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Abstract—The purpose of the present work is to quantify parametric uncertainty in 
Rothermel’s wildland fire spread model (implemented in software such as Behave-
Plus3 and FARSITE), which is undoubtedly among the most widely used fire spread 
models in the United States. This model consists of a nonlinear system of equations 
that relates environmental variables (input parameter groups) such as fuel type, fuel 
moisture, terrain, and wind to describe the fire environment. This model predicts 
important fire quantities (output parameters) such as the head rate of spread, spread 
direction, effective wind speed, and fireline intensity. The proposed method, which 
we call sensitivity derivative enhanced sampling (SDES), exploits sensitivity deriva-
tive information to accelerate the convergence of the classical Monte Carlo method. 
Coupled with traditional variance reduction procedures, it offers up to two orders of 
magnitude acceleration in convergence, which implies that two orders of magnitude 
fewer samples are required for a given level of accuracy. Thus, it provides an efficient 
method to quantify the impact of input uncertainties on the output parameters.

Introduction

One of the primary goals of wildland fire management is to minimize 
the negative impact of fire on property and society through prevention and 
research. To meet this goal, fire researchers employ a variety of tools such as 
satellite imagery, experiments, fire danger indices, as well as mathematical 
models. A mathematical model typically consists of a set of nonlinear equations 
that describe the interaction of the various environmental variables. These 
equations can be used to predict valuable fire environment information such 
as the head rate of spread and spread direction.

Fire models typically fall into one or more of the following categories: 
physics-based, derived empirically, or constructed from statistical consid-
erations. A fire model that is physics-based uses physical principles such as 
conservation of mass and energy to derive a formula for the rate of spread and 
other quantities of interest (see Weber 2001 and the references therein for an 
in-depth discussion). It is also possible to use a statistical description of test 
fires to predict fire behavior occurring under similar conditions. The McAr-
thur models (McArthur 1966) used for grassland and forest fires in Australia 
are one such example. Finally, laboratory experiments can be performed to 
empirically determine quantities such as the propagating f lux, which can, 
in turn, be used to obtain an expression for the rate of spread. Rothermel’s 
model (Rothermel 1972), a fire spread model that spans the physical and 
empirical classes, is perhaps the best known model in the United States, and 
although more recent models include a wider range of fire phenomena, it is 
still in wide use today.
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Not all fire models, however, can be employed as efficient fire prediction 
tools. Some of the more complex models, which couple atmospheric and fire 
behavior effects, for instance, are currently too computationally expensive 
to serve as viable real-time prediction tools. These complex models, never-
theless, assist researchers in gaining a more profound understanding of fire 
behavior.

Rothermel’s Fire Spread Model
Rothermel’s wildland fire spread model was one of the first models to 

describe the fire environment through equations derived, for the most part, 
from thermodynamic principles. The fire environment describes the complex 
chemical and physical interaction of fuels, terrain, and weather. The term fire 
behavior is used to describe the physical characteristics of a fire such as its rate 
of spread, fireline intensity, f lame length, and so forth. In North America, 
where forests and grasslands provide an abundant source of wildland fuel, 
wildland fires are of particular interest. Wildland fuels are fuels that consist 
primarily of vegetation, both live and dead, but may also include organic 
layers within the soil. A surface fire, the type of fire Rothermel’s model was 
developed for, spreads through a layer of contiguous fuel extending from the 
ground up to approximately 2 m.

Rothermel’s model groups input parameters into four main categories: fuel 
type, fuel moisture, topography, and wind. Some simplifying assumptions 
regarding the fuels are that for a small area and short-time periods, the fuel 
is taken to be homogeneous. The output variables we shall consider are the 
rate of spread (ros in m/s), the direction of maximum spread (sdr in °), and 
the effective wind speed (efw in m/s).

Parametric Uncertainty in Fire Spread Models
To properly use a fire model, it is essential to understand its limitations and 

scope of applicability. However, even when fire models are used adequately, 
discrepancies between the observed phenomena and model results are inevitable 
as models are derived under idealized conditions. Model errors can result from 
several factors including inadequate physical description, numerical errors, and 
parametric uncertainty (Walters and Huyse 2002). In this work we concentrate 
our efforts solely on those errors originating from parametric uncertainty. In 
order to quantify the impact of parametric uncertainty, it is important to de-
scribe the uncertainty mathematically. Because the value of an input parameter 
is seldom known exactly, a common approach (and the one we will pursue) is 
to assign it a mean value and an associated probability density function. The 
standard deviation can then be taken as a measure of the uncertainty in the 
parameter value. The impact of parametric uncertainty on the results can then 
be estimated using, for instance, a Monte Carlo simulation.

Sometimes the uncertainty associated with an input parameter is not only 
a consequence of the intrinsic complexity of the phenomena being modeled. 
Instead, uncertainties may be the inevitable byproducts of economic and 
efficiency constraints. For example, it may be expensive or intractable to 
measure fuel data directly as in the case of a large area.

On the other hand, it is not always necessary to concern ourselves with 
the uncertainty associated with every single parameter. A sensitivity analysis 
(Saltelli and others 2004) can help us identify the input parameters that 
have the greatest influence on output variables. Those parameters that have 
only a marginal impact on the quantities of interest can be assigned constant 
characteristic values to reduce computational demands.
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Problem Formulation

We will focus on quantifying the impact and propagation of parametric 
uncertainty only on the following output variables: the rate of spread (ros in 
m/s), the direction of maximum spread (sdr in °), and the effective wind speed 
(efw in m/s). Using the same notation as in Bachmann (2001) (the full set 
of equations as well as their derivatives can also be found there), Rothermel’s 
steady-state rate of spread is given by

 ros I
Q

R w s

b ig

( ) ,1
 (1)

where IR is the reaction intensity, ξ is the propagating f lux ratio, ρb is the 
ovendry bulk density, ε is the effective heating number, Qig is the heat of pre-
ignition. Φw and Φs are the wind and slope correction factors, respectively. 
The output variables depend on the following parameters: fuel loading w0d1, 
w0d2, w0d3, w0lh, w0lw, (in kg/m2), surface-area-to-volume ratio svd1, svd2, svd3, 
svlh, svlw, (in 1/m), fuel moisture content md1, md2, md3, mlh, mlw, (in %), fuel 
bed depth d (in m), wind speed wsp (in m/s), wind direction θ (in °), aspect 
ratio asp (in °), and slope slp (in rad). The subscripts d1, d2, d3, lh, lw, denote 
the size classes traditionally used to categorize the different fuel moisture 
timelag classes (see Deeming and others 1978): dead fuel 0 – 0.6 cm, dead 
fuel 0.6 – 2.5 cm, dead fuel 2.5 – 7.5 cm, live herbaceous fuel, and live woody 
fuel, respectively. Throughout this paper we assume that those parameters 
that are not held constant follow a normal distribution with a given mean 
and standard deviation.

The primary focus of this work is to quantify the propagation and impact 
of parametric uncertainty via an efficient Monte Carlo method. The Monte 
Carlo convergence rate is accelerated through the use of a sensitivity deriva-
tive enhanced sampling method that exploits derivative information of the 
output functions with respect to the input parameters to make more judi-
cious use of the samples generated in a simulation. We estimate the mean and 
standard deviation of the output variables using a traditional Monte Carlo 
method as well as with the sensitivity derivative enhanced sampling method 
(SDES). We compare the advantages of SDES over the Monte Carlo method 
via improvement ratios and timing performance. The distributions of output 
variables will also be generated. It should be noted that the computation of 
the required sensitivity derivatives accounts for only a fraction of the total 
cost of a simulation; these can be easily extracted using, for instance, an 
automatic differentiation package.

Numerical Method

To investigate the propagation and impact of input variable uncertainties, 
Bachmann and Allgower (2002) used a first-order Taylor method in place of 
a full-f ledged Monte Carlo simulation to avoid the prohibitive computational 
expense incurred through a direct application of the classical Monte Carlo 
method. Indeed, because of its slow convergence rate and the costly generation 
of correlated input variables in the multivariate case, Monte Carlo methods 
are usually reserved to establish a reference against which other methods are 
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compared. However, by identifying and generating stochastic versions of 
only those parameters to which the output variables are most sensitive and 
at the same time improving the convergence rate of traditional Monte Carlo 
methods, it is possible to perform simulations utilizing the original model 
to capture the more intricate behavior that a low-order approximation might 
otherwise sacrifice. The modified Monte Carlo method we describe below 
is a step toward this goal.

Although Monte Carlo methods have long been popular because they are 
simple to implement and use the underlying model as a ̀ `black box,’’ their slow 
convergence rate often proves to be too inefficient especially when multiple 
simulations are required. A common approach to improve the convergence rate, 
which is known to be proportional to the variance of the objective function, is 
to reduce the variance via a suitable reformulation of the problem. Variants of 
this approach encompass a large class of methods collectively known as vari-
ance-reduction methods. The SDES method, which we describe below, is a 
variance-reduction method that has already been employed with success in fields 
such as optimal control (Cao and others 2003, 2004) and computational fluid 
dynamics (Mathelin and others 2004). In this section we review the theory 
underlying the method; our discussion closely follows Cao and others (2004, 
2006). The methods we shall employ are described in their proper mathemati-
cal setting, but for the reader who is unfamiliar with some of the concepts 
discussed below, the textbooks by Ross (1997) and Shiryayev (1984) should 
elucidate some of the mathematical details that are omitted.

Monte Carlo Method
Suppose X  is a random variable with finite expectation and let ( )( )p x x ∈R  

be an associated probability density function (pdf). If :f →R R  is a smooth 
function of ,X  we recall that the expectation ( )Ef X  of f  is defined by

 ( ) := ( ) ( ) ,Ef X f x p x dx∫  (2)

where the integration is taken over the support of the pdf. The variance 
( )Vf X  is defined by

 2( ) := ( ( ) ( )) .Vf X E f X Ef X−  (3)

For brevity, we will sometimes write xµ  and 2
xσ  for the expectation and 

variance of the random variable X , respectively.

In the classical Monte Carlo method, we estimate ( )Ef X  by

 
=1

1
( ) ( ).

N

i
i

Ef X f x
N

≈ ∑  (4)

The N  samples 1, , Nx xK  are generated according to the probability density 
of .X  The convergence of this estimate to ( )Ef X  as N → ∞  is guaranteed 
by the large number theorem (Shiryayev 1984; Ross 1997).

It is well-known that the approximation error made using (4) is proportional 

to 
( )Vf X

N
. For computationally intensive problems this slow convergence 

might render the Monte Carlo approximation impractical. In the results 
section, the extent to which the sensitivity derivative Monte Carlo method 
alleviates this slow convergence will be shown.
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Sensitivity Derivative Enhanced Sampling
Recently, Cao and others (2003, 2004) developed a variance-reduction 

method that exploits information regarding the sensitivity of f  with respect 
to the random variable X  (measured via derivatives of f  with respect to X ) 
to speed up the convergence of the Monte Carlo method. The result of their 
efforts was the sensitivity derivative enhanced sampling Monte Carlo method 
(SDES). The first-order SDES method is described below.

Given the first-order Taylor expansion of f  about xµ
 1( ) := ( ) ( )( ),x x xJ x f f xµ µ µ′+ −  (5)
and using

 ( ) = 1 and ( ) ( ) = 0,xp x dx x p x dxµ−∫ ∫
it is clear that

 1( ( ) ( )) ( ) = ( ) ( ) ( ).xf x J x p x dx f x p x dx f µ− −∫ ∫
Upon rearranging for ( )Ef X , this suggests the sensitivity derivative Monte 
Carlo approximation of the expectation of f

 1
=1

1
( ) ( ) ( ( ) ( )).

N

x i i
i

Ef X f f x J x
N

µ≈ + −∑  (6)

The N  samples are again generated according to the pdf of .X

The following inequalities illustrate the extent to which the variance of 
(6) is reduced. Let
 1 2= ( ) and = ( ) .max max

s s
m f s m f s

∈ ∈
′ ′′

R R

Then
 

2
1

2
2 42

1

( ) 2 ( )

( ) ( ( ) (( ) )).
2 x

Vf X m V X

m
V f J V X E X µ

≤

− ≤ + −
  (7) (8)

Where (7) and (8) indicate that the SDES method is most efficient when 
( )V X  is small (V(X) << 1). See Cao and others (2006) for a rigorous proof 

of these results as well as a generalization to the thn -order SDES method.

SDES for Rothermel’s Model
Although in this article we concentrate our efforts on Rothermel’s model, 

we will state the mathematical model as a general nonlinear system of equa-
tions. The SDES method is applicable to any fire behavior model satisfying 
the appropriate smoothness assumptions.

Let the vector 1= ( , , )mX X XK  represent the ensemble of input parameters 
that comprise the local fire environment and suppose = ( )y f X  is a function 
of the random variable vector X . Here y  may represent the effective wind 
speed efw , the maximum rate of spread ros , or the spread direction sdr . 
The vector X  is composed of the fuel type, fuel moisture, terrain, and wind 
parameters. We shall denote the expectation of the parameter vector X  by 

1
= ( , , )x x xm

µ µ µK  and the covariance of X  by .Σ  In this case the second-
order SDES method is given by

 2
2

=1

1 1
( ) ( ( ) ( )) ( ) trace( ( ) ),

2

N

i i x x
i

Ef X f x J x f f
N

µ µ≈ − + + ∇ Σ∑   (9)
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where
 2

2

1
( ) = ( ) ( )( ) ( ) ( )( ).

2
T

x x x x x xJ x f f x x f xµ µ µ µ µ µ+ ∇ − + − ∇ −

Here f∇  and 2 f∇  denote the gradient and Hessian of f , respectively.
To further improve the efficiency of the present sampling method, we 

couple SDES with stratified sampling. The standard stratified sampling 
technique is discussed in Cao and others (2004), for example.

Results and Discussion

To compare the efficiency of SDES with traditional Monte Carlo methods, 
we compute the rate of spread ros , effective wind speed efw , and spread 
direction sdr  using two of the original fuel models found in Rothermel 
(1972): the short grass and chaparral fuel models. The main fuel parameters 
are summarized in tables 1 and 2. The following parameters are held constant 
throughout for both fuel models: the dead fuel moisture at 8 percent, the 
live fuel moisture at 150 percent, and the low heat content at 18622 kJ/kg. 
We shall also examine the additional speed-up obtained by coupling SDES 
with standard stratified sampling.

The uncertainty associated with an input parameter is described by assign-
ing it a normal distribution with a typical mean (taken to be the value given 
in the original model) and a corresponding standard deviation (typically 
between 10 and 50 percent of the mean value). Two types of computations 
will be performed for each fuel model. First, we take the fuel bed depth d  
and the 1-h surface area/volume ratio 1dsv  to be normally distributed random 
variables; all other parameters are fixed. Then, we include a random wind 
speed wsp  and wind direction θ  in addition to d  and 1.dsv

To measure relative errors and improvement ratios of Monte Carlo ap-
proximations versus SDES, we use the 2L -norm (Euclidean norm). Recall 
that the 2L -norm is defined for a vector 1= ( , , )nx x xK  as 2 2 1/2

12
= ( )nx x x+ +L . 

Table 1—Chaparral fuel model parameters. 

	 Parameter	 Symbol µ 	 σ 	 Units 

1-h fuel load 10dw  1.12 -- 2kg/m
10-h fuel load 20dw  0.90 -- 2kg/m
100-h fuel load 30dw  0.45 -- 2kg/m
Live herbaceous fuel load   0lhw  0.0 -- 2kg/m
Live woody fuel load 0lww  1.12 -- 2kg/m
1-h surface area/vol. ratio 1dsv  6562 740 2 3m /m
Live herb surface area/vol. ratio lhsv  4921 -- 2 3m /m
Live woody surface area/vol. ratio lwsv  4921 -- 2 3m /m
Dead fuel moisture of extinction mx  20 -- %
Fuel bed depth d  1.83 0.3 m
Midflame windspeed wsp  2.3 0.5 m/s
Direction of wind vector (from upslope) θ  45 20 o
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If 1= ( , , )MC MC MC
ME E EK  is a sequence of relative errors obtained from M  

Monte Carlo simulations, then a measure of the average error is given by

 
1/2

2

2
=1

1
= [ ] .

M
MC MC

i
i

E E
M

 
  

∑

The 2L  improvement ratio is then computed from

 2
2

2

= .
MC

SDES

E
I

E

Suppose, for example, that we use a Monte Carlo and a first-order SDES 
simulation to approximate the rate of spread using 5,000 samples. If the im-
provement ratio is 2 = 10I , then the average relative error obtained from SDES 
is 10 times smaller than that obtained from a Monte Carlo method using the 
same number of samples. Put another way, if we use SDES we need only 500 
samples to achieve the same accuracy as the Monte Carlo method.

Table 3 shows that even with a simple first-order SDES method the con-
vergence rate over a traditional Monte Carlo simulation can be as much as 20 
times faster. It is important to note that SDES might require the computa-
tion of several derivatives of the objective function. In our computations, an 
automatic differentiation package (see Stamatiadis and others 2000) was used 
to find the relevant derivatives. Table 4 illustrates that even when we couple 
SDES with stratified sampling (denoted by SSD1, for a first-order SDES with 
stratified sampling), the extra computational expense incurred is marginal.

Table 2—Short grass fuel model parameters.

	 Parameter	 Symbol µ 	 σ 	 Units 

1-h fuel load 10dw  0.17 -- 2kg/m
10-h fuel load 20dw  0.0 -- 2kg/m
100-h fuel load 30dw  0.0 -- 2kg/m
Live herbaceous fuel load   0lhw  0.0 -- 2kg/m
Live woody fuel load 0lww    0.01 -- 2kg/m
1-h surface area/vol. ratio 1dsv  11483 1150 2 3m /m
Live herb surface area/vol. ratio lhsv  4921 -- 2 3m /m
Live woody surface area/vol. ratio lwsv  4921 -- 2 3m /m
Dead fuel moisture of extinction mx  12 -- %
Fuel bed depth d  0.30 0.05 m
Midflame windspeed wsp  2.3 0.5 m/s
Direction of wind vector (from upslope) θ  45 20 o

Table 3—SDES error improvement ratios for first-moment estimates of the rate of spread using = 512N  
and = 100M  different sets of samples.

Fuel model MC ratio (2vars) MC ratio (4vars) S = 4 ratio (2vars) S = 2 ratio (4vars)

Chaparral 29.8 5.1 11.4 3.4
Short grass 24.2 4.3 10.0 3.1
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Figure 1 illustrates that although the input parameters follow a normal 
distribution (as described in tables 1 and 2), this is not the case with the 
output functions , ,efw ros  and .sdr  This is to be expected as the output 
functions depend nonlinearly upon the random parameters. Using four 
random variables in the chaparral fuel model, the mean values are given by 

= 2.41efwµ  m/s, = 0.353rosµ  m/s, and = 41.3sdrµ
o . The corresponding 

standard deviations are 5= 2.0325 10efwσ
−⋅  m/s, 4= 2.8921 10rosσ

−⋅  m/s, 
and 4= 5.0674 10sdrσ

−⋅ . The standard deviation provides us with a measure 
of the uncertainty in the outputs.

Table 4—Timing results (in seconds). Average computational time comparison 
of Monte Carlo versus first-order SDES coupled with stratified sampling 
(four strata).

 N (Chap) MC (Chap) SSD1 (Shtgrs) MC (Shtgrs) SSD1

 32 4.297E–02 4.437E–02 4.063E–02 4.344E–02
 64 8.188E–02 8.250E–02 7.922E–02 8.250E–02
 128 1.617E–01 1.656E–01 1.567E–01 1.566E–01
 256 3.231E–01 3.295E–01 3.113E–01 3.158E–01
 512 6.423E–01 6.255E–01 6.216E–01 6.262E–01

Figure 1—Output distributions of the effective wind speed, rate of spread, and spread direction 
using four random variables ( 1, , ,dd sv wsp  and θ ). The mean values for the Chaparral fuel model 
are given by efwµ = 2.41 m/s, rosµ = 0.35 m/s, and sdrµ = 41.3°.

2.414 2.4141 2.4142
0

500

1000
Chaparral

Effective wind speed

0.352 0.353 0.354 0.355 0.356
0

100

200

300

Rate of spread

0.721 0.7211 0.7211 0.7211 0.7211 0.7211
0

200

400

600

Spread direction

2.3901 2.3901 2.3902 2.3903 2.3903
0

500

1000

1500

2000
Short grass

Effective wind speed

0.548 0.55 0.552
0

100

200

300

Rate of spread

0.7117 0.7118 0.7118 0.7118 0.7118 0.7118
0

200

400

600

800

Spread direction



USDA Forest Service Proceedings RMRS-P-46CD. 2007. 119

Uncertainty Quantification in Rothermel’s Model Using an Efficient Sampling Method Jimenez, Hussaini, and Goodrick

Figures 2 and 3 show that the relative errors decay at the expected rate 
proportional to 1/ N , where N  is the number of samples used. Throughout, 
we use = 100M  different sets of samples and then average the relative errors. 
We observe that Monte Carlo coupled with stratified sampling is as much as 
five times faster than the traditional Monte Carlo method. In all cases we 
observe that first-order SDES produces results that are up to two orders of 
magnitude more accurate (when coupled with stratified sampling) than plain 
Monte Carlo. With this convergence rate, it would take a Monte Carlo method 
as many as 100 times more samples to achieve comparable results.

Figure 2—(Chaparral fuel model) 
Average relative errors in first 
moment estimates for the rate of 
spread ros using (a) two random 
variables svd1 ~ N(6562,740) and 
d ~ N(1.83,0.3) and (b) four random 
var iables  s v d1  ~  N (6562,740) , 
d ~ N(1.83,0.3), wsp ~ N(2.3,0.5), and 
θ ~ N(45,20).

Figure 3—(Short grass fuel model) 
Average relative errors in first 
moment estimates for the rate of 
spread ros using (a) two random 
variables svd1 ~ N(11483,1150) and 
d ~ N(0.30,0.05) and (b) four random 
variables svd1 ~ N(11483,1150), 
d ~ N(0.30,0.05), wsp ~ N(2.3,0.5), and 
θ ~ N(45,20).
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Conclusions

Although the simplicity of the Monte Carlo method makes it an attractive 
method to use in simulations that use fire spread models such as Rothermel’s 
model, its slow convergence can render its application infeasible especially in 
time-sensitive situations such as in the prediction of an ongoing fire. In this 
work we have demonstrated that the sensitivity derivative enhanced sampling 
method and its variants provide fire researchers an economic alternative to 
traditional Monte Carlo methods in quantifying parametric uncertainty. 
Quantifying the impact of parametric uncertainty is of utmost importance 
since key input parameters used by fire spread models are seldom known ex-
actly. The speed-up of up to two orders of magnitude in the SDES gives fire 
managers the ability to effectively and efficiently run simulations in real-time 
using only minimal computational resources.

The results indicate that coupling SDES with stratified sampling can fur-
ther accelerate the convergence rate. This suggests that coupling SDES with 
more sophisticated sampling techniques such as Latin hypercube sampling or 
orthogonal sampling, while not as easily implemented as stratified sampling, 
might improve the convergence rate even further. We will explore these pos-
sible enhancements in future investigations.
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