2 8.6 

Straw (wheat, barley, rye, oats) 7.9 6.1 

Orchard and vineyard waste 2.9 2.2 

Tallow 0.9 0.7 

Corn stover 0.8 0.6 

Waste grease 0.2 0.2 

Total 130  

 
 
for the West to supply substantial fractions of renewable fuels under the new 
federal Renewable Fuel Standard. The WGA Assessment report suggests several 
key conclusions concerning land use, and transportation infrastructure that will 
affect biofuels potential:  
 
! Land use policies will have a significant impact on the availability of 

feedstock. 
! Land use policies will affect expansion of herbaceous energy crop production 

on marginal lands that will be influenced by sustainability standards or 
research findings. 
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Figure 3: Westwide biofuels supply by delivered cost at fuel terminals. 

 
 
! Land use policy formulation should carefully explore the possibility of 

meeting GHG reduction targets under the federal RFS through more 
sustainable energy crop substitution on lands currently producing corn and 
other high input crops at low relative yields. 

! A more detailed analysis is needed on the capacity of existing transportation 
infrastructure to meet demands of the biofuel supply chain. 

! A spatially explicit analysis should be conducted of the potential for new 
transportation infrastructure to improve supply chain economics for biofuels 
production. 
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Figure 4: Potential location of lignocellulosic biofuels plants in the West (orange circle markers). 
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Utilizing Climate Information



  
  
  

Predicting forest attributes from climate 
data using a recursive partitioning and 

regression tree algorithm 

 
Greg C. Liknes1, Christopher W. Woodall2, and               

Charles H. Perry2 
 
 

ABSTRACT:  Climate information frequently is included in geospatial modeling 

efforts to improve the predictive capability of other data sources.  The selection 

of an appropriate climate data source requires consideration given the number 

of choices available.  With regard to climate data, there are a variety of 

parameters (e.g., temperature, humidity, precipitation), time intervals (e.g., 30-

year normal, seasonal average), and summary statistics (e.g., mean, minimum) 

which can be selected.  In this study, we propose a technique for evaluating the 

combination of climate parameters that are most closely related to ground 

observations of forest attributes.  Using data from the Forest Inventory and 

Analysis (FIA) program of the U.S. Forest Service as response variables, 

recursive partitioning and regression tree analysis was applied using a suite of 

climate variables from the Daymet database as predictor data. Although model 

improvement scores for climate variables were modest, the technique provides 

opportunities for deciding among a wide array of possible climate predictors. 

 
KEYWORDS:  Daymet, climate, forest inventory, data mining 
 
 

Introduction 
 

Forest composition and structure are, in part, a function of local climatic 
conditions (Bailey 1995, Whittaker 1975). Geospatial modeling predictions of 
forest attributes may use climate information to augment topographic and remote 
sensing data. However, the full range of climate data possibilities are rarely 
considered because of the daunting number of possible combinations of time 
interval, descriptive statistics, and spatial resolution. For example, what is the 
appropriate length of time over which to assess typical rainfall in a given area?  
Should we consider mean, maximum, or minimum values of climate inputs (e.g., 
precipitation, solar radiation) and state variables (e.g., temperature, humidity)? 
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Ohmann and Gregory (2002) predicted tree species composition and structure 
in coastal Oregon using a variety of data.  They found Landsat Thematic Mapper 
satellite imagery and climate information to have the first and second most 
explanatory power, respectively, followed by location, topography, ownership, 
and geology.  The authors transformed temperature and precipitation data from 
the Parameter-elevation Regressions on Independent Slopes Model (PRISM) 
climate dataset to create eight predictor variables.  Their climate predictors 
captured seasonality, variability, growing season conditions, and continentality, 
but due to the limitations of the PRISM dataset, other factors such as radiation 
were not included. 

 

Previous work by Liknes and Woodall (2007) began to assess the climate 
factors that have the most predictive power relative to forest attributes by 
examining correlations between forest inventory data and a variety of parameters 
in the Daymet3 climate database.  In this study, we aimed to build on our previous 
work by re-examining the Daymet dataset with an improved technique. 

 

Data 

 
Data were analyzed for the states of Michigan, Minnesota, and Wisconsin.  

These states cover 49 million hectares, of which 21 million hectares are sub-
boreal and temperate forests. 

 

Forest Inventory Data 

 

Field data were collected between 2001 and 2006 on nearly 20,000 forested or 
partially-forested plots by the Forest Inventory and Analysis (FIA) program of the 
U.S. Forest Service.  The 0.4-ha plots in the study area are re-visited every five 
years, allowing calculation of growth and mortality for a subset of plots visited in 
both 2001 and 2006.  

  

Climate Data 

 

Climate data used in this study were taken from the Daymet climate database 
(Thornton et al. 1997).  The Daymet raster datasets provide full coverage of the 
conterminous United States at 1-km resolution for a suite of climate parameters 
including temperature, precipitation, humidity, and radiation.  Additionally, 
measures of climate variability (interannual standard deviation and day-to-day 
variability) are available for each parameter, as well as selections of a single-year 

                                                           
3 Daily Surface Weather and Climatological Summaries (http://www.daymet.org) 
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average, 18-year annual average, or an 18-year average for a specific month of the 
year.  The 18-year average datasets are for the period between 1980 and 1997. 

 

We considered a subset of the Daymet database, with all selected variables 
averaged over the 18-year period.  See the Appendix for a list of the climate 
variables used in this study. 

 

Methods 

 

Forest inventory data for individual trees were aggregated to calculate 
biomass, basal area, and growth for each plot.  Climate values at each plot were 
extracted using a Geographic Information System operation, which assigned each 
plot to a climate pixel based on proximity to the nearest pixel center. 

 

Recursive Partitioning and Regression Tree Analysis 

 

Although various data mining techniques are available, we chose to examine 
recursive partitioning and regression tree (rpart) analysis (Therneau 1983).  The 
rpart algorithm shares many similarities with other data mining techniques, 
particularly classification and regression tree analysis.  For more information on 
classification and regression tree analysis, refer to Breiman et al. (1983).  The 
following advantages for analyzing multiple predictor variables are provided by 
rpart:  it is compatible with the prediction of continuous variables, the resulting 
models can be presented as intuitive binary trees, and it requires relatively few 
input choices by the user.  

 

We implemented the rpart algorithm using R statistical software4 and the rpart 
package5.  More detail on the parameters used with rpart appears in the 
Appendix.  Six separate model runs were conducted using the suite of climate 
parameters as input predictors; biomass, basal area, and growth were response 
variables.  Two predictor sets were used.  The first set contained a suite of climate 
variables representing minimum, maximum, or mean daily values or mean annual 
total values.  The second set included all of the first predictor set and additional 
climate data related to variability (see Appendix).  Model improvement for node 
splits was used as a basis for determining which climate variables had the 
strongest relationship to forest attributes where improvement is defined as 

 1 – ( SSright + SSleft) / SSparent      (1) 

and SS is the sum-of-squares, right and left refer to the sides of the split, and 
parent refers to the node that is split.   
                                                           
4 The version of R used was 2.8.0. The software is available at http://www.r-project.org. 
5 The version of the rpart package used was 3.1-42.  
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Results 

 
For both basal area and biomass, the top node splits were related to minimum 

daily air temperature, while for growth the top node splits were related to 
precipitation frequency (Table 1).  Figure 1 shows the top three node splits that 
resulted when an rpart model was created using the second predictor dataset 
(climate and variability, see Appendix) to predict forest biomass.  The primary 
split for biomass occurred on minimum daily December temperature at a value of 
-15.375 degrees Celsius.  Including interannual and day-to-day variability (second 
predictor set) did not change the results for biomass, but it did change the results 
for basal area and growth; interannual variability appeared among the top node 
splits in both cases.  

 

Table 1:  Results from six model runs predicting forest attributes using selected climate variables 
and recursive partioning and regression tree analysis in Minnesota, Wisconsin, and Michigan. 
Response variable Predictor 

set 
Top three node splits Model 

improvement 
Basal area 1 January minimum daily air 

temperature 
0.02145327 

  Mean daily total shortwave 
radiation 

0.01690332 

  Mean precipitation event 
size 

0.006725006 

Basal area 2 Interannual variability in 
December mean daily 
minimum temperature 

0.02569515 

  Mean daily total shortwave 
radiation 

0.01612992 

  Mean precipitation event 
size 

0.003692035 

Biomass 1 December minimum daily air 
temperature 

0.03854474 

  Mean daily total shortwave 
radiation 

0.03828900 

  Minimum daily air 
temperature 

0.01672963 

Biomass 2 December minimum daily air 
temperature 

0.03854474 

  Mean daily total shortwave 
radiation 

0.03828900 

  Minimum daily air 
temperature 

0.01672963 

Growth 1 Precipitation frequency 
(<0.255) 

0.009561471 

  Precipitation frequency 
(<0.275) 

0.0035711810 

  Cooling degree days 0.005642840 
Growth 2 Precipitation frequency 0.009561471 
  Interannual variability in 

December mean daily 
minimum temperature 

0.005102520 

  Interannual variability in total 
precipitation 

0.006068496 
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                  Figure 1: A regression tree resulting from a recursive partitioning and 
                  regression tree model of forest biomass in Minnesota, Wisconsin, and 
 Michigan using Daymet climate variables as predictors. 

 

 

Model improvement values are generally useful as a relative indication of how 
predictors perform.  Improvement of the biomass model due to the predictors at 
top node splits was approximately three times that of the growth model (0.03 vs. 
0.009). 

 

Discussion 

 
Analysis of climate variables with the rpart algorithm resulted in modest 

model improvements. More importantly, the technique allowed for selection of 
the most influential climate variables from a large set of potential factors. The 
technique is straightforward to implement and highlights the possible importance 
of less conventional climate variables (such as mean daily minimum 
temperatures).  The inclusion of some measure of interannual variability of 
temperature and precipitation may also be warranted for some forest attributes.  
Furthermore, the predictors selected for model inclusion should depend on the 
attribute to be modeled. The results presented should not be considered as 
definitive guidance for the selection of climate variables used in the prediction of 
forest attributes.  For example, future work could include an analysis using rpart 
and the entire Daymet database over a larger geographic area, as well as 
comparisons of results using other data mining or exploratory data analysis 
techniques. 

 

Many issues require further exploration to improve the utility of this technique 
with FIA plot data.  For example, there is a mismatch in the areal extent of a 

mean daily 
total shortwave 
radiation 
< 652.2 Wm-2 

December minimum daily air temperature < -15.375 °C
 

minimum daily 
air temperature 
< 1.435 °C 
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Daymet raster cell (100 ha) and the 0.4-ha FIA plot.  The mismatch may have a 
sizeable impact on the relationship between our response and predictor variables. 
Additionally, if climate variables are used in conjunction with remotely-sensed 
data in a model, there may be interactions that are not accounted for in this 
approach.   

 

A temporal mismatch also may have affected our results.  Forest attribute data 
were obtained between 2001 and 2006, but climatic data were averaged over the 
period between 1980 and 1997. Contemporaneous climate data may improve 
model performance, and these data would be available by aggregating monthly 
PRISM data6.  However, PRISM has a smaller set of parameters relative to 
Daymet (e.g., total shortwave radiation is excluded).  Although questions 
surrounding spatial and temporal resolution need to be addressed, rpart analysis 
using climate variables holds promise for improving variable selection and model 
prediction.   
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Appendix 
 
 
rpart parameters used: 
minisplit = 100 
minibucket = 100 
cp = 0.0001  
method = anova 
 
 
Sample rpart implementation in R: 

fit <- rpart(Climate$BasalArea ~ ta_a_pa + tx_a_pa + tn_a_pa + td_a_pa + tc_a_pa +                          
 tf_a_pa + tn_a_pm12 + tn_a_pm01 + tn_a_pm02 + pf_a_pa + pe_a_pa + 
 hv_a_pa + rt_a_pa, control=list(minisplit=100, minibucket=100, cp=0.0001), 
 method="anova") 
 
 
Appendix Table:  Climate variables used as predictors of basal area, biomass, and growth using 
the rpart algorithm. 
Climate variable description Daymet 

abbreviation 
Predictor 

Set 
Mean daily air temperature ta_a_pa 1,2 
Minimum daily air temperature tn_a_pa 1,2 
Maximum daily air temperature tx_a_pa 1,2 
Growing degree days td_a_pa 1,2 
Cooling degree days tc_a_pa 1,2 
Freezing degree days tf_a_pa 1,2 
January minimum daily air temperature tn_a_pm01 1,2 
February minimum daily air temperature tn_a_pm02 1,2 
December minimum daily air temperature tn_a_pm12 1,2 
Mean precipitation event size pe_a_pa 1,2 
Precipitaion frequency pf_a_pa 1,2 
Mean daily total shortwave radiation rt_a_pa 1,2 
Mean daily water vapor pressure hv_a_pa 1,2 
Day-to-day variability in mean daily temperature tva_a_pa 2 
Day-to-day variability in mean daily minimum temperature tvn_a_pa 2 
Day-to-day variability in mean daily maximum temperature tvx_a_pa 2 
Day-to-day variability in mean daily water vapor pressure hvv_a_pa 2 
Day-to-day variability in total shortwave radiation rvt_a_pa 2 
Interrannual variability in mean daily minimum temperature tn_s_pa 2 
Interannual variability in January mean daily minimum 
temperature 

tn_s_pm01 2 

Interannual variability in February mean daily minimum 
temperature 

tn_s_pm02 2 

Interannual variability in December mean daily minimum 
temperature 

tn_s_pm12 2 

Interannual variability in mean daily maximum temperature tx_s_pa 2 
Interannual variability in total precipitation pt_s_pa 2 
Interannual variability in mean precipitation event size pe_s_pa 2 
Interannual variability in precipitation frequency pf_s_pa 2 
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Actual Evapotranspiration (AET) and Tree 
Species Richness in the Eastern U.S.A. 

 
Weihong Fan1 and Richard H. Waring2 

 

 

ABSTRACT:   Although many studies confirm that competition and disturbance play 
important roles in determining tree diversity locally, climatic constraints become 
increasingly important at broader geographic scales. We evaluate the extent that annual 
actual evapotranspiration (AET) might account for observed variation in tree diversity 
across the entire eastern U.S. and within 24 Level III ecoregions designated by the 
Environmental Protection Agency. To estimate tree diversity, we extracted data from a 
total of 87,137 Forest Inventory and Analysis (FIA) survey plots. For each 1000 km2 cell 
with ≥15 plots, logarithmic functions were derived to predict the number of species 
encountered per hectare (equivalent to 17 fixed-radius plots). Across the region, tree 
diversity exhibited a humped-shaped pattern with AET (r2=0.49, P < 0.0001). Stratifying 
ecoregions by AET, which increases from north to south, winter temperature emerged as 
a significant variable where AET averaged <800 mm.yr-1, whereas summer temperature 
accounted for much of the variation where AET was between 800 to 950 mm.yr-1. In 
ecoregions with AET>1100 mm.yr-1, significant variation in tree diversity was associated 
with seasonal differences in precipitation. We conclude that across the eastern U.S., AET 
provides a reasonable prediction of regional variation in tree diversity, especially where 
AET is < 800 mm.yr-1.   
 
KEY WORDS:   AET, AET stratification, tree species richness; tree diversity, level III 
ecoregions, FIA database, environmental variables of species diversity; the eastern US. 
 

 
Introduction 

 
It appears more and more likely that species diversity will be significantly 

reduced in response to changing climatic conditions over the coming decades. 
This possibility has lead to increased effort to correlate current biodiversity with 
climate. At the continental scale, the variable most frequently correlated with 
biodiversity is actual evapotranspiration (AET), which expresses the annual 
balance between precipitation and latent heat exchange. AET is also considered a 
surrogate for net primary production because of a close relationship between 
production and climatic factors (Lieth 1975).  In reference to trees, diversity 
                                                 
1 Natural Sciences & Mathematics, The Richard Stockton College of New Jersey, Pomona, New Jersey, 08240, 
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generally increases from cold, dry conditions with low AET to warm, moist 
tropical environments with high AET (Currie and Paquin 1987, Latham and 
Ricklafs 1993, Davies et al. 2004).  Other environmental variables often 
associated with variation in biodiversity include potential evapotranspiration and 
rainfall (Hawkins et al. 2003).   
        

Within regions, physiographic variation and historical factors explain much of 
the residual variation not account for by AET (Whittaker and Field 2000, Caley 
and Schluter 1997, Currie et al. 1999, Huston 1999, Whittaker et al. 2001, Sarr et 
al. 2005). In the United States, the portion east of the Mississippi River contains 
the largest spatial variation in tree diversity, whether analyzed from species range 
maps (Currie and Paquin 1987), ecoregions (Waring et al. 2006) or counties 
(Iverson and Prasad 2001).  Studies of tree diversity that rely on range maps have 
the disadvantage of not being responsive to future climatic limitations. Range 
maps also overlay areas where the environment may limit a species’ presence. As 
a result, environmental correlations are likely to differ from those based on 
extensive field surveys (Hurlbert and White 2005).   

 
        In the United States, we are fortunate that the federal government has 
supported and continues to support intensive ground surveys of forested areas 
throughout the eastern U.S. as part of the Federal Inventory and Analysis (FIA) 
program (http://fia.fs.fed.us/tools-data/default.asp).  Sampling in the western 
United States is less intensive than in the eastern portion of the country, and to 
date, most data have been acquired only within variable-radius plots instead of the 
more robust fixed-radius sampling design. The availability of both fixed- and 
variable-area plots in the eastern U.S. permits a correlation to be established 
between the two types of sample plots to provide estimates of tree species present 
per hectare (described below).   
 
       Because the eastern U.S. is a region where rainfall is generally sufficient and 
evenly distributed throughout the year, reasonable estimates of AET may be made 
without requiring detailed information on available soil moisture or canopy leaf 
area index, as would be required to calculate AET in the more arid portions of the 
western U.S. (Churkina et al. 1999).  Based on the literature, we hypothesize that 
different patterns will emerge between AET and tree diversity depending on the 
scale of analysis, and on how a region is stratified in reference to AET.  
Specifically, we expect a humped-shaped relation with AET and tree diversity 
across the entire region, as resulted from a similar analysis in the northwestern 
portion of the country (Swenson and Waring 2006). If that is the case, we would 
expect positive, neutral, or negative relationships between tree diversity and AET 
as AET increase from north to south. Where a clear relationship between tree 
diversity and AET is lacking, other environmental factors may emerge as 
significant, such as winter or summer temperature and precipitation, soil water 
storage, and topographic relief.  If a common set of variables can explain 
variation in tree diversity across a set of climatically comparable ecoregions, we 
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should achieve a better understanding of the impact of climatic change on tree 
species diversity. 
 

Methods 
 

The study covers all forested areas in 31 states in the eastern U. S. For across 
region analysis, we evaluate the relationship between nine environmental 
variables and tree richness recorded on all 1000 km2 (31.6 km x 31.6 km) cells 
with 15 or more FIA survey plots. A total of 24 ecoregions delineated by the 
Environmental Protection Agencies’ Level III classification 
(<http://www.epa.gov/wed/pages/ecoregions/ecoregions.htm>) qualified 
for within ecoregion analysis with at least 20 such cells within each ecoregion 
(Table 1).  Analyses were not conducted at finer scale because the geographic 
locations of sampling plots are imprecise to maintain privacy of information 
acquired on private lands (McRoberts et al. 2005 
http://ncrs2.fs.fed.us/4801/fiadb/fiadb_documentation/Perturbing-Swapping.pdf).   

 
TABLE 1: The 24 ecoregions recognized by the EPA level III classification and number of qualified 

1000 km2 cells (N)  
______________________________ _______________________________________________ 
Code   Name                                               N                                          
_____________________________________________________________________________ 
35   South Central Plains        84 
39   Ozark Highlands        90 
45   Piedmont       156 
49   Northern Minnesota Wetlands      22 
50   Northern Lakes and Forests     198 
51   North Central Hardwood Forests      64 
52   Driftless Area         36 
56   Southern Michigan/Northern Indiana Drift Plains    23 
58   Northeastern Highlands     109 
59   Northeastern Coastal Zone       31 
60   Northern Appalachian Plateau and Uplands    27 
62   North Central Appalachians       28 
63   Middle Atlantic Coastal Plain      70 
65   Southeastern Plains      310 
66   Blue Ridge         46 
67   Ridge and Valley        93 
68   Southwestern Appalachians       37 
69   Central Appalachians       64 
70   Western Allegheny Plateau       71 
71   Interior Plateau        52 
72   Interior River Valleys and Hills      46 
75   Southern Coastal Plain     107 
82   Laurentian Plain and Hills       42 
83   Eastern Great Lakes and Hudson Lowlands    28 
______________________________________________________________________________ 

 
 
Species diversity 
 

One lesson learned from previous studies is that there are advantages, 
especially when the sample size is small, if comparable areas are sampled 
(Whittaker et al. 2001, Sarr et al. 2005). In the study, we estimate species 
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diversity (richness) per hectare. This was a challenge because the largest data sets 
acquired by the FIA surveys used variable radius plots, where the sampling area 
varies as a function of prism angle size and the diameter and distance of trees 
from a central point (Alerich et al. 2004). Moreover, the choice of prism size 
varied, even within states. Although the sampled area can be estimated from mean 
tree diameter, large variations around the mean result in questionable estimates of 
species richness per unit area if made directly from variable radius plot data.  

 
Fortunately, over the last seven years, the FIA surveys have introduced a 

standard fixed-radius plot layout, where four 7.3 m (24 ft.) radius subplots cover a 
total of 0.0675 ha (1/6 of an acre) (USDA, Forest Service 2004). However, fixed-
radius plots are only available for a limited number of states thus far and the 
sampling density of fixed-radius plots is sparse compared to variable-radius plots. 
To utilize the more extensive variable-radius plot data, we compared the two 
independent estimates of species richness where both sets of samples were 
available.  

 
FIA plot data were downloaded from the FIADB website, 

http://fiatools.fs.fed.us/fiadb-downloads/fiadb3.html, of USDA Forest Service. In 
this data set, plots are identified by their locations as provided by the database, 
and were then grouped as they occurred in 1000 km2 cells. All cells containing 
!15 FIA plots were included because an asymptote in species numbers is 
approached with that sample size, and by setting a higher minimum, the number 
of qualified cells would be reduced significantly. For each cell with both sets of 
plots (fixed- and variable-radius), logarithmic functions of species richness with 
increasing number of plots were calculated and compared. To smooth the curves, 
we first listed plots of each set in a cell by number of species in ascending order, 
then in descending order, before randomly reordering the sequence twice. The 
average species richness values from the four summarizations were used for each 
1000 km2 cell. We standardized the estimates for 17 fixed-radius plots, equivalent 
to one hectare, based on the cell-specific slope and intercept of the logarithmic 
function of species number vs. plots number. We generally attained an excellent 
fit between species richness and increasing plot areas for each 1000 km2 cell with 
an R2 > 0.95. The results from variable radius plots were compared with that of 
fixed radius plots and the relationship statistically assessed. 

  
Environmental variables 
 

Nine environmental variables were selected to correlate with species richness 
patterns. These included two climatic indices: AET and mean annual precipitation 
(PPT); two soil properties:  soil organic matter content (OM) and soil water 
holding capacity (SW); and five topographic descriptors:  average % slope (SL), 
range in % slopes (RSL), average elevation (EL), range in elevation (REL), and 
the length of major roads (LR). 
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The USGS (2002) provides a GIS Database 
(http://webgis.wr.usgs.gov/globalgis/), where annual AET, representing the 
difference between precipitation and latent heat loss, is calculated for the U.S. 
based on equations developed by Prentice et al. (1993). The equations are applied 
at monthly time steps and the values then summed for the year.  This formulation 
differs from the more data demanding Penman-Monteith equation by not 
requiring information on canopy leaf area, and stomatal response to evaporative 
demand and limitations of soil water. AET values were acquired using 
ArcGIS/ArcInfo software for all qualified 1000 km2 cells by averaging values 
extracted from the 1 x 1 km resolution data. The values of PPT were acquired 
similarly. Data of SL, RSL, SW, and OM were calculated from the USDA 
STATSGO database (1994) at a scale of 1:250000. Before intersecting with the 
soil data layers, each 1000 km2 cell was further divided into 49 equally spaced 
cells to capture the spatial variations of each variable. Within each 1000km2 cell, 
the 49 smaller cells were then either summed, averaged or the range calculated, 
depending on the variable. Elevation data at a scale of 1:250000 were downloaded 
form USGS GeoData website (http://edc.usgs.gov/products/elevation/dem.html) 
and the values of average elevation and elevation ranges for each 1000 km2 cell 
were summarized as with the soil data. Total length of major roads was calculated 
for each 1000 km2 cell in GIS using ArcGIS/ArcInfo by overlaying the cells with 
the road map provided by the USGS Global GIS Database. 
 
Statistical Analysis 
 

Across the entire region, a stepwise regression analysis with all nine abiotic 
variables was first performed using all qualified 1000 km2 cells. A variable was 
included if significant at P < 0.001. We then repeated the process separately for 
each of the 24 defined ecoregions. Finally, we stratified ecoregions by AET and 
assessed tree richness correlations in reference to differences in seasonal 
temperature and precipitation. 
 

Results 
 
Species richness 
 

We found that the number of species from the two FIA inventories, fixed and 
variable radius plots, was significantly and positively related (R2 = 0.74, P < 
0.0001) when standardized to 17 plots (Figure 1). The slope of the linear function 
was 0.97 when the intercept was set to 0. With the relationship established 
between fixed- and variable-radius plots illustrated in Figure 1, we were able to 
convert estimates of species richness derived from variable-radius plots to 
richness per hectare (equivalent to 17 fixed-radius plots).  
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FIGURE 1: The relationship between number of species per 17 variable radius plots and number of species 
per 17 fixed radius plots (R2 = 0.74). When the intercept was set to 0, the slope of the linear function is 0.97, 
which demonstrates that estimates of species richness from the two independent FIA inventories are 
equivalent. 

  
Spatial variation of tree species richness in the eastern U.S. indicates that 

areas with the highest richness are located in central portion with heterogeneous 
topography and a favorable climate. Species richness decreases significantly in all 
directions (Figure 2).  
 

 
FIGURE 2: Spatial variations of tree species richness estimated for qualified 1000 km cells with 
!15 FIA survey plots. The highest number of species occurs in the central portion of the region 
where the climate is moderate and the topography heterogeneous. 
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Across ecoregions 
 

Across all ecoregions, AET was the sole variable accounting for significant 
variation in species richness (R2 = 0.41, P < 0.0001). We found that a 3rd order 
polynomial equation gave a better fit to the data, raising the R2 to 49% (Figure. 3). 
Species richness increases significantly as AET increases to about 950 mm. yr-1, 
flattens out between 950 - 1100 mm. yr-1 before decreasing. Separation of AET 
values by ecoregions demonstrates that the ecoregions with intermediate AET 
(950 – 1100), such as ecoregions 65 (Southeastern Plains), 69 (Central 
Appalachians), 71 (Interior Plateau), and 72 (Interior River Valleys and Hills), 
have the highest species richness, while ecoregion 75 (Southern Coastal Plain) 
with very high AET values (1214 mm. yr-1) exhibits much lower species richness, 
equivalent to values recorded in ecoregion 58 (Northeastern Highlands) with very 
low AET (700 mm. yr-1). 
 

y = 68.041 - 0.31X + 0.001X2 - 2E-7X3
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FIGURE 3: The polynomial relationship between AET and species richness across ecoregions in 
the eastern US. Species richness increases as AET increases to about 950 mm. yr-1, plateaus from 
950 mm. yr-1 to about 1100 mm. yr-1 before decreasing as AET continue to increase above 1100 
mm. yr-1 . 

 
Within ecoregions 
 

The detailed analyses show that where AET is low in the northern tier of 
ecoreigons (i.e., < 800 mm.yr-1), winter temperature is important with a few 
exceptions (Table 2). In ecoregions with AET between 800 – 950 mm.yr-1, 
summer temperature is generally important. In ecoregions with AET > 1100 mm. 
yr-1, 26% to 42% of variations in species richness were accounted for by seasonal 
precipitation. Only between 950 – 1100 mm.yr-1, did neither AET, seasonal 
temperature nor precipitation account for a significant amount of variation in 
species richness (Table 2). 
 

 7

USDA Forest Service Proceedings – RMRS-P-56 46.



TABLE 2:   Results of analysis of individual ecoregions where the most important climatic variable 
is identified. The variables include winter temperature (WT), summer temperature (ST), winter 
precipitation (WP), and summer precipitation (SP). N is the number of qualified cells within an 
ecoregion. Ecoregions are listed in ascending order of average annual AET (mm.yr-1) to reflect the 
shift in importance of other variables as AET increases. N/A indicates that no climatic variable was 
found significant in an ecoregion. 
_______________________________________________________________________________ 
    Average Standard R2 with Best  R2 of the 
Ecoregion   annual deviation AET  climatic climatic 
Code  N  AET  of AET function variables function 
_______________________________________________________________________________ 
 
49    22    603  41.9  0.36  WT  0.34 
82    42    659  41.0   N/A  N/A  N/A 
50  198    666  37.2  0.24  ST  0.34 
58  109    700  61.2  0.31  WT  0.29 
51    64    702  54.4  0.21  WT  0.37 
56    23    705  37.4  0.66  ST  0.77 
83    28    734  35.0  0.32  N/A  N/A  
60    27    778  19.1  0.18  WT  0.42 
59    31    782  16.0   N/A  WP  0.40* 

52    36    791  15.9  0.22  WT  0.30 
62    28    806  14.6  0.24  ST  0.37 
70    71    883  33.2  0.22  ST  0.49 
67    93    909  83.3   N/A  N/A  N/A 
72    46    916  27.0  0.22  SP  0.46 
69    64    917  44.6  0.63  ST  0.41 
71    52    951  39.0   N/A  N/A  N/A 
39    90    960  25.2   N/A  N/A  N/A 
66    46    969  60.7   N/A  N/A  N/A  
68    37  1016  27.9   N/A  N/A  N/A 
45  156  1027  67.0   N/A  N/A  N/A 
63    70  1065  77.9   N/A  N/A  N/A 
35    84  1079  55.7   N/A  N/A  N/A 
65  310  1121  85.7   N/A  SP  0.42* 

75  107  1214  26.4   N/A  WP  0.26 
 
* This is an R2 of a negative relationship. 
 

Figure 4 presents the most important variables selected by stepwise regression 
for each ecoregion. None of the nine environmental variables accounted for a 
significant amount of variation in species richness in those ecoregions designated 
in white. The relative importance of variables shifts with location. Soil water 
holding capacity is significant in the southern and southwestern portion of the 
eastern U.S. while AET is dominant in the north. Precipitation is important in the 
northeastern coastal regions (negative relationships) and in the northwest (positive 
relationships). Topographic heterogeneity accounts for a significant amount of 
variation in the central part of the region. In 18 out of the 24 ecoregions, 
environmental factors account for 17% to 66% of variation in species richness. 
These factors are generally weak predictors in the south (R2s are between 0.17- 
0.4) but become stronger in the more centrally located ecoregions (R2s are 
between 0.58 - 0.66) where topography is most varied and species richness 
highest.    
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FIGURE 4: Distribution of dominant environmental variables influencing species richness within 
ecoregions in the eastern US. Ecoregions are color coded to reflect similar variables and labeled 
with R2 values of the relationship between the dominant variable and species richness. In general, 
soil water holding capacity has significant predicting power in the south and southwest, AET is 
dominant in the north, and topographic heterogeneity account for a significant amount of variation 
in species richness in the central part of the region. 

 
Discussion 

 
Our hypothesis was not rejected. Different patterns emerge between AET and 

tree species richness depending on how a region is stratified in reference to AET. 
Our findings on the relationship between species richness and AET across 
ecoregions generally support those of other studies conducted at a similar scale 
(Charles et al. 2001, O’Brien 1993). It is generally acknowledged that AET is 
closely related to productivity (Lieth 1975, Law et al. 2002). The results of this 
study are consistent therefore with analyses of FIA survey data  in the western 
U.S. where high species diversity was associated with intermediate levels of 
productivity and decreased at higher or lower values (Waring et al 2002, Swenson 
and Waring 2006).  

A positive response of species richness to AET is generally expected at lower 
values of AET, as also observed in reference to Net Primary Production (NPP). At 
intermediate values of AET or NPP, the relationship is insensitive but in this 
range tree richness is generally the highest. As values of AET increases further 
the relation becomes negative. In our study, as in others, neither AET nor 
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probably productivity accounted for all the observed variation in tree richness; 
different variables become important depending on the location.  For example, we 
found that winter temperature accounted for a significant amount of variations (29 
- 42%) in species richness in the northern tier of ecoregions. Ecoregions 50, 56, 
and 83 were exceptions, possibly because of deep snow accumulates in the 
vicinity of large unfrozen lakes during the winter, which may protect more 
sensitive tree species. In the ecoregions with AET between 800 - 950 mm. yr-1, 
species richness increased as summer temperature increased. As expected, no 
significant relationship between AET and specie richness was observed in 
ecoregions with AET between 950 - 1100 mm. yr-1, where species richness 
peaked. We interpret the decrease in species richness for the areas with AET > 
1100 mm. yr-1 as a likely result of a few fast-growing species dominating and 
restricting light available for other species (Safford et al. 2001, Waring et al. 
2002, Swenson and Waring 2006, Hooper and Dukes 2004, Grime 2001).  

 
Within ecoregions, we found that AET was a significant factor in 12 of the 15 

ecoregions with AET less than 950 cm. yr-1 (Table 2). The variations in species 
richness and its environmental variables in ecoregion 59, 67 and 82 were 
considered as special cases. Based on the EPA’s description of ecoregion 67, 
topographic variation is extreme, where high mountains and deep valleys occur 
over relatively short distances 
(ftp://ftp.epa.gov/wed/ecoregions/us/useco_desc.doc). As a result, the standard 
deviation of AET was much higher (84 mm. yr-1) than in other ecoregions (Table 
2). With a minimum cell size of 1000 km2, we expect the full variation in climatic 
conditions  were not captured. Ecoregions 59 and 82 were special cases because, 
although both are highly forested regions, they had many large lakes that may 
ameliorate water stress but, with increasing precipitation, foster cloudiness, 
reducing the amount of light absorbed by the forest canopy, while increasing 
competition on species adapted to shaded conditions. In ecoregions with AET > 
1100 mm. yr-1 (i.e. ecoregions 65 and 75) species richness was positively 
associated to soil water holding capacity (Figure 4). This positive relationship 
may be a result of large areas of coarse textured soils dominated by pine-oak 
forests.  The explanatory power of soil water holding capacity was between 30 - 
40%. The detailed analysis indicated that winter precipitation accounted for 26% 
of the variation in species richness in ecoregion 75 whereas summer precipitation 
was negatively related to species richness in ecoregion 65 (R2 = 0.42) (Table 2). A 
possible explanation of these inverse relationships is that winter precipitation 
might promote species richness in ecoregion 75 if soil moisture were limiting in 
the spring whereas summer precipitation might increase productivity and, 
competition leading to reduced species richness in ecoregion 65.    

For this detailed environmental analysis within and across ecoregions we took 
advantage of both variable- and fixed-radius FIA sampling. As a result of cross-
comparison between the two data sets, we have confidence in our ability to utilize 
variable-area data sets in the western U.S. where fixed-radius sampling is as yet 
limited.   The detailed analysis also indicates that in the search for general 
responses between environmental variables (or productivity) that the EPA 
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ecoregion classification level III may be too refined and that a broader 
stratification may be warranted.  Future studies will test this assumption. 
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Landscape-Level Analyses II



 

 

 

 

                                                

Summary and Findings of the 2006 BLM 
Forest Lands Report 

 

Tim Bottomley1 and Jim Menlove2

 

 
Abstract: In 2006, the Bureau of Land Management (BLM) contracted with the Forest 
Service Forest Inventory and Analysis Program (FIA) to assist in the preparation of a 
report specific to all forest lands under the administration of the BLM.  The BLM 
requested that the FIA provide information on the extent and general conditions of BLM-
managed forests and woodlands, within certain statistical reliability parameters.   
 
The report focused on the 33 million acres of forest land managed by the BLM outside of 
Alaska by using data gathered from more than 2,500 FIA plots.  The analysis included 
information on the extent of forest land (total acres of occurrence and general location), 
trees per acre, stand size, stand age, volume and biomass, basal area, stand density index 
(SDI), and number of snags (standing dead trees).  Specific findings include: 
 

• An increase in BLM forest acres from 55 million, as determined in a 2005 report, 
to 69 million today. 

• The high tree densities in many forest types  
• The expansion of pinyon and juniper woodlands in historical nonforest areas 
• The unbalanced age class distributions in the aspen and lodgepole pine forest 

types 
• The differing sampling intensities in the States 

 
An upcoming BLM publication will highlight some specific data findings of interest and 
provide some interpretations of the information to BLM field offices for land use 
planning. 
 
Keywords: Forest, inventory, FIA, BLM. 
 

 
1 United States Department of the Interior–Bureau of Land Management; National Operations 
Center; Bldg. 50; Denver Federal Center; Denver, CO 80225-0047 USA; e-mail:   
tim_bottomley@blm.gov 

 
2 USDA Forest Service; Rocky Mountain Research Station; Interior West FIA; 507 25th Street; 
Ogden, UT 84401 USA; e-mail:  jmenlove@fs.fed.us 

 

USDA Forest Service Proceedings – RMRS-P-56 47.

In: McWilliams, Will; Moisen, Gretchen; Czaplewski, Ray, comps. 2009. 2008 Forest Inventory and Analysis (FIA) 
Symposium; October 21-23, 2008: Park City, UT. Proc. RMRS-P-56CD. Fort Collins, CO: U.S. Department of  
Agriculture, Forest Service, Rocky Mountain Research Station. 1 CD. 



 
Introduction 

 
Background 
 

The Bureau of Land Management (BLM), an agency within the U.S. 
Department of the Interior (DOI), administers more than 253 million surface 
acres3 of public land in the western United States, including Alaska.  About 69 
million acres, or 27%, are classified as forested.   
 

The BLM manages these forest lands according to the principles of multiple 
use and sustained yield as required by the Federal Land Policy and Management 
Act of 1976 and the Oregon and California Railroad Act of 1937, which covers 
forest lands in western Oregon.  National priorities for these forests include 
maintaining and restoring forest health, salvaging dead and dying timber, 
providing high-quality wildlife and fish habitat, and providing economic 
opportunities in rural communities by making timber and other forest products, 
including biomass, available from vegetation management treatments. 
 

The last nationwide inventory taken of BLM forest lands occurred in 2001 and 
only addressed acres of forest land in the predominant forest types; it did not 
address any condition of these forest lands.  In spring 2006, the BLM contracted 
with the U.S. Department of Agriculture’s Forest Service (FS) Forest Inventory 
and Analysis Program (FIA) to prepare the BLM Forest Lands Report –2006 
(hereinafter referred to as the “Report”; Bottomley and Menlove 2006), specific to 
forest lands under the administration of the BLM.  According to the BLM, the 
FIA program would provide data that are the best combination of availability, 
consistency, accuracy, and comprehensiveness for BLM forest lands. 
 

The BLM desired information related to the extent and general conditions, 
with statistical reliability measures, of the forest lands under its jurisdiction.  The 
Report did not separate BLM forest lands by resource management objective or 
legal status (e.g., congressionally designated wilderness areas).  While some of 
the terminology used in the Report reflected the early history of the FIA program 
focusing on wood supply (e.g., timberlands), no suitability or availability of BLM 
forest lands for commercial wood products were implied in the Report.    

 
Figure 1 illustrates the broad distribution of BLM forest lands within 13 

conterminous western States and Alaska.  Figures 2a and 2b illustrate two 
extremes in BLM land status patterns, large forested landscapes and small isolated 
forest tracts.  These land status situations, particularly broad distribution of BLM 
forest lands and the small isolated forest tracts, present challenges with data 
consolidation and analysis efforts.  
___________ 
3  The BLM Forest Lands Report–2006 reported a total of 261 million acres according to the most recent data 
at that time.  According to the 2008 BLM Public Land Statistics report, the number of surface acres managed by 
the BLM was reduced to 253 million because of land tenure changes. 
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Figure 1: Map of BLM forest lands. 
 
 

        

 
Figure 2a: Aerial photo of an example large landscape of BLM forest lands (Ferris Mountain 
Range, Wyoming). 
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Figure 2b: Map of an example small forested BLM land tract (Fringe of Medicine Bow National 
Forest, Wyoming). 

 
Data Consolidation Techniques 
 

Because it was necessary to acquire data from several FIA units, two major 
methods were used.  First, data from States within the Interior West FIA unit 
(IWFIA) were queried from the local IW-FIA FIADB version 1.0 database, by 
using the most recent inventories through 2005.  Second, data from States in the 
Pacific Northwest and North Central FIA units were downloaded from the public 
DataMart FIADB version 2.1 data download site (since replaced by FIADB 
version 3.0 DataMart) by using the 2004 inventory year.  When calculating 
standard errors, the local IW-FIA version 2.1 database was used for Interior West 
States.  Queries from the different database structures were carefully constructed 
so that the results were compatible, and could be compiled in Microsoft Access 
databases and Microsoft Excel pivot tables.  

 
In addition to the standard FIA variables that were used, several additional 

variables were calculated.  For forest type, an alternate was used where, if the 
forest type was “nonstocked,” the field forest type was assigned.  In this way, the 
“nonstocked” stand-size class could be assigned to different forest types.  Also, a 
stand density index (SDI) was calculated for each plot condition using the 
summation method and compared using the summation SDI maximum values for 
forest types as described in Shaw (2000).  This also allowed the calculation of 
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condition-based trees-per-acre values, which were then used to construct classes 
by trees-per-acre. 

 
Report Format 

 
BLM forest lands were classified by forest type.  The ten most common forest 

types were then analyzed for the following:  extent (total acres of occurrence and 
general location), trees per acre, stand size, stand age, volume and biomass, basal 
area, SDI, and number of snags (standing dead trees) given.  The Report was 
organized to discuss each of these above items in the above order.  An additional 
section dealt with individual States and discussed the following items:  forest land 
by type, years of data collection, volume estimates, gross growth and mortality 
rates (IWFIA only) and causes of mortality (IWFIA only).  Standard errors were 
calculated for acres of forest and net live tree volume.   

 
Alaska 

 
BLM forest lands in Alaska were not included in the analysis of plot data 

because FIA plot data have only been collected in coastal Alaska, whereas the 
BLM manages large areas of forest land in the Alaskan interior.  However, an 
assessment of BLM forest lands in the Alaskan interior was conducted for the 
Report through remote sensing by using a map developed by the USDA Forest 
Service–Forest Inventory and Analysis Program & Remote Sensing Applications 
Center (RSAC; Ruefenacht et al. 2008).  With the RSAC map, the IWFIA was 
able to estimate that there were about 36 million forested acres in Alaska on BLM 
lands in 14 different forest cover types.  However, the lack of plot data prevented 
including the BLM forest lands in Alaska in the majority of the following 
analysis.   

 
Findings 

 
On the basis of 2,521 FIA plots, 48 different forest types were reported on 

BLM forest land in the contiguous United States.  The 10 most common types 
discussed in the Report account for 93% of the forest land acres across all States 
and the majority of forest land in each of the States.  Table 1 shows the estimated 
acres of these 10 forest types.   
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Table 1: Area estimates for the 10 most common and all other forest types on BLM lands in the 
contiguous United States. 

 
Forest type                                  Acreage 
Pinyon-Juniper Woodland 16,034,527 
Juniper Woodland   6,152,507 
Douglas-fir (all) 2,653,015 
    Coastal Douglas-fir (1,496,756) 
    Noncoastal Douglas-fir (1,156,259) 
Western Juniper 1,947,558 
Ponderosa Pine 1,072,133 
Deciduous Oak Woodland 964,765 
Cercocarpus Woodland 642,001 
Aspen 367,837 
Lodgepole Pine 359,306 
All other forest types 2,431,203 
Totals 32,624,853 

 
Major findings from the Report include:  (1) a large increase in BLM forest 

acres from estimates in previous reports, (2) high tree densities in many forest 
areas, (3) expansion of pinyon and juniper species in historical grass and shrub 
lands, (4) unbalanced age class distribution in the aspen and lodgepole pine forest 
types, and (5) the differing sampling intensities by State.  Each of these findings is 
discussed in the following sections. 

 
Large Increase in Acreage 
 

In 2005, the BLM had estimated the total forest land under its jurisdiction at 
55.1 million acres, according to 2001 data.  The Report provided a new estimate 
of 69.1 million acres, a 25% increase.  Table 2 provides a comparison, by State, of 
these two estimates. 
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Table 2:  BLM Forest Lands.  Comparison of 2005 and 2006 estimates.  (Note that all acreages are 
in thousands.) 

  

State 
2005

Acreage 
2006 

Acreage 
Alaska  28,279 36,447 
Arizona  1,074 1,893 
California  2,208 1,449 
Colorado  4,110 5,076 
Eastern States 0 0 
Idaho  892 945 
Montana  810 1,325 
Nevada  6,274 7,831 
New Mexico  985 1,121 
Oregon  3,341 3,789* 
Utah  6,073 7,825 
Washington  50 79 
Wyoming  1,004 1,290 
Totals 55,100 69,070 

 
Three key factors account for the majority of this 14 million acre increase.  

 
! Attaining better remote sensing data, particularly in Alaska, resulted in an 

increase of total forest land from 28.3 million acres to 36.4 million acres, an 
increase of more than 8 million acres.  

 
! The 2005 estimate relied heavily on FIA estimates for the 2002 RPA, which 

used a sampling protocol of 10% crown cover for woodlands instead of the 
5% crown cover protocol used in the data analysis of the Report.  Reducing 
the percent crown cover requirement to 5% resulted in an estimated increase 
of about 3.3 million acres land classified as forest. 

 
! Changing methodologies in the FIA program (e.g., minimum criteria 

standards for heights and diameters and appropriate species) over the years 
have resulted in including acreages in several forest types that were not in the 
above-mentioned RPA, but are included in the Report.  These include a large 
portion of the deciduous oak woodland (1.0 million acres), Cercocarpus 
woodland (0.6 million acres), and mesquite (0.3 million acres).  These 
methodology changes resulted in an estimated increase of approximately        
2 million acres. 

 
Future BLM forest land calculations are anticipated to result in a reduction 

from the 69 million acres, primarily due to the ongoing land tenure adjustments in 
Alaska.  Additionally, changes in the FIA program sampling and measurement 
protocols (particularly those related to species and minimum crown cover criteria) 
will also cause either increases or decreases in the calculation of BLM forested 
acres.  For example, elimination of lands with 5–9% forest crown cover would 
reduce the total forest land base by about 10%.    
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Although there is a large increase in the estimated amount of BLM forest land, 
little or no effect on the BLM’s Forest and Woodland Management program is 
anticipated.  Whether BLM lands are classified as forest or nonforest has no 
significance regarding annual appropriations from Congress.  Nor does this 
classification automatically allow or restrict any particular use activity (such as 
timber harvesting).  Decisions on appropriate management activities that may 
occur on any of these lands are made through individual land use plans and are 
not influenced by classification as forest or nonforest by the FIA.   

 
High SDIs For Many Tree Species 
 

The Report dealt with each of the 10 most common forest types on BLM land 
and determined the range of and average of trees per acre and basal area per acre.  
However, given the variety of tree species involved, as well as the variety of stand 
ages, Stand Density Index (SDI) was chosen as the metric to evaluate tree density.  
Therefore, the range and average SDI for each of these forest types was 
determined.  Table 3 summarizes SDI information in the Report by forest types. 

 
Table 3:  Stand Density Index information on BLM lands for major forest types.  
 

 
Percentage of acres  

 
 
 
 

Forest type 

 
 

Total 
acres 

(thousands) 

<25% 
SDImax

25–35% 
SDImax

>35% 
SDImax

>60% 
SDImax

 
 

Acres of 
Concern 

(thousands) 
Pinyon-Juniper 16,035 32 15 52 21 8,338 
Combined 
Juniper  

6,153 58 11 31 11 1,907 

Coastal DF 1,497 10   6 85 40 1,272 
Noncoastal DF 1,156 33 25 42 14 486 
Western Juniper 1,948 79 12 9   2 175 
Ponderosa Pine 1,072 50 17 33 16 354 
Deciduous Oak 965 71 12 17   6 164 
Cercocarpus  642 42 17 41 16 263 
Aspen 368 51 20 30 13 110 
Lodgepole Pine 359 28   4 69 14 248 
Totals (includes 
rounding 
errors) 

 
 

30,195 

  
 

13,318 

 
One major finding from the data was that more than 40% (13.3 of 32.6 million 

acres) of the BLM forested lands in the contiguous 48 States are at, or are 
exceeding, full site occupancy (greater than 35% of SDImax).  This high tree 
density can lead to massive die-offs in forested landscapes when droughts create a 
shortage of water and too many trees are competing for that resource.  The intense 
competition for water can also predispose these trees to insect and disease 
predation as their ability to fight off these damaging agents is reduced because of 
water stress. 
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Expansion of Pinyon and Juniper Forest Types  
 

Another issue on many BLM lands is the expansion of coniferous trees into 
what are considered historical grass and shrub lands.  For a number of reasons, 
such as lack of fire, livestock grazing, or cyclic wet periods, there has been an 
evident trend of trees establishing and growing in areas that, as determined by 
earlier historical photography, were grass or shrub lands.  While the FIA does not 
directly measure expansion by trees into nonforested areas, the intent of the 
Report was to provide information that may be helpful in understanding the extent 
of this vegetation change on BLM lands.   
 

The pinyon–juniper, combined juniper, and western juniper forest types 
seldom exist in even-aged stands because these tree species tend to accumulate 
gradually on a site.  As a result, stands in these forest types often have individual 
trees that are much older, as well as much younger, than the age determined for a 
specific stand.  However, it may be reasonable to assume that stands that are 
recently established in otherwise shrub and grassland ecosystems should contain 
no trees significantly older than the trees present.  Therefore, the percentages in 
each of these forest types in the younger age classes that have no recorded live-
tree age of more than 150 years should give an approximation of the degree to 
which the pinyon and juniper stands could be considered expansion since the 
beginning of European settlement in the West.  Conversely, those stands with 
trees present that are 150 years old and older give an approximation of the extent 
of historical woodlands.   
 

From the FIA data analyzed, of the 24 million acres of BLM forest land in 
either a pinyon or juniper forest type, approximately 12.1 million acres (50%) 
have both a stand age of 150 years or younger and contain no trees older than 150 
years.  This indicates that a substantial portion of pinyon and juniper forests may 
be expanding into historical shrub or grasslands, although unknown portions are 
regeneration of disturbed stands.   
 

The remaining 50% of the pinyon and juniper forest type has at least some 
trees that existed on these sites before the interruption of disturbance processes 
that keep many arid areas in shrub and grass species, including the exclusion of 
fire.  These stands could therefore potentially be considered historical woodlands; 
however, in many instances they may have been less dense in the past.  
 
Unbalanced Age Class Distribution Concerns with Aspen and 
Lodgepole Pine Forest Types 
 

The FIA inventory methodology was not considered adequate to provide 
accurate measurements of recent outbreaks in stand mortality from insects and 
disease on BLM forest lands, particularly since at least two States (New Mexico 
and Wyoming) have had no FIA data since 2001.  These States were not added to 
the annual inventory system (see next section for more information) at the time of 
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this report.  Additionally, two States (Idaho and Nevada) had only two annual 
inventory cycles.  However, collected data, even if a little dated, can provide very 
useful information related to the risk of stands to pending mortality, particularly if 
the forest stands are reaching the end of their usual life expectancy.  For example,  
two of the major forest types evaluated—aspen and lodgepole pine—have 
relativity short life spans of 150 (Howard 1996) and 150–200 years (Anderson 
2003), respectively. Additionally, both forest types have a usually natural even-
aged stand development habit, which places added focus on stand age, because 
most of the trees in these even-aged stands are approximately the same age. 
 

The extent of aspen decline and die-off on BLM lands was not evaluated in 
the Report.  However, a predisposing condition (stand age) was evaluated.  
Figure 3 shows the present age class distribution of BLM aspen stands.  From 
these data, it is apparent that a large percentage (50%) of the aspen forests are at 
or approaching life expectancy.  These data indicate that the majority of BLM 
aspen stands are at or approaching a high risk from either aspen decline or aspen 
die-off. 
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Figure 3:   Area of aspen forest by stand-age class, BLM land. 
 

The lodgepole pine forest cover type has a similar unbalanced age class 
distribution, as shown in Figure 4.  This condition could also predispose these 
stands to large-scale mountain pine beetle mortality. 
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Figure 4:  Area of lodgepole pine forest by stand-age class, BLM land. 
 
 
Differing Sampling Intensities by State  

 
Historically, the FIA has collected inventory data on a State-by-State basis, 

completing regionally based statewide inventories covering the entire sampling 
grid for a given State every 7 to 20 or more years.  These historical inventories 
were known as periodic inventories.  Beginning in the mid-1990s, the FIA 
program began making a transition from periodic to annual inventories (Gillespie 
1999).  The annual inventory samples an evenly distributed 10% to 20% of the 
sample grid (an annual panel) in each State every year, so that every State’s grid 
is completed every 5 to 10 years.  The annual system is better able to detect 
changes and trends, and efforts are continuing to establish nationally consistent 
standards for data collection, compilation, and reporting. 
 

As the annual inventory methods were adopted, States were gradually added 
to the annual system, often while the most recent periodic surveys were being 
completed in other States.  The result is that until all States have at least one full 
cycle of annual data, land managers with forest lands in more than one State (such 
as the BLM) will have data where plot intensities and time spans differ from one 
State to another.   

 
Table 4 provides information on the number of annual cycles each State has 

had through 2006 and the number of forested acres each FIA plot represents.  
Percent standard error is provided for the acres of forest land in each State.  The 
percent standard error primarily reflects the acres per plot, with generally lower 
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values for acres per plot also having low percent standard errors.  The major 
exceptions to that trend are States with few forested plots on BLM land (e.g., 
North Dakota, South Dakota, and Washington), where the few total plots in the 
respective States (3, 3, and 5) result in very high percent standard errors (74.63%, 
55.72%, and 47.47%).  As the number of annual panels increases in each State, 
percent standard errors will decrease.  
 
Table 4: FIA plots and forest conditions on BLM land at the time of the Report. 

 
 
 
 
State 

 
 

Total 
plots 

 
Plots w/ 
forest 

conditions 

 
 

Forested 
Acres 

 
 
Acres per 
plot 

 
 
Annual 
Panels 

Percent 
standard 
error of 
acres 

Arizona 1,192 161 1,893,000 11,758 5 6.98 
California 998 104 1,449,000 13,933 4 8.98 
Colorado 578 338 5,075,000 15,015 4 4.46 
Idaho 412 36 945,000 26,250 2 17.05 
Montana 398 75 1,290,000 17,200 3 11.94 
Nevada 1,639 293 7,831,000 26,727 2 4.61 
New Mexico 2,085 173 1,121,000 6,480 Periodic 6.15 
North Dakota * 3 10,369 3,456 4 74.63 
Oregon 899 267 3,789,000 14,191 4 4.38 
South Dakota * 3 25,394 8,465 4 55.72 
Utah 2,311 833 7,825,000 9,394 6 2.82 
Washington 9 5 79,000 15,800 3 47.47 
Wyoming 2,879 230 1,290,000 5,609 Periodic 6.04 

 
* NC-FIA does not assign ownership data to nonforest conditions; therefore, the total number of 
plots (and the amount of nonforest land) on BLM land is unknown. 
 

In addition, although most of the available data are consistent between FIA 
units, some variables and summaries of interest were not available in all States or 
were not completely consistent between States.  These different methodologies 
have direct effects on the Report, but predominately on a State basis, and are 
discussed in more detail in the Report.  
 
Next Steps for BLM 
 

The intent of the Report was strategic—to give the BLM a broad perspective 
about the condition of forest lands under its jurisdiction.  The Report was not 
intended to be used as the sole source for advocating any particular vegetation 
treatment or change of condition.  Decisions on vegetation management 
objectives are made at the local level through the BLM’s land use planning 
processes (e.g., resource management plans).  The BLM is preparing a publication 
(Bottomley and Menlove 2009) that will discuss the findings and provide 
assistance to agency field offices for looking at these potential issues (e.g., high 
tree densities, pinyon and juniper expansion and densification, and age class 
distribution issues for aspen and lodgepole pine) raised in the Report and 
determine if these issues are applicable in their specific areas of interest.   

 12

USDA Forest Service Proceedings – RMRS-P-56 47.



 
Conclusion 

 
FIA data provided an excellent source of information to the BLM for making 

general statements concerning the condition of the forest lands under its 
jurisdiction.  These general statements, while not site-specific enough to 
determine specific management activities, are useful for guiding strategic level 
decisions for the agency. 
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Tree Migration Detection Through 
Comparisons of Historic and Current Forest 

Inventories 
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Abstract: Changes in tree species distributions are a potential impact of climate 
change on forest ecosystems.  The examination of tree species shifts in forests of 
the eastern United States largely has been limited to modeling activities with little 
empirical analysis of long-term forest inventory datasets.  The goal of this study 
was to compare historic and current spatial distributions of tree species for sets 
of northern and southern tree species in the eastern United States using region-
wide forest inventories.  Based on the results of this study, no conclusions could 
be drawn about tree migration in the eastern United States.  The technique of 
comparing outer ranges of tree species based on periodic forest inventories may 
be confounded by inconsistent forest inventory methods across time and space 
along with tree species identification measurement error.  It is suggested that 
novel tree migration detection methods be developed based on contemporary 
forest inventories that are consistent across space and time. 
 
Keywords:  Climate change, tree migration, forest inventory 
 
 

Tree Species Migration 
 

The world’s climate is forecasted to change significantly over the next century 
due to a doubling of pre-industrial atmospheric carbon dioxide concentrations 
resulting in an increase in mean surface temperatures of 2 to 4.5 degrees C, more 
episodic precipitation events, and longer growing seasons (IPCC 2007).  Climate 
is an important driver of forest ecosystem functions (Stenseth et al. 2002). Thus, 
changes in climate should change forest ecosystem attributes and functions.   
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Fitness of trees is expected to be impacted by changes in absolute temperatures 
and the timing and/or magnitude of precipitation events (Saxe et al. 1998, 
Nabuurs et al. 2002, Sacks et al. 2007), along with a higher probability of 
catastrophic wildfires in regions of the United States (Westerling et al. 2006).  
These effects on individual tree fitness are forecasted to subsequently affect tree 
response to stress agents such as insects and disease (Volney and Fleming 2000; 
Logan et al. 2003).  The culmination of climate change effects on forest 
ecosystems ultimately may be the migration of tree species (Opdam and Wascher 
2004, Walther et al. 2002).  There is evidence of past forest migration rates 
exceeding 50 km per century during episodes of climate change (Schwartz 1992, 
Noss 2001, Parmesan and Yohe 2003).  Currently, forests may need to migrate 
one order of magnitude faster than in past migrations to adequately respond to 
current rates of warming (Schwartz 1992).  However, modern day fragmentation 
of forest ecosystems may slow the movement of tree species, potentially reducing 
tree migration capacity by one order of magnitude (Schwartz et al. 2001, Davis 
and Shaw 2001, Walther et al. 2002, Opdam and Wascher 2004).  Given the 
substantial implications of climate change impacts on tree species distributions 
within a relatively short period of time, the detection of tree species migration is 
critical. 

Examination of tree species migration has mainly focused on investigating 
historic ranges during the past millennia (e.g., Davis and Shaw 2001, Malcolm et 
al. 2002, McLachlan et al. 2005, Pearson 2006) and simulating future tree species 
shifts (e.g., Schwartz et al. 2001, Iverson and Prasad 1998, Iverson et al. 1999, 
Malcolm et al. 2002, McCarty 2001, Iverson et al. 2008).  These studies have 
been invaluable not only for raising awareness about climate change impacts on 
forest ecosystems, but also for highlighting knowledge gaps.  However, holistic 
assessment of these climate change effect models continues to call for refinement 
of modeling techniques with little or no empirical validation of these models with 
current data (e.g., Botkin et al. 2007).  Therefore, techniques need to be developed 
for validating extensive simulations of potential tree species shifts, which are 
based on poorly understood tree migration dynamics (Malcolm et al. 2002).  
Remote-sensing products and field-based forest inventories provide data for 
monitoring forest attributes across large regions.  Unfortunately, remote-sensing 
products are not well suited for identifying individual tree species across large 
geographic extents, especially in the understory.  The alternative is to use forest 
inventories to track geographic ranges of tree species over a period of decades.   

Given the need to monitor the possible migration of tree species across the 
United States, the goal of this study was to compare tree locations for selected 
study species using both the oldest and most current digital forest inventories 
(stored in digital format) across states in the eastern United States.  The study had 
three objectives: 1) for a selected list of northern tree species, compare the 
minimum latitude by species in year one (oldest inventory) and year two (most 
current inventory); 2) for a selected list of southern tree species, compare the 
maximum latitude by species in year one and year two; and 3) discuss the hurdles 
in using historic and annual forest inventories to monitor tree species migration. 
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Historic and Current Forest Inventories 
 

During the 1930s, the U.S. Forest Service Forest Inventory and Analysis 
(FIA) program was charged by Congress to “make and keep current a 
comprehensive inventory and analysis of the present and prospective conditions 
of and requirements for the renewable resources of the forest and rangelands of 
the United States” (McSweeney-McNary Act of 1928) (Gillespie 1999, Frayer 
and Furnival 1999, Bechtold and Patterson 2005).  During most of the 20th 
century, FIA was the primary source for information about the extent, condition, 
status, and trends of forest resources across all ownerships in the United States 
(Smith 2002).  However, the national inventory of forest land was conducted only 
periodically, using sample designs and data management systems that varied by 
state and inventory period (Gillespie 1999).  A variety of plot-level sample 
designs were used: fixed-radius to variable-radius, clusters of 4 to more than 10 
sub-plots, and differing measurement protocols by individual variables (e.g., tree 
height or length).  Additionally, remeasurement periods ranged from between 7 
years to more than 20 years.  The strategic-scale paradigm of varying sample 
designs, methods, and dates often confounded regional, cross-state forest resource 
analyses and digital data management -- two important aspects germane to 21st 
century analyses. 

An annual forest inventory was initiated in 1999 by the FIA program.  FIA 
now applies a nationally consistent sampling protocol using a quasi-systematic 
design covering all ownerships in the entire Nation (Bechtold and Patterson 
2005).  A three-phase inventory is now implemented, based on an array of 
hexagons assigned to separate interpenetrating, non-overlapping annual sampling 
panels (Bechtold and Patterson 2005).  In phase 1, land area is stratified using 
aerial photography or classified satellite imagery to increase the precision of 
estimates using stratified estimation. Remotely sensed data may also be used to 
determine if plot locations have accessible forest land cover (Bechtold and 
Patterson 2005).  In phase 2, permanent fixed-area plots are installed in each 
hexagon when field crews visit plot locations that have accessible forest land.  
Field crews collect data on more than 100 variables, including land ownership, 
forest type, tree species, tree size, tree condition, and other site attributes (e.g., 
slope, aspect, disturbance, land use) (Smith 2002, USDA Forest Service 2008). 
Plot intensity for phase 2 measurements is approximately one plot for every 2,428 
ha of land (125,000 plots nationally). Briefly, the plot design for FIA inventory 
plots consists of four 7.2-m fixed-radius subplots spaced 36.6 m apart in a 
triangular arrangement with one subplot in the center.  All trees with a diameter at 
breast height of at least 12.7 cm are inventoried on forested subplots.  Within each 
subplot, a 2.07-m microplot offset 3.66 m from subplot center is established 
where all trees with a d.b.h. between 2.54 and 12.7 cm are inventoried.  
 

Data and Methods 
 

Two sets of 18 predominantly northern and southern tree species were 
selected based on species range maps developed by Little (1971); these sets 
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generally coincided with past species migration studies (Iverson and Prasad 1998) 
(Table 1).   
 
Table 1:  Common and Latin names of northern and southern tree species in the eastern United 
States used in this study 
 

Northern Species Southern Species 
Common Name Latin Common Name Latin 
Balsam Fir Abies  balsamea Shortleaf Pine Pinus echinata 
Tamarack Larix laricina Slash Pine Pinus elliottii 
White Spruce Picea glauca Loblolly Pine Pinus taeda 
Black Spruce Picea mariana Baldcypress Taxodium distichum 
Red Pine Pinus resinosa Pignut Hickory Carya glabra 
Eastern White Pine Pinus strobus Flowering Dogwood Cornus florida 
Northern White -
Cedar 

Thuja occidentalis American Holly Ilex opaca 

Eastern Hemlock Tsuga canadensis Sweetgum Liquidambar styraciflua 
Sugar Maple Acer saccharum Yellow-Poplar Liriodendron tulipifera 
Yellow Birch Betula alleghaniensis Southern Magnolia Magnolia grandiflora 
Paper Birch Betula papyrifera Sweetbay Magnolia virginiana 
Gray Birch Betula populifolia Red Mulberry Morus rubra 
Black Ash Fraxinus nigra American Sycamore Platanus occidentalis 
Balsam Poplar Populus balsamifera Southern Red Oak Quercus falcata 
Bigtooth Aspen Populus grandidentata Laurel Oak Quercus laurifolia 
Quaking Aspen Populus tremuloides Blackjack Oak Quercus marilandica 
Northern Pin Oak Quercus ellipsoidalis Water Oak Quercus nigra 
Northern Red Oak Quercus rubra Post Oak Quercus stellata 

 
The oldest forest inventory (year one) that was available in digital format was 

selected for each eastern state in the Nation (Table 2).  The oldest inventories 
ranged in date from 1977 to 1995.  For year two, the most recent annual inventory 
was selected because all eastern states currently have an FIA annual forest 
inventory (for more information, see USDA 2007).  The most current forest 
inventories ranged in date from 2002 to 2005.  All forest inventory data were 
taken entirely from FIA’s national public database (FIADB 3.0) in 35 eastern 
states, so all plot latitudes are “fuzzed” as required by law.  Because plot locations 
are perturbed in an unbiased direction not exceeding 1.67 km (typically within a 
0.8-km radius of the actual plot location), estimates of maximum species latitudes 
should not be biased.  Annual inventories for each state were first initiated 
between 1998 and 2003 and continued through 2006, so sample intensities may 
vary by state.  Because FIA inventory is quasi-systematic with sample plots 
distributed across the geographic extent of each state, varying sample intensities 
will not bias assessment of tree species locations, but will only affect the precision 
of the estimates.  
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Table 2:  Measurement years for FIA periodic forest inventories (Year 1) and annual forest 
inventories (Year 2) by eastern state used in this study 
 
State Year 1 Year 2 State Year 1 Year 2 
Alabama 1990 2004 Nebraska 1983 2005 
Arkansas 1995 2005 New Hampshire 1983 2005 
Connecticut 1985 2005 New Jersey 1987 2004 
Delaware 1986 2004 New York 1993 2004 
Florida 1987 2005 North Carolina 1984 2002 
Georgia 1989 2004 North Dakota 1980 2005 
Illinois 1985 2005 Ohio 1991 2004 
Indiana 1986 2005 Pennsylvania 1989 2004 
Iowa 1990 2005 Rhode Island 1985 2005 
Kansas 1981 2005 South Carolina 1986 2005 
Kentucky 1988 2004 South Dakota 1980 2005 
Louisiana 1991 2005 Tennessee 1989 2004 
Maine 1995 2003 Texas 1992 2005 
Maryland 1986 2004 Vermont 1983 2005 
Massachusetts 1985 2005 Virginia 1984 2004 
Michigan 1980 2004 West Virginia 1989 2004 
Minnesota 1977 2005 Wisconsin 1983 2004 
Missouri 1989 2004    

 
 

Inventory Comparisons 
 

Differences across minimum and maximum latitudes for northern and 
southern species between time one and time two indicated no obvious trends 
(Table 3).  For northern species, 9 of 18 study species had higher minimum 
latitudes in time 2 than in time 1.  The average degree difference between 
inventories for all northern species was 0.18 degrees farther south.  Northern pin 
oak, black ash, and gray birch had some of the greatest shifts northward with their 
minimum latitude shifts at 2.5 degrees or more.  For southern species, only 5 of 
the 18 study species had maximum latitudes farther north, but the average 
maximum northward latitude shift across all southern species was 0.02 degrees.  
Southern magnolia and laurel oak had the largest shifts northward in maximum 
latitude, with shifts of more than 2.4 degrees northward.   

No species migration conclusions can be made given such inconsistent 
changes in maximum and minimum latitudes between forest inventories.  Given 
that little ecological information can be gleaned from this exercise, perhaps 
methodologies should be critiqued.  This study’s technique of comparing 
maximum and minimum outliers of species ranges based partially on periodic 
forest inventories has revealed many confounding factors.  The two 
overwhelming factors that complicate species migration detection using periodic 
data are inconsistent methods/measurement periods and reliance on outliers that 
may be measurement errors (e.g., species identification).  First, only trees with a 
d.b.h. greater than 2.54 cm can be examined because seedlings were inventoried 
sporadically using inconsistent sampling methodologies in periodic inventories.  
Second, the latitudinal shift of mature and/or established trees may be a lagging 
indicator of climate change effects.  Attempting to compare a periodic forest 
inventory from 1982 to an annual inventory conducted in 2000 may not provide a 
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sufficient period of time (only 18 years) to indicate the movement of trees with a 
d.b.h. greater than 2.54 cm.  

 
Table 3:  Maximum or minimum latitudes in times 1 and 2 by species in the eastern United States  
 

Northern Southern 
Common Name Time 1 

Min. 
Latitude 
(deg.) 

Time 2 
Min. 
Latitude 
(deg.) 

Degree 
Diff.a 

Common Name Time 1 
Max. 
Latitude 
(deg.) 

Time 2 
Max. 
Latitude 
(deg.) 

Degree 
Diff.a 

Balsam Fir 43.12 42.06 1.06  Shortleaf Pine 40.53 40.06 0.47  
Tamarack 39.94 40.66 -0.72 Slash Pine 34.06 34.55 -0.49 
White Spruce 40.06 39.89 0.17  Loblolly Pine 39.8 39.09 0.71  
Black Spruce 40.03 42.46 -2.43 Baldcypress 39.01 39.01 0.00  
Red Pine 38.45 39.17 -0.72 Pignut Hickory 43.19 43.09 0.10  
Eastern White 
Pine 

35.11 31.49 3.62  Flowering 
Dogwood 

45.96 43.99 1.97  

Northern White- 
Cedar 

42.79 41.35 1.44  American Holly 39.81 41.97 -2.16 

Eastern Hemlock 34.19 34.34 -0.15 Sweetgum 41.49 40.14 1.35  
Sugar Maple 31.47 29.11 2.36  Yellow-Poplar 42.95 42.39 0.56  
Yellow Birch 35.17 34.53 0.64  Southern Magnolia 33.83 36.25 -2.42 
Paper Birch 39.75 38.48 1.27  Sweetbay 39.17 39.51 -0.34 
Gray Birch 38.46 40.96 -2.50 Red Mulberry 44.99 43.38 1.61  
Black Ash 35.58 38.36 -2.78 American 

Sycamore 
43.31 42.91 0.40  

Balsam Poplar 39.37 35.54 3.83  Southern Red Oak 40.36 39.37 0.99  
Bigtooth Aspen 37.28 36.44 0.84  Laurel Oak 34.22 39.14 -4.92 
Quaking Aspen 38.78 40.51 -1.73 Blackjack Oak 41.01 40.36 0.65  
Northern Pin Oak 38.54 41.1 -2.56 Water Oak 39.8 38.71 1.09  
Northern Red Oak 31.25 31.69 -0.44 Post Oak 40.54 40.31 0.23  
aDegree Difference = Time 1 latitude – time 2 latitude 

  
Furthermore, the oldest forest inventories (pre-1970s) are currently not 

digitized, disallowing comparisons to current inventories.  Third, to examine tree 
species shifts across large geographic extents, multiple state inventories need to 
be used.  Because inventories were periodic before 1999, comparing periodic to 
annual inventories would mean, for example, comparing a 1978 inventory to 2001 
for one state while comparing a 1986 inventory to 1999 in an adjoining state.  
Fourth, FIA field crews attain measurement repeatability of only 95-98 percent 
for tree species identification (Pollard et al. 2006).  Developing range maps based 
on maximum spatial distributions from periodic forest inventories places too 
much reliance on single observations that may be prone to measurement error.  
Fifth, even if some portions of periodic inventory plots were remeasured during 
the most recent annual inventory, sample protocols have changed.  Hence, 
examining tree species migration over long periods of time in the eastern United 
States is almost completely confounded by changes in plot locations (sample 
intensities), plot sampling configurations/protocols, and non-matching periodic 
inventory dates from state to state.  Overall, there appears to be many obstacles to 
using periodic forest inventories to monitor tree migration.  Robust tree migration 
monitoring requires development of novel techniques, especially given the 
potentially profound impacts that such migration could have on the total 
environment and society as a whole. 
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Future Directions 

 
Over thirty years ago, the overarching purpose of conducting forest 

inventories was state-level forest resource assessment (e.g., growing-stock 
volumes and forest-type distributions).  The use of such data across state 
boundaries to monitor tree migration was not foreseen at that time and now is 
nearly precluded by a host of confounding factors.  Although there may be some 
ways to avoid some of the confounding factors stemming from periodic 
inventories (e.g., conducting state-level monitoring of individual refugia), there is 
no statistically robust way forward to use periodic inventories to monitor species 
migrations along the eastern United States.  Continued research is strongly 
suggested in this area.  It is suggested that new indicators of tree species 
migration be developed using only annual forest inventory data (since 1999).  
These data are systematically balanced across the entire eastern United States 
using consistent sample protocols, digital database management, and thorough 
documentation.  Perhaps comparing seedling to mature tree distributions by 
species may be a new indicator to consider.  Nonetheless, high quality and 
consistent forest inventory across large-scales provides the best opportunity to 
monitor tree species migration for the foreseeable future. 
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From Genes to Ecosystems: Measuring 
Evolutionary Diversity and Community 

Structure with Forest Inventory and Analysis 
(FIA) Data 

 

Kevin M. Potter1 
 
 
Abstract: Forest genetic sustainability is an important component of forest health 
because genetic diversity and evolutionary processes allow for the adaptation of species 
and for the maintenance of ecosystem functionality and resilience. Phylogenetic 
community analyses, a set of new statistical methods for describing the evolutionary 
relationships among species, offer an innovative approach for assessing the health of 
forest communities from an evolutionary perspective. Forest Inventory and Analysis data 
are ideal for conducting phylogenetic community analyses for forest tree species at broad 
scales. FIA data from 100,000 plots across the conterminous United States were used to 
investigate the evolutionary characteristics of forest tree communities. This required 
generating a phylogenetic “evolutionary tree” of the 311 forest tree species inventoried 
by FIA, based on recent gene sequencing studies of several plant groups.  Phylogenetic 
diversity was quantified for each plot; this statistic sums the evolutionary age of the 
species present, using the phylogenetic tree.  This is a more meaningful way to quantify 
biodiversity than species richness because, rather than weighting all species on a plot 
equally regardless of relatedness, it measures their cumulative evolutionary age.  
General patterns at the ecoregion section scale were similar between mean plot-level 
species richness and phylogenetic diversity, but important differences also existed.  
Additionally, the analyses described each plot’s phylogenetic community structure, or 
whether the species were more clustered or dispersed across the 311-species reference 
evolutionary tree than expected by chance. The most phylogenetically overdispersed 
sections were located in the Interior West, while the most phylogenetically clustered 
included several in the Upper Midwest, New England, California and the Southeastern 
Coastal Plain.  Communities that are phylogenetically clustered consist of more closely 
related species and therefore may be more susceptible to threats such as pests and 
climate change.  Phylogenetically dispersed communities may be more resilient to these 
pressures, because greater evolutionary diversity is expected to translate into a greater 
likelihood that more species will be unaffected by, or will be adaptable to, environmental 
changes. 
 
Keywords: Biodiversity, evolutionary biology, landscape genetics, forest health 
monitoring. 
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Introduction 
 

The integration of three diverse scientific disciplines – landscape ecology, 
conservation biology, and evolutionary genetics – can offer innovative and 
valuable insights about the health of forested ecosystems, particularly at large 
scales (figure 1).  Approaching conservation from a landscape ecology 
perspective is vitally important because large-scale processes affect biodiversity 
and because management decisions are often made at regional levels.  At the same 
time, it is imperative to consider genetic processes in a landscape ecology context 
because ecological dynamics at a variety of scales can affect the evolution of 
species.  Understanding conservation biology in the light of evolutionary 
processes, meanwhile, is necessary to measure and manage forest biodiversity.  
Forest health monitoring work that integrates all three disciplines of landscape 
ecology, conservation, and genetics is now possible because of the availability of 
recent advancements in computing, statistical analysis, and molecular biology.  
This work is particularly relevant to assessing forest genetic sustainability across 
large scales using U.S. Forest Service Forest Inventory and Analysis (FIA) Phase 
2 inventory data. 

 

 
 
Figure 1: Relationships among landscape ecology, conservation biology and evolutionary genetics 
within the context of monitoring forest health and sustainability. 
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Forest genetic sustainability is an important component of forest health 
because genetic diversity and evolutionary processes allow for the adaptation of 
species and for the maintenance of ecosystem functionality and resilience. 
Genetic diversity within species, for example, reflects the recent and existing 
integrity of evolutionary and ecological processes (Brown et al. 2000).  At the 
same time, existing evolutionary lineages will generate future biodiversity, and 
are therefore a cornerstone of environmental health (Erwin 1991).  The 
importance of forest genetic diversity is reflected in the Criteria and Indicators for 
the Conservation and Sustainable Management of Temperate and Boreal Forests, 
which includes three indicators of genetic diversity under Criterion 1 
(conservation of biological diversity):  

 
(1) number and geographic distribution of forest associated species at risk of 

losing genetic variation and locally adapted genotypes,  
 
(2) population levels of selected representative forest associated species to 

describe genetic diversity, and  
 
(3) status of on-site and off-site efforts focused on conservation of genetic 

diversity (Montréal Process Working Group 2008).   
 
The first two of these indicators attempt to quantify the number and population 

levels of individual species at risk of losing genetic variability, while the third 
indicator seeks to evaluate the success gene conservation efforts for forest species, 
presumably those at risk.  All three are valuable measurements, but each is limited 
to a handful of indicator species and therefore does not address the evolutionary 
diversity present across entire forest communities.  A new approach, however, can 
now combine nationwide FIA forest inventory data, an ecoregion-scale 
perspective, and recent advancements in gene sequencing and molecular 
systematics to quantify evolutionary diversity for communities of species across 
large spatial scales. 

 
This approach, community phylogenetic analyses (Webb and others 2002), 

offers the ability to synthesize evolutionary biology and landscape ecology in the 
context of assessing forest community health, both in terms of biodiversity and 
community resilience to stress. Community phylogenetic analyses are now 
possible across broad taxonomic species groupings (forest trees, for example) and 
across large spatial scales because of recent advances in the ability to create 
robust phylogenies describing the relationships among species.  These 
phylogenies are hypothesized “family trees” of species (figure 2) that are 
developed by surveying molecular systematic studies, which compare differences 
and similarities in gene sequences to determine the evolutionary relationships 
among the species and to estimate how long ago species diverged from each 
other.  Fossil evidence from palaeobotanical studies can further calibrate the dates 
at which species or species groups diverged.  The branches within these 
phylogenetic trees often are measured in millions of years.  Constructing such 
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phylogenetic trees does not always require new gene sequencing work, because 
molecular systematic studies now have been published for a wide variety of plant 
groups. 

 

 
 

Figure 2: A phylogenetic tree of the hypothesized evolutionary relationships among true fir (!"#$%) 
species of North America inventoried by FIA.  The scale bar at the bottom of the figure depicts time 
in millions of years. Such phylogenetic trees are hypotheses of the relationships among species, 
and can be improved over time with additional gene sequencing studies and with additional 
information unearthed in the fossil record. 
 

Such phylogenetic trees are necessary for two types of phylogenetic 
community analyses that are useful in describing evolutionary relationships 
within forest tree communities at broad spatial scales: the generation of 
phylogenetic diversity statistics and the quantification of phylogenetic community 
structure.  

 
Phylogenetic diversity statistics (Faith 1992, Webb and others 2006) are 

particularly meaningful as a measure of biodiversity because they quantify the 
cumulative evolutionary age and evolutionary potential of all the species in the 
community of interest.  This is typically done by first generating a phylogenetic 
tree encompassing the species present in a community, based on existing 
molecular systematics research.  Next, the lengths of the branches of that 
phylogenetic tree, usually measured in millions of years of evolutionary time, are 
measured and summed. This approach may be more meaningful than traditional 
biodiversity metrics such as species richness and abundance, which weight the 
value of all species equally regardless of their relatedness (figure 3).  Maintaining 
the evolutionary potential of groups of species measured in this way has become 
an increasingly important conservation goal (Rodrigues and Gaston 2002, 
Sechrest and others 2002, Soltis and Gitzendanner 1999).   
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Figure 3: A comparison between two measurements of biodiversity, species richness and 
phylogenetic diversity.  Species richness is the number of species present in the community, while 
phylogenetic diversity is the summed evolutionary age of all the species in the community, as 
measured by the phylogenetic tree encompassing the species present. Community (A) has greater 
species richness than community (B), but community (B) has greater phylogenetic diversity 
because the species in the community contain greater evolutionary distance.  The branch lengths 
shown on the phylogenetic trees are for demonstration purposes, and do not depict actual 
evolutionary relationships among the species. 

 
A second set of phylogenetic analyses focuses on determining whether the 

species within a specific community are more phylogenetically clustered or 
dispersed on the evolutionary tree of life than expected by chance (Webb 2000).  
Such an analysis would, for example, compare the phylogenetic tree of the species 
within a single FIA plot to the phylogenetic tree that includes all the tree species 
in North America.  If the species on the FIA plot are more closely related than 
expected by random chance, when compared to the larger reference phylogenetic 
tree, then the community is phylogenetically clustered (figure 4a). If the species 
on the plot are less closely related than expected by chance, then the community 
is phylogenetically overdispersed (figure 4b).  This type of analysis is useful from 
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a forest health perspective because it offers a way to quantify a community’s 
potential evolutionary resilience in the face of pests, pathogens, climate change 
and other stresses.  That is because communities made up of species that are 
overdispersed on the phylogenetic tree possess greater-than-expected evolutionary 
diversity, and may therefore encompass a higher proportion of species unaffected 
by a given stressor or able to adapt to it.  Phylogenetically clustered communities, 
meanwhile, contain less evolutionary diversity and may be at greater cumulative 
risk from stressors that might affect several closely related species, such as 
sudden oak death (:51($35(5$%."%.2$%-2). 

 

 
Figure 4: Phylogenetic trees of hypothetical tree communities representing the two types of 
phylogenetic community structure, (A) phylogenetic clustering and (B) phylogenetic overdispersion.  
The species in red are those present in the community; the species in black and red together 
encompass the phylogenetic reference tree of species that could exist in the community.  

 
The work described in this paper had three main objectives: 
 
(1) Assess the usefulness of FIA tree inventory datasets for phylogenetic 

diversity and community structure analyses across large ecoregion 
scales. 

 
(2) Compare mean FIA plot-level tree species richness to mean plot 

phylogenetic diversity at the ecoregion section scale. 
 

(3) Test for correlations between mean plot measures of phylogenetic 
community structure and environmental variables at the ecoregion 
section scale. 
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Methods 

 
The software package Phylocom 3.41 (Webb and others 2007) was used to 

calculate phylogenetic diversity and phylogenetic community structure statistics 
for the forest trees present on each of 102,304 one-sixth-acre Forest Inventory and 
Analysis (FIA) plots across the 48 conterminous United States.  These plots 
represented the latest available FIA Phase 2 tree and sapling inventory data (trees 
! 1 inch dbh) as of November 2007 (Forest Inventory and Analysis Program 
2007).  A phylogenetic reference supertree (figure 5), encompassing the 311 
forest tree species inventoried by FIA across the conterminous United States, was 
constructed for the estimation of phylogenetic distance among species in units of 
millions of years (Potter in review). 

 

 
 
Figure 5: The phylogenetic supertree used in this analysis, incorporating 311 North American 
forest tree species inventoried by FIA. Evolutionary relationships and branch lengths were based 
on a survey of approximately 70 recent molecular systematic and paleobotanical studies, with the 
exception of basal angiosperm relationships, which taken from Wikstrom $&'()* (2001). Branch 
lengths are measured in millions of years. 
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Based on its approximate geographic coordinates, each FIA plot was assigned 
with ArcMap 9.2 (ESRI 2006) to the appropriate ecoregion section (Bailey 1995), 
using the most recent geographical information system (GIS) mapping of Bailey’s 
hierarchical system of ecoregion domains, divisions, provinces and sections 
(Cleland and others 2005).  Ecoregion sections containing fewer than 25 plots 
were excluded from the analyses to ensure an adequate sampling. 

 
Species richness was calculated for each FIA plot, as was Faith’s (1992) index 

of phylogenetic diversity (PD). This quantifies the total evolutionary history 
represented by the species in a community by determining the total phylogenetic 
branch length distance of the species on the plot, divided by the total branch 
length distance of the reference phylogenetic supertree encompassing all the 
North American tree species inventoried by FIA. Mean PD and species richness 
values were calculated for ecoregion sections. 

 
Additionally, two measures of phylogenetic community structure were 

calculated for each FIA plot. Both statistics measure whether the configuration of 
the phylogenetic tree, encompassing the species in a given community, is more or 
less clustered than expected by chance, as compared to a regional species pool.  In 
this analysis, the regional species pool for each plot consisted of all the species 
inventoried on all the FIA plots within the same ecoregion section as the plot in 
question. (See Potter (in review) for details about the calculation of these 
statistics.) 

 
(1) The Nearest Taxon Index (NTI) is a standardized measure of the 

/%.*,5I(+3"3510$)&*&(+,",0-'(&%+*)"$%"$7&%6+'3&%'+$* of the species on 
the FIA plot, regardless of the arrangement of the higher level groups 
in the phylogenetic tree (Webb and others 2006).  In other words, NTI 
measures whether evolutionary diversity among the species on the plot 
is higher (overdispersed) or lower (clustered) than expected by chance, 
as compared to the ecoregion section species pool. 

 
(2) The Net Relatedness Index (NRI) is a standardized measurement of 

/.'.0" $%" (%&&I8+6&" 3510$)&*&(+," ,0-'(&%+*)" $%" $7&%6+'3&%'+$* of the 
species on the FIA plot (Webb and others 2006). In other words, NRI 
measures whether evolutionary diversity among the deeper 
phylogenetic ranks (families, orders, classes and divisions) present on 
the plot is higher (overdispersed) or lower (clustered) than expected by 
chance, again as compared to the ecoregion section species pool. 

 
NTI and NRI measure different evolutionary characteristics of communities, so 

the two statistics could show different results for a plot, for example indicating 
clustering by one metric and overdispersion by the other. NTI and NRI values are 
negative when species on a plot do not occur together with closely related species 
(overdispersed), and positive when species occur with other closely related 
species (clustered) (Kembel and Hubbell 2006).  The means for plot-level NRI 
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and NTI values were calculated across ecoregion sections, with a ( test 
determining whether the section-level mean values were significantly different 
from 0.   

 
The possibility of large-scale correlations of these two phylogenetic 

community structure measures with ecological variables was tested for several 
climate (PRISM Group 2008), soil (Miller and White 1998) and topographic 
(United States Geological Survey 1996) variables at the ecoregion section scale.  
The ecoregion section means of each of these was determined across the forested 
area of the section, using a forest cover map (1 km2 resolution) derived from 
Moderate Resolution Imaging Spectroradiometer (MODIS) imagery by the U.S. 
Forest Service Remote Sensing Applications Center (United States Department of 
Agriculture Forest Service 2008).   
 

Results and Discussion 
 

Values of both mean plot species richness and phylogenetic diversity tended 
to be higher in ecoregion sections of the eastern United States than in the western 
part of the country (figure 6).  The sections with the lowest means for both 
statistics were located in the interior West.  While the general pattern was similar 
between these two measures of biodiversity, important differences were apparent.  
Specifically, phylogenetic diversity was higher relative to species richness in 
several ecoregion sections along the Pacific coast, from central California to 
Washington, as well as in sections in the Northeast and in the Great Lakes region.   

 
Not surprisingly, the 10 ecoregion sections with the highest mean species 

richness values are all located in the southeastern United States.  However, only 
six of the 10 sections with the highest mean phylogenetic diversity are located in 
the Southeast, with the other four in the Northeast.  Ecoregion sections with high 
phylogenetic diversity relative to species richness appear to have a combination of 
both high angiosperm (flowering plant) and gymnosperm (cone-bearing) species 
richness (Potter in review).   

 
Meanwhile, the analysis of phylogenetic community structure detected 

regional patterns in phylogenetic overdispersion and clustering (figure 7).  Both 
the branch-tip Nearest Taxon Index (NTI) and tree-wide Net Relatedness Index 
(NRI) metrics indicated the existence of phylogenetic clustering in some of the 
most northerly ecoregion sections, including those in the Northeast, the Great 
Lakes region, the northern Great Plains, and the Pacific Northwest, as well as 
along the Appalachian and Sierra Nevada mountain chains.  Slight to moderate 
overdispersion for both metrics was present for sections in the Interior West, 
particularly in the Southwest. 
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A) 

 
 
B) 

 
 
Figure 6: Mean FIA plot-level forest tree species richness (A) and Faith’s index of phylogenetic 
diversity (B) across ecoregion sections. The two statistics were divided into six equal interval 
classes for comparison purposes.   
 

At the same time, some differences were apparent between the two measures.  
Perhaps the most notable difference is in the Southeast, where six sections were 
overdispersed using NTI, which quantifies clustering at the tips of the 
phylogenetic tree, but where none were overdispersed using the NRI, which 
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measures tree-wide clustering.  In fact, four of these six sections were ,0-'(&%&6 
using the NRI. This is most likely the situation because gymnosperm diversity is 
low in these sections, resulting in tree-wide phylogenetic clustering, while their 
angiosperm diversity is moderate, with angiosperm species evenly spaced across 
the phylogenetic tree on many plots (Potter in review). 
 

Such differences may have important forest health implications.  A 
community consisting of species that are overdispersed across the phylogenetic 
tree but clustered toward the branch tips may contain fewer species susceptible to 
a given threat.  That community, however, may be more likely to lose important 
ecological functions provided by any species that are eliminated.  Meanwhile, a 
community of species clustered across the phylogenetic tree but overdispersed at 
the tips may better retain its ecological functionality in such a situation, but might 
encompass more species at risk of elimination. 

 
It is worth noting that it is possible for a community to possess high 

phylogenetic diversity but to still have a clustered phylogenetic community 
structure, and, as a result, to be more susceptible to certain threats.  This is 
because of important differences in the two metrics.  Phylogenetic diversity 
measures the total evolutionary diversity present in a community, while NRI and 
NTI are indices that quantify the configuration of the evolutionary relatedness 
among the species.  Ecoregions section with high mean plot-level phylogenetic 
diversity and a high degree of clustering include the Eastern Upper Peninsula 
(212R), the Blue Ridge Mountains (M221D), the Catskill Mountains (211I), the 
Maine-New Brunswick Foothills and Lowlands (211B), and the Klamath 
Mountains (M261A). 

 
The patterns of phylogenetic community structure detected in this study may 

be driven at least in part by ecological interactions among species within the 
community.  Phylogenetic clustering, for example, may be caused by 
environmental filtering, the process that occurs when closely related species tend 
to co-occur because they share similar tolerances to the abiotic environment 
(Cavender-Bares and others 2004, Tofts and Silvertown 2000).  Because the 
species present in such communities share much evolutionary history and an 
affinity for similar environmental conditions, they may be particularly susceptible 
collectively to a certain threats, such as insects and diseases targeting specific 
families or genera of tree species.  Phylogenetic overdispersion in a community, 
meanwhile, may indicate the existence of competitive exclusion.  This occurs 
when closely related species compete for similar environmental niches and 
exclude each other from a community when they share limiting resources 
(Cavender-Bares and others 2004, Tofts and Silvertown 2000).  The ecological 
integrity of such communities may be less at risk from changing conditions 
because they encompass a wider variety of evolutionary adaptations to respond to 
those changes. 
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A) 

 
 
B) 

 
 
Figure 7: Mean FIA plot-level measures of phylogenetic clustering across ecoregion sections, 
using (A) the Nearest Taxon Index, a measure of clustering at the tips of the phylogenetic 
branches, and (B) the Net Relatedness Index, a measure of clustering throughout the phylogenetic 
tree. A &-test was used to determine whether the mean index values were significantly different from 
0, with negative index values overdispersed and positive values clustered. 
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Several correlations were detected between mean phylogenetic community 
structure values and environmental characteristics at the ecoregion section scale 
(table 1).  These correlations suggest that competitive exclusion for resources 
among related species (phylogenetic overdispersion) is an important process in 
ecoregion sections with less “hospitable” environments.  Meanwhile, 
environmental filtering, which occurs when more closely related species tend to 
occupy the same kinds of environments (phylogenetic clustering), may be more 
common  when environmental conditions are more hospitable, such as at sites 
with moister and less compacted soils, at lower elevations, and with greater 
amounts of precipitation.   

 
For example, soil available water capacity was the environmental variable 

with the strongest positive correlation phylogenetic clustering across ecoregion 
sections, indicating communities with wetter soils were generally more 
phylogenetically clustered.  Greater soil acidity (lower pH) also was positively 
associated with phylogenetic clustering, as was depth to bedrock.  Among the 
climate variables, annual precipitation had a weak but significant correlation with 
NRI, indicating that forest tree communities in ecoregion sections with more 
precipitation were more phylogenetically clustered using the phylogenetic tree-
wide metric.  Standard deviation of monthly maximum and minimum 
temperatures was negatively correlated with both NRI and NTI, suggesting that 
variability in temperatures was associated with greater phylogenetic 
overdispersion of communities in the ecoregion.  Finally, three different 
topographical measures were important in predicting phylogenetic structure, with 
ecoregion section elevation mean, elevation variation (standard deviation) and 
elevation range all correlated with greater phylogenetic overdispersion. 

 
Table 1: Correlations between mean plot-level phylogenetic clustering statistics across  
ecoregion sections and environmental variables at the section scale.  
Environmental variable NRI NTI 
Soils   
Available water capacity (AWC) 0.475*** 0.463*** 
Bulk density -0.519*** -0.37*** 
pH -0.355*** -0.249** 
Depth to bedrock 0.34*** 0.321*** 
Climate   
Mean annual precipitation (1971-2000) 0.226** ns 
Monthly maximum temperature (1971-2000) (mean) ns ns 
Monthly maximum temperature (1971-2000) (standard deviation) -0.377*** -0.383*** 
Monthly minimum temperature (1971-2000) (mean) ns ns 
Monthly minimum temperature (1971-2000) (standard deviation) -0.345*** -0.347*** 
Topography   
Elevation (mean) -0.413*** -0.41*** 
Elevation (standard deviation) -0.274*** -0.281*** 
Elevation (range) -0.315*** -0.339*** 

 
*** p<0.001; ** p<0.01; ns, not significant 
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Conclusions and future work 
 

The work outlined in this paper demonstrates the applicability of phylogenetic 
community analysis to data sets at regional and even national scales.  Generating 
these phylogenetic diversity and community structure statistics at large scales is 
one approach for investigating the role evolutionary biology plays in shaping 
processes and patterns in the natural world.  The results of this study indicate that 
differences exist between phylogenetic diversity and species richness within 
ecoregion sections, and suggest that phylogenetic diversity may be a more 
meaningful measure of biodiversity because it accounts for evolutionary 
relationships among the species in a community.  Further, the analyses of 
phylogenetic community structure detected intriguing regional patterns of 
phylogenetic clustering and overdispersion. Additional research is necessary to 
better understand the causes of these patterns, and to further explore the 
correlations, at regional scales, between phylogenetic clustering and several 
environmental variables.  

 
The types of analyses described in this paper have potential for investigating 

the evolutionary aspects of forest health.  For example, these analyses could 
assess whether regions with more phylogenetically clustered forest tree 
communities are more susceptible to major environmental changes, because of the 
possibility that a higher proportion of species will be affected by a given stressor.  
Another important area of research using these methods could quantify the 
evolutionary impacts of the loss of species, in terms of loss of ecological 
functionality and evolutionary potential. 

 
Finally, this study establishes that Forest Inventory and Analysis data are 

suitable for addressing evolutionary biology questions at regional scales.  In fact, 
few if any other available data sets have the extent and resolution necessary to 
conduct phylogenetic community analyses for forest communities at broad scales.  
FIA inventory data have considerable potential for use in many such future 
studies, including several with forest health applications.  Future research, for 
example, could incorporate FIA data to: 

 
(1) assess whether nonnative invasive forest tree species are more 

phylogenetically related than expected by chance (Strauss and others 
2006), which could allow for the identification of groups of closely 
related nonnative species that may be likely to become invasive. 

 
(2) determine the phylogenetic community effects of the loss of species 

or groups of species as a result of forest tree insects or pathogens, 
such as chestnut blight, hemlock woolly adelgid, and white pine 
blister rust. 
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(3) test for phylogenetic signal in forest tree susceptibility to insect and 
disease infestation, particularly from those with multiple hosts, and to 
broad environmental changes such as climate change. 

 
(4) quantify the phylogenetic diversity and community structure of entire 

forest plant communities, and of strata within those communities, 
using FIA Phase 3 data.    
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Fine Scale Mapping Applications



  

 

Combining FIA Plot Data with Topographic 
Variables: Are Precise Locations Needed? 

 
Stephen P. Prisley1, Huei-Jin Wang2, Philip J. Radtke3, and 

John Coulston4 
 

 
Abstract: Plot data from the USFS FIA program could be combined with terrain 
variables to attempt to explain how terrain characteristics influence forest growth, 
species composition, productivity, fire behavior, wildlife habitat, and other phenomena.  
While some types of analyses using FIA data have been shown to be insensitive to 
precision of plot locations, it has been suggested that terrain-based models may require 
the use of precise plot coordinates.  This study compares results obtained from a variety 
of terrain-based analyses conducted in the Blue Ridge of North Carolina using both 
precise and perturbed (fuzzed and swapped) FIA plot locations, and documents 
differences between field-estimated slope and aspect and GIS-derived slope and aspect.  
Digital elevation model (DEM) data were used to derive simple topographic parameters 
such as elevation, slope percent, azimuth of aspect, terrain curvature, flow accumulation, 
slope position, and compound topographic index.  These values were then compared in a 
pairwise fashion for plots using precise and perturbed coordinates. Correlations between 
precise and perturbed plot locations ranged from r = -0.006 to r = 0.383, except for 
precise versus perturbed plot elevations where r = 0.929.  Second, a simple, terrain-
based forest site quality index (FSQI) was calculated for the each plot.  This index 
defines site quality classes for forest productivity based on azimuth of aspect, slope 
percent, and slope position.  FSQI classifications were compared for precise and 
perturbed plot coordinates; at best only 40% of plots resulted in the same productivity 
class (out of 5).  Finally, field-obtained estimates of slope and aspect were compared 
with GIS-derived estimates from precisely-located plots to assess their level of 
agreement.  Correlations between field-measured and GIS-derived values were r = 0.6 
for slope and r = 0.4 for aspect.  Results of these experiments indicate that perturbed plot 
locations may not be suitable for such fine-scale applications. 
 
Keywords: terrain, slope, aspect, elevation, site quality, productivity 
 
 

Introduction 
 

Forest scientists have known for decades that strong linkages exist between 
forest productivity and site conditions such as topography.  Many efforts have 
attempted to quantify these linkages so as to be better able to model and predict 
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forest site productivity for assessment and management (Davis and Goetz 1990, 
Bolstad et al. 1998, Franklin 1995).    The availability of advanced spatial analysis 
software and consistent, reliable, national coverage of digital elevation model 
(DEM) data has enhanced our ability to characterize and quantify topographic 
conditions at locations where productivity estimates are available.  It is natural, 
then, to look to FIA data as source for consistent estimates of forest productivity 
across a large geographic area. 

 
A current research effort at Virginia Tech is attempting to evaluate and 

augment the southern variant of the Forest Vegetation Simulator (FVS) for 
southeastern mixed forests.  As part of this project, productivity data from FIA 
plots are being related to topographic conditions which are thought to be drivers 
of forest growth.  However, comparison of productivity measures from FIA plots 
and topographic conditions at the plot locations must be conducted at a relatively 
fine spatial scale, on the order of 10 to 30 meters, the resolution of the most 
widely-used DEM data from US Geological Survey.     

 
For a variety of compelling reasons, publicly available FIA data do not report 

actual plot coordinates.  A mechanism called “fuzzing” adds a random error (up to 
about 1.6 km) to the plot location, and a subset of plots are “swapped” with other 
plot locations (LaPoint 2005; Guldin et al. 2006).  This process of fuzzing and 
swapping are referred to here collectively as perturbing (McRoberts et al. 2005).  
Several authors have investigated the reliability of results obtained from perturbed 
plot locations relative to actual (hereinafter referred to as “precise”) plot locations.  

 
McRoberts and others (2005) discussed the impacts of plot location 

perturbation on model-based and design-based estimation procedures.  They note 
the effects of perturbed plot locations decrease as the size of the sampling unit 
increases and the spatial autocorrelation increases.  The authors propose a variety 
of ways in which the FIA program may help avoid modeling problems with 
perturbed plot locations, such as providing a variety of model-based maps of 
estimates of forest attributes that users could access via the Internet. 

 
Coulston and others (2006a) evaluated biomass estimates derived from 

kriging and residual kriging at FIA plots in Minnesota.  They noted no difference 
between kriged estimates of biomass from the perturbed and precise plot 
locations.  It should be noted, however, that the only variable obtained from a 
disparate spatial dataset was leaf area index (LAI), which came from 1-km 
MODIS imagery.  Therefore, it is unlikely that the independent LAI variable 
showed much difference between perturbed and unperturbed locations. 

 
In another sample application, Guldin and others (2006) computed inventory 

parameters such as forest area, numbers of live and growing stock trees, and 
volume from circular woodsheds of varying radii, using perturbed and precise plot 
locations.  The only variation in the analysis, therefore, would be which plots fell 
into or out of the compact circular woodsheds because of location perturbation.  
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The authors reported that differences were trivial.  A biomass prediction case 
study involving additional spatial layers indicated that the model developed from 
perturbed coordinates was no worse than the low performance from the model 
from precise coordinates (R2 = 0.43).  The authors concluded that perturbed FIA 
data can be used with confidence for similar applications. 

 
In a subsequent article, Coulston and others (2006b) used simulation to 

develop spatial layers of different resolutions and levels of spatial autocorrelation.  
These layers were then used in kriging and linear regression models in which the 
dependent variables came from FIA plots, and models were compared between 
precise and perturbed locations.  For kriging, no differences were noted.  For 
regression, the authors noted that perturbed locations affected model R2, and that 
the affects were most evident at finer resolutions and in datasets with lower levels 
of spatial autocorrelation.  Furthermore, differences were most pronounced in 
models that had higher initial R2.  The authors suggest that regression modeling is 
only appropriate with very coarse resolution datasets (1-2 km). 

 
The research underway at Virginia Tech differs substantially from most of the 

applications reported above.  In our efforts, forest productivity estimates from 
FIA data are being linked to terrain characteristics which may change 
dramatically over distances that are very small relative to the scale at which FIA 
plots are perturbed.  Our situation is most similar to the fine-scale, low 
autocorrelation linear regression scenarios reported by Coulston and others 
(2006b) in which perturbed plot locations resulted in substantially poorer model 
performance.  Therefore, we hypothesize that the terrain characteristics extracted 
from GIS layers at perturbed plot locations will differ substantially from the 
conditions present at precise plot locations.  Such differences would likely prevent 
adequate prediction of productivity from terrain conditions. 

 
In order to conduct this research, the Virginia Tech Department of Forestry 

entered into a Memorandum of Understanding with the US Forest Service as part 
of the Privacy Policy Study Group in 2005.  This agreement provided limited 
access to precise plot coordinates in a closely regulated setting.  As part of the 
agreement, Virginia Tech is required to report differences that would be obtained 
from perturbed versus precise plot locations.  This paper reports our evaluation 
procedure and documents the results. 
 

Methods 
 
Study Area 
 

This study was conducted using data from the mountain FIA unit in western 
North Carolina (Figure 1).  This area comprises 21 counties covering 
approximately 17,870 square kilometers.  Most of the study area is in the Blue 
Ridge province of the southern Appalachian Mountains.  Elevations in the study 
area range from 266 to 2033 m. 
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Figure 1: Map of the study area, the mountain FIA unit in western North Carolina. 

 
Terrain Data 
 

Digital elevation data were obtained from the US Geological Survey 
“seamless” web site (http://seamless.usgs.gov) and consisted of 10m grid cells 
containing elevation in meters.  From this dataset, additional terrain datasets were 
developed using functions in ArcGIS 9.2 software.  These additional layers 
included slope percent, azimuth of aspect, terrain shape index, terrain curvature, 
and flow accumulation.  Slope percent was computed with the ArcGIS slope tool, 
which applies the Horn (1981) algorithm using elevations at eight adjacent cells.  
Azimuth of aspect and terrain curvature were calculated using the default ArcGIS 
algorithms.  Because of the difficulties in dealing with circular data, azimuth of 
aspect was also transformed using a cosine transformation.  Terrain shape index 
(TSI), an indicator of local landform convexity or concavity (McNab 1989), was 
computed as the difference between the elevation at a cell and the average 
elevation of a 35m circular neighborhood.  High positive values represent areas of 
convexity such as ridges, and more negative values represent concave landforms 
such as coves or drainages.  Flow accumulation is a hydrological-based indicator 
of landscape position.  The flow accumulation algorithm computes the number of 
grid cells whose runoff would flow eventually through a given cell.  Low numbers 
represent areas near ridge crests and high numbers represent valleys, bottoms, and 
drainageways.   

 
Two additional terrain descriptors were also derived: slope position and forest 

site quality index (FSQI).  To quantify the relative positions of points on the 
landscape, an indicator of slope position was required.  Slope position was 
defined as the percentage of the flow path distance from a stream to a ridge.  To 
obtain this metric, the flow accumulation layer was used to define streams, which 
were then masked from the analysis.  The flow length tool in ArcGIS was then 
used to determine both the uphill and downhill flow length for each cell.  Uphill 
flow length is the number of cells along the flow path uphill to a ridge.  Downhill 
flow length is the number of cells along the flow path downhill to a stream.  Slope 
position for a grid cell is then calculated as the downhill flow length at that cell 
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divided by the sum of uphill and downhill flow lengths.  The resulting value for 
slope position (0 -1.0) is then reclassified into codes for six landscape positions: 
summit, shoulder, backslope, footslope, terrace, and floodplain (Cotton et al. 
2008). 

 
Forest site quality index is an ordinal value integrating slope, aspect and the 

slope position class defined above (Meiners et al. 1984).  The FSQI values have 
been shown to be correlated with upland oak site index, and are being applied in 
ongoing forest productivity research.  FSQI scores were developed using the 
slope, aspect, and slope position class layers developed for western North 
Carolina.  Scores were categorized into five classes corresponding to site index 
ranges (Cotton et al. 2008). 
 
FIA Data 
 

FIA plot data from cycle 7 (ca. 2002) were obtained from the Southern 
Research Station for North Carolina.  Both published (perturbed) and actual 
(precise) coordinates for each plot were obtained.  A total of 1,022 plots were 
used in this analysis. 
 
Analysis Approach 
 

A spatial dataset of perturbed and precise plots was created from the FIA 
tables containing coordinates of plot locations.  All data were projected to the 
UTM Zone 17, NAD 83 coordinate system and plots were overlaid with the raster 
terrain datasets, extracting cell values for each plot location from each layer.  
Scatterplots and correlation estimates were produced to compare terrain values for 
perturbed versus precise locations.  Categorical FSQI site index classes for 
perturbed and precise plot locations were compared in a contingency table. 
 

Results 
 
Perturbed versus Precise Coordinates 
 

The influence of perturbed locations on terrain-based models was examined 
by comparing topographic variables derived from precise versus perturbed 
coordinates. Despite the trivial contribution to bias in topographic GIS 
derivatives, perturbed locations did influence the precision of derivatives (Figure 
2 and Table 1). Dispersion of differences between the two plot locations had a 
wide range and its corresponding standard errors were far from zero. Examples of 
observed discrepancies between precise and perturbed plots illustrate these 
differences: (1) aspect obtained from a precise coordinate was toward north with 
azimuth 7!, but that obtained from a perturbed coordinate was toward south with 
azimuth 175!; (2) a precise location has a steep slope of 99%, but its perturbed 
location has a relatively flat slope of 2%. Maps of locations with similar terrain 
discrepancies are depicted in Figure 3 (without actual plot locations).  The 
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strength of topographic correlation was weak or none (r = 0 – 0.383) between 
perturbed and exact locations, except the elevation variable (r = 0.929). 

 

 

 

 
Figure 2: Scatterplots of terrain variables for perturbed and precise coordinates; incuding elevation, 
slope, slope position, aspect, cosine of aspect, curvature, terrain shape index, and flow 
accumulation (sample size = 1022).  

 
Forest site quality index (FSQI) consists of scores from 3 to 16.  Only 15.4% 

of plots had the same score for perturbed and precise locations, resulting in a 
correlation of 16.7%.  When aggregated to five classes, FSQI exhibited only a 
40% overall agreement (Table 2).  In this agreement analysis, no evidence existed 
to support the assertion that perturbed coordinates could provide sufficient 
information in evaluating site quality (Table 2). After chance agreement was 
excluded (using the kappa statistic), the agreement rate was 5%. 
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Table 1: The performance of perturbed coordinates is evaluated by comparing to GIS-
derived terrain values from precise coordinates. 

 r Bias SE a MSE  b 
Elevation (m) 0.929 6.06 112.9 113.06 
Slope (%) 0.383 -0.18 23.14 23.14 
Slope Position (%) 0.201 ~ 0 0.18 0.18 
Aspect (˚) 0.044 3.25 139.63 139.67 
Cos(aspect) 0.093 0.03 0.95 0.95 
Curvature 0.038 0.09 3.53 3.53 
Terrain Shape 0.036 0.13 4.37 4.37 
Flow Accumulation -0.006 -49.07 2811.69 2812.12 

 

a SE: Standard Error 
b MSE: Mean Square Error 

 

 
Figure 3: Examples of results for aspect and slope based on perturbed and precise coordinates. 
Perturbed and precise plots differed in aspect by approximately 170 degrees; perturbed and 
precise plots differed in slope by 97%. These maps depict similar terrain conditions but do not 
indicate real plot locations. 

 
Table 2: The contingency table of forest site quality index (FSQI) for perturbed versus exact 
coordinates: FSQI is computed based on GIS-derived aspect, slope, and slope position for each 
plot. 1022 plots are used to evaluate the FSQI agreement between perturbed and actual 
coordinates. Overall agreement of FSQI classes between perturbed and precise coordinates is 
40%.  The proportion of FSQI agreement is 0.05 (kappa statistic), after chance agreement is 
excluded. 

  Precise coordinates 
 FSQI 3.0-4.5 4.5-7.5 7.5-10.5 10.5-13.5 13.5-16.0 

3.0-4.5 1 3 1 4 1 
4.5-7.5 0 53  78 31 3 

7.5-10.5 3 84 254 166 12 
10.5-13.5 0 42 152 98 10 

Perturbed 
coordinates 

13.5-16.0 0 4 10 6 2 

 
 
Field-Measured versus GIS-Derived Variables 
 

Field-obtained slope and aspect values were available for 767 FIA plots for 
comparing the performance between field and GIS-derived slope and aspect using 
precise coordinates. The linear association between field and GIS-derived 
variables was stronger than the correlation between perturbed and precise plot 

Aspect difference  Slope difference  

USDA Forest Service Proceedings – RMRS-P-56 50.



8 

locations.  For slope, 611.0"r  and for aspect 546.0~405.0"r  (Figure 4).  Only 
53% of plots had GIS-derived slope within 10% of the field measurement (±10% 
is the MQO for subplot slope).  For aspect, only 21% of plots had a GIS-derived 
value within 10 degrees of the field measurement (±10! is the MQO for aspect). 
 

 

Figure 4: Linear correlations between field-derived and GIS-derived values for slope, aspect, and 
cosine of aspect (sample size = 767). 

 

Discussion and Conclusions 
 

We know that microscale variation in landform and terrain affects the type 
and quality of the vegetation in mountainous regions, largely due to temperature 
and soil moisture limiting to plant growth. Terrain information can be easily 
derived through GIS procedures because of widely available digital elevation 
models, and terrain derivatives can improve predictive models (Davis and Goetz 
1990). The perturbed coordinate system, however, cannot provide useful 
information derived from fine-scale digital elevation data. In addition, it is 
unlikely that FIA can provide all possible terrain variables from field or even GIS 
measurements: the variety of terrain-related, GIS-derived variables currently used 
in ecological and hydrological applications is large and growing.  Thus, it appears 
that FIA data in publicly-available form (perturbed locations) are not useful in 
conjunction with fine-scale spatial applications. 

 
It also appears that the terrain variables that are currently measured in the 

field (slope and aspect) do not correlate with GIS-derived variables as strongly as 
we might hope.  The algorithms broadly used in GIS-based terrain analysis do not 
measure the same things as are measured in FIA field procedures.  For example, 
slope is measured in the field using a percent-scale clinometer, observing from the 
uphill to downhill edges of a subplot. The default GIS approach computes a 
weighted average gradient in N-S and E-W directions.  Therefore, it is not 
appropriate to interchange field slope/aspect with GIS-derived slope/aspect in 
either developing or applying predictive models. 

  
Clearly, modeling forest productivity or other phenomena that vary at 

spatial scales on the order of currently available digital elevation models cannot 
be adequately performed with the publicly-available FIA plot locations.  
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Researchers pursuing such endeavors must find other avenues to accomplish this 
research.   

 
Opportunities for spatial modeling with FIA data with ancillary geospatial 

data have increased proportional to the availability of geospatial data (e.g. 
DEMs).  These opportunities will continue to increase as more geospatial 
information at higher resolution becomes available.  However, the usefulness of 
the ancillary data is related to the accuracy of the precise plot locations.  Although 
errors in precise locations were not considered in this analysis, these errors create 
additional uncertainty for the types of analyses presented here.  For example, the 
FIA program typically uses recreation-grade GPS units to collect coordinates of 
each inventory plot.  These types of GPS units have under-canopy locational 
accuracies of approximately 7.5 m (Bolstad et al. 2005).  We recommend that the 
accuracy of the precise location should be available to clients who are using these 
precise coordinates.  This information is particularly important when conducting 
research to develop models based on fine resolution (e.g. 10 m) geospatial data 
and FIA plot attributes.  To keep pace with the increased resolution of ancillary 
geospatial data, we also recommend that the FIA program adopt new, more 
accurate, GPS technology as it becomes available and affordable.   
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Using interpreted large scale aerial photo 
data to enhance satellite-based mapping and 

explore forest land definitions 
    
 

Tracey S. Frescino1, Gretchen G. Moisen2

 
 
 
Abstract: The Interior-West, Forest Inventory and Analysis (FIA), Nevada Photo-Based 
Inventory Pilot (NPIP), launched in 2004, involved acquisition, processing, and 
interpretation of large scale aerial photographs on a subset of FIA plots (both forest and 
nonforest) throughout the state of Nevada. Two objectives of the pilot were to use the 
interpreted photo data to enhance satellite-based mapping capabilities by providing 
training information at a moderate scale, and to refine definitions of forest land by 
facilitating explorations of forest land definition changes. This study examines the 
usefulness of NPIP data for fulfilling these objectives by exploring relationships between 
photo-interpreted information and FIA ground data with Moderate Resolution Imaging 
Spectroradiometer (MODIS) data using machine learning, Random Forests models. 
Photo-interpreted data were determined to be valuable training data for models using 
MODIS imagery, even in areas of low tree cover, and were found to be slightly more 
effective than using field data.  
 
 
Keywords: Nevada, photo interpretation, large scale photography (LSP), MODIS 
 
 
 

INTRODUCTION 
 
 
With increasing pressure for natural resource information and concurrent 

decreases in available funds, there is a need for exploring alternatives to the time-
consuming, high cost ground data traditionally collected by inventories, such as 
the USDA Forest Inventory and Analysis (FIA) program. In 2004, the Interior-
West FIA program launched the Nevada Photo-based Inventory Pilot (NPIP) to 
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explore the use of GPS-controlled, large-scale aerial photography (LSP) for 
enhancing our existing inventory by complementing our field sample, augmenting 
our traditional FIA estimation process, providing strategic level information on 
nonforest lands not traditionally inventoried by FIA, and increasing efficiencies, 
particularly in the extensive, slow-growing woodland forests in the West.   

 
NPIP involved acquisition and processing of LSP on a subset of FIA plots 

(both forest and non-forest) throughout the state of Nevada during two 
consecutive field seasons. Nevada was a particularly good study area for several 
reasons: it was not yet funded for annual inventory (Gillespie 1999); it has the 
most incomplete and outdated periodic data in the Interior West; it is 
predominantly nonforest federal lands; and of the forested lands, it is mostly 
woodland forest types. The specific objectives of the pilot were as follows: 

 
! Exceed information requirements by providing strategic level information on 
all cover type groups in a consistent fashion. LSP provides an opportunity to 
characterize vegetated and non-vegetated cover types typically not sampled by 
FIA, such as shrublands and grasslands. 
 
! Speed up inventory timeline by producing meaningful estimates after 2 years 
of data collection, at a lower cost. The data from NPIP can supplement the 
sparse annual data collected in the state to produce more precise and timely 
estimates of field-based attributes, such as area by forest type, area by owner, 
and area by land class, as well as basal area by tree species group.  
 
! Reduce inventory costs in prefield and potentially in future field efforts 
particularly on marginal forest lands. IW-FIA’s ground sample is based on a 
priori interpretation of aerial digital imagery (e.g. DOQ). LSP provides higher 
resolution imagery and improved temporal control for making better decisions 
and thus, eliminating unnecessary field visits and reducing costs.  
 
! Enhance mapping capabilities by providing training information at a 
moderate scale. In the past, FIA map products have relied on the acre-size, FIA 
plot data for training moderate-scale, and satellite-based map products of forest 
attributes. NPIP photos offer the opportunity to collect training data at a scale 
that is comparable to the satellite imagery which should improve accuracy of 
these map products.   
 
! Provide data to evaluate forest land definition changes. FIA needs to define 
and account for all forest land in the U.S. in a consistent and efficient manner. 
NPIP photos can provide data to explore the impact of definitional changes of 
forest land on forest estimates, using criteria such as percentage of tree crown 
cover. 

 
The focus of this study is based on the last 2 objectives of the pilot: enhancing 

mapping capabilities and evaluate definitions of forest land. The study explores 

 2
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relationships between photo-interpreted information and Moderate Resolution 
Imaging Spectroradiometer (MODIS) data, examining photo data as compared to 
FIA field data and analyzing different thresholds of tree cover interpreted from 
the photo plots. This paper first describes the data available, photo, field, and 
MODIS imagery, and then how these data were used for addressing these 2 
objectives.  

 
 

DATA 
 
 

Photo Data 
 
 
GPS-controlled LSP was collected in 2004 and 2005 in the state of Nevada, 

consisting of 28,629,728.6 hectares (70,745,600 acres) 
(http://dcnr.nv.gov/nrp01/land01.htm), including water but excluding 3,514,290 
hectares (8,684,000 acres) of restricted air space. Nevada is less than 14 percent 
forested and of these forested lands, the dominant forest type is pinyon-juniper 
woodland type, covering approximately 7 million acres (Born et al. 1992). Other 
woodland types found in Nevada include Cercocarpus species and Gambel oak 
(Quercus gambelii). Timberlands cover less than 1 percent of the total forest land 
and include white fir, aspen, and limber pine with bristlecone pine, subalpine fir 
and Engelmann spruce (Picea engelmannii) at higher elevations and black 
cottonwood (Populus trichocarpa) in the riparian areas (Born et al. 1992).  

 
The sample survey design for NPIP follows the systematic sampling design of 

the national FIA program (Reams et al. 2005). The FIA program conducts a 
comprehensive inventory of forest lands across all ownerships in the United 
States. Permanently-established ground plots are measured annually based on a 
systematic sample of regularly spaced hexagons, each representing approximately 
6000 acres. The plots are delineated into 5 panels, each panel represents 20 
percent of the data and is measured on an annual cycle. In the western region, 
panels are divided again into subpanels; each subpanel representing half a panel 
or 10 percent of the data. A subpanel is measured every year over a ten year cycle. 

 
The state was pre-stratified into 3 initial strata using a pixel-based, 250-meter 

resolution map of predicted timberland forest, woodland forest, and nonforest 
areas (Figure 1; Blackard et al. 2004). All FIA locations (i.e., all 10 subpanels) 
within the timberland and woodland strata were photo-sampled, totaling 1,455 
plots. In addition, one-tenth of the FIA locations (i.e., one subpanel) within the 
nonforest stratum were photo-sampled, totaling 877 plots, resulting in an overall 
total of 2,332 photo plots. 

 

 3

USDA Forest Service Proceedings – RMRS-P-56 51.



 
Figure 1: Stratification map. 

 
In 2004, 395 locations were acquired by contract with the Remote Sensing 

Application Center (RSAC) using a direct-to-digital camera, DCS645C, with a 
55-mm lens. Flights were flown 3,000 feet above ground with a 2,002-ft swath 
width, resulting in a 0.49-ft ground sample distance (GSD). In 2005, a contract 
through the USDA Aerial Photography Field Office (APFO) to Aerial Services, 
Inc. (ASI) provided photos for 1,937 locations. The ASI photography used natural 
color 9x9-inch film and a 6-inch lens. These plots were flown at a scale of 1:5,000 
feet with a 3,750-ft swath width. Stereo triplicate photographs were acquired for 
all plots, converted to a digital Tagged Image File Format (TIFF), and geolocated 
to each FIA X-Y plot center location. 

 
The NPIP photo-interpreted plot sample design consisted of a dot grid sample 

within a 250 meter radius circle covering approximately 20 hectares (48 acres) of 
land. There were a total of 49 points per plot each representing about an acre size 
(Figure 2) with the center point of each plot straddling the FIA field plot center. 
Point generation and photo interpretation were accomplished using the Digital 
Mylar Image Sampler tool developed by the Remote Sensing Applications Center 
(RSAC) (Clark et al. 2004). Each point was assigned a value of condition class, 
defined as an area of homogenous vegetation having similar characteristics 
(USDA 2006), and an object class identifying the object in the photograph the 
point fell on, such as a tree or shrub (USDA 2006).  
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Figure 2: NPIP plot sample design. 

 
The individual point data were summarized to plot level and condition level 

attributes. One attribute analyzed in this study was percent cover of live trees, 
calculated by summing the points that fell on live trees and dividing by the 
number of points per plot or condition, respectively. More details on photo 
sampling procedures are documented in Frescino et al., In Press. 
 
 

FIA Field Data 
 
 
As mentioned previously, the FIA sampling design is based on a nationally 

consistent and uniform spatial distribution of field plots divided into annual 
panels across the United States. In the Interior-West, where and when funding is 
available, a subpanel of data is measured each year, representing 10 percent of the 
total plots. In Nevada, 2 subpanels (20% of the entire sampling grid) of data were 
collected in years 2004 and 2005, totalling 1216 plots; of these, 381 plots sampled 
forest land. Live tree crown cover was measured using four 25-ft transects and 
included all live trees 1.0 inch and greater (USDA 2006). These data were 
collected at the condition level and summed to plot level.  

 
 

MODIS Data 
 
 
We used 16-day, cloud-free, composites of MODIS imagery for spring, 

summer, and fall of 2005. These included visible-red (RED) and near-infrared 
(NIR) bands and 2 vegetation indices, normalized difference vegetation index 
(NDVI) and enhanced vegetation index (EVI). NDVI measures energy absorption 
of chlorophyll and cell wall reflectance in vegetation cover and is defined as (NIR 
– RED) / (NIR + RED) (Tucker 1979). NDVI is powerful in its reduction of 
multiplicative noise among bands but is sensitive to canopy background changes 
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(Huete et al. 2002). EVI incorporates the blue visible spectral band, helping to 
reduce this sensitivity in background noise while improving sensitivity in high 
biomass regions. EVI is defined as G*(NIR – RED) / (NIR + C1*RED – 
C2*BLUE+ L), where BLUE is visible-blue band, C1 and C2 are aerosol resistance 
coefficients, G is a gain factor, and L is the canopy background adjustment factor 
(Huete et al 2002). 

 
 

METHODS 
 
 

Random Forests 
 
 
In meeting both our objectives of enhancing mapping capabilities and 

evaluating definitions of forest land, we used a machine learning algorithm, 
Random Forests (Breiman, 2001), to model relationships between response 
variables collected on photos or field plots, and the MODIS data. Random Forests 
is a classifier that generates multiple classification predictive models referred to 
as trees, and outputs the class that occurs most frequently. For each tree a random 
subset of the training data (approximately two thirds) is used to construct the tree, 
with the remaining data points used to construct out-of-bag (OOB) error 
estimates. For categorical responses, the OOB error is the average number of 
times the class was not correctly classified, yielding OOB estimates of percent 
correctly classified (PCC) and Kappa, an index that compares agreement against 
that which might be expected by chance. For a continuous response, the output 
includes the total percent variance explained, root mean square error (RMSE), and 
Pearson’s correlation (Cor). At each node of each tree, a random selection of 
predictors is chosen to determine the split. Random Forests will not overfit data, 
therefore the only penalty of increasing the number of trees is computation time. 
For this study, we used 500 trees to build the models and relied on the OOB error 
estimates to compare different models.  

 
 

Enhance Mapping Capabilities 
 
 
The first objective addressed in this paper was enhancing mapping capabilities 

by providing training information at a moderate scale, compatible with the 
MODIS data. Recent mapping efforts, regionally (Blackard et al. 2004; 
Ruefenacht et al. 2004) and nationally (Blackard, et al. 2008; Ruefenacht et al. 
2008), have coupled FIA data with MODIS imagery with the assumption that the 
acre-size (4047 sq meter) FIA sample plot is representative of the 15-acre (250-sq 
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meter) pixel size of MODIS. This mismatched scale has not previously been 
analyzed, thus the impact on the models and map products are unknown. The 
NPIP sample plot is 500 meters in diameter and therefore provides data for a 
sampled area that is thought to better match the area of the MODIS pixel. To 
understand this impact of scale better, we explored relationships between MODIS 
data and the compiled photo-interpreted data at both the plot and condition levels 
using Random Forests and compared the output from these models to output from 
models generated using FIA ground plot data.  

 
We focused on 2 different questions: 
1. How does using photo plots as training data differ from using field plots as 

training data for generating models with MODIS imagery? 
2. How does the cost of photos and field training data affect models with 

MODIS imagery? 
 
For the first question, we considered only those plots that met the following 

two conditions: 1) both field and photo data were available (hereafter referred to 
as collocated), and 2) both field and photo plots had only one condition. For the 
latter we assumed the homogeneity within the plots would minimize noise or 
model error and therefore the error we were seeing would be related to differences 
in scale. We modeled 4 different responses, 3 binary and 1 continuous: presence 
of forestland (F/NF); presence of pinyon-juniper forest type (PJ Type); presence 
of pinyon-juniper species (PJ Spp); and percent live tree cover. Forestland was 
defined as lands having 10 percent or greater cover of live trees; pinyon-juniper 
forest type included plots with a condition classified as pinyon-juniper; pinyon-
juniper species included plots having at least one pinyon or juniper tree; and 
percent live tree cover ranged from 0 to 100 percent of live trees on the plot.  

 
The second question examined how the number of field plots and photo plots 

affected model error, where the number of plots was based on fixed cost 
scenarios. Here, we looked at percent live tree cover at plot- and condition- levels 
from both field and photo plots and modeled this data as a function of MODIS 
spectral information using Random Forests. The cost, per plot, of the NPIP 
inventory was approximately $300 (Table 1) compared to an estimated $1500 per 
FIA field plot. We analyzed 4 different cost scenarios based on these estimates, 
starting as high as $432,000 and halving the cost each time down to $54,000 
(Figure 3). From the total number of available plots in each cost scenario, we 
examined plot level information of those plots having only one condition and 
condition-level information of conditions that covered 40 percent or greater area 
of a plot. These data were randomly selected with replacement for each cost 
scenario. We generated Random Forests models of live tree percent cover using 
plot and condition data for each scenario and compared the results of each model. 
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Table 1: Cost and time constraints for the photo sampling components of NPIP. The costs of per 
plot estimates. 

Description Cost Time constraints 

Photo acquisition  $120 per triplicate  
(direct to digital) 

Photo acquisition should be initiated 
before the desired flight month.  

Photo-to-digital $20 (scanning)  

Hard copy printing 
(8x8) 

$5 (per image) Local, professional photo shop. 

Geolocation $5  

Interpretation $80 (includes field training) 
(average > one plot per hour) 

Difficult to interpret more than 6 
hours per day. 

Quality control  $30 
(includes data compilation and 
editing and minimal field 
validation) 

Sharing tasks led to timing and 
feedback issues. 

General cost   

1 Tb of computer 
storage space 

$2,000 (per each; two were 
purchased, one for back-up) 

 

   

Total $260 per plot  + $4,000 storage space  

 

 
Figure 3: Number of plots used for each cost scenario. Cost1: $432,000; Cost2: 
$216,000; Cost3: $108,000, Cost4: $54,000 

 
 

Evaluate Definitions of Forest Land 
 
 
The second objective addressed in this paper was evaluating definitions of 

forest land by facilitating explorations of forest land definition changes. Frequent 
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discussions within FIA review the definition of forest land, including whether to 
base the definition on stocking or crown cover and what percent crown cover is 
appropriate for all users. For this objective, we explored what the potential would 
be to capture different percentages of crown cover using moderate scale imagery. 
Specifically, we looked at classification accuracies of percent live tree cover 
interpreted from LSP and MODIS spectral data at different thresholds of cover, 
5%, 10%, 15%, 20%, 25%, and 30%. We again used the Random Forests to 
generate models of each threshold as a binary response and compared the percent 
correctly classified (PCC) and Kappa values calculated from the OOB error. 

 
 

RESULTS/DISCUSSION 
 
 

Enhancing Mapping Capabilities 
 
 
There were a total of 682 photo and field collocated plots having only one 

condition. For the photo plots, 118 of these were forested with 115 plots classified 
as pinyon-juniper forest type and the remaining 564 plots non-forested. Of the 
field plots, 114 were forested with 112 classified as pinyon-juniper forest type and 
the remaining 568 plots non-forested. The density, or probability distributions of 
percent live tree cover for the field and photo collocated, forested plots were very 
similar as shown in figure 4, with the photo tree cover generally a little higher 
than the field tree cover, overall. As expected, paired t-tests revealed similar 
results. 

  
 

   

a. b.

Figure 4: Percent live tree cover for the field and photo collocated, forested plots. a. Density, or 
probability distributions. b. Scatterplot of photo versus field with 1:1 and regression lines. 
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The OOB error rates for the field and photo predictions with binary responses 

are displayed in figure 5. In all cases, the models using photo data had a slightly 
lower error rate than the models using field data. The continuous response, 
percent live tree cover, showed similar results for the photo models with greater 
percent variance explained, a lower RMSE, and a higher correlation. The percent 
variance explained, RMSE, and correlation for the field model was 77.14, 6.30, 
and 0.88, relatively, whereas the photo model was 84.67, 5.99, and 0.92, 
relatively. Figure 6 shows the relationship between the predicted and observed 
values resulting from the field and photo models, where the observations were 
greater than zero. Although observed values equal to zero were included in model 
development, they were excluded from the graphs to get a better picture of the 
spread for the non-zero values. These results suggest an advantage using photo 
information at a similar scale as the MODIS pixel over using the acre-size field 
plot.  

 

 
Figure 5: The OOB error rate for Random Forests binary models for field and photo collocated 
single condition plots. 
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Figure 6: The OOB error for Random Forests model of percent live tree cover for field and photo 
collocated single condition plots, where observed values are greater than zero. 

 
 
Table 2 shows the total number of plots used in each cost scenario, the 

number of single condition plots, and the number of conditions that covered 
greater that 40 percent of the plot area. Here, it is interesting to note the much 
higher number of training data available when using condition-level information, 
especially with the photo plots. The larger size of the photo plots is conducive to 
sampling more conditions.  

 
The results of the Random Forests models for percent live tree cover under all 

cost scenarios are displayed in figure 7. This figure shows the OOB variance 
explained from the photo plot-level (PHOTO-c1) and condition-level (PHOTO-
cnd) models along with the field plot-level (FIELD-c1) and condition-level 
(FIELD-cnd) models.  

 
 

Table 2: Number of plots used for comparing different cost scenarios. 

  Field Photo 

Cost 
Scenario Cost Total  

Single 
Condition 

Conditions 
>=40%  Total  

Single 
Condition 

Conditions 
>= 40% 

1 $432,000 288 248 285 1440 613 1520 

2 $216,000 144 123 142 720 306 757 

3 $108,000 72 62 71 360 154 375 

4 $  54,000 36 34 36 180 70 190 
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Figure 7: OOB variance explained for percent live tree cover for four cost scenarios, and four plot 
selection criteria 
 

Overall, the models using photo data explained more variance than the models 
using field data at the both plot and condition levels. Cost scenario 1, having the 
highest cost ($432,000) had the highest percent variance explained in all cases, as 
would be expected. As the scenarios decreased in cost, or in the number of plots 
used, the variance explained in the models decreased as well. Using the condition-
level information seemed to be more effective in each cost scenario with slightly 
higher percent variance explained in each case. Again, we see the photo data 
adding valuable information to our models, and at a much lower cost. We also see 
the positive affect of using condition-level data for training. 

 
 

Refine Definitions of Forest Land 
 
 
We used a total of 2328 photo plots from NPIP. Figure 8 shows the division of 

plots for each forest definition threshold. The OOB PCC and Kappa values 
resulting from fitting each of these five datasets in a binary forest/nonforest 
Random Forests model are shown in figure 9. The PCC and Kappa values are 
fairly high for cover thresholds at 5 percent up to 15 percent but then begin to 
decline at 20 percent. This result shows that there is potential to successfully 
model forestland at cover less than 20 percent. Further testing is needed to 
determine if this is a true effect or an artifact of the training data. 
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Figure 8: The number of forest (blue) and nonforest (purple) plots by 
threshold used in the binary Random Forests models. 

 

 
Figure 9: OOB PCC and Kappa values from models of percent live tree cover at different 
thresholds. 

 
 

CONCLUSION 
 
 
Large scale aerial photography can provide valuable information as training 

data for mid-scale modeling and mapping efforts as a link between MODIS 
imagery and ground data and as auxiliary information for tree cover estimations, 
even at the lower extremes. Using the photo data to establish relationships with 
MODIS imagery was found to be slightly more effective than using field data 
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according to the OOB error estimates from Random Forests models. This was true 
for the binary responses of forest presence, pinyon-juniper presence, and pinyon-
juniper presence, as well as percent live tree cover.  

 
The cost scenario analysis showed the affect of using photo data versus field 

data for modeling percent tree cover at different costs. The photo interpretation 
data look promising as an alternative or ancillary data source for providing 
information at lower costs. It was also determined that the addition of condition-
level information was valuable for increasing the variance explained in the 
models. 

 
LSP is also a valuable data source for generating spatial products of not only 

forest, but rangeland conditions including presence of shrub type and, more 
specifically, sage (Figure 10).  

 
 

 
Figure 10: Spatially-explicit maps generated from Random Forests models. a. Presence  
of shrub type. b. Presence of sage species. 

 
 
This paper was a start at analyzing the valuable data available from NPIP and 

the relationships with MODIS imagery. Further research is needed to investigate 
this relationship with MODIS (and other predictors) in more detail, as well as to 
continue exploring the use of condition-level information as training data. Also, 
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looking at cost scenarios including both photo and field data could provide more 
insight into cost savings and efficiencies of large scale inventories.  
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The Role of Pre-Field Operations at Four 
Forest Inventory Units: We can see the trees, 

not just the forest 
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Abstract: 

 The Forest Inventory and Analysis (FIA) program attempts to inventory all forested 

lands throughout the United States.  Each of the four FIA units has developed a process 

to minimize inventory costs by refraining from visiting those plots in the national 

inventory grid that are undoubtedly nonforest.  We refer to this process as pre-field 

operations.  Until recently, the pre-field process of differentiating forest from nonforest 

plots received very little attention or scrutiny. No national pre-field manual currently 

exists, nor does any other form of formal documentation of the pre-field process.  Pre-

field specialists from all four FIA units gathered in December 2007 to discuss the role of 

pre-field operations, to identify national commonalities, to share techniques and 

technologies, and to explore opportunities to increase efficiency and expand 

functionality.  The meeting revealed that each of the four FIA pre-field teams serves the 

same two fundamental roles: 1) identifying plot locations that are potentially forested 

and therefore require visitation by a field crew, and 2) subsequently preparing field 

materials.  Each pre-field team currently practices some form of quality assurance, yet 

no common procedures exist regarding pre-field quality assessment and quality control.  

Participants agreed that additional information could be derived from the photo-

interpretive aspect of this process via the collection of land use and crown cover data 

from all FIA plots, including those that are not visited by field crews.  Such information 

might facilitate estimates of nonforest conditions with trees, e.g., urban forest, and land-

use changes, e.g., the development of formerly forested lands.  This paper documents the 

current status of pre-field operations, suggests areas for future process improvements 

and collaboration among the four FIA units, and evaluates the potential of the pre-field 

process to provide additional information to the inventory.  
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Introduction 
 
 The Forest Inventory and Analysis (FIA) program attempts to inventory all 
forested lands throughout the United States.  The national FIA sampling grid 
includes a nontrivial proportion of nonforest plots, so a major means of increasing 
the program’s efficiency has been to minimize unnecessary field visits to 
nonforest plots.  Each of the four FIA units has developed a process to reduce 
inventory costs by refraining from visiting plots that are undoubtedly nonforest 
(Reams et al. 2005).  We refer to these processes as pre-field operations. 
  
 Pre-field specialists distinguish potentially forested plots from plots that are 
undoubtedly nonforest by examining aerial photographs, maps, and previous 
inventory data, if any exist.  They observe individual trees, patches of trees, and 
entire forest areas as they examine each plot, and their interpretation focuses on 
whether each plot meets the FIA definition of forest.  Therefore, the pre-field 
process involves evaluating the land use and tree cover of every plot in the 
national FIA grid.  Plots that are deemed to be nonforest by pre-field specialists 
are then omitted from the field inventory. 
  
 Two aspects of this process are particularly remarkable.  First, pre-field 
operations have the ability to affect estimates of total forest area by constraining 
the sample of potentially forested plots.  For this reason, the pre-field process 
should be examined for consistency, repeatability, and efficiency.  Currently no 
national pre-field manual exists, nor does any other formal documentation or 
consistent quality assurance of pre-field protocols.  Second, pre-field specialists 
are in a unique position to quantify and document variables pertaining to land use 
and tree cover at all FIA plots, including nonforest plots that are not visited by 
field crews. 
  
 Thus, pre-field operations not only have a major impact on the overall forest 
inventory, but as Reams et al. (2005) suggested, they may also be currently under-
utilized.  The purpose of this paper is to document the current state of FIA pre-
field operations nationwide, and to suggest potential process improvements that 
increase efficiency while also providing additional information for the inventory. 
 

The Current Status of Pre-field Operations 
 
 Pre-field specialists from each of the four FIA units (Interior West, Northern 
Research Station, Pacific Northwest, and Southern Research Station, hereafter 
referred to as IW, NRS, PNW, and SRS, respectively) met in Salt Lake City on 
December 4-5, 2007, to discuss the current state of pre-field operations.  The 
objectives of this meeting were to discuss the role of pre-field operations, identify 
national commonalities, share techniques and technologies, and explore 
opportunities to increase efficiency and expand functionality.  Participants in this 
meeting ascertained that pre-field operations are remarkably similar at each of the 
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four FIA units, and they were thus able to summarize the status of pre-field 
nationwide. 
  
 Pre-field operations at all four FIA units encompass two basic functions. First 
is identification of plot locations that are potentially forested and therefore require 
visitation by a field crew.  The second function is preparation of field materials 
such as old and new data sheets, and maps and imagery for documentation and 
navigational purposes.   
  
 The basic decision rule for distinguishing potentially forested plots from 
nonforest plots is the same at all units.  If there is any evidence that a plot might 
meet the FIA definition of forest, it is scheduled for field visitation.  The 
difficulties of identifying “field visit” plots vary due to some units being several 
cycles into the inventory, and some being in their first cycle.  NRS and SRS have 
previous inventory data to inform their interpretation of aerial imagery, whereas 
IW and PNW are trying to determine whether a plot that has never been visited 
might be forested.  The portion of the entire sample grid that is scheduled for 
sampling in any given year is referred to as that year’s panel (Bechtold and 
Patterson 2005, Reams et al. 2005). 
  
 Digital imagery provides the basis for classification of each panel’s plots into 
visit and non-visit plots, where non-visit plots are then assumed to be 
synonymous with nonforest.  After the December 2007 meeting, all units began 
using the Image Server provided by the Remote Sensing Applications Center, 
except in states where National Agriculture Imagery Program (NAIP) imagery 
was recently made available and was not yet updated in the Image Server.  Pre-
field specialists in Alaska are at a distinct disadvantage due to the spatially and 
temporally variable availability of high-quality aerial imagery in that state.   
  
 Most of the developmental effort for the pre-field process has been directed at 
the development of technological tools and file structures to support pre-field 
operations.  All units have a user interface that is linked to aerial imagery and 
previous inventory data (where it exists), and is also used for pre-field data entry.  
These tools and file structures are parallel in function but different in practice.  
Each interface was built with a different programming language and uses a 
different database structure.  Therefore, the effort required to develop graphical 
user interfaces and pre-field database has been replicated at each of the four FIA 
units. 
  
 All units include, or are about to implement, quality assurance programs as part 
of the pre-field process.  Some units assess repeatability of visit/non-visit 
determinations based on aerial imagery, while others assess the accuracy of 
equating non-visits with nonforest, i.e., “non-visit” plots are field-visited and 
checked to make sure they are nonforest.  The quality assurance processes at SRS, 
NRS, and PNW assess the repeatability of visit/non-visit determinations.  SRS 
and NRS also field-verify a portion of both visit and non-visit plots.  PNW plans 
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to begin field verification in the upcoming season, and IW plans to implement a 
quality assurance process that assesses the repeatability of visit/non-visit 
determinations and field-verifies a portion of both visit and non-visit plots. 
  
 Each pre-field team assembles some type of plot packet (or jacket, folder, etc.) 
for use by field crews.  The packets may contain imagery (stereo photo pairs or 
printed digital imagery), travel maps, and field reference sheets.  Much of this 
work is done manually by pre-field specialists and field staff. 
 

Recommendations for Future Collaboration and Process 
Improvement 

 
 Participants at the December 2007 meeting developed a list of three major 
areas for improvement and collaboration: development of pre-field user interface 
tools, automated preparation of field materials, and standardization of the quality 
assurance process.  The first two areas would involve collaboration among 
specialized programmers and database managers, or creating a pre-field 
programming group.  The third area would require initiating a focused quality 
assurance protocol that could evaluate the repeatability of visit/non-visit 
determinations, evaluate the uncertainty associated with these determinations, and 
include documentation of the pre-field process. 
 
User interface tools 
 
 The development of pre-field user interfaces requires specific programming 
expertise.  Each unit currently uses its own user interface, yet the basic 
requirements of each pre-field team are very similar.  As FIA migrates to new 
databases and data centers, old tools will likely become obsolete.  The 
development of a template, which could then be adapted to each unit’s specific 
requirements, would make more efficient use of programmers’ resources.   
  
 The ideal interface for pre-field operations would include the following 
characteristics:  (1) it would permit on-screen inspection of each plot, including 
links to georeferenced aerial imagery, maps and other ancillary spatial data, and 
previous inventory data, (2) the link to aerial imagery and spatial data must be 
flexible enough to integrate new data sources as they become available, (3) the 
interface would also permit pre-field data entry and connect directly to the 
relevant data tables, and (4) data entry portions of the interface must also be 
sufficiently flexible to incorporate each unit’s regional pre-field variables, e.g., in 
IW, distance from a maintained road to the plot center. 
 
Automated preparation of field materials 
 
 The pre-field function of preparing field materials could be made much more 
efficient by automating some of the basic tasks.  Field materials include new data 
forms (referred to as plot sheets, reference sheets, drawsheets, etc., at different 
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units); previous inventory data forms; printed imagery and/or aerial photographs; 
and topographic maps.  Streamlining this process could be accomplished by 
developing programs or scripts that generate printable maps including 
topographic maps and imagery, and also retrieve scanned and archived versions of 
previous inventory data.  The ideal tool would print these materials, along with 
new field data sheets, as one bundle per plot. 
  
 The ideal tool proposed here could eventually lead to the creation of virtual 
plot packets, which would not only streamline the pre-field process but would 
also enable remote access by field crews anywhere.  This ideal field preparation 
tool would require that previous inventory data be available digitally, and that old 
field data sheets exist as scanned, digital copies.  Most FIA units have already 
scanned, or are in the process of scanning, their previous inventory data sheets.  
However, distribution of virtual plot packets to remote duty stations could be 
constrained by the availability of hardware and intranet connections. 
  
 Since the December 2007 meeting, Doug Shipley of SRS has developed a 
prototype tool that addresses one function of our hypothetical ideal tool.  This tool 
relies on attributes of a point shape file to designate the plots of interest, and then 
produces print imagery using either NAIP imagery or the RSAC Image Server 
(Doug Shipley, pers. comm.).  At least two FIA pre-field teams are currently 
using this tool to prepare imagery for inclusion in field packets. 
 
Quality assurance 
 
 Due to the potential impact of visit/non-visit determinations on the overall 
forest inventory, it is important to know whether those determinations are both 
accurate and repeatable.  An effective quality assurance program would include 
both quality control to evaluate the repeatability of visit/non-visit determinations, 
and quality assurance to evaluate the uncertainty associated with these 
determinations.  It would also include documentation of the pre-field process, and 
why a particular plot was, or was not, sent to the field. 
   
 A quality control program would involve setting standards and processes to 
control the data acquisition process.  This would include standards for training of 
pre-field specialists, as well as hot and/or cold checks to evaluate the need for 
more training.  Hot and cold checks involve making a determination with a priori 
knowledge of the initial determination.  There are two possible types of pre-field 
hot or cold checks: 1) a field visit to determine whether the pre-field 
determination was correct, and 2) a comparison of the determination made by a 
pre-field expert using the same imagery and materials the original specialist used.  
This type of quality control is similar to the method that is currently used for 
quality control in the field. 
  
 A quality assessment program would assess whether the error in pre-field 
visit/non-visit determinations is within a range of acceptable errors.  The smaller 
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the acceptable error rate is, the larger the sample of plots must be in order to be 
confident that the actual error rate is below the acceptable error.  This process 
would be similar to the blind checks performed in the field, where repeatability is 
assessed using a large number of blind checks that compare two sets of 
independent observations.  In the case of pre-field quality assurance, the blind 
checks could be based on two remote, image-based determinations, or on a field 
visit as compared to a pre-field determination.   
  
 Another aspect of quality assurance is documentation of the overall process.  
At the December 2007 meeting, all participants agreed that the pre-field process 
should include documentation of the data and source of the imagery that was used 
to exclude nonforest plots from the field inventory.  Documentation should 
include enough information to indicate why each plot was designated as either a 
visit or non-visit plot. 
 
 Region-Specific Quality Issues:  It is clear that although pre-field operations 
are similar at the four FIA units, unique challenges exist at each unit.  Three of 
these issues are briefly summarized here: GPS coordinate quality, ownership data 
quality, and packet tracking and accountability. 
  
 Most plots within NRS and SRS have been visited multiple times due to the 
shorter five-year inventory cycle in those regions (Reams et al. 2005).  As a 
result, pre-field specialists at those two units exert substantial effort examining 
multiple sets of GPS coordinates to identify the one that appears to be the most 
accurate.  Their main objective is to provide field crews with the most accurate 
coordinates possible to enable easier re-location of the plot center.  In addition, 
accurate plot coordinates enable better linkages between plots and other 
geospatial datasets.  This is not yet a problem at IW or PNW because they are still 
in their first inventory cycle in most states. 
  
 The issue of plot ownership is somewhat problematic for IW and PNW, where 
permission-to-access requests are sent to private landowners and public land 
management agencies prior to the field season.  Thus it is critical to identify plot 
ownership during preparation of field materials.  Map servers are available online 
for some counties, but where they are not available field crews must visit county 
courthouses to identify the owners of privately owned plots.  ALP (the Forest 
Service’s Automated Lands Program) may eventually help resolve issues on 
national forest lands, but other lands such as BLM and state may still prove 
problematic and thus require a new process for accurately identifying land 
ownership.  Specific units are examining different protocols of updating plot 
ownership data prior to field data collection, but no standard protocol exists. 
  
 Within all units, field plot packets tend to travel more widely than nearly any 
FIA staff member, as the packets are sent from pre-field teams to field supervisors 
to field crews to quality control crews and back to the office.  Therefore, it may be 
useful to create systems to track plot packet locations and thus maintain 
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accountability for field materials.  Currently, SRS has a fairly extensive tracking 
and accountability system, and IW has a packet database and check-in/out system 
for office use. 
  

Expanding the Utility of Pre-field Operations 
 
 Pre-field specialists from each unit agreed that additional information could be 
derived from the photo-interpretive aspect of making forest/nonforest 
determinations.  Specifically, they were confident that it is possible to document 
crown cover and land use at all FIA plots; they just need a formal protocol to 
guide the process.  The pre-field process involves assessing whether each plot 
meets the current FIA definition of forest, which is defined as land that is 10% 
stocked by forest trees of any size (or 5% cover in IW), or land formerly having 
such cover, and is not currently developed for a nonforest land use (USDA 2007).  
Thus, the process involves making judgments about the land use and tree cover of 
each plot, but documentation of these variables is not standard protocol. 
  
 Although nonforest land use is not part of the national protocol, all units 
currently record a land use code for nonforest plots as part of the pre-field 
process.  Pre-field observers use the national FIA land use categories and interpret 
the land use at the plot center. 
  
 Recording land use and crown cover variables would meet several objectives.  
First, it would document why a plot was, or was not, scheduled for field visitation.  
Second, it would facilitate categorization of nonforest plots for adjunct vegetation 
inventories, such as urban forests or rangelands (Figure 1).  Third, recording land 
use would enable tracking of land use changes over time, such as conversion of 
forest to agriculture or developed areas.  Finally, the variables would allow for a 
flexible future definition of forest.  At least within IW, a historically inconsistent 
definition of “forest land,” as well as procedural changes in forest inventory, have  
 
A)   B) 

 
 
Figure 1: The relationship between land use and crown cover.  A) The current ability to categorize 
FIA plots according to land use and crown cover.  B) The ability to categorize FIA plots if land use 
and crown cover are recorded for all FIA plots. 
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led to difficulties in comparing forested area over time.  Knowing the history of 
land use and crown cover at each plot would enable analysis of long-term 
dynamics as inventory definitions and procedures change. 
 
Methods of remotely estimating crown cover 
 
 As mentioned above, pre-field specialists at the December 2007 meeting 
agreed that it is possible to classify the land use and quantify the crown cover of 
each FIA plot as part of the pre-field process.  At this meeting, a few potential 
methods were discussed, but none was selected as the group agreed that more 
study was need before selecting a preferred technique. 
 
 The Interior West Pilot Study:  We recently completed a pilot study to 
identify a method of remotely estimating crown cover that produces accurate, 
efficient, and repeatable estimates for any given plot.  The analysis for this pilot 
study is in progress (Goeking et al., in prep.) but preliminary results are presented 
here. 
 
 The Interior West (IW) FIA area was selected for the pilot study because 
crown cover is a regional field variable in IW.  This variable provided us with 
ground-truth data against which we could compare various methods for remotely 
estimating crown cover. 
 
 We compared three methods of remotely estimating crown cover: ocular 
estimates, dot-count samples, and image segmentation.  These three methods were 
applied at 100 plots that were sampled from the population of all single-condition 
plots that were visited in five IW-FIA states (Arizona, Colorado, Idaho, Montana, 
and Utah) during the 2007 field season.  Each method of estimating cover was 
applied to the area inside a 1-acre circle around the plot location center.  All 
estimates were based on 1-m resolution NAIP imagery. 
 
 Ocular estimates were made by three observers aided by a visual crown 
coverage scale.  Dot counts consisted of 50 random points within each plot’s 1-
acre sample circle, with a minimum distance of 2 m between points (Figure 2).  
Image segmentation was accomplished using the Feature Analyst tool provided by 
the Forest Service’s Remote Sensing Applications Center (Figure 3).   
 
 

   
 
Figure 2: Examples of three plots showing the distribution of dots used for dot counts. 
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Figure 3: Examples of three plots showing the polygons digitized for use in image segmentation 
(top) and the output classification of crown cover (bottom). 

 
 We assessed the accuracy of the three methods by comparing our estimates  
against field-recorded crown cover.  Korhonen et al. (2006) found line intersect 
sampling to be an accurate and unbiased method of estimating canopy cover as 
compared to other ground-based methods, although their sample intersects were 
denser than those used by IW.  Field transects in IW consist of four 25-ft 
transects, one in each of the cardinal directions, on each subplot (Figure 4).  
Intercepts were recorded in 1-ft increments.  Intercepts are defined as points 
within the crown perimeter of tally tree species of any size.  Each subplot has a 
total of 100 possible “hits” of tree cover; an entire plot has 400 possible hits 
(USDA 2007). 
 

     
  
 
Figure 4: Configuration of transects used for measuring crown cover on IW FIA plots.  Dashed 
circle represents an area one acre in size.  Transects are shown by four solid lines per subplot.  
Each transect includes 25 trancepts that are spaced 1 ft. apart.   

 
 Results from the Interior West Pilot Study:  Initial results are depicted in 
Figure 5.  Dunnett’s nonparametric test for multiple comparisons against a control 
indicated that only image segmentation produced estimates that were not 
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significantly different from field transects (=0.05), although dot-count estimates 
were only marginally statistically different from the field transects (p=0.06).  All 
methods tended to over-estimate crown cover (Figure 6).  Ocular estimates were 
the most biased, followed by dot-counts and image segmentation, in that order.  A 
more rigorous statistical analysis of these data appears in Goeking et al. (in prep.). 
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Figure 5: Relationship between field-measured crown cover and remotely estimated crown cover 
using ocular estimation, dot counts, and image segmentation methods (n=100). 
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Figure 6: Differences between the crown cover estimates produced ocular estimates (three 
observers), dot counts, and image segmentation methods compared to field-measured crown 
cover.  The center of each bar represents the mean difference between the estimates and the field-
measured values.  The width of each bar represents one standard deviation around the mean of 
these differences.   The position of each bar relative to zero indicates the bias of that method of 
remotely estimating crown cover, relative to field measurements. 
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 Logistical Considerations:  Ocular estimates differed widely among the three 
observers, indicating that they are not very repeatable.  The one consistency 
among the three interpreters was an overall bias toward overestimation.  In 
general, ocular estimation is by far the fastest method of estimating crown cover, 
but these estimates are also the most biased, least accurate, and least precise.   
 
 Dot counts were less efficient than ocular estimates, but slightly more efficient 
than image segmentation.  They also produced the most consistent and precise 
estimates, being slightly more precise than image segmentation.  However, this 
method tends to overestimate crown cover at all levels, although the bias is less 
than that shown by ocular estimates. 
 
 Image segmentation is the most time-intensive due to the image pre-processing 
and on-screen digitizing that it requires, but it is also the least biased and most 
accurate overall.  This method has the unique advantage of producing polygon 
output, which could be useful for estimating landscape-level parameters such as 
patch size, perimeter to area ratios, and other landscape metrics.  However, image 
segmentation tends to overestimate crown cover at plots with very low crown 
cover (<20%).  In woodland areas of the Mojave and Sonoran deserts, tally and 
non-tally species appear very similar in NAIP imagery, and thus lead to over-
classification of crown cover.  Analyses in progress are investigating whether it is 
possible to reduce the bias of image segmentation at low crown cover by reducing 
over-classification of shadows and non-tally species.   
 

Summary 
 
 The four FIA pre-field teams fulfill the same fundamental functions within 
their respective units, so their parallel roles present several opportunities to 
increase efficiency by reducing duplication of effort.  The primary 
recommendation of the pre-field workshop participants was to create a 
programming group that could assist pre-field teams in developing new tools for 
plot inspection, photo-interpretation, and data entry; and for automating the 
preparation of field materials.  The pre-field process could also be made more 
robust by developing a standard quality assurance protocol that would document 
the pre-field process, provide guidelines for training and quality control, and 
assess the error rate of visit/non-visit determinations. 
 
 As pre-field specialists determine whether each plot should be visited or not, 
they evaluate the land use and tree cover of every plot in the national FIA grid.  
They already record a land use variable, even on nonforest plots.  Since objective 
methods exist for remotely quantifying crown cover, the utility of pre-field 
operations could be expanded by recording both land use and crown cover for all 
FIA plots.  Doing so would not only provide clear documentation of pre-field 
protocols, but would also enable analysts to estimate the magnitude of other 
vegetation inventories, track land use changes at all FIA plots, and estimate the 
impact of changing the definition of forest.  There are tradeoffs among the various 
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potential methods of estimating crown cover, including expediency vs. cost; 
accuracy, bias, and precision; and potential ability to assess landscape-level 
parameters. 
 
 In summary, pre-field operations may have a major impact on the overall forest 
inventory by potentially constraining the field sample, and may also be currently 
under-utilized.  Collaboration among pre-field teams may lead to increased 
efficiency and accuracy, and simultaneously contribute additional information to 
the inventory. 
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A Stem-map Model for Predicting Tree 
Canopy Cover of Forest Inventory and 

Analysis (FIA) Plots 
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Abstract: Tree canopy cover is an important stand characteristic that affects understory 
light, fuel moisture, decomposition rates, wind speed, and wildlife habitat. Canopy cover 
also is a component of most definitions of forest land used by US and international 
agencies. The USDA Forest Service Forest Inventory and Analysis (FIA) Program 
currently does not provide a national standard measurement of tree canopy cover, and 
most regional FIA units do not measure canopy cover in the field. 

 
This paper describes a model for predicting canopy cover of  FIA plots by mapping the 
locations of trees ≥ 5.0 in. diameter within the plot, and statistical modeling of   
sapling contribution to total cover. The model was developed with an operational focus, 
including the requirement that it scale efficiently to national applications. Coefficients for 
species-specific crown width equations have been stored in lookup tables with surrogates 
assigned to FIA tree species lacking equations. Modeling was supported by field 
measurements on 12,070 FIA plots distributed across the eight-state Interior West FIA 
region. Refinements to the model included adjustments to crown width equations for 
small-diameter trees, stem-mapping of microplot subsamples to support cover estimation 
of sapling-stage plots, and the use of spatial statistics to derive predictor variables 
describing the spatial pattern of overstory trees. Model predictions were compared to 
field measurements of canopy cover by line-intercept method on 1,454 single-condition 
plots from the Interior West FIA 2006 field season. The mean absolute difference between 
field-measured and model-predicted values was ± 7.9% canopy cover, with mean bias of 
-0.7% canopy cover. The relationship between field-measured and predicted values was 
approximately linear with approximately constant variance and a correlation coefficient 
r = 0.875. 

 
FIA produces estimates of forest land area based on a definition of forest land that 
includes a minimum threshold of tree stocking. Proposed changes to the FIA definition 
from one based on stocking to one based on canopy cover could affect estimates of forest 
land area, but the amount and variability of this change is not fully understood. We made 
a preliminary assessment of the effect of a canopy cover-based definition on forest area 
estimates for a subset of states within the Northern Research Station FIA unit. 
 
Keywords: canopy cover, crown width, FIA, land cover, line intercept, Ripley’s K 
function, spatial pattern, stand height, stem-mapping 
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Introduction 

 
Canopy cover is defined as the proportion of the forest floor covered by a 

vertical proIection of the tree crowns (Xennings et al. 1999). Canopy cover 
influences the forest microclimate by affecting understory light+ surface 
temperature+ surface moisture levels+ and wind speed (Xennings et al. 1999+ 
Christopher and Zoodburn 2008). It is a key stand characteristic used in a variety 
of applications (Shaw 2005). For example+ canopy cover is often a component of 
wildlife habitat suitability models (Zill et al. 2000+ \ond et al. 2004+ Vospernik et 
al. 2007)+ and regional management plans for some species re_uire maintaining 
certain levels of canopy cover (Fiala et al. 2006). In fire behavior simulation 
models such as FARSITE (Finney 2004)+ increasing canopy cover has a 
moderating effect on wind speed which is a driver of fire spread rate and partially 
determines situations where a ground fire is likely to transition to a crown fire. \y 
shading the surface+ canopy cover also determines dead fuel moisture levels under 
a given weather scenario. Canopy cover thresholds are a component of most 
international definitions of forest land+ which has implications for reporting and 
carbon accounting (Lund 2002). 
 

Plot-based data on canopy cover commonly are used to support these and 
other applications+ but the Forest Inventory and Analysis (FIA) program of the 
?SDA Forest Service currently does not have a national standard canopy cover 
measurement and most FIA regional units do not measure tree canopy cover in 
the field. aowever+ FIA does use a national standard plot design and tree 
measurement protocol. An approach for modeling canopy cover+ optimibed for 
this plot design+ could provide canopy cover data that are estimated consistently 
across the nation. Rur obIective was to develop a model for predicting tree canopy 
cover of FIA plots along with software for efficient data processing. 
 

FIA currently produces estimates of forest land area based on a definition 
of forest land that includes a minimum threshold of tree stocking. Land that 
formerly was stocked (e.g.+ clear-cuts) is still considered forest if not developed 
for other uses (\echtold and Patterson 2005: glossary+ page 80). A proposed 
change to the FIA definition of forest land could replace the minimum stocking 
threshold with a threshold of minimum canopy cover+ but presumably would 
retain some form of the land-use re_uirement in the definition. This change could 
affect estimates of forest land area+ but the amount+ direction+ and spatial 
variability of this potential effect are not fully understood. A second obIective was 
to make a preliminary assessment of the effect of a canopy cover-based definition 
on forest area estimates for a subset of states within the Northern Research Station 
(NRS) FIA unit. 

 
 
 
 

4!
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Methods 
 
Canopy Cover Data and Modeling Approach 
 
 Additional background on the data and modeling approach was presented 
by Shaw (2005). The current FIA standard plot design was described in detail by 
\echtold and Scott (2005) and is summaribed in figure 1. 
 
 

4Subplot: 

 
Figure 1:!H;J!)2B%()29!&B2)52$5!D9(B!92+(MB0!6%=$(D9(B!=*)B*$&!2$*!,4!UB0!2B!WFX!2C%?MB#!U$(?!&MOD9(B!
=*)B*$&0!'#*!?%)%?M?!=%$=9*!*)=9(&%)V!299!U(M$!&MOD9(B&!%&!2DD$(Y%?2B*9+!,0S!2=0!8(B!&#(3)!2$*!
(DB%()29!SG0WPUB0!$25%M&!?2=$(D9(B&!&M$$(M)5%)V!*2=#!&MOD9(B0!
 

Details of the tree measurements are described in the FIA field manual 
(?SDA Forest Service 2005). Diameters are generally measured at breast height 
(D\a)+ but for some western woodland species (?SDA Forest Service 2007) 
diameters are measured at the root collar (DRC). D\a is measured to the nearest 
tenth of an inch at a point 4.5 feet above ground level on the uphill side of the 
tree. DRC is measured to the nearest tenth inch at the ground line or at the stem 
root collar+ whichever is higher. Reference herein to stem diameter means D\a or 
DRC. 
 

A key feature of the tree measurement protocol is that a coordinate is 
recorded for each tree ! 5.0 in. diameter in the subplots+ and for each tree ! 1.0 in. 
diameter but < 5.0 in. diameter in the microplots. Trees ! 1.0 in. diameter but < 
5.0 in. diameter are denoted as saplings by FIA+ and are measured in the 
microplots. Coordinates are recorded as distance and abimuth from the microplot 
centers for saplings+ and from subplot centers for trees ! 5.0-in. diameter. 
 

4Z0F!UB0!$25%M&!

,

:Z!

,4F!UB0!O*B3**)!
&MOD9(B!=*)B*$&!

Microplot: 
T0G!UB0!$25%M&

:!
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 The Interior eest FIA (Ie-FIA) unit comprises Idaho+ Montana+ 
eyoming+ Colorado+ ?tah+ Nevada+ Aribona+ and New Mexico. Ie-FIA 
measured canopy cover of trees ! 1.0-in. diameter using the line intercept canopy 
cover (LIC) method during 1995-2006 (?SDA Forest Service 2006). Four 25-ft 
transects were established in each subplot+ in the cardinal directions beginning 1 
foot from the subplot centers. The length of crown interception of live tally tree 
species ! 1.0-in. diameter was recorded along each transect. Canopy cover was 
calculated by FIA condition class within the plots+ by dividing the total live crown 
interception length by the total length of transects within each condition (400 feet 
total transect length for single-condition plots). Rnly single-condition plots were 
used to develop the canopy cover model+ meaning all four subplots were 
classified as having the same FIA forest condition status. Approximate locations 
of the Ie-FIA plots used for canopy cover modeling are shown in figure 2. 

 
 
Figure 2:!JDD$(Y%?2B*!9(=2B%()&!(U!,4-F[F!&%)V9*P=()5%B%()!;)B*$%($!>*&B!H;J!D9(B&!KO9M*!5(B&L!M&*5!
B(!5*I*9(D!2!&B*?P?2D!?(5*9!U($!D$*5%=B%)V!B$**!=2)(D+!=(I*$0!
 
 Precision of the LIC measurement was assessed using blind check plots 
during 2000-2003 (Pollard et al. 2006). A target tolerance of f 10% canopy cover 
was specified for the measurement. \lind check data showed that measurements 
were within tolerance 88% of the time+ and were within 2x tolerance 99.1% of the 
time (n = 101 plots). ee assumed that this level of measurement precision was 
ade_uate for using LIC as calibration and validation data in our modeling. 
 

Z!
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 \echtold (2003+ 2004) developed regression e_uations that predict tree 
crown width from stem diameter and other predictor variables for 140 tree species 
in the ?nited States. ee used the e_uations from \echtold (2003+ 2004) that 
predict crown width from stem diameter. Surrogates were assigned to species 
lacking an e_uation based on similarities in tree crown shape. Since the model-
fitting data used by \echtold (2003+ 2004) did not include trees < 5.0 in. diameter+ 
we estimated crown width adIustment factors for saplings based on data from 
\ragg (2001). 
 
 The crowns of trees ! 5.0-in. diameter were modeled as symmetrical+ 
circular polygons with area estimates based on the species-specific crown width 
e_uations. The modeled tree crowns were mapped within each subplot by placing 
the center of each crown at the coordinates recorded by field crews for stem-
locations (figure 3). Canopy cover of trees ! 5.0-in. diameter was estimated by 
computing the proportion of the subplot polygons intersected by the mapped tree 
crowns+ and then averaging the four subplot values to get a plot-level estimate 
(hereafter+ referred to as SMCsubp+ i.e.+ stem-map canopy cover of trees ! 5.0-in. 
diameter in the subplots). Canopy cover+ by definition+ was constrained to the 0 
to100% range. The procedure was repeated for saplings in the microplots to 
compute a separate estimate of sapling canopy cover at the plot level+ not 
accounting for overlap by the larger trees (SMCmicr). Zeometric computations 
were done with a custom C program using the Zeometry Engine Rpen Source 
library (http:iitrac.osgeo.orgigeosi). 

 

 
Figure 3:!\Y2?D9*!(U!?2DD%)V!?(5*9*5!=$(3)&!(U!B$**&!!!S0FP%)0!5%2?*B*$!%)!2)!H;J!D9(B!O2&*5!()!
&B*?!=(($5%)2B*&!$*=($5*5!O+!U%*95!=$*3&0!!6*2&M$*5!&B*?!5%2?*B*$&!2$*!5$23)!B(!&=29*!2&!O$(3)!
=%$=9*&!%)!B#*!*YD2)5*5!I%*3!(U!&MOD9(B!,0!
  

\ecause only trees ! 5.0-in. diameter can be stem-mapped across the 
entire FIA subplot cluster+ we expected that SMCsubp would under-estimate LIC 
on average since LIC included all trees ! 1.0-in. diameter+ including those < 5.0-
in. To provide model-estimated canopy cover of trees ! 1.0-in. diameter+ we 
developed a linear regression e_uation to predict the contribution of saplings to 

S!
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total canopy cover. SMCsubp was compared to LIC+ and a residual was calculated 
for each plot as e = LIC - SMCsubp. ee assumed that e was due primarily to the 
exclusion of saplings from SMCsubp+ and we expected e would be correlated with 
SMCmicr. aowever+ since saplings may be overtopped by larger trees+ a portion of 
the sapling cover may not contribute to total canopy cover in a given plot. The 
contribution of saplings to total canopy cover could also depend on other stand 
characteristics such as the density+ height+ and spatial pattern of larger trees. 
 
 Estimates of Ripley6s 8 function (Ripley 1991+ Venables and Ripley 
2002) were used to account for the spatial pattern of trees ! 5.0-in. diameter. 
Ripley6s 8 is useful for summaribing certain aspects of a pattern of points within 
a defined observation window+ in this case+ tree stem locations within the four 
subplots of an FIA plot. It can suggest whether an observed point pattern is either 
more clustered or more regularly spaced than would be expected for a random 
arrangement of the points. 8(r) is a function of a distance r around each point in 
the pattern. The spa t s t a t  package version 1.11-7 (\addeley and Turner 2005) 
for R (R Development Core Team 2006) was used to estimate 8(r) for distances 
of 6+ 8+ 10+ and 12 feet. The Kes t  function in spa t s t a t  estimates 8(r) from a 
homogenous point pattern in a window of arbitrary shape. ee specified the 
border method (Ripley 1991) in spa t s t a t  for edge correction of the point-
pattern calculations. For regression modeling we worked with the s_uare-root 
transformation L(r) = !i)(rK + which stabilibes variance (Stoyan and Penttinen 
2000). 
 
 Potential predictor variables considered for a regression model to predict e 
were: 
 

SMCmicr = stem-mapped canopy cover estimate of saplings in the 
microplots 
numSaplings = total number of saplings measured in the microplots 
numTrees = total number of live trees ! 5.0 in. diameter measured in the 
subplots 
meanTreeat\Ae = basal area-weighted mean height (ft.) of trees ! 5.0 
in. diameter 
meanL = mean of L(6 ft)+ L(8 ft)+ L(10 ft)+ and L(12 ft) 

 
Single-condition Ie-FIA plots measured during 1995 through 2005 were used for 
model fitting+ and the 2006 plots were withheld as a validation set. Crown width 
models for certain western oak species (e.g.+ Zambel oak Zuercus gambelii) had 
relatively large prediction errors (\echtold 2004) and a review of plot photos in 
oak woodland forest types suggested that LIC would have relatively large 
measurement errors in these forest types. Plots classified as oak woodland forest 
types (FIA forest type codes 925 and 926) were removed from the model fitting 
data so they would not influence regression estimates. No plots were removed 
from the validation set. Linear regression models were fit using the l m function in 
R 2.4.1 (R Development Core Team 2006). 

T!
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 Smooth curves fitted by local polynomial regression (Venables and Ripley 
2002) were used in exploratory analysis and as an aid to the interpretation of 
scatterplots in the Results. Smooth regression curves were fit with the 
l oess . smoo t h function in R using the default span parameter of 2i3 (R 
Development Core Team 2006). 
 
Assessment of Forest Area Estimates in NRS 
 

Four of the 24 states within the NRS-FIA were selected to represent a 
range of conditions across the region+ e.g.+ a range in latitude and longitude+ 
temperature+ precipitation+ and dominant forest types. Selected states included: 
Michigan (MI)+ Missouri (MR)+ Pennsylvania (PA)+ and South Dakota (SD). Rnly 
plots from annual inventory years 2002 to 2006 were included+ which was the 
most current evaluation group as of 5 August 2008. Compared with a base federal 
sampling intensity of one plot per approximately 6+000 acres+ sampling intensity 
during this period was tripled in MI+ doubled in southern MR+ and at single (base) 
intensity in PA and SD. Nearly 375+000 tree records were _ueried from 10+075 
plots where all conditions were forest land (i.e.+ 100 percent forested plots) and 
plots had tree records. 
 
 Per-state estimates of forest land area and accompanying sampling errors 
were produced using FIA6s EVALIDator web-based estimation tool 
(http:iiwww.fia.fs.fed.usitools-dataiotheri). Estimates were produced for 1) all 
forest land with stocking of at least 10 percent+ including seedlings+ 2) all forest 
land with stocking of at least 10 percent+ excluding seedlings+ and 3) all forest 
land with model-estimated canopy cover of at least 10 percent (excludes 
seedlings). For comparison+ estimates also were produced for 1) all forest land 
area+ including all plots of any stocking+ regardless of tree presence or condition 
proportion (e_uivalent to FIA6s reported estimates of forest land area)+ and 2) 
forest land area of any stocking+ but based on the _ueried subset of plots having 
tree records and 100 percent forested conditions. The last two estimates were used 
to determine 1) the reduction in estimated forest area resulting from constraining 
plots to a minimum of 10 percent stocking or canopy cover+ and 2) the reduction 
in estimated forest area resulting from constraining plots to those with trees and 
100 percent forested conditions. 
 

Results 
 
Canopy Cover Model 
 

As expected+ SMCsubp tended to underestimate LIC (figure 4). The mean 
difference (LIC - SMCsubp) was 9.0% canopy cover+ while the mean absolute 
difference (jLIC - SMCsubpj) was f11.6% canopy cover (n = 12+070 plots). 

[!
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The data set shown in figure 4 was split into two subsets to examine the 
effect of sapling presence on the mean difference between stem-map and line-
intercept canopy cover. Figure 5a shows the comparison of SMCsubp versus LIC 
for the subset of plots that had at least one sapling recorded in the microplots. 
SMCsubp underestimated LIC by an average of 11.4% canopy cover for these 
plots+ while the mean absolute difference was f13.7% canopy cover (n = 7+794 
plots). Figure 5b shows the comparison of SMCsubp versus LIC for the subset of 
plots that had no saplings detected by the microplot subsample. SMCsubp 
underestimated LIC by an average of 4.7% canopy cover for these plots+ while the 
mean absolute difference was f7.7% canopy cover (n = 4+276 plots). The plots 
shown in figure 5a had low to high sapling canopy cover+ while the plots shown in 
figure 5b likely had bero to low sapling canopy cover since the microplots are a 
1i12th subsample of each subplot. Some of the remaining 4.7% mean difference 
between SMCsubp and LIC is likely due to sapling cover not detected by the 
microplot sample. 

G!
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Figure 5:!K2L!"(?D2$%&()!(U!B#*!U%*95P?*2&M$*5!9%)*!%)B*$=*DB!=2)(D+!=(I*$!(U!
B$**&!!!,0F!%)0!5%2?*B*$!I*$&M&!=2)(D+!=(I*$!(U!B$**&!!!S0F!%)0!5%2?*B*$!*&B%?2B*5!
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%)B*$=*DB!=2)(D+!=(I*$!(U!B$**&!!!,0F!%)0!5%2?*B*$!I*$&M&!=2)(D+!=(I*$!(U!B$**&!!!
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&2D9%)V&!5*B*=B*5!O+!B#*!?%=$(D9(B!&2?D9*!K)!]!Z-4[T!D9(B&L0!
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 Residual canopy cover from the comparison of SMCsubp to LIC was 
positively correlated with SMCmicr (figure 6). In plots having low (<10%) canopy 
cover of trees ! 5.0 in. diameter+ we assumed that overtopping of saplings by the 
crowns of larger trees was negligible+ and total canopy cover was estimated by 
SMCsubp k SMCmicr. In plots having SMCsubp ! 10%+ we assumed that saplings 
could be overtopped to some extent by the larger trees. For these plots+ we 
estimated the sapling component of total canopy cover by multiple linear 
regression+ taking into account the vertical structure and spatial pattern of the 
larger trees in addition to SMCmicr. The residual canopy cover (e = LIC - SMCsubp) 
shown in figure 6 was the dependent variable. Summary statistics for the variables 
used in regression analysis are shown in table 1+ and estimated regression 
coefficients for predicting e are in table 2. 
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stem-map canopy cover  of saplings (%)
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Figure 6:!E*92B%()&#%D!O*B3**)!=2)(D+!=(I*$!(U!&2D9%)V&!*&B%?2B*5!O+!&B*?P
?2DD%)V!B#*!?%=$(D9(B&-!2)5!$*&%5M29&!=29=M92B*5!2&!B#*!U%*95P?*2&M$*5!9%)*!
%)B*$=*DB!=2)(D+!=(I*$!(U!B$**&!!!,0F!%)0!5%2?*B*$!?%)M&!B#*!=2)(D+!=(I*$!(U!
B$**&!!!S0F!%)0!5%2?*B*$!*&B%?2B*5!O+!&B*?P?2DD%)V!B#*!&MOD9(B&0!'#*!($2)V*!9%)*!
%&!2!&?((B#!$*V$*&&%()!=M$I*!U%BB*5!3%B#!B#*! l oess . smoo t h!UM)=B%()!%)!E0!

 
 

Table 1:!E2)V*&-!?*2)&-!2)5!&B2)52$5!5*I%2B%()&!(U!B#*!I2$%2O9*&!M&*5!%)!2!9%)*2$!$*V$*&&%()!
?(5*9!B(!*&B%?2B*!B#*!&2D9%)V!=(?D()*)B!(U!B(B29!=2)(D+!=(I*$0!E*&%5M29!=2)(D+!=(I*$!Ke!]!^;"!
P!16"&MODL!32&!B#*!5*D*)5*)B!I2$%2O9*0!
Variable Minimum   Mean Std. dev. Maximum 
$*&%5M29!=2)(D+!=(I*$!K_L! P:W! ! ,F0F! ! ,:04! ! [:! !
16"?%=$!K_L! F! ! ,F0,! ! ,,0W! ! GW! !
)M?12D9%)V&! !F! ! :0T! ! S04! ! TF! !
)M?'$**&! ,! ! 4[0:! ! ,[04! ! ,:4! !
?*2)'$**`BaJ>!KUBL! Z04! ! Z40:! ! 4S0F! ! ,:[0W! !
?*2)^! F! ! W0Z! ! :0W! ! :S0:! !
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Table 2:!\?D%$%=29!?(5*9!=(*UU%=%*)B&!U($!*&B%?2B%)V!B#*!&2D9%)V!=(?D()*)B!(U!B(B29!=2)(D+!
=(I*$0!
Variable Coefficient Standard error       p 
K;)B*$=*DBL! PG0F:T! ! F0TWW! ! b!F0FF,!
16"?%=$ !F04,,! ! F0F4F! ! b!F0FF,!
)M?12D9%)V&! !F0SS4! ! F0FZS! ! b!F0FF,!
)M?'$**&! PF0,:,! ! F0FFG! ! b!F0FF,!
9)K?*2)'$**`BaJ>L! Z0:T[! ! F04F,! ! b!F0FF,!
?*2)^! F0444! ! F0F:Z! ! b!F0FF,!
! ! ! ! ! !
E61\! ,,0[S! ! ! ! !
50U0! G-S[[! ! ! ! !
E4 F04,! ! ! ! !

 
 
 The final model-predicted canopy cover of trees ! 1.0 in. diameter was 
generated by the following steps: 
 

1.! Rbtain estimates of SMCsubp and SMCmicr. 
2.! If SMCsubp < 10+ use SMCmicr as an estimate the sapling component of 

total canopy cover. If SMCsubp ! 10+ estimate the sapling component of 
total cover using the regression coefficients in table 2+ with predicted 
values restricted to ! 0. 

3.! Predicted canopy cover = SMCsubp k the estimated sapling component 
from step 2+ with the restriction of modeled canopy cover " 100. 
 

 
Model Testing 
 

A validation data set consisted of Ie-FIA plot measurements during  
2006 that were not included in the model-fitting data that were used to estimate 
the regression coefficients in table 2. Figure 7 shows the comparison of model-
predicted canopy cover of trees ! 1.0 in. diameter versus LIC for the validation 
set. Model-predicted canopy cover was essentially unbiased with respect to LIC 
(mean difference -0.7)+ while the mean absolute difference was f7.9% canopy 
cover (n = 1+454 plots). The correlation between the model-predicted and field  
LIC values was r = 0.875.  
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Figure 7:!"(?D2$%&()!(U!U%*95P?*2&M$*5!9%)*!%)B*$=*DB!=2)(D+!=(I*$!(U!B$**&!!!
,0F!%)0!5%2?*B*$!I*$&M&!?(5*9PD$*5%=B*5!=2)(D+!=(I*$!(U!B$**&!!!,0F!%)0!5%2?*B*$!
U($!B#*!I29%52B%()!D9(B&!?*2&M$*5!%)!4FFT!K)!]!,-ZSZ!D9(B&L0'#*!($2)V*!9%)*!%&!2!
&?((B#!$*V$*&&%()!=M$I*!U%B!B(!B#*!52B2!D(%)B&!3%B#!B#*! l oess . smoo t h!UM)=B%()!
%)!E0!

 
 
Forest Area Estimates 
 

Estimates of all forest land area were 19+544+600 acres in MI+ 15+078+279 
acres in MR+ 16+599+569 acres in PA+ and 1+734+724 acres in SD (figure 8). 
Estimates of forest land area decreased when constrained to minimum thresholds 
of 1) at least 10 percent stocking of trees and seedlings (0.5 l 7.4 percent 
decrease)+ 2) at least 10 percent stocking of trees ! 1 in. D\a (0.4 l 9.6 percent 
decrease)+ or 3) at least 10 percent model-estimated canopy cover of trees ! 1 in. 
D\a (0.3 l 8.0 percent decrease). This e_uated to excluding nonstocked forest 
land from FIA estimates+ and also excluding seedlings from the latter two criteria. 
South Dakota+ the state with the lowest mean stocking and canopy cover+ showed 
the largest percent decreases. aowever+ none of differences among forest land 
area estimates based on the varying criteria for stocking and canopy cover within 
each state were statistically significant. Decreases due to excluding nonstocked 
plots and seedlings from the minimum canopy cover-based estimates were nearly 
identical to decreases due to excluding nonstocked plots and seedlings from the 
minimum stocking-based estimates. 

  
 

,4!

USDA Forest Service Proceedings – RMRS-P-56 53.



Forest land area

F

S!FFF!FFF

,F!FFF!FFF

,S!FFF!FFF

4F!FFF!FFF

6%=#%V2) 6%&&(M$% Q*))&+9I2)%2 1(MB#!/27(B2

A
cr

es

H($*&B!^2)5

J^1'c!d]!,F_

^',1'c!d]!,F_

6N/\^e"E"Nf!d]!,F_

 
Figure 8:!H($*&B!92)5!2$*2!*&B%?2B*&!U($!&*9*=B*5!&B2B*&!%)!8E1PH;J!O2&*5!()!5%UU*$*)B!=$%B*$%2!U($!
&B(=7%)V!2)5!=2)(D+!=(I*$0!H($*&B!92)5!]!=M$$*)B!H;J!*&B%?2B*&!(U!U($*&B!92)5!2$*2!B#2B!%)=9M5*!2!
92)5PM&*!=(?D()*)B!%)!B#*!5*U%)%B%()!(U!U($*&B!92)50!J^1'c!]!*&B%?2B*&!O2&*5!()9+!()!2!?%)%?M?!
B#$*&#(95!U($!299!B$**!&B(=7%)V!KB$**&-!&2D9%)V&-!&**59%)V&L0!^',1'c!]!*&B%?2B*&!O2&*5!()9+!()!2!
?%)%?M?!B#$*&#(95!U($!&B(=7%)V!(U!B$**&!!!,!%)0!/a`!K*Y=9M5*&!&**59%)V&L0!6N/\^e"E"Nf!]!
*&B%?2B*&!O2&*5!()9+!()!2!?%)%?M?!B#$*&#(95!U($!?(5*9P*&B%?2B*5!=2)(D+!=(I*$!(U!B$**&!!!,!%)0!
/a`!K*Y=9M5*&!&**59%)V&L0!a2$&!%)5%=2B*!WS_!=()U%5*)=*!%)B*$I29&0!
 
 
 
 

Discussion 
 
 The canopy cover model described here makes use of the tree spatial 
information available for FIA plots. Aspatial methods for estimating plot-level 
canopy cover may assume a random tree distribution (e.g.+ Crookston and Stage 
1999). Compared with aspatial methods+ a model based on stem-mapping could 
avoid bias when tree distributions are nonrandom+ especially in stands with 
regular tree spacing such as plantations (Christopher and Zoodburn 2008). 
Explicitly incorporating tree spatial pattern into the model is also expected to 
improve precision of the estimates compared with an aspatial approach. 
 
 Some characteristics of modeled canopy cover may be beneficial for 
certain applications. Model-estimated canopy cover is fully defined with respect 
to species and individual tree variables+ e.g.+ mcanopy cover of species considered 
tree life form by FIA (?SDA Forest Service 2007) and having minimum stem 
diameter of 1 in.n In contrast+ estimates of plot-level canopy cover derived from 
aerial photos generally are limited in terms of species and sibe class 
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discrimination+ and may confuse tree canopy with background vegetation and 
shadows. Modeling canopy cover from tree data provides the flexibility of 
estimating various components of the total cover+ such as canopy cover by species 
or canopy cover within different height layers. Field measurement of various 
canopy cover components+ in addition to total tree cover+ may be too costly to 
implement in some inventories since the time re_uired on each plot would 
increase. A canopy cover model optimibed for FIA plots provides a large data set 
at low additional cost+ with prediction errors that may be tolerable in several 
applications. 
 

FIA6s current definition of forest land includes both a land-cover and a 
land-use component+ and also implies potential future stocking. Although a 
minimum threshold of 10% stocking is specified+ land that formerly was stocked 
(e.g.+ clear-cuts) is still considered forest if not developed for other uses (\echtold 
and Patterson 2005). A proposed shift from a stocking- to a cover-based definition 
of forest land could retain a land-use re_uirement and likely would imply a 
minimum potential future canopy cover. Rur analysis suggests that differences in 
forest area estimates resulting from the proposed change to a cover-based 
definition could be negligible. These results should be considered as preliminary 
since they included only four selected states in the NRS-FIA region+ and model-
estimated canopy cover was subIect to the caveats described below. 
 
 
Caveats and Current Limitations 
 

The canopy cover model described above contains two parts: a geometric 
model of tree crowns within FIA subplots and an empirical model of the sapling 
contribution to total canopy cover that accounts for potential overlap from the 
crowns of larger trees. The empirical model was based on line-intercept field data 
collected within the Ie-FIA region. Performance of the empirical model when 
extrapolated to other regions is currently unknown. It would be desirable for FIA 
to measure line-intercept canopy cover on at least a subset of plots in all regions. 
A 1i16th subset like the FIA Phase 3 sample (Reams et al. 2005) should provide 
sufficient data for regional validation and calibration of canopy cover models+ 
while adding only slightly to the time it takes to complete the plot measurements. 
 
 Canopy cover estimates based on mapping modeled tree crowns within the 
subplots currently do not include edge correction (not to be confused with edge 
correction applied to estimates of Ripley6s 8 which deal strictly with point 
patterns derived from the stem coordinates). A possible source of bias is the 
presence of trees with stems outside the subplot boundary+ but having crowns that 
cover a portion of the subplot. Since the line-intercept reference data used in the 
present study included trees ! 1.0 in. diameter+ bias due to edge effects is 
confounded with bias due to omitting the saplings from the subplot stem-maps. 
Rur analysis suggests that the remaining bias due to edge effects is probably small 
once saplings have been accounted for (cf. Nelson et al. 1997). aowever+ 
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incorporating an edge correction method (e.g.+ eilliams et al. 2003) would be 
desirable in a future version of the model. 
 
 Model development has focused so far on canopy cover estimation at the 
whole-plot level for single-condition plots. The model is expected to extend to 
multi-condition plots in which all condition classes are forested and could be used 
to estimate canopy cover of the whole plot footprint when a portion of the plot is 
nonforest. The model currently does not estimate canopy cover by condition+ and 
multi-condition plots have not been used in model development or testing. The 
\R?NDARo table in FIAD\ (?SDA Forest Service 2007) could be used to 
construct irregular subplot polygons when multiple conditions have been mapped 
within a subplot. This could support canopy cover estimation by condition+ but the 
edge effects discussed above would become more problematic in small polygons. 
Future development of the model should address multi-condition plots. 
 
 Seedlings were not included in the Ie-FIA line intercept measurements of 
canopy cover taken during 1995-2006+ and we did not attempt to incorporate the 
seedling component of total cover into the model. aowever+ in 2007 Ie-FIA 
began including seedlings in the line-intercept measurements. It is possible that 
sufficient data are now available to account for seedlings in model-estimated 
canopy cover. The national standard seedling count from the microplots is a 
potential predictor variable. Future model development could address the seedling 
component of total cover. 
 
 The stem-map model also could be extended to produce canopy cover 
estimates by individual tree species as well as estimates within specified height 
layers. This functionality could be useful in applications such as wildlife habitat 
analysis and vegetation classification. 
 
 
Software for Data Processing 
 
 Production of plot-level canopy cover estimates has been automated+ 
re_uiring only a subset of the FIAD\ TREE table (?SDA Forest Service 2007) as 
input (figure 9). The software avoids the use of a ZIS for performance 
considerations and is based on open-source libraries. Crown widths are calculated 
using coefficients stored in lookup tables that have been populated for FIA tree 
species nationally based on \echtold (2003+ 2004). The software and lookup 
tables currently accommodate crown width e_uations of the _uadratic form fit by 
\echtold (2003+ 2004) as well as a three-parameter nonlinear power function 
(\ragg 2001) and nonlinear power function in logarithmic scale (Shaw 2005). 
?sers can mix these e_uation types if needed and substitute localibed e_uations if 
available. Stem-map output variables are listed in table 3. 
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Figure 9:!H9(3!=#2$B!5*&=$%O%)V!2!52B2!D$(=*&&%)V!&+&B*?!B#2B!%?D9*?*)B&!B#*!&B*?P?2D!=2)(D+!
=(I*$!?(5*9!I*$&%()!,0T0!^((7MD!B2O9*&!=()B2%)%)V!=(*UU%=%*)B&!U($!=$(3)!3%5B#!*gM2B%()&!2$*!
D(DM92B*5!U($!H;J!B$**!&D*=%*&!)2B%()299+0!a2B=#!D$(=*&&%)V!%&!5()*!3%B#!2!Q+B#()!D$(V$2?0!NI*$92+!
(U!B$**!=$(3)&!()!&MOD9(B&!2)5!?%=$(D9(B&!%&!%?D9*?*)B*5!%)!2!"!UM)=B%()!M&%)V!B#*!A*(?*B$+!
\)V%)*!ND*)!1(M$=*!KA\N1L!9%O$2$+0!\&B%?2B*&!(U!E%D9*+h&!c!2$*!(OB2%)*5!U$(?!B#*!Kes t !UM)=B%()!
%)!B#*!spa t s t a t !D2=72V*!U($!E-!=299*5!U$(?!Q+B#()!I%2!B#*!RPy!%)B*$U2=*0!'#*!B2OM92$!(MBDMB!
%)=9M5*&!D9(B!%5&!29()V!3%B#!=2)(D+!=(I*$!*&B%?2B*&!2B!B#*!3#(9*!D9(B!2)5!&MOD9(B!9*I*9&-!&*I*$29!
&B2)5!#*%V#B!?*B$%=&-!2)5!B$**!&D2B%29!D2BB*$)!&B2B%&B%=&0!
 
 

Table 3:!NMBDMB&!U$(?!H;J!&B*?P?2D!?(5*9!I*$&%()!,0T0!
Variable Description 
?2De=$=(Ie&MOD! \&B%?2B*5!=2)(D+!=(I*$!(U!B$**&!!!SP%)0!5%2?*B*$!U$(?!=$(3)P

?2DD%)V!B#*!&MOD9(B&!K2I*$2V*!(U!U(M$!&MOD9(B&L!
?2De=$=(Ie&MODe&n! \&B%?2B*5!=2)(D+!=(I*$!(U!B$**&!!!SP%)0!5%2?*B*$!%)!&MOD9(B!n!U$(?!

=$(3)P?2DD%)V!Kn!]!,!i!ZL!
?2De=$=(Ie?%=$! \&B%?2B*5!=2)(D+!=(I*$!(U!&2D9%)V&!U$(?!=$(3)P?2DD%)V!B#*!

?%=$(D9(B&!K2I*$2V*!(U!U(M$!?%=$(D9(B&L!
?2De=$=(Ie?%=$e&n! \&B%?2B*5!=2)(D+!=(I*$!(U!&2D9%)V&!%)!B#*!?%=$(D9(B!(U!&MOD9(B!n!

U$(?!=$(3)P?2DD%)V!Kn!]!,!i!ZL!
?(5*9e=$=(I! \&B%?2B*5!B(B29!=2)(D+!=(I*$!(U!B$**&!!!,P%)0!5%2?*B*$-!5*$%I*5!U$(?!

=$(3)P?2DD*5!&MOD9(B&!D9M&!2!$*V$*&&%()!*&B%?2B*!(U!B#*!&2D9%)V!
=(?D()*)B!

?*2)'$**`B! 6*2)!#*%V#B!(U!B$**&!!!S0F!%)0!5%2?*B*$!
?*2)'$**`BaJ>! a2&29P2$*2!3*%V#B*5!?*2)!#*%V#B!(U!B$**&!!!S0F!%)0!5%2?*B*$!
?*2)'$**`B/(?! 6*2)!#*%V#B!(U!=2)(D+!5(?%)2)Bj=(P5(?%)2)B!B$**&!!!S0F!%)0!

5%2?*B*$!
?*2)'$**`B/(?aJ>! a2&29P2$*2!3*%V#B*5!?*2)!#*%V#B!(U!=2)(D+!5(?%)2)Bj=(P5(?%)2)B!

B$**&!!!S0F!%)0!5%2?*B*$!
?2Y'$**`B! `*%V#B!(U!B#*!B299*&B!B$**!!!S0F!%)0!5%2?*B*$!
D$*5(?'$**`B! Q$*5(?%)2)B!B$**!#*%V#B!K?*2)!#*%V#B!(U!B#*!B299*&B!B$**&!!!S0F!%)0!

5%2?*B*$!=(?D$%&%)V!,T!B$**&!D*$!2=$*L!
?*2)12D`B! 6*2)!#*%V#B!(U!&2D9%)V&!K!!,0F!%)0!5%2?*B*$!2)5!b!S0F!%)0!5%2?*B*$L!
?2Y12D`B! `*%V#B!(U!B#*!B299*&B!&2D9%)V!
cerUB! \&B%?2B*&!(U!E%D9*+h&!c!UM)=B%()!2B!r!U**B!Kr!]!T-!G-!,F-!2)5!,4L!
^erUB! \&B%?2B*&!(U!E%D9*+h&!^!UM)=B%()!2B!r!U**B!Kr!]!T-!G-!,F-!2)5!,4L!
AerUB! \&B%?2B*&!(U!B#*!)*2$*&B!)*%V#O($!5%&B$%OMB%()!UM)=B%()!2B!r!U**B!Kr!]!T-!

G-!,F-!2)5!,4L!
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Correct County Areas  
with Sidebars for Virginia 

 
 

Joseph M. McCollum1 

Dale Gormanson2 
John Coulston3

 
 
Abstract:  Historically, Forest Inventory and Analysis (FIA) has processed field 

inventory data at the county level and county estimates of land area were constrained to 

equal those reported by the Census Bureau. Currently, the Southern Research Station 

FIA unit processes field inventory data at the survey unit level (groups of counties with 

similar ecological characteristics). In short, the estimation unit has changed from an 

individual county to groups of counties.  However, changing the estimation unit to a 

survey unit does not constrain the total area of each county when expansion factors are 

used.  Here we provide a method to constrain published FIA estimates of total area at the 

county level to equal those of the Census Bureau.  To accomplish this, we derive an 

expansion factor formula.  Virginia serves as a case example of the techniques because of 

its unique geo-political boundaries. 

 

Keywords:  FIA, forest inventory, area control, sub-population, expansion factor  
 

Introduction 
 
Forest Inventory and Analysis (FIA) is a national program of the USDA Forest 
Service charged with conducting and maintaining comprehensive forest resource 
inventories on both public and private lands in the United States.  FIA inventories 
are design-based to provide strategic and extensive information on the quantity, 
status, and use of the forest resource.  The sampling frame is based on a 
tessellation of the United States into approximate 6,000-acre hexagons derived 
from a larger hexagon grid developed for the Environmental Monitoring and 
Assessment Program (EMAP) methodology (White et al. 1992).  Each hexagon 
contains one plot for the base national program.  The hexagonal array is 
comprised of non-overlapping, interpenetrating panels.   
 
_____________________ 
1Information Technology Specialist, Southern Research Station, 4700 Old Kingston Pike, 
Knoxville TN  37919 
2Supervisory Forester, Northern Research Station, 1992 Folwell Avenue, St. Paul, MN  55108 
3Supervisory Research Forester, Southern Research Station, 4700 Old Kingston Pike, Knoxville, 
TN  37919 
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FIA estimates are based on a three-phase sampling scheme.  The primary 
objective of Phase 1 is to use remote sensing to stratify land areas to increase the 
precision of forest resource estimates.  The Phase 1 stratification assigns each 
Phase 2 plot to a stratum and identifies, or estimates, the area of the stratum 
within the estimation unit.  The primary objective of Phase 2 is to obtain field 
observations and measurements of the traditional FIA suite of forest resource 
variables.  Phase 3 is a subsample of the Phase 2 plots (1 in 16) on which 
additional forest health attributes are measured.   
 
Bechtold and Patterson (2005) provide the compilation procedures for the national 
FIA program.  Estimates of forest attributes are made for each population or 
estimation unit using these procedures.  An estimation unit is typically defined as 
either a county or an FIA multi-county survey unit of known area (determined by 
the Census Bureau).  The estimation procedures do not require plot level 
expansion factors. However, for public distribution of the FIA database (FIADB) 
expansion factors are used so that users can match estimates from National 
Information Management Systems Compilation System (NIMSCS) at the 
estimation unit level using the expansion factors.  In addition, the expansion 
factors can be used to make population estimates for arbitrarily shaped areas such 
as wood procurement regions surrounding mills.  However, when expansion 
factors are developed at the FIA survey unit level (groups of counties), there is no 
area control at finer spatial resolution than the survey unit.  Therefore county-
level area totals based on expansion factors will not equal the area of the county 
reported by the Census Bureau. 
 
As noted above, total area estimates provided by the Census Bureau are used for 
area control.  In Virginia, there are independent cities in no county at all (Figure 
1), but reported by the Census Bureau as county-equivalents.  While the Census 
Bureau does provide area estimates for each independent city, about 1/3 of 
Virginia’s untabulated cities have no FIA plot at all, and thus no mechanism for 
area control (expansion factors).   
 
 

 
Figure 1:  Virginia map showing independent cities 
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Since 1966, FIA has assigned each of Virginia’s cities to one or more counties, as 
shown in Figure 1.   The Tidewater cities of Chesapeake, Hampton, Newport 
News, Suffolk, and Virginia Beach are reported as counties.  Each of those cities 
is reported as a county-equivalent, because they were once counties.  Newport 
News was Warwick County, Hampton was Elizabeth City County, Virginia Beach 
was Princess Anne County, Chesapeake was Norfolk County, and Suffolk was 
Nansemond County.     
 
The objectives of this study are 1) to document rules used by FIA for assigning 
independent cities to the appropriate county in Virginia and 2) to extend the 
formula for calculating expansion factors to address situations where the 
population and estimation unit are defined by FIA survey units but the 
subpopulation of interest has a known area that a client wants to use for area 
control. 
 

Methods 
 
Independent Cities 
 
As noted previously, independent cities are separated from counties in Virginia.  
FIA combined the independent cities with certain counties, but did not outline 
rules for doing so.  What follows are a set of formal rules. 
 

a) A city should be tabulated with its county of origin at the time it became 
an independent city.   

b) If a city is created from multiple counties, the historical county lines 
should be used.   

c) If a city consolidates with a county or another city, the new jurisdiction 
shall inherit the lineage of the old jurisdiction.  Consequently, if a city’s 
county of origin no longer exists, the city may be tabulated under its own 
name.   

d) With all other acquisitions short of consolidation, the new jurisdiction 
does not inherit lineage.   

 
Rule (a) covers most cases.  Rule (b) covers Galax and Petersburg.  Rule (c) 
covers Richmond (tabulated with Henrico and Chesterfield Counties), and the 
Tidewater cities.  Rule (d) covers a number of other cases.  These rules capture 
what FIA has actually done, with two exceptions – Petersburg and Alexandria. 
 
FIA split Petersburg between Dinwiddie and Prince George Counties.  McCollum 
and Jacobs (2002) surmised the historical line dividing Dinwiddie and Prince 
George Counties to be a line northward from the point of intersection of 
Dinwiddie, Prince George, and the city of Petersburg.  The Laws of Virginia,  
Chapters 19 and 31, 1752, (Hening 1823) show that this interpretation was correct 
south of Lieutenant Run, but otherwise the county line followed that creek, and 
also that Pocahontas Island was part of Chesterfield County.    
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The other exception is Alexandria.  Alexandria County was ceded to the District 
of Columbia in 1791 to form the capital city of the United States, a diamond 
shape that was ten miles square.  The District took exclusive jurisdiction by 1801. 
In 1846, it was retroceded to Virginia.  For the Census of 1900, the Census Office 
tabulated the city of Alexandria separately from Alexandria County.  In 1920, 
Alexandria County renamed itself Arlington County.  Since 1915, the city of 
Alexandria has spread into what was Fairfax County (DenBoer and Sinko 2005; 
Minnesota Population Center 2004).  Since the city of Alexandria was created 
from Arlington County, it should be tabulated entirely with Arlington County.       
 
Expansion Factors  
 
The techniques used to estimate population totals do not require the use of 
expansion factors.  In fact, Bechtold and Patterson (2005) discourage the use of 
expansion factors.  However, expansion factors are included in the public version 
of the FIADB.  There are two motivating factors for including expansion factors: 
1) external clients can easily produce population estimates that match estimates 
based on stratified estimation when the estimation unit is the same (i.e. survey 
unit) and 2) external clients can also produce estimates for user defined 
subpopulations (e.g. wood procurement regions).  Based on supplemental material 
to Bechtold and Patterson (2005) expansion factors for each stratum within an 
estimation unit are calculated using [1]. 
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where 
 
Fh is the expansion factor for stratum h 
AT is the total area of the population (survey unit), 
Wh is the weight of stratum h, and  
nh is the number of plots in stratum h.   
 
For any subpopulation of known area within the population, the expansion factor 
can be defined by: 
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AC is the area of the subpopulation (e.g. county), 
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n is the total number of plots in the population (survey unit), 
H is the total number of strata, 

δi(c) is an indicator function equal to 1 if plot i is in subpopulation C,  
0 otherwise, and all other notation is as above.   

 
In general, f will not be equal to 1 for every county in the unit.  However, on 
average, f will be 1.  Therefore, if a survey unit consists of C counties, numbered 
c = 1 to C, then: 
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Case Study 
 
We use Virginia as a case study to document how FIA combines independent 
cities into counties and FIA survey units.  We then demonstrate how external 
clients can recalculate expansion factors to produce estimates for individual 
counties within the estimation unit (FIA survey unit in this case).  The purpose of 
the exercise is to produce county-level estimates where the total area of the 
subpopulation is constrained to equal the total area of the county reported by the 
Census Bureau (including independent cities).   
 

Results 
 

Independent cities were merged into their respective counties using the decision 
rules presented in this paper.  However because the rules for combining 
independent cities with counties have not been consistent overtime and the 
boundaries of independent cities have changed over time, the total land area for 
some individual counties (e.g. Arlington County) has changed (Table 1).  In the 
Knight and McClure report (1966), the city of Alexandria was split between 
Arlington and Fairfax Counties, apparently along the “D.C. Diamond” line.  In 
subsequent reports, Arlington County meant Arlington County proper.  Decade by 
decade, estimates of land area changed to mirror the Census Bureau’s.  In 2005, 
FIA changed its methodology from using the county as area control to using the 
survey unit as area control.     
 
Table 1:  Estimates of land in Arlington County (FIA)

Year Acres Source

1966 20500 Knight and McClure 1966

1976 16640 Sheffield 1976

1986 16614 Brown 1986

1992 16614  Johnson 1992

2001 16557 Miles 2001

2005 15218 FIDOa

2006 17504 FIDO

2007 16943 FIDO  
___________________ 
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aForest Inventory Data Online (FIDO) is a modernized delivery system that provides access to the 
National FIA databases.  It allows flexible user specified tables and maps of forest statistics to be 
generated through a web browser (USDA Forest Service 2008). 

 
By definition the total area of the survey unit calculated from expansion factors 
using equation [1] equals the total area of the survey unit calculated from 
expansion factors using equation [2].  County level estimates of total area differ 
slightly (table 2).  Data is taken from the FIA Datamart, available at 
http://fiatools.fs.fed.us/fiadb-downloads/datamart.html.  For example, the total 
area of Accomack County was 902,292 acres based on using expansion factors 
from equation [1] and was 838,426 acres based on expansion factors from 
equation [2].  The main point here is that when using the expansion factors from 
equation [2], the total area estimate matches the total area from the Census Bureau 
for each county.  Forest area estimates will also differ slightly.  In absolute terms, 
the largest difference in forest area estimates was observed in Southampton 
County and the smallest difference was observed in Newport News.  
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Table 2:  Estimates for accessible forest land and all land for each county in survey unit 1

County

Forest Total Area Forest Total Area  

acres

Accomack 107,858 902,292 95,926 838,426

Brunswick 269,650 366,187 266,808 364,396

Caroline 244,851 334,892 249,181 344,886

Charles City 91,566 136,533 83,158 130,698

Chesterfield 164,719 312,681 163,029 307,407

Dinwiddie 223,947 304,611 241,397 330,595

Essex 79,743 163,477 84,258 182,980

Gloucester 88,706 192,481 90,768 184,318

Greensville 122,214 166,137 142,338 194,413

Hanover 182,262 280,199 197,689 303,411

Henrico 57,868 179,261 54,572 173,913

Isle of Wight 106,279 222,418 99,897 232,166

James City 63,159 124,641 55,687 120,565

King and Queen 136,543 200,117 142,287 208,849  
King George 73,695 108,444 82,773 120,186

King William 103,273 176,187 107,823 182,818

Lancaster 44,413 134,452 38,731 148,062

Mathews 24,654 175,815 29,571 161,257

Middlesex 52,581 132,173 44,922 134,882

New Kent 83,349 118,952 97,137 143,027  
Northampton 25,673 574,274 20,540 509,017

Northumberland 57,096 192,872 56,894 182,825

Prince George 106,301 191,113 107,838 195,923

Richmond 78,181 149,916 74,917 138,481

Southampton 239,535 359,385 264,726 390,880

Surry 142,175 193,540 148,079 198,595

Sussex 258,098 319,428 253,765 315,411

Westmoreland 87,960 154,375 88,944 161,689

York 46,548 205,838 42,130 188,124

Chesapeake 93,003 310,663 96,909 316,047

Hampton 1,168 88,799 866 87,187

Newport News 5,879 74,395 5,710 76,192

Suffolk 175,330 272,116 179,207 274,603

Virginia Beach 35,856 341,854 31,881 318,287

Total 3,674,133 8,160,518 3,740,358 8,160,516

Equation 1 Equation 2

 
 
Discussion 
 
Southern Research Station FIA produces FIA survey unit population estimates 
and does not produce county-level population estimates.  However, several clients 
are interested in or require county-level estimates.  When county-level estimates 
are required we suggest that clients recalculate the expansion factors so that there 
is area control at the county-level.  Here we provide a method for adjusting 
expansion factors for this purpose.   
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Virginia provides a particular challenge for using Census Bureau estimates of 
total area for area control.  The independent city boundaries can change over time 
and therefore it is important to have a set of decision rules in place for allocating 
the area of each independent city to the correct county.  Admittedly, this is less of 
an issue when an FIA survey unit is used as the estimation unit.  This is because 
independent cities are more likely to straddle multiple counties than they are to 
straddle multiple FIA survey units. 
  
Here we present a technique to recalculate expansion factors that results in area 
control at the county level.  This technique adjusts the expansion factor by 
dividing a known area (AC in equation 2) by the calculated area based on 
expansion factors.  The same technique can be used for wood procurement 
regions.  These areas are generally used to determine wood volume estimates 
within some distance of, for example, a plywood mill.  The total area of the region 
is therefore known and equation 2 can be used, provided that the procurement 
region is contained within one survey unit. 
  
Our objectives were to document rules used by FIA for assigning independent 
cities to the appropriate county in Virginia and extend the formula for calculating 
expansion factors to address situations where a client requires subpopulation 
estimates with area control.  We recommend that the formal rules described here 
be used by FIA for allocating the area of independent cities to the appropriate 
county.  We also recommend that external clients who require sub-population 
estimates consider adjusting the expansion factors so that area control can be 
achieved at the sub-population level.   
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Statistical Considerations



 
  
 
 

An assessment of the impact of FIA’s default 
assumptions on the estimates of coarse 

woody debris volume and biomass 
 

Vicente J. Monleon1 
 
 

Abstract: Currently, Forest Inventory and Analysis estimation procedures use Smalian’s 
formula to compute coarse woody debris (CWD) volume and assume that logs lie 
horizontally on the ground. In this paper, the impact of those assumptions on volume and 
biomass estimates is assessed using 7 years of Oregon’s Phase 2 data. Estimates of log 
volume computed using Smalian’s formula are known to be biased, overestimating 
volume. On the other hand, volumes estimated from the diameter at the point of 
intersection between the log and the transect are approximately unbiased, regardless of 
log shape, but may be more variable. In Oregon, Smalian’s formula overestimated CWD 
volume and biomass by 3.6 and 4.2 percent, respectively, compared with the intersection 
diameter method, or 1.7 and 2.0 times the standard error of the estimates. The impact on 
the variance of the estimates was negligible. The assumption that logs lie horizontally 
would result in an underestimation of the total CWD volume. The sensitivity to this 
assumption was examined under several scenarios, suggesting that the bias may be 
between 4.1 and 8.1 percent of the volume estimates. 
 
 
Keywords: Down woody debris, line intersect sampling, Smalian’s formula, intersect 
diameter, log inclination, Oregon. 
 
 

Introduction 
 

Coarse woody debris (CWD), defined as large pieces (logs) of down and dead 
wood in different stages of decay, plays a key role in ecosystem structure and 
function (Harmon et al. 1986). CWD may also account for a relatively large 
proportion of the total biomass and carbon pools in many forests ecosystems. In 
Oregon, for example, CWD volume and biomass are estimated to be 44% and 
18% the net volume and biomass in live trees, respectively (Donnegan et al. 
2008). 

The Forest Inventory and Analysis (FIA) program uses line intersect sampling 
(LIS) to estimate the volume and biomass in down logs. Details of the 
measurement and sampling design, and estimation procedures, can be found in 
Woodall and Monleon (2008). In essence, a log is tallied if its centerline is 
intersected by the transect. Then, a LIS estimator for the total volume of down 
logs from the i-th plot, îτ , is: 
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Program; 620 SW Main Street, Suite 400; Portland, OR 97205 USA; vjmonleon@fs.fed.us 
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where ijv is the measured volume from the j-th log; ( )cosij ijl θ  is the length of the 
horizontal projection of the j-th log’s centerline ( ijl  is the length of the centerline 
and ijθ its inclination); K is a constant term that depends on transect length; and ni 
is the number of down logs tallied in the plot. To estimate total biomass, the 
volume ijv  is multiplied by the log’s bulk density and by a reduction factor to 
account for loss of mass due to decay (Harmon et al. 2008). Once an estimate for 
each plot is available, population estimates are obtained following standard FIA 
procedures (Scott el at. 2005).    

Equation 1 requires that the individual log’s volume be known, but volume is 
almost always estimated, not measured. FIA currently uses Smalian’s formula to 
estimate volume for logs attributed as decay class 1, 2 3 or 4 logs (Waddell 2002, 
Woodall and Monleon 2008): 
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where DLij, DSij, and lij are the large- and small-end diameters and length of the 
log, respectively. This equation is the average of the volume of two cylinders, one 
with cross-section equal to that of the large end of the log, and another with cross 
section equal to that of the small-end. It gives the volume of a frustum of a 
paraboloid and, therefore, if the log’s shape is different, bias would result. Husch 
et al. (1972: 120) indicate that Smalian’s formula tends to overestimate the 
volume of logs, reporting biases as large as 12%. They suggest that “Unless one is 
willing to accept a rather large error, Smalian’s formula should not be used unless 
it is possible to measure the sections of the tree in 4-foot lengths.” 

Alternatively, volume may be estimated from the diameter at the point of 
intersection between the log’s centerline and the transect (van Wagner 1968): 
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where DIij and lij are the intersection diameter and length of the log, respectively. 
This method gives an unbiased estimate of volume, without any assumptions 
about the shape of the logs. It can be motivated as a crude Monte Carlo approach 
to volume estimation. The volume of a log of arbitrary shape may be estimated by 
taking a random sample of points along the log’s centerline, measuring the area of 
the cross-section at each point, multiplying by the log’s length, and averaging. 
Because the point of intersection is a random point, multiplying the area of the 
cross-section at the intersection by the log length is basically a Monte Carlo 
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approximation to the volume based on a single sample. It follows that the 
estimator is unbiased, but it may be highly variable. Therefore, using intersection 
diameter instead of Smalian’s formula may result in greater variance. 

Equation 1 also requires knowledge of the inclination of the log, to calculate 
the length of the horizontal projection of the log’s centerline. Currently, FIA does 
not measure log inclination, implicitly assuming that it is 0 or that it can be 
ignored. Logs may not lie horizontally because the terrain is not flat, they are 
supported but other trees or structures, or they are snags leaning more that 45 
degrees from vertical (which are logs by FIA definition). Ignoring log inclination 
underestimates the total volume, with the bias being proportional to the reciprocal 
of the cosine of the inclination. So, if the inclination is 10%, actual volume is only 
0.5% greater than the reported volume. However, this figure rises to 41% when 
the inclination is 100% (45 degrees). 

The objective of this study is to evaluate the impact of the current assumptions 
regarding individual log volume estimation and log inclination on the estimates of 
total CWD volume and biomass in Oregon.  

 
Materials and methods 

 
Data 

 
CWD data were collected in all FIA Phase 2 plots in Oregon, between 2001 

and 2007 (7 panels). Two, 58.9 foot-long transects were measured in each 
subplot, for a total of 8 transects and 471.2 ft per plot. If the centerline of a log 
was intersected by the transect, the length, decay class and diameter at the 
intersection point were recorded. If the decay class was 1 through 4, the large- and 
small-end diameters were also recorded. Only logs in forestland were tallied. 
Details of the field procedures can be found at USDA Forest Service (2007). In 
total, the dataset includes 7,115 plots (51% forested) and 58,241 logs. 

 
Individual log volume estimation 

 
To assess the effect of the method used to estimate individual log volume, 

total volume and biomass and their variances were estimated after computing the 
volume of each individual log using either Smalian’s formula (eq. 2) or the 
intersection diameter formula (eq.3). Only decay class 1-4 logs were included in 
the analysis because, lacking end diameter measurements, Smalian’s formula can 
not be computed for decay class 5 logs. Log inclination was set to 0 (FIA default 
assumption). Estimates were obtained as described in Woodall and Monleon 
(2008). 

 
Log inclination 
   

Log inclination was not recorded in the field, but the slope (inclination) of the 
subplot was recorded. To estimate the impact of inclination, four scenarios based 
on the slope of the subplot were considered. We assumed that logs were lying on 
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the ground, so that their inclination depended only on the slope of the terrain and 
orientation of the log with respect to the slope. Therefore, the impact on the 
estimates of logs that did not lie on the ground because they are supported was not 
considered. The four scenarios were (Fig. 1): 

A. Default: logs lie horizontally ( ijθ  in eq. 1 equals 0). This is equivalent to 
assuming that all logs are oriented perpendicular to the slope. 

B. Log orientation is uniform, independent of the slope. Logs may be facing 
downslope or across the slope, or in any other orientation, with equal 
probability 

C. Log orientation is predominantly downslope, according to the histogram in 
figure 1. 

D. All logs are oriented downslope ( ijθ  in eq. 1 equals the subplot slope) 
Scenario D would provide an upper bound for the bias, while scenario B, in 

which the orientation of the pieces are not affected by the slope, would be a 
reasonable lower bound. Log volume was calculated from the intersect diameter, 
so that all decay classes could be included. For scenarios B and C, estimates are 
based on the average of 1000 simulations from the appropriate log orientation 
distribution. 

-90 -45 0 45 90

Log Orientation w.r.t slope (degrees)

A: default
B: uniform
C: predominant downslope
D: downslope

Subplot aspect

Fr
eq

ue
nc

y

 
Figure 1: Distribution of the orientation of logs with respect to subplot slope for the four scenarios 
considered in this study. For scenarios A and D, all pieces are oriented perpendicular to the slope 
(-90 or 90 degrees) or downslope (0 degrees), represented here by vertical lines at those points. 
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Results 
 
Individual log volume estimation 
 

Using intersect diameter to estimate log volume, instead of the default 
Smalian’s formula, reduced the estimated total CWD volume on Oregon’s forest 
lands by 1,378 million cubic feet (3.6%) and biomass by 11.2 million tons (4.2%) 
(Table 1). The practical significance of the difference between the two methods, 
rather than its statistical significance, is most relevant in this case. Nevertheless, 
the estimated differences were 10 times greater than their respective standard 
errors. Therefore, the difference between the parameters estimated by those two 
methods is highly statistically significant. 

Because the estimator based in the intersection diameter is unbiased, a more 
relevant comparison may be between the bias, estimated by the difference 
between the two methods, and the sampling error. Estimated bias was 1.7 and 2.0 
times the standard error of Smalian’s volume and biomass estimates, respectively.  
Therefore, the bias, not the sampling error (SE), dominates the overall error. 
 
Table 1: Estimated total CWD volume and biomass in decay class 1-4 down logs on Oregon forest 
land, by individual log volume equation.  
 

Volume Biomass Individual log volume 
equation Total SE   Total SE 
 -- million cubic feet -- -- million tons --  
Smalian’s formula 38,170 824 267.4 5.7 
Intersection diameter 36,795 798 256.2 5.4 
Difference -1,378 138 -11.2 1.0 
 

 
The estimate of log volume using Smalian’s formula may be less variable 

than that from using the diameter at the intersection. The results from this analysis 
indicate that, at the scale of this study, any effect on the SE of the estimate is 
negligible. The SE of the intersection diameter method was 798 million ft3, while 
that of Smalian’s formula was 824 million ft3. However, the estimated volume 
and biomass were also greater when using Smalian’s formula. Relative to the 
estimates of the total, the SE was almost identical between both methods: 2.160% 
(Smalian) and 2.170% (intersection) for volume, and 2.118% (Smalian) and 
2.126% (intersection) for biomass. 
 
Log inclination 
 

Accounting for the effect of plot slope increased the estimated CWD volume 
between 1.72 and 3.38 billion ft3, or 4.1 to 8.1 %, compared with the current FIA 
default scenario (Table 2). The magnitude of the difference for scenarios B, C and 
D was 2.0, 2.7 and 3.9 times the SE of the default scenario, respectively.  
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Table 2: Estimated total CWD volume in down logs on Oregon forest land, by log inclination 
scenario. Volume was calculated from the intersection diameter, all decay classes included. 
 

 
Volume 

(billion ft3) 
Difference  

with scenario A 
Scenario Total SE   Total % 

 -- billion cubic feet -- -- billion cubic feet -- 
A: default 41.92 0.86   
B: uniform 43.64 0.90 1.72 4.1 
C: predominantly downslope 44.21 0.92 2.29 5.5 
D: downslope 45.30 0.94 3.38 8.1 
 

Discussion 
 
The assumptions evaluated in this study, regarding individual log volume 

estimation and piece inclination, had a very significant effect in the estimation of 
total CWD volume and biomass in Oregon. Standard sampling and estimation 
procedures implicitly assume that the measurement error and bias are negligible 
compared with the sampling error. In this study, however, the magnitude of the 
estimated bias was several times that of the estimated sampling error, a result that 
has important consequences for estimation. For example, confidence intervals 
constructed with biased totals and their standard errors would be unreliable, 
because the true coverage is much less than the nominal coverage.  

The trade-off between sampling error and measurement bias depends on the 
sample size. While sampling error decreases as sample size increases, the bias 
does not. For regional studies that include a large number of plots, such as this 
study, the sampling error is very small and bias dominates. Nevertheless, the 
estimated magnitude of the biases (over 4% of the estimated value in most cases) 
seems significant enough to be of concern even for questions involving much 
smaller areas and sample sizes. Reducing the bias may involve changes in 
measurement techniques and protocols, which in some cases may result in higher 
costs. However, there is a balance between allocating resources to increase the 
sampling size or reduce the measurement error, and both aspects should be 
considered. 

Regarding the method used to estimate individual piece volume, both 
theoretical and practical results support the use of diameter at the intersection 
point. Neither Smalian’s nor the intersection point method requires the 
measurement of the length of individual pieces, because the length (lij) factors out 
of eqs. 2 and 3. However, the intersection diameter method only requires the 
measurement of a single diameter and avoids having to leave the transect path to 
measure the diameters at both ends of the piece. This method is unbiased and, at 
the scale of this study, the impact on the variance is negligible. Additional 
assessments using individual plots did not seem to indicate increased variance 
when using intersection diameter, compared with Smalian’s formula. The 
diameter at the intersection method attempts to estimate the average cross section 
of all the pieces. Thus, the rate of convergence is driven by the number of 
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intersections between transects and logs, not by the number of plots. Therefore, as 
long as a moderate number of intersections are included, the unbiased intersection 
diameter method is likely to perform as well as or better than Smalian’s formula.  

Accounting for log inclination may require additional field measurements. 
However, ignoring this variable would have a very significant impact on the 
estimator, at least in mountainous areas such as Oregon. The assumption that the 
orientation of the logs is uniform with respect to the slope (scenario B) seems to 
be a realistic lower bound for the bias caused by ignoring log inclination. Even 
then, the estimated bias was 4.1% of the total volume and 2 times the estimated 
SE. The actual bias due to ignoring log inclination is likely to be greater than that 
reported in this study, because the scenarios ignored the effect of leaning snags or 
supported logs. Supported snags are likely to be more frequent after disturbances 
such as hurricanes, so ignoring log inclination may substantially underestimate 
the disturbance impact. This study suggests that measurements directed to 
reducing this bias may be a reasonable allocation of resources, even at the cost of 
reduced sample size or transect length.  

Biases and differences between methods have been compared with the 
estimated totals and their standard errors. To put those figures in perspective, the 
estimated differences can be compared with statewide carbon emissions in the 
State (Table 3). Depending on the assumption considered, the difference in the 
estimated carbon pools in CWD ranged between 32 and 65% the total 
anthropogenic carbon emissions in the state in 2000, highlighting the importance 
of accurate measurements of pools such as CWD at the regional level.        
 
Table 3: Comparison between current carbon estimates in CWD and 2000 Oregon emissions. 
 

 
CO2 equivalents 

 
Percent 2000 OR 
CO2 emissionsa 

 - million metric tons - --- percent --- 
Current estimate 505.8      
Intersect diameter -19.3 32.4 
Inclination: 
     B: uniform 
     C: pred. down 
     D: downslope 

+19.8 
+26.3 
+38.8 

33.2 
44.1 
65.0 

aEmissions estimated at 59.54 million metric tons of CO2 equivalents. Source: Oregon Department 
of Energy,  http://oregon.gov/ENERGY/GBLWRM/Oregon_Gross_GhG_Inventory_1990-2005.htm, 
accessed on October 10, 2008. 
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Field Results for Line Intersect Distance
Sampling of Coarse Woody Debris

David L.R. Affleck1

Abstract: A growing recognition of the importance of downed woody materials in forest
ecosystem processes and global carbon budgets has sharpened the need for efficient sam-
pling strategies that target this resource. Often the aggregate volume, biomass, or carbon
content of the downed wood is of primary interest, making recently developed probability
proportional-to-volume designs such as line intersect distance sampling (LIDS) of inter-
est. This research presents field results from LIDS and conventional line intersect sampling
(LIS) inventories of coarse woody debris (CWD) in three stands in northwestern Mon-
tana, USA. Field crews quickly adapted to the distance-limited selection protocol of LIDS,
though its variable-length transect design increased data collection times relative to LIS
in all three stands. Yet aggregate CWD volumes were estimated more precisely with LIDS,
more than offsetting the time differential and rendering LIDS more efficient than LIS for
volume estimation given a fixed sampling time or budget. Conversely, LIS generally per-
formed more efficiently than LIDS with regards to the estimation of CWD abundance and
aggregate length. Its transect design means that LIDS could be readily integrated into For-
est Inventory and Analysis based programs to assess and monitor CWD stocks. However,
the utility of LIDS, or of any other sampling strategy, must be determined by the relative
importances of the estimable CWD attributes of interest.

Keywords: downed woody materials; size-biased sampling; Lubrecht Experimental Forest.

Introduction

Coarse woody debris (CWD) is an important component of many forest ecosys-
tems. Partially decayed wood on or in the forest floor provides habitat for diverse
plant and animal species; regulates soil moisture and nutrient flux; and can modify
wildfire behavior and severity (Brown et al. 2003; Harmon et al. 1986; Jonsson
and Kruys 2001). Downed wood also represents a carbon reservoir (e.g., Canadian
Council of Forest Ministers 2006) and a potential source of biomass energy. Recog-
nition of these functions has prompted the identification of CWD as an indicator of
forest health and sustainability. This, in turn, has sharpened the need for efficient
sampling strategies that specifically target the downed wood resource.

Line intersect sampling (LIS; Kaiser 1983) is one of the most commonly used
survey methods for downed wood, and is currently implemented in the USDA For-
est Inventory and Analysis (FIA) program (see Bechtold and Patterson 2005). Ap-
plying LIS, logs or fragments of CWD that are crossed by a fixed-length transect

1 Department of Forest Management, College of Forestry & Conservation, The University of
Montana, 32 Campus Drive, Missoula, MT 59812; email: david.affleck@umontana.edu.

In: McWilliams, Will; Moisen, Gretchen; Czaplewski, Ray, comps. 2008. 2008 Forest Inventory and Analysis (FIA) Sympo-
sium; October 21-23, 2008; Park City, UT. Proc. RMRS-P-56CD. Fort Collins, CO: U.S. Department of Agriculture, Forest
Service, Rocky Mountain Research Station. 1 CD.
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are selected into a sample. The search procedure of LIS is straightforward and
the likelihood of detection errors small. However, in stand- and forest-level ap-
plications, LIS can require an inordinate sampling intensity to achieve estimates of
acceptable accuracy, particularly when the aggregate volume or biomass of CWD is
of interest (cf. Pickford and Hazard 1978; Woldendorp et al. 2004). Line intersect
distance sampling (LIDS; Affleck 2008) is a novel CWD survey method that incor-
porates many elements of the search protocol of LIS, but also utilizes a probability
proportional-to-volume selection design. As such, LIDS offers the potential for
more rapid and accurate assessments of the aggregate volume of CWD resources,
as well as its biomass and carbon content.

This report presents preliminary field research on the relative performance of
LIDS and LIS based on downed wood sampling conducted in 2008 in northwestern
Montana, USA. The next section provides an overview of the LIDS methodology
and estimators and the following section describes the field sampling program. The
closing section discusses the field results and comments on the perceived advan-
tages and limitations of LIDS.

Line Intersect Distance Sampling

LIDS is a transect-based sampling method similar to LIS. However, like the per-
pendicular distance sampling strategy of Williams and Gove (2003), LIDS also in-
corporates a distance-limited selection criterion that allows for probability propor-
tional-to-volume sampling of CWD.

Sampling is conducted from a point s located uniformly at random inside the
tract of interest.1 A line transect initiated at s is then oriented in the direction θ,
also selected uniformly at random. These two design elements supply the basis for
inference and obviate the need for any conditions concerning the spatial distribution
or orientation of CWD particles on the tract of interest. In practice, the point s will
be one of a collection of sample points {s1, s2, . . . , sT} located independently or
on a randomly positioned systematic grid. Similarly, radial transects (see Affleck
et al. 2005) consisting of M > 1 segments can be employed in LIDS, in which
case the first segment is oriented in the direction θ1 = θ and the orientations of
the other segments follow at prescribed intervals (e.g., in a Y-shaped transect θ2 =
θ+ 120◦ and θ3 = θ+ 240◦). Where the LIDS strategy departs from LIS is in
the fact that the transect as a whole, as well as any individual transect segments,
have no fixed length. Instead, a critical distance constant k (m−1) determines the
sampling intensity; the role of this constant is analogous to that of Grosenbaugh’s
(1958) point-sampling constant k.

A particle of CWD crossed by a LIDS transect segment is selected into the
sample provided that two conditions are met. First, the central axis of the particle,
not simply a branch or lobe, must be intersected by the transect segment. The
central axis of a particle is the longest line segment connecting two points on the
particle’s boundary. Denote the length of the ith particle’s central axis by li (m). The

1See Appendix A for a summary of the notation.
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central axis of a freshly fallen log can often be taken as the pith of the main stem
and its length will then coincide with the log’s length. An odd-shaped particle of
CWD can have a central axis that is only partially within the core of wood, however
(see e.g., Affleck 2008).

The second condition for particle selection stipulates that the distance from the
sample point to the particle is less than a critical distance determined, in part, by k.
Specifically, if the mth transect segment crosses the central axis of the ith particle at
the point xm,i, then the distance (in m) from s to xm,i must not exceed the critical
distance (Dcrit,i):

Dcrit,i =
k a(xm,i)

M
,

where a(xm,i) is the cross-sectional area (m2) of particle i contained within the
intersection plane. This intersection plane is the vertical plane lying perpendicular
to the particle’s central axis and containing the point xm,i. For the idealized needle-
shaped particle lying on flat ground, this cross-sectional area will be a circular
face of wood; if this particle is tilted from the horizontal, then a(xm,i) measures an
elliptical surface. More generally, a(xm,i) measures the area of an approximately
elliptical section of particle i or the sum of the areas of several such sections if
multiple branches of particle i are cut by the intersection plane.

It follows from these conditions that the probability of selecting the ith particle
on a given segment of a LIDS transect is directly proportional to its cubic volume
(Affleck 2008). This result, in turn, implies that a design-unbiased estimator of the
volume of CWD per unit area is given by

V̂s = F ns , (1)

where ns is the total number of particle selections made on the transect located at s
and F = 10000π

2k is a constant volume factor (m3·ha−1). Estimating aggregate CWD
volume per unit area following LIDS is thus similar to estimating aggregate tree
basal area per unit tract area following horizontal point sampling: a count of the
number of selected particles (or trees) is simply blown-up by a volume (or basal
area) factor.

Other CWD population parameters can be estimated if measurements such as li
and a(xm,i) are taken on the selected particles (see Affleck 2008). For example, a
design-unbiased estimator of the number of particles per unit area based on a single
transect located at s is

N̂s = F
M

∑
m=1

∑
i∈Cs,m

1
li cos(φi)a(xm,i)

, (2)

where φi is the tilt (◦) of the central axis of particle i with respect to the horizon-
tal plane and the second summation extends over the collection Cs,m of particles
selected by the mth segment of the transect located at s. A corresponding design-
unbiased estimator of the aggregate length of the central axes of CWD particles per

3
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unit tract area is

L̂s = F
M

∑
m=1

∑
i∈Cs,m

1
cos(φi)a(xm,i)

. (3)

For comparison, design-unbiased estimators of the aggregate volume, abundance,
and length of CWD following LIS are given in Appendix B.

With multiple LIDS transects located on the tract, transect-specific estimates can
be combined and standard errors estimated. For example, transect-based estimates
of aggregate CWD volume per hectare can be averaged together:

V̂ =
1
T

T

∑
t=1

V̂st ,

where V̂st is the estimate obtained from the transect located at sample point st (t =
1,2, . . . ,T ). Also, if sample points are located independently, then normal-theory
confidence intervals can be constructed from the estimated standard error

s(V̂) =

√√√√∑T
t=1

(
V̂st − V̂

)2

T (T −1)
,

or from a bootstrapping procedure (Efron and Tibshirani 1994).

Field Data Collection

To assess quantitative and qualitative differences in the practical application of
LIS and LIDS, a collection of stands in the Lubrecht Experimental Forest in north-
western Montana were identified for field survey. Stands were selected to cover
a range of (overstory) forest types and a variety of downed wood assemblages.
All were second-growth, managed stands and ranged in age from approximately
40 years to over 150 years. Field results from three of these stands (Table 1), all
sampled in the summer of 2008, are discussed below.

Table 1: Characteristics of selected stands, sampling intensities, LIS transect lengths (L), and
LIDS volume factors (F).

Basal area Sample LLL FFF
Stand Leading species (m222·ha−1−1−1) points (m) (m333·ha−1−1−1)

A Pseudotsuga menziesii v. glauca 30.1 60 48 10
B Pinus contorta 22.7 28 9 15
C Larix occidentalis 44.8 30 42 8

Sample points were distributed uniformly and independently at random within
each stand. Each sample point served to locate a Y-shaped LIS transect of total
length L (m) as well as a Y-shaped LIDS unit with volume factor F. The two
sampling units were superimposed and their orientations were selected uniformly
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and independently at random. Each segment of a transect was initiated at a 2 m
distance from the sampling point. Pilot sampling was conducted in each stand to
determine the LIS transect lengths and LIDS volume factors that would result in
the selection of 6-9 particles per sample point. As a result, distinct transect lengths
and volume factors were used within each stand (Table 1).

Following the definition of Valentine et al. (2008), a log or segment of downed
wood was considered a particle of CWD if it exceeded 7.5 cm in diameter at any
point along its central axis. That is, a connected fragment of downed wood was
deemed either a single particle of CWD or an element of fine woody debris – logs
were not partitioned into multiple coarse and fine woody segments. Dead wood
within live trees, woody material suspended more than 2 m above the forest floor,
and downed wood buried beneath the litter layer in the forest floor were not consid-
ered. Partially rooted snags or stumps were considered CWD particles only if they
leaned more than 45◦ from the vertical.

The length of the central axis and its tilt from the horizontal were measured
on every selected particle. Cross-sectional diameters were obtained for every lobe
(e.g., branch or stem fork) within the intersection plane. Generally, two diameters
were measured on each lobe, with one diameter being made in the horizontal plane
and the other taken at right angles (but still in the vertical intersection plane). The
cross-sectional area of the selected particle was then obtained from the sum, over all
lobes, of the products of paired diameters. Additionally, the species of the particle
was determined, at least to the level of softwood, hardwood, or unknown, and decay
class was assessed on the five point scale of Meidinger (1998).

Both LIS and LIDS were implemented at each sampling location, with the order
of implementation determined randomly and in advance of sampling. Only the
first method applied at a given point was timed. Two person crews were used
throughout and separate data collection times were obtained for each of the three
segments of the Y-shaped units. The elapsed times included all elements of segment
orientation and layout; particle selection and measurement; and travel back to the
sample point. All distances were measured using tapes and were corrected for
slope. Particle species and decay information was collected primarily to render the
collection times consistent with those of standard CWD sampling programs.

The relative efficiency of LIS and LIDS were determined from the average im-
plementation times and from the observed precision of stand parameter estimators.
Relative efficiency was calculated as

RE =
t̄LIDS× s2(ŶLIDS)
t̄LIS× s2(ŶLIS)

,

where t̄method is the average transect sampling time for a particular method and
s(Ŷmethod) is the corresponding standard error of an attribute estimator. This mea-
sure of efficiency is both attribute- and stand-specific. RE can be interpreted as
the time needed to achieve a given margin of error using LIDS relative to the time
needed to achieve the same margin of error with LIS.
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Results & Discussion

Across all three stands, LIS was implemented more rapidly than LIDS (Fig. 1)
even though more particles tended to be selected and measured when LIS was ap-
plied (Fig. 2). Therefore, the time differential between the two methods can likely
be attributed to the variable-length transect design of LIDS. Whereas only a fixed
length of line needed to be followed for LIS, in LIDS the crew had to traverse a
minimum of 30-50 m along each segment with the total distance traveled depend-
ing largely on sighting conditions (i.e., on density of vegetation and variability in
micro-topography). Due to the distance-dependent selection criterion of LIDS, de-
termining whether particles were “in” or “out” of the sample was more involved
than for LIS. However, with the aid of a simple look-up table (e.g., Table 6 in Ap-
pendix B) the crew quickly became familiar with the size-distance relationships im-
plied by a given volume factor. Distances and intersection diameters seldom needed
to be measured to determine selection: sufficiently large particles near the sample
point and overly small particles far from the sample point were easily identified.
Moreover, particles encountered at distances approaching their critical distances
were often marked as ‘borderline’ and evaluated for selection subsequent to the
field work. In general, the length (li) measurements were the most time-consuming,
save on particles having multiple lobes or branches crossing the intersection plane.
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Figure 1: Distributions of transect data collection times by sampling method and stand.

With regards to CWD volume, the two methods produced similar estimates for
stands A and C (Table 2). LIDS and LIS estimates differed by approximately 32%
in stand B although their confidence intervals from 1000 bootstrap replications
overlapped. Notably, in all three stands the time differential favoring LIS (Fig. 1)
was more than offset by increased precision on the part of LIDS (Table 2). That is,
LIDS permitted the collection of more information on aggregate volume per sam-
ple point and per unit time, resulting in favorable (≤ 1) relative efficiencies. In each
stand, the difference in precision between the two methods was more pronounced
than the differences in estimated tract volumes, markedly so in the case of stand B.
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Figure 2: Distributions of transect particle counts by sampling method and stand.

Table 2: CWD volume estimates and corresponding standard errors with lower bounds (LB)
and upper bounds (UB) of 90% confidence intervals from 1000 bootstrap replications.

Volume (m333·ha−1−1−1) Precision (m333·ha−1−1−1)

Stand Strategy LB V̂̂V̂V UB LB s(V̂)s(V̂)s(V̂) UB REa

A LIDS 41.33 47.50 55.00 3.78 4.38 5.25 0.74
LIS 37.34 45.41 55.50 4.25 5.62 7.60

B LIDS 166.61 189.11 216.43 12.39 15.01 19.72 0.09
LIS 199.64 260.87 426.90 17.99 57.48 104.94

C LIDS 30.67 37.33 43.92 3.16 4.08 5.18 0.66
LIS 32.22 40.84 54.73 4.91 6.56 8.33

a Relative efficiency of LIDS vs. LIS for volume estimation; values below 1 indicate that LIDS is more efficient.

Note also that in one sense the relative efficiencies reported in Table 2 understate the
performance of LIDS: if aggregate CWD volume is of central interest, then length
measurements and in many cases cross-sectional diameter measurements need not
be taken, offering the potential for considerable time savings with LIDS.

Within-stand differences between LIDS and LIS estimates of the abundance or
aggregate length of CWD were larger than those for volume (Tables 3 and 4).
Excepting stand B, LIS offered improved precision in abundance estimates and
thus was more efficient than LIDS. This result is consistent with previously re-
ported simulation research (Affleck 2008) and presumably results from lower vari-
ation in particle lengths relative to variation in particle volumes. The probability
proportional-to-length LIS design also explains why LIS estimated the aggregate
length of CWD more precisely (Table 4) in all three stands. In addition, although
aggregate CWD length is rarely of central interest, the relative efficiency estimates
of Table 4 understate the performance of LIS in the sense that measurements of
length are not required to estimate this attribute using LIS (cf. equation 6 in Ap-
pendix B).

The results for stand B are notable for the marked relative efficiency of LIDS in
the estimation of aggregate volume (Table 2) as well as the relative inefficiency of
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Table 3: CWD abundance estimates and corresponding standard errors with lower bounds (LB)
and upper bounds (UB) of 90% confidence intervals from 1000 bootstrap replications.

Abundance (#·ha−1−1−1) Precision (#·ha−1−1−1)

Stand Strategy LB N̂̂N̂N UB LB s(N̂)s(N̂)s(N̂) UB REa

A LIDS 1319.7 1807.4 2645.3 266.8 366.7 520.6 14.45
LIS 1210.2 1365.1 1553.6 90.2 106.3 129.1

B LIDS 3014.3 3496.5 4252.0 264.0 353.4 514.2 0.88
LIS 3392.3 3914.4 5092.0 249.4 442.1 745.7

C LIDS 997.5 1455.1 2260.6 230.1 393.3 628.9 6.92
LIS 1074.0 1354.4 1708.3 145.2 195.3 246.3

a Relative efficiency of LIDS vs. LIS for abundance estimation; values below 1 indicate that LIDS is more efficient.

Table 4: CWD length estimates and corresponding standard errors with lower bounds (LB) and
upper bounds (UB) of 90% confidence intervals from 1000 bootstrap replications.

Length (m·ha−1−1−1) Precision (m·ha−1−1−1)

Stand Strategy LB L̂̂L̂L UB LB s(L̂)s(L̂)s(L̂) UB REa

A LIDS 4176.3 5107.3 6698.3 536.1 729.3 1003.0 10.95
LIS 3665.2 4025.2 4467.0 198.9 242.8 307.3

B LIDS 21231.6 23932.3 26859.1 1369.7 1704.7 2272.6 2.10
LIS 24819.3 27052.6 29301.5 1200.5 1383.5 1658.4

C LIDS 4501.0 7038.1 11328.6 1019.3 1931.7 3150.1 41.88
LIS 3690.1 4325.9 4908.5 342.4 389.9 454.8

a Relative efficiency of LIDS vs. LIS for length estimation; values below 1 indicate that LIDS is more efficient.

LIS in abundance estimation (Table 3). This even-aged pine stand of approximately
90 years had recently undergone intense self-thinning, generating a considerable
quantity of CWD in the process (Fig. 3). However, the downed wood exhibited
little variation in decay class, shape, or size. It therefore was anticipated that the
statistical advantages of LIDS with regards to volume estimation would be less pro-
nounced in this stand: a probability proportional-to-volume design is less effective,
in principle, if the particles’ volumes are relatively uniform. Of course, part of the
apparent efficiency of LIDS derives from the poor performance of LIS. The latter is
presumably the result of using such a short transect (L = 9 m). However, there were
few areas in this stand with exposed ground and any increase in the transect length
would have greatly increased the average sampling times and particle counts.

In sum, these preliminary field results support previous theoretical and simula-
tion research (Affleck 2008) indicating the potential efficiency of LIDS for CWD
volume estimation. Moreover, it is clear that LIDS is a practical alternative to LIS
in the field: crews can successfully apply the LIDS selection protocol with the aid
of simple lookup tables (see Appendix C). Therefore, where the aggregate volume
of CWD is of central interest, LIDS appears to be a viable and accurate sampling
strategy. Since particle mass and carbon content tend to scale in proportion to
particle volume, it also follows that LIDS could offer real advantages over LIS in
estimating the aggregate biomass or carbon content of downed wood (cf. Valentine
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Figure 3: Photograph taken in stand B; the downed logs
in this even-aged Pinus contorta stand showed less vari-
ation in size relative to the other stands surveyed.

et al. 2008). Ultimately, however, the utility of LIDS or any other strategy, LIS
included, will be dictated by the set of descriptive population parameters of interest
and the relative importance attached to each. If the aggregate biomass, length, and
abundance of CWD (#·ha−1) are to be estimated with comparable precision, then
a sampling strategy that provides reasonably accurate estimates of all three param-
eters must be sought. Strategies such as LIDS, LIS, and fixed-area plot sampling
that tend to be more nearly optimal for one of these parameters may be relatively
inefficient overall.
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Appendix A: Symbols Used

Table 5: Symbols and their units.

Symbol Units Definition

st (m, m) coordinate location of sample point t (t = 1,2, . . . ,T )
θm ◦ orientation of transect segment m (m = 1,2, . . . ,M)
T – number of sample points (i.e., number of LIDS or LIS transects)
M – number of segments on a radial transect
k m−1 LIDS critical distance constant
F m3·ha−1 LIDS volume factor (F = 10000π

2k )
L m total length of a LIS transect

nst – number of CWD particles selected by a transect at st
Cst ,m – set of particles selected by the mth segment of the transect at st

li m length of the central axis of particle i
φi

◦ tilt of the central axis of particle i from the horizontal
xm,i (m, m) intersection point of the central axis of particle i and transect segment m

a(xm,i) m2 cross-sectional area of particle i in the vertical plane containing xm,i and
oriented perpendicular to the central axis of particle i

V̂ m3·ha−1 estimated aggregate CWD volume per unit tract area
N̂ ha−1 estimated CWD abundance per unit tract area
L̂ m·ha−1 estimated total length of CWD central axes per unit tract area

s(V̂) m3·ha−1 estimated standard error of V̂
s(N̂) ha−1 estimated standard error of N̂
s(L̂) m·ha−1 estimated standard error of L̂

t̄ min average sampling time per transect

Appendix B: Line Intersect Sampling Estimators

Corresponding to the LIDS estimators in equations 1-3 are design-unbiased LIS
estimators of, respectively, aggregate volume (m3·ha−1), abundance (#·ha−1), and
length (m·ha−1):

V̂s = FLIS

M

∑
m=1

∑
i∈Cs,m

a(xm,i) (4)

N̂s = FLIS

M

∑
m=1

∑
i∈Cs,m

1
li cos(φi)

(5)

L̂s = FLIS ns , (6)

where FLIS = 10000π
2 L is the LIS length factor (m·ha−1) that is determined by the total

transect length L.
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Appendix C: LIDS Reference Table

Table 6: Critical distances for fixed minimum round diameter (MRD), and MRDs for fixed critical
distances, across varying volume factors (F in m3·ha−1) for a three-segment LIDS transect.

MRD DcritDcritDcrit (m)a DcritDcritDcrit Minimum round diameter (cm)b

(cm) FFF = 8 FFF = 10 FFF = 15 (m) FFF = 8 FFF = 10 FFF = 15

1 0.05 0.04 0.03 1 4.4 4.9 6.0
2 0.21 0.16 0.11 2 6.2 7.0 8.5
3 0.46 0.37 0.25 3 7.6 8.5 10.5
4 0.82 0.66 0.44 4 8.8 9.9 12.1
5 1.29 1.03 0.69 5 9.9 11.0 13.5
6 1.85 1.48 0.99 6 10.8 12.1 14.8
7 2.52 2.02 1.34 7 11.7 13.0 16.0
8 3.29 2.63 1.75 8 12.5 13.9 17.1

10 5.14 4.11 2.74 10 13.9 15.6 19.1
12 7.40 5.92 3.95 12 15.3 17.1 20.9
14 10.08 8.06 5.37 14 16.5 18.5 22.6
16 13.16 10.53 7.02 16 17.6 19.7 24.2
20 20.56 16.45 10.97 20 19.7 22.1 27.0
25 32.13 25.70 17.13 25 22.1 24.7 30.2
30 46.26 37.01 24.67 30 24.2 27.0 33.1

a Dcrit = π2 MRD2

8 M F
b MRD =

√
8 M F
π2 Dcrit
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A comparison of forest height prediction  
from FIA field measurement and LiDAR data 

via spatial models 
 

Yuzhen Li1  
 
 

ABSTRACT: Previous studies have shown a high correspondence between tree height 
measurements acquired from airborne LiDAR and that those measured using 
conventional field techniques. Though these results are very promising, most of the 
studies were conducted over small experimental areas and tree height was measured 
carefully or using expensive instruments in the field, which is not feasible in a practical 
forest inventory context. In this study, 105 plots located west of the Kenai Mountains, 
Kenai Peninsula, Alaska were measured and LiDAR data over the same set of field plots 
were acquired. Plot tree height, stand height, LiDAR mean height and LiDAR 90th 
percentile height were computed. Using the Matern covariance model for constant mean 
Gaussian spatial process, ordinary kriging was implemented and contour maps of 
predicted plot-level height from field height measurements and from LiDAR data were 
produced over the entire region along with maps of estimated standard error. Results 
indicate that at 300m by 300m pixel resolution, the spatial trends of predicted plot-level 
height are similar between field measurements and LiDAR measurements. The 
distribution of predicted stand height is very similar to the distribution of predicted 
LiDAR mean height with mean difference of only 0.28m. The mean of predicted plot tree 
height is comparable to the mean of predicted LiDAR 90th percentile height, but the 
distribution of predicted LiDAR 90th percentile height has much heavier tails. 
 
KEYWORDS: LiDAR, plot-level height, Gaussian process, Ordinary kriging  
 
 

Introduction 
 

Forest height is a crucial inventory attribute for calculating timber volume, 
forest biomass, site potential, and silvicultural treatment scheduling. Measuring 
height by current photogrammetric or field survey techniques is time consuming 
and expensive. As a new emerging remote sensing tool, airborne laser scanning 
system - Light Detection and Ranging (LiDAR) data have been studied to derive 
height information. Two different approaches have been used to obtain height 
measurements from LiDAR data. The first approach is to identify individual trees 
using a canopy height model and extract their height. The second approach is to 
regress plot-level or stand-level height on derived LiDAR metrics which describe 
vertical and horizontal distribution of forest canopy (Anderson et al 2006, Hyyppä 
et al 2000, Maltamo et al 2004, Næsset 2002, Persson et al 2002). Many studies 
have reported that accuracy of height estimate from LiDAR data is comparable 
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7*5+2"5"50'+/-'>*36'43=()*+'()*+4'D-6-'-C+627+-9&'259'!"#$%'()*+'?-25'/-"0/+'259'
`J+/'(-67-5+")-'/-"0/+'D-6-'72)73)2+-9@'G/-')260-'()*+'D24'34-9'"54+-29'*>'>*36'
"59"."932)'43=()*+4'+*'9-76-24-'+/-'->>-7+'*>'"5277362+-'>"-)9'()*+')*72+"*54'+/2+'
6-43)+4'>6*?'(**6'1QV'(*4"+"*54'*6'2H"?3+/'259'9"4+257-'-66*64'D/-5')*72+"50'+/-'
"59"."932)'43=()*+4@''
'

'
'

Figure 1: Map of study area. Picture in the middle is LANDSAT ETM+ image for the study area and 
red circles indicate field plot locations. Picture in the right is the LiDAR coverage over one example 
field plot and colored by height.  

'
Method 

 
<*36'2006-02+-9'()*+,)-.-)'/-"0/+4'E()*+'+6--'/-"0/+'259'4+259'/-"0/+'>6*?'>"-)9'

?-2436-?-5+4&'!"#$%'()*+'?-25'259'!"#$%'`J+/'(-67-5+")-'/-"0/+F'>6*?'RJX'
()*+4'D-6-'2443?-9'+*'=-'2'(26+"2)'6-2)"H2+"*5'*>'2'4+2+"*526:'12344"25'(6*7-44@'
G/2+'"4' /24'2'?3)+".26"2+-'5*6?2)'
9"4+6"=3+"*5&'D/-6-'cE4F'6-(6-4-5+4'2006-02+-9'()*+,)-.-)'/-"0/+'2+')*72+"*5'4&'#'"4'

'FFcE4&'F&EcE4ci&ZFEj G
5R

I !"#$%DssZ

' W
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2'>"C-9'43=4-+'*>'I,9"?-54"*52)'f37)"9-25'4(27-Y' 7*5+2"54'4(2+"2)'
7**69"52+-4'4kj4

I#$D
R&l&45i'259'4"'"4'+/-')*50"+39-'259')2+"+39-'7**69"52+-4'2+')*72+"*5'

"@'5'"4'+/-'53?=-6'*>')*72+"*54&'RJX'"5'*36'724-@'V+2+"*526:'?-254'+/2+'>*6'25:'4-+'
*>'5'4"+-4'j4R&l&45i'259'25:' &'+/-'9"4+6"=3+"*5'*>'EcE4I#%h RF&l&'cE45FF'"4'+/-'
42?-'24'+/2+'*>'EcE4Rm/F&l&'cE45m/FF&'D/"7/'"?()"-4'+/2+'+/-'d*"5+'9"4+6"=3+"*5'
9*-45h+'7/250-'D/-5'4/">+-9'"5'4(27-@'<36+/-6&'25'"4*+6*("7'(6*7-44'D24'2443?-9&'
D/"7/'?-254'+/2+'+/-'4-?".26"*062?'>357+"*5'9-(-594'3(*5'+/-'4-(262+"*5'.-7+*6'
/'*5):'+/6*30/'"+4')-50+/'nn/nn@'<*6'+/-'42;-'*>'4"?()"7"+:&'+/-'12344"25'(6*7-44'D24'
2443?-9'+*'/2.-'2'7*54+25+'?-25&'+/2+'"4'cE4F'ko'm'!E4F'm'"E4F&'D/-6-'o'"4'+/-'
?-25'7*?(*5-5+'*>'+/-'?*9-)&'259'!E4F'"4'2'H-6*,7-5+-6-9'4+2+"*526:'12344"25'
4(2+"2)'(6*7-44&'D/"7/'72(+36-4'+/-'6-4"932)'4(2+"2)'244*7"2+"*5&'259'+/-'"E4F'"4'25'
357*66-)2+-9'(36-'-66*6'+-6?@'G/-'!E4F'"5+6*937-4'+/-'(26+"2)'4"))'259'6250-'
(262?-+-6'259'"E4F'2994'+/-'5300-+'->>-7+'E_25-6d--'-+'2)'IJJNF@''
'
f?("6"72)'4-?".26"*062?4'*>'()*+,)-.-)'/-"0/+4'D-6-'>"64+'>"++-9'=:'>*36'

+/-*6-+"72)'(262?-+6"7'?*9-)4Z'12344"25&'-C(*5-5+"2)&'A2+-65'259'V(/-6"72)'7)244@'
A*9-)'(262?-+-64'D-6-'-4+"?2+-9'=:'6-4+6"7+-9'?2C"?3?')";-)"/**9'?-+/*94@'<*6'
9-+2")-9'9">>-6-57-4'=-+D--5'+/-*6-+"72)'4-?".26"*062?'?*9-)4&'()-24-'6->-6'+*'
_25-6d--'-+'2)'EIJJNF@'G/-'+/-*6-+"72)'?*9-)4'2))*D'34'+*'72)73)2+-'4-?".26"257-'
.2)3-4'>*6'25:'/'+/2+'26-'5-7-4426:'>*6'*+/-6'0-*4+2+"4+"72)'72)73)2+"*54'259'
252):4-4'437/'24';6"0"50@'<"52)):'*69"526:';6"0"50'D24'2(()"-9'259'?2(4'*>'
(6-9"7+-9'/-"0/+'D-6-'(6*937-9'*.-6'+/-'-5+"6-'6-0"*5'2)*50'D"+/'"+4'4+259269'-66*6@'
$))'7*?(3+2+"*54'D-6-'7*5937+-9'"5'+/-'0-*%'(27;20-'"5'%'E%"=-"6*'a6@'259'
#"00)-'IJJRF@''
'

Results 
 

Empirical semivariogram model fitting 
 
<"036-'I'4/*D4'-?("6"72)'4-?".26"*062?'259'"+4'>"++"50'=:'>*36'+/-*6-+"72)'

?*9-)4'>*6'=*+/'>"-)9,?-2436-?-5+,=24-9'259'!"#$%,=24-9'()*+,)-.-)'/-"0/+4@'
G/-'4-?".26"*062?'"4'+/-'>357+"*5'9-476"="50'+/-'9-06--'*>'4(2+"2)'9-(-59-57-'*>'
2006-02+-9'()*+,)-.-)'/-"0/+4'259'+/-'-?("6"72)'4-?".26"*062?'"4'2'5*5(262?-+6"7'
-4+"?2+-'*>'+/-'4-?".26"*062?@'G/-'-?("6"72)'4-?".26"257-'>*6'2'.-7+*6'*>'
4-(262+"*5'/'"4'9-6".-9'=:'72)73)2+"50'*5-,/2)>'+/-'2.-620-'4B326-9'9">>-6-57-'"5'
()*+,)-.-)'/-"0/+'>*6'-.-6:'(2"6'*>'()*+4')*72+"*54'4-(262+-9'=:'/@'G/-4-'.2)3-4'26-'
+/-5'()*++-9'202"5'+/-'9"4+257-4'=-+D--5'92+2'(2"64@'<"-)9'()*+4'"5'*36'42?()-'D-6-'
4(6-29'*.-6'+/-'D-4+-65'e-52"'6-0"*5'D"+/'+/-'?2C"?3?'9"4+257-'*>'2=*3+'
RKW&XJJ'?@']+'"4'7*??*5'+*'5*+'7*?(3+-'+/-'-?("6"72)'4-?".26"*062?'3('+*'+/-'
)260-4+'(*44"=)-'9"4+257-'93-'+*'+/-'>27+'+/2+'4/6"5;"50'53?=-6'*>'2.2")2=)-'(2"64'
>*6')260-6'9"4+257-4'"576-24-4'+/-'.26"2=")"+:'*>'+/-'-?("6"72)'4-?".26*062?@'$'
0-5-62)'6-7*??-592+"*5'"4'+*'7*?(3+-'+/-'-?("6"72)'4-?".26"*062?'3('+*'2=*3+'
*5-'/2)>'*>'+/-'?2C"?3?'4-(262+"*5'9"4+257-'"5'+/-'92+2'EV7/2=-5=-60-6'259'
1*+D2:'IJJXF@']5'299"+"*5&'4"57-'>"-)9'()*+4'9*5h+'>2))'*5'2'6-03)26'06"9&'+/-'
9"4+257-4'=-+D--5'(2"64'26-'2))'9">>-6-5+@'G/-'9"4+257-'7*54"9-6-9'5--9'+*'=-'
9"."9-9'"5+*'6-03)26'="54'259'+/-'9"4+257-'.2)3-'6-(6-4-5+-9'=:'+/-'="5'?"9(*"5+@'

' N
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$+')-24+'WJ'(2"64'(-6'="5'D-6-'34-9'+*'72)73)2+-'-?("6"72)'4-?".26"*062?'
E_25-6d--'-+'2)'IJJNF@''
'

'

'
Figure 2: Empirical semivariogram fitting of four aggregated plot-level height 

'
<"036-'I'7)-26):'4/*D4'+/2+'4-?".26"257-'*>'2006-02+-9'()*+,)-.-)'/-"0/+4'/24'2'

4"?")26'(2++-65'2)*50'9"4+257-@'$))'4-?".26"*062?4'6"4-'+*'2'9"4+257-'26*359'
NJ&JJJ'?'+/-5')-.-)'*>>'*6'9-76-24-&'D/"7/'"?()"-4'+/2+'2006-02+-9'()*+,)-.-)'
/-"0/+4'>6*?'+D*'()*+4'?2:'5*+'=-'7*66-)2+-9'D/-5'+/-"6'9"4+257-'"4'=-:*59'
NJ&JJJ'?@'O*'4-?".26"062?4'(244'+/6*30/'+/-'*6"0"5&'D/"7/'4300-4+4'+/2+'+/-'
5300-+'->>-7+'"4'5*+'H-6*'>*6'2))'724-4@'L*D-.-6&'-4+"?2+-9'4"))4'26-'5*+'+/-'42?-@''
G/-'-4+"?2+-9'4"))'.2)3-4'26-'2=*3+'b&'WJ&'b&'R^'>*6'()*+'+6--'/-"0/+&'4+259'/-"0/+&'

' X
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!"#$%'?-25'/-"0/+'259'!"#$%'`J+/'(-67-5+")-'/-"0/+'6-4(-7+".-):@'G/-'
-4+"?2+-9'4"))'"4'+/-'43?'*>'+*+2)'.26"2+"*5'-C()2"5-9'=:'+/-'4(2+"2)'4+637+36-'259'
5300-+'->>-7+@']+'4--?4'4+259'/-"0/+'/24'?*6-'.26"2+"*5'276*44'+/-'26-2'+/25'()*+'
+6--'/-"0/+'"5'D/"7/'*5):'+6--4'26-'7*54"9-6-9@'!"#$%'`J+/'(-67-5+")-'/-"0/+'
2((-264'+*'/2.-'?*6-'.26"2+"*5'+/25'!"#$%'?-25'/-"0/+@''
'
<*36'9">>-6-5+'4-?".26"*062?'?*9-)4','12344"25&'-C(*5-5+"2)&'A2+-65'259'

4(/-6"72)'?*9-)'D-6-'>"+'+*'-?("6"72)'4-?".26"*062?4@'G/-'?2"5'9">>-6-57-4'
2?*50'+/-4-'+/-*6-+"72)'?*9-)4')"-'*5'736.-'4?**+/5-44'259'D/-+/-6'4"))'725'=-'
6-27/-9'*6'5*+@'G/-'4?**+/'(262?-+-6'"4'"5>"5"+:'>*6'12344"25'?*9-)&'R'>*6'A2+-65'
?*9-)'259'J@X'>*6'-C(*5-5+"2)'?*9-)@'G/-4-'?*9-)4'D-6-'>"+'"5+-627+".-):'p=:'
-:-p'259'736.-4'=24-9'*5'+/-'=-4+'>"++"50'?*9-)'(262?-+-64'D-6-'962D5'"5'<"036-'
I@'U"+/"5'4?2))'9"4+257-4&'+/-'4(/-6"72)'736.-'6"4-4'B3"7;):'259'6-27/-4'+/-'
()2+-23'"5'4/*6+'9"4+257-@'G/-'736.2+36-'*>'12344"25'736.-'7/250-4'4"05'D"+/"5'2'
4/*6+'9"4+257-@'G/-6-'"4'5*+'?37/'9">>-6-57-'=-+D--5'-C(*5-5+"2)'E6-9'924/')"5-F'
259'A2+-65'E06--5'9*+')"5-F'?*9-)4@'<6*?'."432)'-C2?"52+"*5&'5*'?*9-)4'>"+'D-))@'
G/-'=-++-6'>"++"50','A2+-65'?*9-)'D24'>"52)):'7/*4-5'+*'=-'+/-'7*.26"257-'>357+"*5@''
 
Spatial prediction 
 
T4"50'+/-'A2+-65'7*.26"257-'?*9-)&'*69"526:';6"0"50'D24'2(()"-9'259'/-"0/+'

(6-9"7+"*5'259'4+259269'-66*6'*.-6'+/-'6-0"*5'D-6-'7*?(3+-9'2+'WJJ?'=:'WJJ?'
("C-)'6-4*)3+"*5@'S*5+*36'?2(4'*>'(6-9"7+-9'/-"0/+'259'4+259269'-66*6'26-'
9"4()2:-9'"5'<"036-'W'259'43??26:'4+2+"4+"74'26-'4/*D5'"5'G2=)-'I@'f?("6"72)'
73?3)2+".-'9"4+6"=3+"*5'>357+"*54'259'(6*=2=")"+:'9-54"+:'>357+"*54'*>'(6-9"7+-9'
()*+,)-.-)'/-"0/+'26-'()*++-9'"5'<"036-'N@'$4'-C(-7+-9&'(6-9"7+-9'()*+'+6--'/-"0/+'"4'
/"0/-6'+/25'(6-9"7+-9'4+259'/-"0/+'259'(6-9"7+-9'!"#$%'`J+/'(-67-5+")-'/-"0/+'"4'
/"0/-6'+/25'(6-9"7+-9'!"#$%'?-25'/-"0/+@'G/-'?-25'*>'(6-9"7+-9'()*+'+6--'/-"0/+'
"4'.-6:'4"?")26'+*'+/-'?-25'*>'(6-9"7+-9'!"#$%'`J+/'(-67-5+")-'/-"0/+&'=3+'
(6-9"7+-9'()*+'/-"0/+'/24'?37/')-44'6250-'+/25'(6-9"7+-9'!"#$%'`J+/'(-67-5+")-'
/-"0/+@'G/"4'"4'7*5>"6?-9'=:'9"4+6"=3+"*5'736.-4'"5'<"036-'N'"5'D/"7/'+/-'(6-9"7+-9'
!"#$%'`J+/'(-67-5+")-'/-"0/+'6-(6-4-5+-9'=:'=)3-')"5-'4(6-294'?*6-'D"9-):'+/25'
+/-'(6-9"7+-9'()*+'+6--'/-"0/+'6-(6-4-5+-9'=:'=)27;')"5-@'Q6-9"7+-9'4+259'/-"0/+'/24'
4"?")26'?-25'259'6250-'24'(6-9"7+-9'!"#$%'?-25'/-"0/+@']5'>27+'+/-"6'-?("6"72)'
9"4+6"=3+"*54'E06--5'259'6-9')"5-4'"5'<"036-'NF'4--?'.-6:'7)*4-@'_3+'(6-9"7+-9'
4+259'/-"0/+'/24'?37/')260-6';6"0"50'4+259269'-66*6'EX@JX,X@W^'?F'+/25'(6-9"7+-9'
!"#$%'?-25'/-"0/+'ER@`N'+*'I@^b'?F@'''
'

Table 1: Summary of predicted plot-level height 
 Mean 

(m) 
Median 
(m) 

Minimum  
(m) 

Maximum  
(m) 

Q)*+'+6--'/-"0/+' RI@WN' RI@NR' RJ@RI' RN@KI'
V+259'/-"0/+' ^@KK' ^@^I' N@KI' RJ@`K'
!"#$%'?-25'/-"0/+' ^@W^' ^@N`' N@RI' RR@IX'
!"#$%'`J+/'(-67-5+")-'/-"0/+' RI@JJ' RI@II' K@JX' R^@Rb'
'
S*5+*36'?2(4'4/*D5'"5'<"036-'W'6-.-2)'4"?")26'4(2+"2)'(2++-654'>*6'/-"0/+'

(6-9"7+-9'>6*?'>"-)9'?-2436-?-5+4'259'!"#$%'92+2@'$'7"673)26'26-2'*>')*D'/-"0/+'

' K
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"4'4/*D5'"5'+/-'5*6+/,-24+'*>'+/-'e-52"'Q-5"543)2@'A2(4'*>';6"0"50'4+259269'-66*6'
2)4*'4/*D'+/-'42?-'(2++-65'2?*50'9">>-6-5+'+:(-4'*>'()*+,)-.-)'/-"0/+4'-C7-(+'+/2+'
4+259269'-66*6'*>'(6-9"7+-9'4+259'/-"0/+'"4'2'4)"0/+):')260-6@'$4'-C(-7+-9&'2))'
4+259269'-66*6'?2(4'"59"72+-'+/2+'4+259269'-66*6'"4'4?2))'5-26'+/-')*72+"*5'*>'+/-'
*=4-6.-9'(*"5+4@'
'

' ^
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'

'

'

'
Figure 3: Maps of predicted plot-level heights along with their standard error estimates 

'
'

' b
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'
Figure 4:  Empirical cumulative distribution function and kernel density function of predicted plot-
level heights  

'
'

Difference of predicted plot-level heights between field-based 
measurements and LiDAR-based measurements 
 
Q6-9"7+-9'()*+'+6--'/-"0/+'259'(6-9"7+-9'!"#$%'?-25'/-"0/+&'(6-9"7+-9'()*+'

+6--'/-"0/+'259'(6-9"7+-9'!"#$%'`J+/'(-67-5+")-'/-"0/+&'259'(6-9"7+-9'4+259'/-"0/+'
259'(6-9"7+-9'!"#$%'?-25'/-"0/+'D-6-'7*?(26-9@'A2(4'*>'+/-'9">>-6-57-4'26-'
4/*D5'"5'<"036-'X@'85'2.-620-&'(6-9"7+-9'()*+'+6--'/-"0/+'"4'?37/'/"0/-6'+/25'
(6-9"7+-9'!"#$%'?-25'/-"0/+'D"+/'2'?-25'9">>-6-57-'N@`^?@'G/-'9">>-6-57-4'
=-+D--5'(6-9"7+-9'()*+'+6--'/-"0/+'259'(6-9"7+-9'!"#$%'`J+/'(-67-5+")-'/-"0/+&'
259'=-+D--5'(6-9"7+-9'4+259'/-"0/+'259'(6-9"7+-9'!"#$%'?-25'/-"0/+&'26-'.-6:'
4?2))@'<*6'+/-'?2d*6"+:'*>'06"94&'+/-4-'9">>-6-57-4'26-'D"+/"5'R?'24'4/*D5'"5'
<"036-'K@'85'2.-620-&'(6-9"7+-9'()*+'+6--'/-"0/+'"4'/"0/-6'+/25'(6-9"7+-9'!"#$%'
`J+/'(-67-5+")-'/-"0/+'=:'J@WN?'259'(6-9"7+-9'4+259'/-"0/+'"4'/"0/-6'+/25'(6-9"7+-9'
!"#$%'?-25'/-"0/+'=:'J@Ib?@''

' `
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'

'

'
Figure 5: Differences of predicted plot-level heights between field-based measurements and 
LiDAR-based measurements  

'

' RJ
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'
Figure 6: Empirical probability density function of the differences of predicted plot-level heights 

'
Discussion 

 
V-?".26"*062?'6-43)+4'"59"72+-'+/2+'2006-02+-9'()*+,)-.-)'/-"0/+4'"5'+/"4'92+24-+'

4--?'+*'4(2+"2)):'7*66-)2+-'35+")'+/-'9"4+257-'=-+D--5')*72+"*54'-C7--94'2=*3+'
NJ&JJJ?@'L*D-.-6&'4"57-'>-D'(2"64'26-')*72+-9'D"+/"5'4/*6+'9"4+257-4'93-'+*'+/-'
>27+'+/2+'<]$'()*+4'26-'-4+2=)"4/-9'=24-9'*5'25'2662:'*>'2((6*C"?2+-):'K&JJJ,276-'
/-C20*54'D"+/'-27/'/-C20*5'7*5+2"5"50'*5-'()*+'E_-7/+*)9'259'Q2++-64*5'IJJXF&'
6-43)+4'?2:'=-'9">>-6-5+'">'>"-)9'()*+4'/2.-'2'9">>-6-5+'9"4+6"=3+"*5'(2++-65@''
'
V(2+"2)'(6-9"7+"*5'6-43)+4'4/*D'+/2+'2+'WJJ?'=:'WJJ?'("C-)'6-4*)3+"*5&'+/-'

9"4+6"=3+"*5'*>'(6-9"7+-9'4+259'/-"0/+'"4'7*?(262=)-'+*'+/-'9"4+6"=3+"*5'*>'
(6-9"7+-9'!"#$%'?-25'/-"0/+'D"+/'2'?-25'9">>-6-57-'*>'*5):'J@Ib?&'=3+'
(6-9"7+-9'()*+'+6--'/-"0/+'"4'?37/'/"0/-6'+/25'(6-9"7+-9'!"#$%'?-25'/-"0/+'D"+/'
2'?-25'9">>-6-57-'*>'N@`^?@'$4'9-476"=-9'-26)"-6&'4+259'/-"0/+'"4'72)73)2+-9'>6*?'
+6--4&'42()"504'259'4--9)"504&'D/")-'()*+'+6--'/-"0/+'"4'72)73)2+-9'>6*?'+6--4'*5):@'
]5'+/-')"+-62+36-&'?-25'+6--'/-"0/+'?-2436-9'*5'+/-'06*359'"4'*>+-5'6-(*6+-9'+*'=-'
/"0/-6'+/25')24-6'725*(:'/-"0/+'2.-620-9'*.-6'+/-'42?()-'()*+4'93-'+*'+/-'>27+'+/2+'
+/-'?2d*6"+:'*>')24-6'6-+3654'D*3)9'?"44'+6--'+*(4'259'D*3)9'=-'6->)-7+-9'>6*?'+/-'
4"9-'*>'+/-'76*D54'*>'9*?"525+'259'7*,9*?"525+'+6--4@'G/-'?205"+39-'*>'
9">>-6-57-'9-(-594'*5'>*6-4+'7*59"+"*54'259'+/-'!"#$%'27B3"4"+"*5'4(-7">"72+"*54'
34-9'259'"+'?2:'.26:'>6*?'4+39:'+*'4+39:&'=3+'"4'3432)):'D"+/"5'W?'EOP44-+'-+'2)'
IJJNF@'G/-'="0'9">>-6-57-'=-+D--5'(6-9"7+-9'()*+'+6--'/-"0/+'259'(6-9"7+-9'!"#$%'
?-25'/-"0/+'"5'*36'6-43)+4'"4'(6*=2=):'=-7234-'>*6-4+4'"5'+/-'D-4+-65'e-52"'6-0"*5'
/2.-'.-6:')*D'4+259'9-54"+:'E+/-'?-25'"4'KK'+6--4'(-6'276-F&')*D'/-"0/+'259'
6-)2+".-):'*(-5'725*("-4&'+/-')24-6'725'-24"):'(244'+/6*30/'+/-'3((-6'725*(:'4*'
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Calculation of Upper Confidence Bounds on 
Not-sampled Vegetation Types using a 

Systematic Grid Sample: An Application to 
Map Unit definition for Existing Vegetation 

Maps 
 

Paul L. Patterson1, Mark Finco2 
 

Abstract: This paper explores the information FIA data can produce regarding forest 

types that were not sampled and develops the equations necessary to define the upper 

confidence bounds on not-sampled forest types. The problem is reduced to a Bernoulli 

variable. This simplification allows the upper confidence bounds to be calculated based 

on Cochran (1977). Examples are provided that demonstrate how the resultant equations 

are relevant to creating mid-level vegetation maps by assisting in the development of 

statistically defensible map units. 

 

Keywords: Map unit, remote sensing, FIA, dominance type, grid sampling, confidence 

bounds, mid-level map 

Background 

Mid-level vegetation maps are important information sources for forest 

planning, habitat management, and many other resource management activities 

(Brohman and Bryant 2005).  One of the first and most important steps in creating 

any map is defining the classes, or map units, which will be mapped. 

In the Forest Service, several of the Regions have adopted similar map unit 

design processes that integrate regionally defined dominance type definitions with 

Forest Inventory & Analysis (FIA) data.  Very generally, the first step of the 

process estimates dominance type composition over an area of interest using the 

Regional Dominance Type Classification (RDTC). 

The second step of the process aggregates the RDTC classes into map units.  

This is generally done by setting a minimum abundance criterion (e.g., must 

comprise at least 3% of the area being mapped) for any map unit and 

hierarchically aggregating (i.e., create ecologically rational groups) the RDTC 

classes into map units, so that the map units meet the specified minimum 

abundance criterion.  Some Forest Service Regions take the process a step further 
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