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Abstract—Stand exams are the principal means by which timber companies monitor and manage 
their forested lands. Airborne LiDAR surveys sample forest stands at much finer spatial resolution 
and broader spatial extent than is practical on the ground. In this paper, we developed models that 
leverage spatially intensive and extensive LiDAR data and a stratified random sample of field plots 
across two mixed conifer forest landscapes in north-central Idaho. Our objective was to compare 
alternative models for producing unbiased maps of basal area per acre (BAA; ft2/acre), towards 
the greater goal of developing more accurate and efficient inventory techniques. We generated 60 
topographic or stand structure metrics from LiDAR that were used as candidate predictor variables 
for modeling and mapping BAA at the scale of 30m pixels. Tree diameters were tallied in 1/10 and 
1/5 acre fixed-radius plots (N = 165). Four models are presented, all based on 12 predictor variables. 
The first imputes BAA as an auxiliary variable from an imputation model that uses the machine 
learning algorithm randomForest in classification mode, and was developed in a prior study to map 
species-level basal areas of 11 conifer species; the second uses randomForest in regression mode 
to predict BAA as a single response variable from these same 12 predictor variables. The third 
is a linear regression model that predicts ln-transformed BAA using a best subset of 12 different 
predictor variables; the fourth again uses randomForest in regression mode, based on the same 
best subset of 12 variables selected for the linear regression model. We aggregated the pixel-level 
predictions within industrial forest stand boundaries, and then used equivalence plots to evaluate 
how well the aggregated predictions matched independent stand exams (having projected the tree 
growth in FVS and updated the stand tables to July 2003, the time of the LiDAR acquisition). All 
four models overpredicted BAA, but the bias was significant only in the case of the regression model. 
Predictions from the two randomForest models run in regression mode were very similar, despite 
using different predictor variables. We conclude that randomForest can be used to impute or predict 
canopy structure information from LiDAR-derived topographic and structural metrics with sufficient 
accuracy for operational management of conifer forests. In the future, tree lists could be imputed 
from LiDAR-derived canopy structure metrics empirically related to plot-level tree measurements. 
This will allow projections of tree growth at the pixel level across forested landscapes, instead of at 
the stand level as is the current norm.
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Introduction ______________________________________________________

LiDAR Remote Sensing

 An analysis comparing alternative remote sensing technologies demonstrated that 
LiDAR is more sensitive to forest canopy structure than passive optical imagery (Lefsky 
and others 2001). Canopy structure attributes characterized by LiDAR correlate well 
with stand structure attributes measured in field plots (Lefsky and others 2005a,b). This 
is true even in high biomass forests, where passive optical sensors become saturated. 
Correlations between LiDAR canopy structure metrics and stand structure metrics ap-
pear stronger in coniferous than in deciduous forests, due to the conical architecture of 
conifer trees allowing for greater penetration of LiDAR pulses into the canopy (Lefsky 
and others 2002). 
 Forest industries have taken note of the groundswell of promising research results 
regarding the utility of LiDAR data for forestry applications. LiDAR surveys are expensive 
but on a per acre basis can be competitive with the cost of traditional forest inventory, as 
labor costs have increased, especially in a market with stiff international competition. 
LiDAR costs are also counterweighted by the potential benefits of having highly detailed 
forest structure information mapped across the entire landscape surveyed. These factors 
have led to increased interest in operational use of LiDAR by forest industries.

Inventory Designs

 The two industry partners in this project, Potlatch Forest Holdings, Inc. and Ben-
nett Lumber Products, Inc., use similar stand-based inventory systems on their forest 
lands (Dennis Murphy, personal communication). The basic operating units are stands, 
which are delineated from aerial photographs. Trees within the delineated stand bound-
ary are the population of interest and are sampled in randomly placed plots of variable 
radius (fig. 1a). The density of plots within a stand is based on a target sampling error 
for estimating volume. Plot design can vary between stands but generally is consistent 
within stands. Stand level parameters are generated from the plot level data using simple 
random sample estimators that vary depending on plot design. The stand-based inventory 
is updated using the Forest Vegetation Simulator (FVS) at six-month intervals (after the 
spring and fall growing seasons) by processing the original tree list at the plot level.
 Scanning LiDAR systems provide spatially intensive and extensive canopy height 
measures that could facilitate forest inventory at the much finer scale of pixels rather 
than polygons (fig. 1). To estimate forest structure attributes of interest besides canopy 
height, the LiDAR height measures must be related to field measures of these attributes, 
measured in field plots randomly distributed across the full range of variation. This re-
quires a preliminary stratification to distribute sample plot locations in an objective and 
representative manner within the forested landscape of interest. The sampling intensity 
of LiDAR could dramatically reduce the sampling intensity of inventory plots required, 
provided they are accurately geolocated. The reduced plot count in an inventory that 
uses LiDAR data (fig. 1b) argues for using fixed-radius plots for more accurate canopy 
structure characterization than with variable-radius plots. The field plots can then be 
used as training data, or reference observations, for predicting or imputing the forest 
structure attributes of interest to target pixels across the entire landscape. Neither the 
spatially explicit model inputs nor map outputs would rely on stand boundaries, which 
are subject to change, but could be aggregated to stand units if desired.

RandomForest

 The randomForest (RF) method is so named because it uses random samples of data 
and variables through multiple model iterations, to generate a large group, or forest, 
of classification and regression trees (CART) (Breiman 2001). The classification output 
from RF represents the statistical mode of many decision tree classifications, hence 
achieving a more accurate and robust model than a CART. Randomly subsetting pre-
dictor variables allows RF to derive variable importance values and prevents problems 
associated with correlated variables and overfitting (Breiman 2001). The RF package 
in R (R Development Core Team 2004) includes two measures of variable importance 
(Liaw and Wiener 2002). The first measure quantifies each variable’s effect on the mean 
squared error (MSE). Variables that markedly lower the MSE have higher importance 
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values as compared to variables the have little effect on the MSE. The second measure, 
the Gini index, is a measure of node purity. Stronger predictor variables produce more 
consistent nodes across the forest of classification trees, thus having a higher Gini index. 
Because RF is nonparametric, the data may be rank-deficient, meaning the data may 
have more variables (columns) than observations (rows), have colinearities, or both. 
Skewed distributions in the response variables are also not a concern.
 Crookston and Finley (2008) developed the “yaImpute” package in R, which includes 
a method based on RF classification along with several more traditional imputation algo-
rithms methods. Imputation uses empirical relationships between attributes of interest 
(Y variables) measured on a sample of the observations (called reference observations) 
and predictor variables (X variables) available on all observations. These empirical 
relationships are calibrated using the reference observations. Observations that have 
no measured Y variables are termed target observations. A reference observation that 
is the nearest neighbor of a target in the multidimensional space is the source of values 
of Y variables that are imputed to the target. Nearness can be measured several differ-
ent ways, including the most similar neighbor method introduced by Moeur and Stage 
(1995) and the gradiant nearest neighbor method introduced by Ohmann and Gregory 
(2002). The method introduced by Crookston and Finley (2008) that is based on the RF 
classification algorithm identifies a nearest neighbor by first concatenating the forest 
of classification trees across terminal nodes, and then finding the reference observation 
that most often shares terminal nodes with the target observation. In the case of either 
imputation or RF classification in yaImpute, the user defines the number of nearest 
neighbors to use, k, which can vary from 1 to n.
 Independently of using RF in classification mode for imputation in yaImpute, the 
user can also run RF in regression mode to predict a single Y variable of interest (Liaw 
and Wiener 2002). In regression mode, the random vector takes on numerical values 
rather than class labels, as in classification mode (Breiman 2001). As in classification 
mode, out-of-bag estimation allows importance values to be assigned to the predictor 
variables, thus providing insight on the predictive ability of the model.

Objective

 Our objective was to relate predictor variables derived from LiDAR to field data 
within field plots placed using a statistically rigorous sampling design to map BAA across 
mixed-conifer forest in north-central Idaho that is actively managed and predominantly 

Figure 1—Conceptual diagrams illustrating a) current inventory design based on polygon units versus and b) proposed 
inventory design based on pixel units. The white dots represent field sample plots, which in a) have variable radius and are 
randomly located within the stand, but in b) have fixed radius and are randomly located within the landscape. The map unit 
in a) is the entire stand, while in b) each pixel is a map unit independent of the stand boundary.
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owned by forest industry. This objective was motivated by our access to stand exam data 
provided courtesy of our industry partners, to independently validate our pixel-level 
predictions, after aggregating them to the stand level.
 This objective is an important step towards the greater goal of using FVS (Dixon 
2002; Stage 1973) for imputing tree lists to spatial map units, be they cells (pixels) or 
stands (polygons), using LiDAR-derived predictor variables. This would enable forest 
managers to project growth, mortality, and the other processes already incorporated into 
FVS across entire landscapes.

Methods _________________________________________________________

Study Areas

 The Moscow Mountain (80,789 acres) and St. Joe Woodlands (137,539 acres) study 
areas are situated in north-central Idaho (fig. 2). Conditions at Moscow Mountain are 
drier than at the St. Joe Woodlands, so forest canopies tend to have a more open structure 
on Moscow Mountain. Individual conifer species occur along a temperature/moisture 
gradient as has been described by Daubenmire (1966), beginning at the warm/dry end 
with Pinus ponderosa mostly on Moscow Mountain, to Pseudotsuga menziesii, Larix 

Figure 2—-Study areas in north-central Idaho, with basal area per acre (BAA) predicted by Model 1 mapped in grey 
scale. Maps of BAA predicted by the other three models presented in this paper appear the same. The white dots 
represent field plot locations (N = 165).
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occidentalis, Pinus contorta, Abies grandis, Pinus monticola, Thuja plicata, Tsuga het-
erophylla, Picea engelmannii, Abies lasiocarpa, and ending with Pinus albicaulis at the 
cool/wet end, or the highest elevations in the St. Joe Woodlands. More complex terrain 
at the St. Joe Woodlands (elevation range: 2,093–6,578 ft) than at Moscow Mountain 
(elevation range: 2,549–4,980 ft) produces longer and steeper gradients that drive more 
diverse species composition in the St. Joe Woodlands.

Field Sampling

 Field sample plot locations were selected using a stratified random design. The 
stratification variables were elevation from a 30 m USGS digital elevation model (DEM), 
solar insolation (Fu and Rich 2000), and a mid-infrared corrected normalized difference 
vegetation index (NDVIc) (Nemani and others 1993) calculated from an Landsat ETM+ 
scene (18 August 2002). The NDVIc has been found to be superior to NDVI for estimat-
ing leaf area index in mixed-conifer forests of northern Idaho (Pocewicz and others 
2004). Plots were geolocated with a Trimble Pro-XR Global Positioning System (GPS). 
A minimum of 150 points were recorded on the ground surface at plot center, and later 
differentially corrected and averaged for a final three-dimensional (3D) point position 
with ±2.6 ft horizontal and ±3.6 ft vertical accuracy (Trimble Pathfinder Office). Plots 
were 1/10 acre at Moscow Mountain and 1/5 acre at the St. Joe Woodlands and of fixed 
radius, with all trees ≥5 inches diameter at breast height (dbh) tallied. The sampling 
design failed to capture rare, late successional conditions, so two plots were randomly 
located within two old-growth stands (one in each study area) to capture the high end 
of the BAA gradient, for a total of 165 plots.
 Measured tree diameters (N = 5240) were converted to tree basal areas, summed, and 
divided by the plot area to estimate BAA for modeling. Eleven plots at Moscow Mountain 
lacked trees ≥5 inches dbh but were assigned negligible values of 0.4356 ft2/acre (0.1 m2/
ha), to enable their inclusion in the analysis when a natural logarithm (ln) transform 
was applied. 

LiDAR Sampling

 Horizons, Inc. (Rapid City, SD) flew the Light Distance And Range (LiDAR) survey at 
an altitude of 8,000 ft above mean terrain during the summer of 2003, using an ALS40 
system operating at 1,064 nm and a pulse rate of 20 KHz. Data were delivered in the 
form of unclassified point data. Evans and Hudak (2007) developed a Multiscale Curva-
ture Classification algorithm in ArcInfo Macro Language (AML) to classify the returns 
as either ground or non-ground. The classified ground returns were interpolated into a 
2-m DEM, from which several topographic predictor variables were derived (table 1).
 Subtracting the 2-m DEM from the unclassified LiDAR returns produced a canopy 
height layer normalized for topography. By definition, returns classified as ground returns 
equaled 0 m in height. Returns greater than 0 m in height were considered non-ground 
returns. Returns greater than 1 m in height were considered vegetation returns. Distri-
butional statistics (min, max, mean, percentiles, variance, skewness, kurtosis, and so on) 
were calculated from the height and intensity values of the vegetation returns. Vegetation 
density was calculated as the percentage of total returns that were vegetation returns. 
The percentage of vegetation returns occurring within each of six defined canopy height 
strata was also calculated. All of these metrics were derived from the LiDAR data in 
30-m bins. The Universal Transverse Mercator (UTM, Zone 11) Easting and Northing 
coordinates were added to produce 60 candidate variables for modeling (table 1). 

Modeling

 This analysis compares BAA predictions from four alternative models, as described 
below.

 Model 1—For forestry applications, Y variables are typically measured in plots (for 
example, BAA in this study), while X variables are environmental variables typically 
measured by remote sensing (for example, LiDAR in this study). The field sampled plots 
have both X and Y variables and all map units have X variables. Hudak and others 
(2008) pruned the list of 60 candidate predictor variables (table 1) down to 12 for pre-
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Table 1—Candidate predictor variables and those selected for the four models compared.

Variable Description Models 1 and 2 Models 3 and 4

EAST UTM Easting (meters)
NORTH UTM Northing (meters)
ELEV Elevation (meters) X X
SLP Slope (degrees)
TSRAI Topographic solar radiation aspect index (Roberts and Cooper 1989) X X
SCOSA Percent slope*cos(aspect) transformation (Stage 1976)
SSINA Percent slope*sin(aspect) transformation (Stage 1976)
INSOL Solar insolation (HEMI 2000)
CRR Canopy relief ratio (Pike and Wilson 1971)
HMIN Heights minimum
HMAX Heights maximum
HRANGE Heights range X
HMEAN Heights mean
HAAD Heights average absolute deviation X
HMAD Heights median absolute deviation
HSTD Heights standard deviation
HVAR Heights variance
HSKEW Heights skewness
HKURT Heights kurtosis
HCV Heights coefficient of variation X X
H05PCT Heights 5th percentile X
H10PCT Heights 10th percentile
H25PCT Heights 25th percentile X
H50PCT Heights 50th percentile (median)
H75PCT Heights 75th percentile
H90PCT Heights 90th percentile
H95PCT Heights 95th percentile
HIQR Heights interquartile range
IMIN Intensity minimum
IMAX Intensity maximum
IRANGE Intensity range
IMEAN Intensity mean X
IAAD Intensity average absolute deviation
IMAD Intensity median absolute deviation
ISTD Intensity standard deviation
IVAR Intensity variance X
ISKEW Intensity skewness X
IKURT Intensity kurtosis X
ICV Intensity coefficient of variation
I05PCT Intensity 5th percentile
I10PCT Intensity 10th percentile
I25PCT Intensity 25th percentile
I50PCT Intensity 50th percentile (median)
I75PCT Intensity 75th percentile
I90PCT Intensity 90th percentile
I95PCT Intensity 95th percentile
IIQR Intensity interquartile range
DENSITY Canopy density (vegetation returns/total returns * 100) X X
STRATUM0 Percentage of ground returns = 0 m
STRATUM1 Percentage of non-ground returns > 0 m and <= 1 m in height X
STRATUM2 Percentage of vegetation returns > 1 m and <= 2.5 m in height
STRATUM3 Percentage of vegetation returns > 2.5 m and <= 10 m in height X
STRATUM4 Percentage of vegetation returns > 10 m and <= 20 m in height X
STRATUM5 Percentage of vegetation returns > 20 m and <= 30 m in height X
STRATUM6 Percentage of vegetation returns > 30 m in height X
TEXTURE Standard deviation of non-ground returns > 0 m and <= 1 m
PCT1 Percentage 1st returns
PCT2 Percentage 2nd returns X X
PCT3 Percentage 3rd returns X
NOTFIRST Percentage 2nd or 3rd returns
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dicting species-level basal areas and tree densities of 11 conifer species (in other words, 
22 Y variables). In that analysis, the RF classification method produced more accurate 
results than seven more traditional imputation methods available in yaImpute. The RF 
classification model used to map species-level basal areas and tree densities was applied 
to map BAA as an auxiliary variable, using k = 1 nearest neighbor, and constitutes the 
first map considered in this analysis. 

 Model 2—The RF algorithm can also be employed as a regression tool, for predicting 
a single Y variable of interest. For this analysis, that variable of interest was BAA, across 
all tree species. The same 12 predictor variables used in Model 1 to impute a BAA map 
using RF in classification mode (Hudak and others, 2008) were also used to map BAA 
using RF in regression mode. 

 Model 3—A multiple linear regression model was developed for comparison because 
it is the predictive modeling technique most broadly used for relating field and remotely 
sensed data, and has been successfully applied for mapping BAA in this landscape 
(Hudak and others 2006). Regression is much more vulnerable to colinearity problems 
than nonparametric methods such as RF, so the maximum Pearson correlation allowed 
between predictor variables was 0.8. (The maximum Pearson correlation between predictor 
variables included in Model 1 was 0.9; Hudak and others, 2008.) Although RF is resistant 
to problems of colinearity and overfitting in either classification or regression mode, it 
is neither helpful nor instructive to include highly correlated predictor variables in the 
same model. The best subset of twelve predictor variables that satisfied this constraint 
was selected for predicting BAA, after ln transformation to correct the positive skew. 
This necessitated a bias correction (Baskerville 1976) to correct for the bias introduced 
by back-transforming predicted ln (BAA) to the natural scale, following Hudak and oth-
ers (2006).

 Model 4—The twelve predictor variables selected as the best subset for multiple 
linear regression were used in another RF model run in regression mode. 
 In summary, the output from four alternative models for predicting BAA were com-
pared: (1) RF in classification mode based on 12 predictor variables used in an imputation 
model (yaImpute) from a prior analysis; (2) RF in regression mode based on the same 12 
variables as in Model 1; (3) multiple linear regression based on a best subset of 12 new 
predictor variables; and (4) RF in regression mode based on these same 12 variables as 
in Model 3.

Mapping

 Raster layers of the predictor variables selected by the models were generated for both 
study areas at a 30 m resolution using the fishnet command in ArcInfo. The intersect 
command was used to assign the corresponding cell ID to each LiDAR point. The LiDAR 
points then were exported from ArcInfo as a comma-delimited (csv) file containing six 
attributes: bin-ID, bin centroid X coordinate, bin centroid Y coordinate, height (Z coordi-
nate), intensity, and return level. The csv file of LiDAR points was sorted on the Bin-Id 
using the DOS SORT command, then input into a Perl program developed to iteratively 
subset the LiDAR point data by bin-id and calculated the LiDAR metrics within each 
bin. Metrics were calculated within each bin and written to an output csv file. A batch 
file was written in R that looped through each output csv file, creating ArcInfo ASCII 
grids of the metrics selected as predictor variables in R.
 The yaImpute package (Crookston and Finley 2008) also includes functions to as-
sign values of the response variable(s) to target cells across the landscape, whether by 
imputation, regression or some other predictive model, wherever data for the predictor 
variables exist. A 30-m mapping resolution was used for this analysis.

Validation

 Predictions of BAA at the 30 m pixel level were aggregated within stand boundaries 
delineated by industry partners Potlatch Forest Holdings, Inc., and Bennett Lumber 
Products, Inc., who also provided stand exam data for 1,024 and 177 stands, respectively. 
Tree growth in the stand exam data was projected forward from the time of inventory 
until July 2003, when the LiDAR survey was conducted. Thus, only the spring growing 
season was included in the 2003 projection. The updated stand projections were then 
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used to validate our predictions aggregated to the stand level using the ZONALMEAN 
function in ArcMap.
 The regression-based method of equivalence tests (Robinson and Froese 2004; Robinson 
and others 2005) was used to validate predictions extracted from the four maps of BAA. 
Traditionally, models are validated under the null hypothesis of no difference between 
predictions and observations, or that the model is acceptable. However this approach 
is more likely to validate a model with low power (Robinson and Froese 2004). Equiva-
lence tests begin with the null hypothesis that the model is unacceptable, thus shifting 
the burden of proof on to the model to demonstrate validity (Robinson and Froese 2004; 
Robinson and others 2005). The equivalence package in R regresses observations on to 
predictions, and uses bootstrapping to not only test between the similarity of means, 
but the similarity of individual predictions and observations, thus increasing statistical 
power for more robust model validation (Robinson and others 2005). 

Results __________________________________________________________
 The LiDAR predictor variables selected by Hudak and others (2008) for Model 1 included 
several height distributional metrics (for example, range, average absolute deviation, 
5th and 25th percentiles) (table 1), for which Model 2 assigned importance values (fig. 
3a). The best subset of LiDAR predictors selected for Model 3 included several upper 
canopy density metrics (canopy density in 3rd, 4th, 5th, and 6th strata) (table 1), for which 
Model 4 assigned importance values (figure 3b). The influential topographic predictors 
of elevation and topographic solar radiation aspect index were selected in both cases, as 
was density, coefficient of variation in height, and percentage of second returns (table 1; fig. 3). 
Two predictor variables derived from the intensity values were included in the subsets 
of both the imputation predictors (variance and skewness) and regression predictors 
(mean and kurtosis) (table 1; fig. 3).
 All four models tended towards overprediction of BAA relative to the independent 
stand exams, although prediction residuals indicate BAA could be overpredicted greatly 
in some stands and underpredicted greatly in some others (fig. 4). The mean BAA from 
the imputation model (Model 1) was the least biased, while the mean predicted by 
multiple linear regression (Model 3) was most biased. The interquartile range of values 
predicted by the imputation and regression models was unrealistically larger than the 
interquartile range predicted by the two RF models in regression mode (Models 2 and 4), 
which closely matches the interquartile range of the stand exams (fig. 4).
 Equivalence tests were used to validate the pixel-level predictions aggregated to the 
stand level with the stand-based inventories, updated with FVS to the July 2003 time 
of LiDAR acquisition. Each equivalence test regresses observations (stand exams) on 
predictions (aggregated pixels), then bootstraps the data to test the significance of both 
the intercept and slope terms of these simple linear regression models. Results are in-
dicated graphically (fig. 5). The intercept test (gray error bars plotted around the mean 
value, but largely hidden by the black error bars) in each of the equivalence regressions 
does not significantly differ from its expected range (gray shaded region) for any of the 
models, as would be the case if the gray error bars were located outside the shaded region 
(fig. 5). The slope test (black error bars plotted around the solid diagonal line) in each 
of the equivalence regressions does significantly differ from its expected range (dotted 
diagonal lines) in the case of the imputation and regression models (Models 1 and 3), 
but not the two RF models run in regression mode (Models 2 and 4). 

Discussion _______________________________________________________
 Breiman (2001) found that RF did not incorporate randomness into the model quite 
as effectively in regression mode as in classification mode. One could associate non-ran-
domness with bias, which might help explain why BAA imputed as an auxiliary variable 
by RF in classification mode (Model 1) was the least biased of the four models presented 
in this study (figs. 4 and 5). However, BAA predictions from the two RF models run in 
regression mode (Models 2 and 4) were not significantly biased either. In fact, the bias 
was only significant in the case of the multiple linear regression model (Model 3) (fig. 5). 
Although not presented in this paper, Hudak and others (2006) also overpredicted BAA 
using a multiple linear regression model, to an even larger degree than Model 3 in this 
study. The consistently positive and significant bias of these multiple linear regression 
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Figure 3—Importance plots from the randomForest models run in regression mode (Models 2 and 4) using a) 12 predictor 
variables selected for imputation (Model 1), and b) 12 predictor variables selected for multiple linear regression (Model 3). 
Two measures of relative importance are indicated in each case: influence on the mean squared error, and influence on node 
purity. Variables are plotted from the top with importance values in descending order.
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Figure 4—Boxplots comparing paired residuals, quantifying the difference between predicted pixel-level BAA aggregated within 1201 industry 
stands and observed stand-level BAA, for the four predictive models. Thick horizontal lines mark the medians, box ends represent lower and up-
per quartiles, line ends indicate the 5th and 95th percentiles, and dots show stands beyond the 5th and 95th percentiles. The dotted horizontal 
line indicates where model bias equals zero.
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Figure 5—Equivalence plots that graphically indicate whether pixel-level BAA predictions aggregated to the stand level significantly differ from 
stand exams, based on the four models as labeled. The equivalence test regresses observations (stand exams) on predictions (aggregated pixels) 
in a simple linear regression, while bootstrapping the data. If the gray error bar (largely hidden by the black error bar) falls within the shaded gray 
region, then the intercept of the linear model does not significantly differ from its range of expected values. If the black error bar falls between the 
dotted lines, then the slope term of the linear model does not significantly differ from its range of expected values
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models may be an artifact of the ln transformation and subsequent back-transformations, 
which warrants consideration of other methods for adjusting retransformation bias (e.g., 
Duan 2002). More likely, the stand-based inventories themselves are not an unbiased 
representation of the variation in BAA that formed the basis of our sampling design 
across our two study landscapes. BAA may be higher on the non-industrial forest lands 
within our study areas, which would be represented in the sample plots but not the stand 
exam data. We would need to limit the plots used to develop our models to only those 
occurring in industrial forest stands for which we have inventory data, to determine to 
what degree the models may be biased.
 The three RF models also more satisfactorily reproduced the range of variability in 
the stand exams than the regression model (figs. 4 and 5). The random element of RF 
causes output to vary slightly between separate model runs, while multiple linear regres-
sion output is invariant. However, several runs of the RF models, each consisting of 500 
classification trees, were found to produce very consistent results, so these differences 
were too negligible to alter our results to a degree that would change our interpretation 
or conclusions.
 Hudak and others (2006) also considered the ten Advanced Land Imager (ALI) reflec-
tance bands as candidate variables to predict basal area and tree density using multiple 
linear regression, but these spectral variables contributed little to the model. Similarly, 
Hudak and others (2008) found that these spectral variables, along with three simple 
vegetation indices, contributed only negligibly to imputation of basal area and tree density 
of 11 individual conifer species. Therefore, we did not pursue using spectral imagery in 
this analysis. Multispectral or hyperspectral imagery could aid discrimination between 
coniferous and deciduous species, or habitat types with variable phenologies. However, 
in the mixed conifer forest within our two study areas, LiDAR data alone appears to be 
sufficient for modeling structural attributes at the species level (Hudak and others, 2008). 
This is important because species can change timber value by a factor of 4 or 5 (Dennis 
Murphy, personal communication). Elevation and aspect play an obviously important role 
in determining vegetation structure and composition in these topographically complex 
landscapes, and can be mapped with unprecedented detail with LiDAR surveys. This 
paper further demonstrates that useful canopy metrics can be obtained from LiDAR 
intensity and density metrics, not just height metrics. In particular, vegetation density, 
or the proportion of total returns that are vegetation returns, is consistently a powerful 
predictor variable (fig. 3).
 It is interesting that such similar predictions were obtained from the two RF models 
run in regression mode (Models 2 and 4; figs. 4 and 5). The predictor variables selected 
for imputation consisted of several height distribution metrics, some from the lower 
canopy, while the predictor variables selected for multiple linear regression were mostly 
density metrics from the upper canopy. We conclude that the canopy structure variation 
in these coniferous forests can be characterized equally well by different variable com-
binations. The 60 candidate variables considered for our models are likely many more 
than are necessary to develop a satisfactory model. Future research will test this suite 
of candidate variables in other forest types, to evaluate empirically which structural 
metrics have the greatest general utility.
 LiDAR may prove essential in future forest inventory design. LiDAR data can provide 
the detailed height data that correlate well with tree diameter, basal area, and volume. 
Significantly fewer field plots may be required to build the empirical relationships neces-
sary for predicting these and other attributes of interest to forest managers. Imputation 
of diameter distributions (i.e., tree lists) from independent LiDAR height, density, and 
intensity distributional metrics could provide spatially gridded inputs into FVS. This 
could change inventory designs from being based on stand (polygon) units to being based 
on cell (pixel) units (fig. 1). LiDAR-derived canopy structure layers could provide a more 
objective data source than aerial photos for delineating stands, for the purpose of aggre-
gating gridded map outputs (e.g., BAA) to stand units for managers. Further research 
is needed to quantify the degree to which this may impact overall accuracy, efficiency, 
and cost of managing forested landscapes.
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Conclusion _______________________________________________________
 We found that applying randomForest in either classification or regression mode can 
consistently predict BAA from LiDAR-derived predictor variables. Mean BAA of pixels 
aggregated to the stand level did not significantly differ from independent stand based 
inventories. We recommend that forest industry invest in LiDAR and associated field 
plot surveys for improved forest management. These results move us another step closer 
to our goal of predicting tree lists from LiDAR structure metrics, so that FVS projections 
might be generated within map units across forested landscapes, for more precise forest 
inventory and management.
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