Comparing Methods for Modelling Tree Mortality

James W. Flewelling
Robert A. Monserud

Abstract — Our goal is to compare different methods for estimating the parameters of individual tree mortality models. We examine general methods including maximum likelihood and weighted nonlinear regression, and a few specialized methods including Proc LOGISTIC in SAS, and an implementation of the Walker-Duncan algorithm. For fixed period lengths, almost all methods for fitting the logistic mortality model should work. The LOGISTIC procedure in SAS is quite robust and the easiest to use. For unequal period lengths, either a weighted nonlinear least squares or a maximum likelihood formulation is needed to specify the annualized logistic mortality model: NLIN(wtls) and NLIN(LOSS) in SAS. Of course, other statistical packages that mimic these procedures should give the same results.

Introduction

Mortality remains one of the least understood yet important components of growth and yield estimation (Hamilton 1986). Great success in modeling mortality is rare, perhaps because the focus is on modeling the occurrence of rare events. Realistically, mortality models mostly hope to capture the average rate of mortality and relate it to a few reliable and measurable size or site characteristics (Keister 1972; Hamilton and Edwards 1976; Monserud 1976; Hamilton 1994; Monserud and Sterba 1999).

A few preliminary observations provide some context, several of which conspire to increase the difficulty of mortality modeling in forestry. First, mortality is a discrete, rare event. A common rule of thumb for both temperate and boreal forests is that roughly 0.5 to 1.5 percent of the trees are expected to die in a given year (background mortality). It therefore follows that a large sample is needed to observe enough occurrences of mortality for modeling the process adequately. Using this rule of thumb, we expect that a sample of 10,000 trees/yr (or 2000 trees/5 yrs) would be needed to observe approximately 50 to 150 deaths, which is a relatively small sample of the event of interest. Second, observations of the same individual tree at two points in time are necessary to observe the survival or mortality status of a tree; this requires remeasured permanent plots. Estimates of the date of death from temporary plots are notoriously unreliable and should not be used. Third, we usually do not know tree age, so we cannot use Survival Analysis methods (Allison 1995) that have been successful in medical research. Furthermore, remeasured tree survival data are usually both left and right censored (Allison 1995; Meeker 1998); we only know that some of the trees died sometime during the sampling interval, and the others failed to die. Fourth, it is not uncommon to have widely varying period lengths, which precludes the proper use of some estimation programs that assume equal period lengths, such as Proc LOGISTIC in SAS (SAS Version 8.1 is a product of the SAS Institute, Cary, NC 27513).

Simulator architecture determines how mortality must be calculated and simulated. Mortality is discrete in a spatial simulator such as TASS (Mitchell 1975) or FOREST (Ek and Monserud 1974), with the tree either completely dead or alive. This mortality process is stochastic. Furthermore, the costs of misclassification are not equal in spatial models. Misclassifying a live tree as dead can never be corrected, but misclassifying a dead tree as live can be corrected in the future. Mortality can be continuous in a nonspatial simulator such as FVS (Stage 1973; Wykoff and others 1982; Hamilton 1994; Teck and others 1997) or ORGANON (Hann and others 1997), with the mortality rate smoothly reducing the number of trees each sample tree represents. Therefore, it is much easier to predict mortality rates over large areas with nonspatial models.

Our goal here is to compare several methods for estimating the parameters of individual tree mortality models. Note that our objective is not to find the best mortality model for a given data set. We will examine several methods: maximum likelihood, weighted nonlinear regression, and a few specialized programs (Proc LOGISTIC in SAS, and the Walker-Duncan algorithm of Hamilton 1974). Our motivation is that all too often authors do not provide enough details on methods to reproduce results. Although our immediate context is modeling in the FVS environment, our results apply to any other forest simulation system.

We have a few caveats. We will not address:

- Correlation of trees within a plot. They will have the same stand density, and they could all be exposed to the same unobserved mortality agent.
- Plot size effects on model parameters (see Stage and Wykoff 1998).
- Simultaneous fitting of mortality and the growth equations (Hasenauer and others 1998; Cao 2000)
The Algebra of Mortality

Because a tree can only die once, mortality is not a Markov process. Survival is, however. This property requires that all algebra be mediated in terms of survival, not mortality. The probabilities of survival \(P(s) \) and mortality \(P(m) \) are connected by the standard identity:

\[
\text{Survival} = 1 - \text{Mortality}: P(s) = 1 - P(m)
\]

We must use the compound interest formula to convert survival to other period lengths:

1-year: \(P(s_1) = 1 - P(m_1) \)

n-year: \(P(s_n) = P(s_1) P(s_2) P(s_3) \ldots P(s_n) = (P(s_1))^n = (1 - P(m_1))^n \) (The Markov property)

1-year: \(P(m_1) = 1 - P(s_1) = 1 - (1 - P(m_1))^{1/n} \)

\[P_m = \frac{e^{b'X}}{1 + e^{b'X}}\]

The inverse transform has a long history (McCullagh and Nelder 1983):

\[\log(P_m/(1-P_m)) = b'X\]

It is recognizable as the "logit" or the "log odds ratio." This equation provides the link between the unconstrained function \(b'X \) and the logistic probability prediction, which is bounded by \([0,1]\).

In the foregoing, \(P_m \) and \(P_s \) are interchangeable. The function to model \(P_m \) could be used equally well to model \(P_s \); the only difference is that the signs in the coefficient vector \(b \) would be reversed. This amounts to switching the 0-1 coding on the dependent variable.

We always want to know how good the model is. Usual measures of residual variation (\(R^2 \)) are useless for dichotomous variables. It does not matter how close a predictor is to 0 or 1 as long as it can accurately estimate expectations. We will simply use the sum of the log likelihoods, with the standard factor of \(-2\) that results from maximizing the logarithmic linearization; we will label this \(-2LL\). A closely related statistic for model comparison is Akaike's Information Criterion (AIC). It penalizes \(-2LL\) by the number of parameters in the model (Chatfield 1996). The Chi-square statistic is also appropriate, with the calculation based on dividing important predictor variables into classes. Hosmer and Lemeshow (2000) discuss these and other statistics.

Methods

We concentrate on a comparison of several methods for estimating parameters with a fixed logistic model. Five fitting techniques are described:

1. **Logit Model for Proportions \(\{\text{LOG} \} \) —** This model, also referred to as the linear logistic model, is ascribed to several authors in the 1940s and 1950s (McCullagh and Nelder 1983). It requires that the data be grouped into classes of \(X \) values. Within each class, the predictions are identical for all observations. The observed proportion in each class should be between zero and one, and the expected number of events and nonevents in each class should be at least five. The procedure is to transform the independent variable by computing its logit and then regressing that transformation against \(X \).

2. **Least squares \(\{\text{NLIN} \ (\text{LS}) \} \) —** Unweighted least squares minimizes the sums of squared errors, where the error is calculated as \(\varepsilon = Y - P_m \), where \(Y \) equals one for mortality and zero otherwise, and \(P_m \) is the predicted probability of mortality. Because of the logistic link function, \(P_m \) is not a linear function of the parameters. Therefore, nonlinear regression is needed.

3. **Walker-Duncan \(\{\text{RISK} \} \) —** The Walker-Duncan algorithm (Walker and Duncan 1967) is a sequential approach to weighted least squares that was developed in an era of limited computer resources. It is claimed to be asymptotically equivalent to the maximum likelihood fit of the logistic
model. This routine was coded by Hamilton (1974) in the RISK program and extended to deal with variable period-length data.

4. Weighted Least Squares (NLIN (wtLS), LOGISTIC) — Weighted least squares minimizes the weighted sums of error squared, using weights that are inversely proportional to the estimated variance: \(\text{Var} = P(1-P) \). McCullagh and Nelder (1983) show that the minimization of this weighted sums of squares produces the maximum likelihood solution. That proof assumes that the link function is linear in the parameters, which is not true for the variable length period regressions to be discussed later. Nonetheless, in every test regression that we have examined, the weighted least squares method does produce the ML solution, a result supported by Agresti (1990). The weighting is iterative because the weights depend on the parameter vector \(b \), which is being estimated. The iterative weighting can prevent some fitting techniques from fully converging. A conservative strategy is to hold the weights constant while iterating toward a least squares solution, then resetting the weights and proceeding to further rounds of minimization. Most LOGISTIC programs use iteratively reweighed least squares to obtain the ML solution.

5. Maximum Likelihood (NLIN (LOSS)) — Maximum likelihood solutions can be derived directly by iterating the model parameters until the likelihood is maximized, or equivalently until the negative log likelihood is minimized. This is done by writing the LL function shown in the appendix and incorporating that computation into an optimizer. The SAS procedure NLIN and equivalent procedures in other statistical packages can perform the optimization. In NLIN, the keyword _LOSS_ defines the objective criteria.

The above programs are all procedures within SAS, except for RISK, which was developed by Hamilton (1974). We use the notation “LS” to indicate the least squares objective function normally employed in nonlinear regression. The notation “LOSS” indicates where we employ an explicitly defined loss function.

Data Sets

Four data sets are used to illustrate various regression methods. The data sets are referred to as data A, B, C, and D; they are summarized or listed in their entirety in tables 1 through 4, respectively. Data sets A and B offer simple examples suitable for event estimation (tables 1 and 2); period length is not involved. Data set C is real data (64,121 observations) from young unthinned plantations of Douglas-fir in coastal Washington, Oregon, and British Columbia (summary in table 3). The growth rates in those data are from regressions of change in DBH versus initial DBH fit to the data one plot and one growth period at a time. Growth periods are from 1 to 4 years. Data set D is a simulated data set, which also has variable period lengths (table 4). It consists of four 0.5 acre plots, each with 10 arbitrary selected tree sizes, arbitrary frequencies, and arbitrary growth rates. The mortality was simulated for all trees in all years using the ML regression fit to data set C. Because data set D was selected to have high densities and long periods, the predicted mortality rates are high, allowing us to better see the differences due to the various fitting methods. As with data set C, the growth rates are best thought of as having been predicted by a diameter growth function.

<table>
<thead>
<tr>
<th>Y</th>
<th>X₁</th>
<th>X₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1 — Data set A - categorized data distributed as an example for the RISK program.

An alternative formulation of the same data set shows N observation on each line, with NY1 of them indicating an event (Y=1):

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>N</th>
<th>NY1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>
Table 2—Data set B. A simple data set illustrating low-probability events. The data set is shown in its classed formulation. It could also be shown as 100 observations, with 11 observations having \(Y = 1 \) and 89 observations having \(Y = 0 \). All models using these data use the expanded form (100 observations) unless stated otherwise.

<table>
<thead>
<tr>
<th>(X_i)</th>
<th>(N)</th>
<th>(NY_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>0.1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>0.3</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>0.4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>0.6</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1.0</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3—Summary of data set C, remeasurement data from fixed-area plots in young Douglas-fir plantations. The data set contains 64,121 observations.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBH (in)</td>
<td>4</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Height (ft)</td>
<td>22</td>
<td>2</td>
<td>74</td>
</tr>
<tr>
<td>BA (ft(^2)/ac)</td>
<td>62</td>
<td>3</td>
<td>172</td>
</tr>
<tr>
<td>Age</td>
<td>14</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>Period length (years)</td>
<td>3.4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Mortality proportion</td>
<td>0.014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

Fitting with Fixed Period Length

The examples presented use techniques that are suitable for predicting mortality in a period of fixed length, where all of the data are from remeasurement periods of that same length. In these circumstances, the length of the period does not enter into the prediction process.

Data set A is used to illustrate the fitting of a simple logistic regression. Code for three methods is shown in the appendix. Coefficients and -2 LL’s are in table 5; predictions for all \(X \) values are in table 6. RISK, REG, and LOGISTIC solutions all have nearly identical likelihoods, even though there are minor differences in the coefficients. RISK predicts there will be 25.90 events, whereas the other methods have prediction closer to the observed 26 events; this offers a hint that the RISK solution may not be the true maximum likelihood solution. The results from RISK may vary a bit if the order of observations is changed. The conclusion is that for classed data, with event (or nonevent) expectations as low as 2, all of the fitting methods produce results that are statistically indistinguishable from one another.

Data set B (table 2) is another simple data set. It is included here to show some lower probability events, as are typical in mortality data sets. Code is presented for four regression procedures in the appendix. Unweighted least squares is implemented with NLIN (LS); weighted least squares is implemented by NLIN (wtLS) and LOGISTIC; direct maximum likelihood is implemented with NLIN (LOSS). In the NLIN (wtLS) code, note how the iterative reweighting is implemented in two passes: first, an unweighted regression returns preliminary estimates of event probabilities; second, a weighted regression then uses the earlier estimated probabilities in assigning weights. The solutions are nearly identical for all methods (table 7). The trivial differences in -2 LL are due to incomplete convergence for NLIN (LOSS) and to the fundamental consideration that NLIN (LS) is not using the theoretically correct weighting.

Fitting with Variable Period Length

One complication in mortality modeling is unequal period lengths. In the Algebra subsection, we saw how the compound interest formula (Markov property) can bring mortality or survival rates for any period length to an annual basis. It is important to have this flexibility to simulate any reasonable period length. However, not all estimation procedures allow for variable period lengths. The LOGISTIC procedure in SAS is a case in point. Beyond the mechanical difficulties of fitting, there may be serious differences between how the regression predictions are applied to the data set, and how they will be made within a simulator.

Data set C has variable period lengths of 1 to 4 years (table 3). An annual mortality model is fit for these data. The independent variables generally take on values as assigned at the start of the growth period. One variant on the regression process uses midpoint values for the independent variables, a technique that is useful for building annual simulators from multiyear data (Hyink and others, 1985). The linear combination used in the Logit is:

\[
b'X = b_0 + b_1 DBH + b_2 BAL/BA + b_3 BA\]

where BA is the total basal area per acre, and BAL is the basal area of larger trees. Although these variables were a good set of predictors for this particular data set, they are not a recommended set for other applications.

The procedures applied to data set C include RISK, LOGISTIC, and NLIN (LOSS). The latter procedure is run once with start-of-period \(X \) values and once with midpoint values. Results are in table 8. The results from NLIN (LOSS) are the best (the lowest -2LL), and RISK is the poorest. Surprisingly, the LOGISTIC results are almost the best, even though they rely on a statistically incorrect model. In this application, each period of YIP years is treated as YIP independent observations, one of which may result in mortality. For situations where mortality rates are very low (as in data set C), the LOGISTIC procedure can produce good estimates of parameters. However, all the fit statistics (including -2LL) and confidence intervals returned by the LOGISTIC regression program are incorrect. The NLIN (LOSS) regression using midpoint values is significantly poorer than those using start-of-period values. The use of midpoint values was expected to be an improvement; the lack of improvement might indicate a deficiency in our choice of independent
Table 4—Data set D. Simulated data set based on models from data set C.

<table>
<thead>
<tr>
<th>PLOT</th>
<th>SIZE</th>
<th>YIP</th>
<th>DBH</th>
<th>DBHRATE</th>
<th>NTREES</th>
<th>GROUP</th>
<th>BAL</th>
<th>BA</th>
<th>TPA</th>
<th>NSURV</th>
<th>BA_FINAL</th>
<th>TPAFINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>8</td>
<td>2.8</td>
<td>0.80</td>
<td>40</td>
<td>1</td>
<td>1.710</td>
<td>17.191</td>
<td>800</td>
<td>37</td>
<td>220.410</td>
<td>688</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>8</td>
<td>2.6</td>
<td>0.78</td>
<td>40</td>
<td>2</td>
<td>4.896</td>
<td>17.191</td>
<td>800</td>
<td>35</td>
<td>220.410</td>
<td>688</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>8</td>
<td>2.4</td>
<td>0.76</td>
<td>40</td>
<td>3</td>
<td>7.627</td>
<td>17.191</td>
<td>800</td>
<td>33</td>
<td>220.410</td>
<td>688</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>8</td>
<td>2.2</td>
<td>0.74</td>
<td>40</td>
<td>4</td>
<td>9.940</td>
<td>17.191</td>
<td>800</td>
<td>36</td>
<td>220.410</td>
<td>688</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>8</td>
<td>2.0</td>
<td>0.72</td>
<td>40</td>
<td>5</td>
<td>11.868</td>
<td>17.191</td>
<td>800</td>
<td>36</td>
<td>220.410</td>
<td>688</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>8</td>
<td>1.8</td>
<td>0.70</td>
<td>40</td>
<td>6</td>
<td>13.448</td>
<td>17.191</td>
<td>800</td>
<td>33</td>
<td>220.410</td>
<td>688</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>8</td>
<td>1.6</td>
<td>0.68</td>
<td>40</td>
<td>7</td>
<td>14.713</td>
<td>17.191</td>
<td>800</td>
<td>37</td>
<td>220.410</td>
<td>688</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>8</td>
<td>1.4</td>
<td>0.64</td>
<td>40</td>
<td>8</td>
<td>15.699</td>
<td>17.191</td>
<td>800</td>
<td>35</td>
<td>220.410</td>
<td>688</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>8</td>
<td>1.2</td>
<td>0.62</td>
<td>40</td>
<td>9</td>
<td>16.441</td>
<td>17.191</td>
<td>800</td>
<td>31</td>
<td>220.410</td>
<td>688</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>8</td>
<td>1.0</td>
<td>0.60</td>
<td>40</td>
<td>10</td>
<td>16.973</td>
<td>17.191</td>
<td>800</td>
<td>29</td>
<td>220.410</td>
<td>688</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>8</td>
<td>1.0</td>
<td>0.60</td>
<td>40</td>
<td>1</td>
<td>1.710</td>
<td>17.191</td>
<td>800</td>
<td>34</td>
<td>296.201</td>
<td>456</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>8</td>
<td>7.8</td>
<td>0.50</td>
<td>30</td>
<td>2</td>
<td>29.361</td>
<td>156.883</td>
<td>600</td>
<td>24</td>
<td>283.609</td>
<td>434</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>8</td>
<td>7.6</td>
<td>0.50</td>
<td>30</td>
<td>3</td>
<td>47.772</td>
<td>156.883</td>
<td>600</td>
<td>20</td>
<td>283.609</td>
<td>434</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>8</td>
<td>7.4</td>
<td>0.50</td>
<td>30</td>
<td>4</td>
<td>65.214</td>
<td>156.883</td>
<td>600</td>
<td>22</td>
<td>283.609</td>
<td>434</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>8</td>
<td>7.2</td>
<td>0.50</td>
<td>30</td>
<td>5</td>
<td>81.714</td>
<td>156.883</td>
<td>600</td>
<td>23</td>
<td>283.609</td>
<td>434</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>8</td>
<td>6.8</td>
<td>0.50</td>
<td>30</td>
<td>6</td>
<td>97.298</td>
<td>156.883</td>
<td>600</td>
<td>22</td>
<td>283.609</td>
<td>434</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>8</td>
<td>6.6</td>
<td>0.50</td>
<td>30</td>
<td>7</td>
<td>111.991</td>
<td>156.883</td>
<td>600</td>
<td>17</td>
<td>283.609</td>
<td>434</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>8</td>
<td>6.2</td>
<td>0.50</td>
<td>30</td>
<td>8</td>
<td>138.813</td>
<td>156.883</td>
<td>600</td>
<td>21</td>
<td>283.609</td>
<td>434</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>8</td>
<td>6.0</td>
<td>0.50</td>
<td>30</td>
<td>9</td>
<td>150.993</td>
<td>156.883</td>
<td>600</td>
<td>20</td>
<td>283.609</td>
<td>434</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>12</td>
<td>7.8</td>
<td>0.50</td>
<td>30</td>
<td>1</td>
<td>9.955</td>
<td>156.883</td>
<td>600</td>
<td>20</td>
<td>326.410</td>
<td>356</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>12</td>
<td>7.6</td>
<td>0.50</td>
<td>30</td>
<td>2</td>
<td>29.361</td>
<td>156.883</td>
<td>600</td>
<td>23</td>
<td>326.410</td>
<td>356</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>12</td>
<td>7.4</td>
<td>0.50</td>
<td>30</td>
<td>3</td>
<td>47.772</td>
<td>156.883</td>
<td>600</td>
<td>15</td>
<td>326.410</td>
<td>356</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>12</td>
<td>7.2</td>
<td>0.50</td>
<td>30</td>
<td>4</td>
<td>65.214</td>
<td>156.883</td>
<td>600</td>
<td>20</td>
<td>326.410</td>
<td>356</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>12</td>
<td>7.0</td>
<td>0.50</td>
<td>30</td>
<td>5</td>
<td>81.714</td>
<td>156.883</td>
<td>600</td>
<td>18</td>
<td>326.410</td>
<td>356</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>12</td>
<td>6.8</td>
<td>0.50</td>
<td>30</td>
<td>6</td>
<td>97.298</td>
<td>156.883</td>
<td>600</td>
<td>18</td>
<td>326.410</td>
<td>356</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>12</td>
<td>6.6</td>
<td>0.50</td>
<td>30</td>
<td>7</td>
<td>111.991</td>
<td>156.883</td>
<td>600</td>
<td>17</td>
<td>326.410</td>
<td>356</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>12</td>
<td>6.4</td>
<td>0.50</td>
<td>30</td>
<td>8</td>
<td>125.821</td>
<td>156.883</td>
<td>600</td>
<td>16</td>
<td>326.410</td>
<td>356</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>12</td>
<td>6.2</td>
<td>0.50</td>
<td>30</td>
<td>9</td>
<td>138.813</td>
<td>156.883</td>
<td>600</td>
<td>14</td>
<td>326.410</td>
<td>356</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>12</td>
<td>6.0</td>
<td>0.50</td>
<td>30</td>
<td>10</td>
<td>150.993</td>
<td>156.883</td>
<td>600</td>
<td>17</td>
<td>326.410</td>
<td>356</td>
</tr>
</tbody>
</table>

Variables for data set D:
- **Plot**: An arbitrarily assigned plot number
- **Size**: Plot size in acres
- **YIP**: Years in the period
- **DBH**: Initial diameter (inches)
- **DBHRATE**: DBH growth rate (in/yr)
- **NTREES**: Initial number of trees of this size.
- **GROUP**: Sequence number assigned to a group of trees of same size.
- **BAL**: Initial basal area of larger trees (including half of current group)
- **BA**: Initial basal area (sq. ft/ac)
- **TPA**: Initial trees per acre
- **NSURV**: Number of surviving trees at end of growth period
- **BA_FINAL**: Final basal area for the plot (sq. ft/ac)
- **TPAFINAL**: Final trees per acre

Table 5—Regression results, data set A.

<table>
<thead>
<tr>
<th>Regression</th>
<th>b₀</th>
<th>b₁</th>
<th>b₂</th>
<th>–2LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGISTIC</td>
<td>-0.011508</td>
<td>-0.462517</td>
<td>.908641</td>
<td>49.558</td>
</tr>
<tr>
<td>REG</td>
<td>-.002985</td>
<td>-.47223</td>
<td>.91406</td>
<td>49.558</td>
</tr>
<tr>
<td>RISK</td>
<td>.0530757</td>
<td>-.494347</td>
<td>.889641</td>
<td>49.562</td>
</tr>
</tbody>
</table>
Table 6—Predictions from three methods for the probability of an event using data set A.

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>N</th>
<th>NY1/N</th>
<th>P (RISK)</th>
<th>P (LOGISTIC)</th>
<th>P (REG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>.6</td>
<td>.61025</td>
<td>.60698</td>
<td>.60798</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
<td>.8</td>
<td>.79216</td>
<td>.79302</td>
<td>.79461</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10</td>
<td>.5</td>
<td>.48851</td>
<td>.49302</td>
<td>.49166</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>.7</td>
<td>.69924</td>
<td>.70698</td>
<td>.70696</td>
</tr>
<tr>
<td>W'd Sum</td>
<td>40</td>
<td>26</td>
<td>25.90</td>
<td>26.00</td>
<td>26.01</td>
<td></td>
</tr>
</tbody>
</table>

Table 7—Regression results, data set B.

<table>
<thead>
<tr>
<th>Regression</th>
<th>b0</th>
<th>b1</th>
<th>-2LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGISTIC</td>
<td>-1.115</td>
<td>-2.6602</td>
<td>64.3675</td>
</tr>
<tr>
<td>NLIN(LS)</td>
<td>-1.1219</td>
<td>-2.6270</td>
<td>64.3682</td>
</tr>
<tr>
<td>NLIN(wtLS)</td>
<td>-1.1120</td>
<td>-2.6586</td>
<td>64.3675</td>
</tr>
<tr>
<td>NLIN (LOSS)</td>
<td>-1.1219</td>
<td>-2.6270</td>
<td>64.3682</td>
</tr>
</tbody>
</table>

Table 8—Regression results, data set C.

<table>
<thead>
<tr>
<th>Regression</th>
<th>b0</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
<th>-2LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGISTIC¹</td>
<td>-3.2956</td>
<td>-0.9826</td>
<td>-1.5666</td>
<td>0.0410</td>
<td>8049</td>
</tr>
<tr>
<td>NLIN(LOSS)</td>
<td>-3.4217</td>
<td>-1.0068</td>
<td>-1.38</td>
<td>0.0425</td>
<td>8047</td>
</tr>
<tr>
<td>NLIN(LOSS) – Midpoint</td>
<td>-2.3943</td>
<td>-1.1032</td>
<td>-2.3609</td>
<td>0.0423</td>
<td>8068</td>
</tr>
<tr>
<td>RISK</td>
<td>-3.1513</td>
<td>-0.90577</td>
<td>-1.6717</td>
<td>0.0391</td>
<td>8096</td>
</tr>
</tbody>
</table>

¹The regression reports -2LL as 10363, based on an inflated number of observations.

variables. The RISK procedure shows the poorest -2LL value, possibly indicative of convergence problems.

Data set D is an artificial data set of four plots, each with 10 tree sizes. Four variations of the same model are examined: a Compound survival model, a Midpoint model, an Interpolated model, and a Simulation model. The differences between the models arise from different assumptions for calculating the same X variables. The Compound model uses the initial values of X’s for each survival prediction, so a compound interest formula for survival is appropriate. The Midpoint model uses the average of starting and ending values for the independent variables and applies the same compound survival formula as for the previous method. The Interpolated model uses different X values for each year in the growth period; these are from linear interpolation. For both the midpoint and interpolated models, BAL/BA is not updated from the start of the period because doing so would require information on tree mortality. The Simulation model uses different X values for each year; these are iteratively recomputed based on predicted survival (for example, the computation of each year’s BAL is dependent on the predicted mortality in earlier years). The NLIN (LOSS) procedure is used for fitting in all four cases. The Midpoint model, the Interpolated Model, and the Simulation model all take advantage of knowing something about DBH growth rates or end-of-period values. If the DBH growth rates are in fact predictions from a growth model, their use does not invalidate the independence of the X values. The use of the end-of-period basal area by the Midpoint and Interpolated models is a not a statistically valid procedure, but may still produce good results (Hyink and others 1985).

The Compound survival model for data set D uses the same code as given in the appendix under the heading: “C - NLIN(LOSS)” This is a reasonable approach for data where the period lengths are similar. With period lengths in the data of 8 and 12 years, this model could reasonably be applied to a 10-year period. The Midpoint model uses the same code as indicated for “C - NLIN (LOSS), Midpoint X values.” The Interpolated X model uses linear interpolation code shown in the appendix. Code for the Simulation model is specific to this problem and relies upon a particular data structure (see appendix).

Results of fitting data set D are in table 9, where two values are shown for -2LL, the “fit” value as reported by the regression program and the “true” value that would be obtained within the context of an annual simulation. The Compound model would not be applied within an annual simulation, nor can it be evaluated for the 10-year steps where it is likely to be applied. Thus, its true -2LL is unknown. The best fit is expected to be from the Simulation model. Here the mortality predictions within the regression are identical to those made within the simulator, and a
maximum likelihood solution is chosen; we do not address any interaction with maximum density constraints that FVS may employ. The Interpolated X method has a -2LL value that is almost as good; the Midpoint model is considerably poorer. A partial explanation for the interpolated X method being so good, is that a linear DBH growth model is assumed; a nonlinear model would not interpolate as well. Another result, not shown in the table, is the total number of mortality trees that would be predicted by an annual simulation. The observed mortality was 433 trees. The predicted mortality for the Midpoint, Interpolated X, and Simulation model fits were 518, 474, and 459, respectively. There is a tendency to overpredict mortality. Normally that might be indicative of model misspecification. Here there is the additional possibility that the simulation that created the data set was somehow defective.

Summary

Fitting a fixed-period length mortality model is straightforward. The model should directly predict the probability of survival (or mortality) for the entire period, without any requirement to compound the survival rate. Any of the methods presented here should be adequate for this task, with the exception that the Logit model for proportions should not be used unless the data are easily summarized into cells with a constant mortality rate. We offer this Logit model for proportions for historical completeness, not as a viable general alternative. The LOGISTIC regression procedure is the most robust. It is the easiest to apply, should not have convergence problems for typical data sets, and should normally be the preferred methodology. Each tree is one observation, and weighting is not used. Weighted least squares, NLIN(wtLS), should also be problem-free but is a bit more work. NLIN(LOSS) is the maximum likelihood option. It should provide good solutions, although convergence may slow as the number of parameters increases. RISK is a product of its time: a clever approximation to maximum likelihood when mainframe computer resources were limited. A FORTRAN compiler is required if model transformations cannot be done beforehand in an external data structure. Finally, a fixed-length survival model can be formulated as a direct prediction, as we have done here, or it could be reformulated as a compound annual survival model for a fixed-length application. The appropriate methodology for fitting the latter formulation would be the same as for a variable-period length model, using initial X values.

For variable-length periods, the first decision is whether the model will be used in an annual simulation or in a simulation with a fixed step size of greater than 1 year. For the fixed step size, the data should be limited to growth periods of approximately that duration. The appropriate regression model is the Compound model in table 9, or the equivalent NLIN(LOSS) regression in table 8. For an annual simulation model, the best fit is assured with the Simulation model in table 9. In a real fitting exercise, the assumed DBH growth rates would be replaced by predicted growth rates (Cao 2000). As alternatives to a full Simulation model, reasonable approximations may be achieved with Interpolated X's or Midpoint X's. It is impossible to know in advance whether one of these approximate methods will be adequate. Due to the difficulty in programming the full simulation method, the use of midpoint X's may be the preferred method for model screening, and the use of interpolated X's may be adequate for final fitting. If the Midpoint or Interpolated X model is used, the Simulation model should be used to verify that the total predicted mortality is close to the observed total. This verification may be part of the validation of a completed growth simulator. Regardless of the formulation of the X's, the actual fitting method should be either NLIN(wtLS) or NLIN(LOSS).

In the foregoing, NLIN(wtLS) and NLIN(LOSS) are presented as having similar capabilities; in general, they both produce the ML solution. For the SAS system, NLIN(wtLS) seems to have better convergence properties than the NLIN(LOSS). For other statistical packages, this observation may not hold.

Acknowledgments

The Stand Management Cooperative, headquartered at the University of Washington, Seattle, provided the Douglas-fir data. Bill Wykoff, David Hamilton, Mark Hanus, and David Hann provided assistance with the RISK program. Additionally, Bill Wykoff patiently explained the possible ways for bringing mortality predictions into FVS. We thank Mark Hanus and Temesgen Hailemariam for helpful review comments.

Table 9—Regression results, data set D. The NLIN (LOSS) procedure is used for fitting in all four cases. Two values of -2LL are shown: those from the fitting routine, and the “true” -2LL values that would be obtained by using the coefficient solutions in an annual growth simulation.

<table>
<thead>
<tr>
<th>Model</th>
<th>(b_0)</th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(b_3)</th>
<th>-2LL (fit)</th>
<th>-2LL(true)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound(^1)</td>
<td>0.1956</td>
<td>-1.6602</td>
<td>-2.1140</td>
<td>0.058730</td>
<td>1606</td>
<td>1596</td>
</tr>
<tr>
<td>Midpoint(^2)</td>
<td>-2.5369</td>
<td>-1.4604</td>
<td>-2.3461</td>
<td>0.063074</td>
<td>1550</td>
<td>1596</td>
</tr>
<tr>
<td>Interpolated X(^3)</td>
<td>-4.9798</td>
<td>-0.9757</td>
<td>-1.4003</td>
<td>0.04970</td>
<td>1538</td>
<td>1544</td>
</tr>
<tr>
<td>Simulation(^4)</td>
<td>-2.9387</td>
<td>-1.0529</td>
<td>-1.7037</td>
<td>0.0437</td>
<td>1538</td>
<td>1538</td>
</tr>
</tbody>
</table>

\(^1\)Predicted annual survival rate is compounded for YIP years; X's are initial values. Suitable for 10-yr step.

\(^2\)Annual model relying on midpoint X values. Reported -2LL -1550

\(^3\)Annual model relying on annually interpolated X values.

\(^4\)Annual model, with iteratively simulated annual X variables.
References

Appendix

A - LOGISTIC
Proc LOGISTIC for data set A (40 observations)
PROC LOGISTIC ORDER=INTERNAL DESCENDING;
 MODEL Y = X1 X2;
A - REG
Logit Model for proportions, using classed formulation of data set A
Data Step
 P = NY1 / N ;
 LOGITY = LOG(P/(1-P)) ;
PROC REG;
 MODEL LOGITY = X1 X2;
 WEIGHT N ;
A - RISK
Control lines for running data set A (40 records) with the RISK program.
TEST PROBLEM 1
 1 1 3 40 8
 9999 3 5.0
4
00000
(4F2.0)
 PROB XONE XTWO
00010000200003

B - LOGISTIC
PROC LOGISTIC ORDER=INTERNAL DESCENDING;
 MODEL Y = X1 ;
 OUTPUT OUT=fileout P = PRED;
PROC TABULATE;
 CLASS X1 ;
 VAR Y PRED ;
 TABLE X1 ALL , SUM*(Y PRED) ;

B - LOGISTIC (for classed data set of 11 records)
PROC LOGISTIC;
 MODEL NY1 / N = X1 ;
B - NLIN (LS)
PROC NLIN ;
 PARMS B0 = -.5 B1 = -2 ;
 LOGIT = B0 + B1 * X1 ;
 Yhat = EXP(LOGIT) / (1 + exp(LOGIT)) ;
 MODEL Y = YHAT ;
B- NLIN (wtLS)
PROC NLIN ;
 PARMS B0 = -.5 B1 = -2 ;
 LOGIT = B0 + B1 * X1 ;
 Yhat = EXP(LOGIT) / (1 + exp(LOGIT)) ;
 MODEL Y = YHAT ;
 OUTPUT OUT=File2 P=Pred1 ;

PROC NLIN data=File2 ;
 PARMS B0 = -.5 B1 = -2 ;
 LOGIT = B0 + B1 * X1 ;
 Yhat = EXP(LOGIT) / (1 + exp(LOGIT)) ;
 VAR = Pred1 * (1-PRED1) ;
 WEIGHT_ = 1/VAR ;
 MODEL Y = YHAT ;
 OUTPUT OUT=File3 P=Pred2 ;
And optionally, one more iteration

B - NLIN(LOSS)
PROC NLIN ;
 PARMS B0 = -.5 B1 = -2 ;
 LOGIT = B0 + B1 * X1 ;
 Yhat = EXP(LOGIT) / (1 + exp(LOGIT)) ;
 IF Y = 1 then N2LLIKE = -2*LOG(Yhat) ;
 else N2LLIKE = -2*LOG(1-Yhat) ;
 LOSS = N2LLIKE ;
 MODEL Y = YHAT ;
 OUTPUT OUT=Filename P = PredY;
C - LOGISTIC
PROC LOGISTIC ORDER=INTERNAL ;
 MODEL MORT/YIP = DBH BAL_BA BA ;
 note: YIP = years in period.
 MORT=1 if tree dies, else 0.
 BAL_BA = BAL / BA
C - NLIN (LOSS), Midpoint X values.
Same as the above code, but preceded by a data step redefining the independent variables:
 BAL_BA unchanged
 F = (YIP/2 -0.5)/YIP ;
 BA = BA + F*(BAfinal - BA) ;
 DBH = DBH + F * (DBHgrown - DBH)
where BAfinal is the basal area at the end of the period, and DBHgrown is from a by-plot regression of ending DBH (for the surviving trees) versus the initial DBH.
C - RISK
RISK with SMC data for DF
1. 1. 4. 64121. 15. 0. 0.
 0. 999999. 5. 20.
8
0 0
(8F9.5)
A0BAL/B BA DBH MORT 1 1 step
 1 2 3 4 5 6 7 8
Note: This is the control file that was actually used. The resultant coefficients are in a different order than is shown in our results (Table 8).
D - Interpolated X.

Data Step

\[
\begin{align*}
&\text{BAL_BA=BAL/BA;} \\
&\text{DO I=1 to NSURV;} \quad \text{MORT=0;} \\
&\text{OUTPUT;} \\
&\text{END;} \\
&\text{NDEAD = NTREES-NSURV;} \\
&\text{if NDEAD> 0 then DO I=1 to NDEAD;} \\
&\text{MORT=1;} \\
&\text{OUTPUT;} \\
&\text{END;} \\
&\text{PROC NLIN METHOD=DUD ;} \\
&\text{PARMS B0 =-3 B1=-1 B2 =-1 B3=.04;} \\
&\text{PER_SURV = 1.0 ;} \\
&\text{Label PER_SURV='Pr\{Surv for Period\}';} \\
&\text{DO I = 1 to YIP;} \\
&\text{BAi = BA + (I-1)/YIP * (BA_FINAL-BA);} \\
&\text{DBHi = DBH + (I-1) * DBHRATE ;} \\
&\text{F = B0 + B2* BAL_BA + B3*BAi + B1*DBHi;} \\
&\text{P_mort = exp(F) / (1 + exp(F));} \\
&\text{P_surv = (1 - P_mort);} \\
&\text{PER_SURV = PER_SURV * P_SURV;} \\
&\text{END;} \\
&\text{PER_MORT = 1.0-PER_SURV;} \\
&\text{IF MORT = 1 then N2LIKE = -2*log(PER_mort);} \\
&\text{else N2LIKE = -2*log(PER_SURV); } \\
&\text{_LOSS_ = N2LLIKE;} \\
&\text{MODEL MORT = PER_mort;} \\
&\text{OUTPUT OUT=OUTF P=Pred;}
\end{align*}
\]

D - simulation model

* Collapse to one record per plot;

DATA A;

\[
\begin{align*}
&\text{SET [original data] by PLOT;} \\
&\text{ARRAY VDBH(10) DBH1-DBH10 ;} \\
&\text{ARRAY VRATE(10) RATE1-RATE10;} \\
&\text{ARRAY VN(10) N1-N10;} \\
&\text{ARRAY VTPA(10) TPA1-TPA10;} \\
&\text{ARRAY VNSURV(10) NSURV1-NSURV10;} \\
&\text{ARRAY VBAL(10) BAL1-BAL10;} \\
&\text{VDBH(GROUP) = DBH;} \\
&\text{VRATE(GROUP) = DBHRATE;} \\
&\text{VN(GROUP) = NTREES;} \\
&\text{VTPA(GROUP) = NTREES/SIZE ;} \\
&\text{VNSURV(GROUP) = NSURV;} \\
&\text{VBAL(GROUP) = BAL ;} \\
&\text{DEATHS = (TPA_TPAFINAL_SIZE);} \\
&\text{if LAST.PLOT then output;} \\
&\text{RETAIN DBH1-DBH10} \\
&\text{RATE1-RATE10} \\
&\text{N1-N10} \\
&\text{TPA1-TPA10} \\
&\text{NSURV1-NSURV10} \\
&\text{BAL1-BAL10 ;}
\end{align*}
\]

KEEP PLOT SIZE YIP TPA BA DEATHS

DBH1-DBH10
RATE1-RATE10
N1-N10
TPA1-TPA10
NSURV1-NSURV10
BAL1-BAL10;

PROC NLIN METHOD=DUD ;
PARMS B0 =-3 B1=-1 B2 =-1 B3=.04;
ARRAY VDBH(10) DBH1-DBH10;
ARRAY VRATE(10) RATE1-RATE10;
ARRAY VN(10) N1-N10;
ARRAY VTPA(10) TPA1-TPA10;
ARRAY VNSURV(10) NSURV1-NSURV10;
ARRAY VBAL(10) BAL1-BAL10;
ARRAY GDBH(10) GDBH1-GDBH10;
ARRAY GTPA(10) GTPA1-GTPA10;
ARRAY GBAL(10) GBAL1-GBAL10;

* START-UP before growth;

DO I=1 to 10;
GDBH(I)=VDBH(I);
GTPA(I)=VTPA(I);
GBAL(I)=VBAL(I);
END;
GBA = BA;
DO IYEARS = 1 to YIP;
BASUM=0;
DO I = 1 to 10;
F = B0 + B2* GBAL(I)/GBA + B3*GBA + B1*GDBH(I);
P_mort = exp(F) / (1 + exp(F));
P_surv = (1 - P_mort);
GTPA(I) = GTPA(I) * P_SURV;
GDBH(I) = GDBH(I) + VRATE(I);
BAgroup = GTPA(I) * 0.005454154 * GDBH(I)*GDBH(I);
GBAL(I) = BASUM + BAGROUP/2;
BASum = BASum + BAgroup ;
END;
GBA = BASum;
END;

* Evaluate all the losses;
N2LIKE=0;
PRDeaths = 0;
DO I = 1 to 10;
PR_SURV = GTPA(I)/VTPA(I) ;
PR_MORT = 1-PR_SURV;
PRDEATHS = PRDEATHS + VN(I) * PR_MORT;
CNT_DEAD = VN(I) - VNSURV(I);
CNT_LIVE = VNSURV(I);
THISLOSS = CNT_DEAD * (\cdot 2\log(PR_MORT)) + CNT_LIVE * (\cdot 2\log(PR_SURV));
N2LIKE = N2LIKE + THISLOSS;
END;
LOSS = N2LIKE;
MODEL DEATHS = PRDEATHS;
ID GTPA1-GTPA10;
OUTPUT OUT=OUTF P=Pred;
PROC PRINT;