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Abstract—The Forest Vegetation Simulator (FVS) lets users project
changes in forest stands associated with different initial conditions
and silvicultural treatments. Our objective is to develop tools that
help model users estimate the precision of FVS projections. A
technique called bootstrap resampling (bootstrapping) allows us to
approximate the sampling distribution of any variable simulated by
FVS. To use the technique, the original FVS tree list is sampled
repeatedly, with replacement, to build hundreds of bootstrapped
tree lists. These bootstrapped tree lists are then used to make
several hundred FVS projections. Each projection is thus based on
a resample of the original tree list. The resulting empirical distribu-
tion provides information on the sampling uncertainty associated
with the original tree list, which is important for making statistical
inferences about FVS model outcome. This paper introduces a new
bootstrapping program (FVSBoot) and describes its purpose and
potential value.

“…The oldest and simplest device for misleading folks is
the barefaced lie. A method that is nearly as effective and
far more subtle is to report a sample estimate without any

indication of its reliability…” (Freese 1967)

The Forest Vegetation Simulator (FVS) (previously known
as the Prognosis Model for Stand Development; Wykoff and
others 1982), lets model users project forest stand develop-
ment through time. To use the FVS model information about
the initial condition of a stand must first be formatted into
a tree list. A tree list typically is created from a sample of
forest conditions (stand exam or forest inventory) and is the
basis for projecting the development of vegetation in FVS.
Hence, at least two potential sources of uncertainty exist in
FVS projections and should concern anyone who uses either
the model or its results. The sources of uncertainty are (1)
variation in the parameters and model forms that build the
simulation and 2) variation in the sample data used to create
tree lists.

The FVS model is generally considered deterministic
rather than stochastic (Hamilton 1991). It is important to
remember that a single realization from a single FVS projec-
tion is only one of several possible outcomes for the simulated
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development of that tree list. To explore “stochastic” (or
“random”) variation, the FVS user should make several
projections (also referred to as “runs” or “simulations”), each
of which has the same simulation file tree list but a new
random number seed. Model outcomes generated this way
can be summarized and analyzed; descriptive statistics
include the computation of upper and lower bounds on 95
percent (α=0.05) of the FVS outcomes. We define the inter-
val between these bounds as the FVS prediction interval
(FVSPI). FVS users have been able to compute FVSPI to
characterize uncertainty associated with variation in pa-
rameters and models forms for several years.

The Issue ______________________
Results from FVS projections are, in our opinion, too often

reported without disclosing distributions of predicted out-
comes or associated statistics. At issue is the ability to
interpret the precision of FVS simulations.

FVSPI is already available to users via the RANNSEED
keyword (Van Dyck 2000). There are several reasons why
FVSPI is not often reported, many of which relate to compu-
tational intensity. One obvious reason is simply the cost of
making a large number of projections. This was especially
true prior to the 1990s when FVS users had to pay by the run
on time-share systems. Another reason is the time associ-
ated with making large numbers of projections on old com-
puters. However, the improved power in desktop systems
has made fast and cheap computing possible, and thus these
reasons are no longer insurmountable. Users can now easily
report FVSPI and simple summary statistics such as the
mean and standard deviation.

A different matter altogether is the challenge of reporting
distributions that include sampling uncertainty in FVS
projections. It hasn’t been possible to compute the effects of
sampling uncertainty because classical statistical methods
are not available to make inferences about FVS projections.
A variance estimator is not available for the results of
simulation. Our objective is to develop tools that character-
ize sampling uncertainty in FVS projections so that users
can easily report this important component of variation.

Bootstrapping __________________
Technological advances helped to resolve the problems of

time and money in making multiple FVS projections, and we
felt technology could also help us to tackle the problem of
assessing sampling uncertainty in FVS projections. Indeed,



USDA Forest Service Proceedings RMRS-P-25. 2002 165

Assessing Sampling Uncertainty in FVS Projections Using a Bootstrap Resampling Method Gregg and Hummel

a technique called bootstrap sampling (“bootstrapping”)
allows us to empirically approximate the sampling distribu-
tion of any statistic for which we want to make inferences
and thus avoid the lack of a variance estimator. In essence,
bootstrapping is data-based simulation. The statistical theory
underlying bootstrap sampling dates to the 1930s but the
computer capacity necessary to apply it to problems such as
ours has only recently become widely available. Bootstrapping
allows us to substitute computational power for theoretical
analysis (Efron 1982).

Starting in the 1970s, Efron introduced bootstrapping as
a generalized, computer-based method for estimating stan-
dard error for any parameter estimate of interest (Efron
1979 and 1982; Efron and Tibshirani 1993). Since then, a
flood of statistical research and reports on practical applica-
tions using bootstrapping has been published. The bootstrap
method has gained popularity among scientists working
with complex problems where estimating standard error
and confidence intervals is difficult, inaccurate, or impos-
sible using classical statistical methods. Because of the
generalized nature of bootstrapping, it has been applied to a
wide range of statistical applications for estimating error
rates (Chernick 1999). These include discriminate analysis,
multiple, logistic, and nonlinear regression analysis, and
complex surveys. It has also been applied in a variety of
disciplines, including psychology, all the major physical
sciences, economics, medicine, and engineering. Our goal
was to apply bootstrapping techniques to FVS simulations.
We set three specific tasks:

1. Develop a method using bootstrap sampling techniques
for assessing uncertainty in FVS projections caused by
variation in input (tree list) data.

2. Create a module compatible with Suppose (Crookston
1997) and FVS to implement the method.

3. Illustrate the method using tree lists from the Gotchen
Late Successional Reserve study on the Gifford Pinchot
National Forest in Washington State.

Methods and Results ____________
For the first task, we take our original sample of the stand

(n) and replace the unknown population characteristics with
the known empirical distribution derived from repeatedly
resampling n (Chernick 1999). Because n comprises mul-
tiple plots (that FVS pools to create a tree list), by resampling
with replacement we “reshuffle” the combination of plots
that create the FVS tree list for that stand. There are just
two steps required:

• Generate a new sample of stand conditions by sampling
the original plots with replacement to create a bootstrap
sample, also of size n.

• Compute a bootstrap mean (Θ*) from the bootstrap
sample for any FVS attribute.

By repeating this process k times, we generate a Monte
Carlo approximation of the distribution of Θ*. The standard
deviation of this Monte Carlo approximation is the bootstrap
estimate of the true standard deviation for the population.

For the second task, we wrote a program (FVSBoot) to
implement the process described above within FVS and
Suppose. Output from the bootstrap program includes inter-
vals around a set of FVS predictions. One interval available
as FVSBoot output is based on variation from the param-
eters and model forms of FVS (FVSPI). For example, we
made 201 FVS projections of stand 1022144 (using the
original tree list and random number seed plus an additional
200 projections seeding new random numbers). Figure 1

Figure 1—FVSBoot output of basal area (BA) for stand 1022144 at year 30 based on
the same initial tree list projected 200 times with a new random number each time.

Stand ID      = 1022144

    Management ID = NONE

    Model output data from FVS SUMMARY Table = Cycle( 3), BA

    FVS-PI mean       =      129.56

    Number of FVS runs       =         200

    Standard Deviation        =        1.30

    Median                    =      130.00

    Max                       =      133.00

    Min                       =      126.00

    Range                     =        7.00

 Frequency distribution for (  201 ) samples for "Cycle( 3), BA" from FVS.

 Interval  Midpoints   Counts

 --------  ---------  ---+------------------------------------------------------------

     1      126.50    12 |IIIIIIIIIIII

     2      127.50    25 |IIIIIIIIIIIIIIIIIIIIIIIII

     3      128.50    64 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

     4      129.50    51 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

     5      130.50    37 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

     6      131.50    10 |IIIIIIIIII

     7      132.50     2 |II

 --------  ---------  ---+------------------------------------------------------------
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Figure 2—FVSBoot output of the mean basal area for stand 1022144 at year 30 based on 500 bootstrapped tree lists
projected 500 times.

illustrates how the FVSBoot program displays FVSPI out-
put for square feet of basal area per acre (BA) after the third
cycle (Cycle (3)) for stand 1022144. It shows that the FVSPI
mean for BA is 129.56, and the standard deviation is 1.30.
The frequency distribution reveals that the midpoint value

in 64 of 201 counts was 128.50. Another interval available
from FVSBoot is based on variation in the sample data used
to create tree lists. We refer to it as the sampling error
prediction interval (SEPI). For comparison with FVSPI,
figure 2 illustrates how the FVSBoot program displays SEPI

Data from FVS Model:  SUMMARY STATISTICS.

    Stand ID      = 1022144

    Management ID = NONE

 FVS Variable           =  Cycle( 3), BA

  FVS-PI

    Mean                =      129.56

    Number of samples   =         201

    Standard Deviation  =       1.295

  SEPI:

    Number of samples   =         500

    Mean                =      131.87

    Standard Deviation  =       14.00

    Bootstrap Median    =      132.00

    Max outcome         =      175.00

    Min outcome         =       93.00

    Range of outcomes   =       82.00

BOOTSTRAP SAMPLING ERROR PREDICTION INTERVALS

     Variable             Mean    Percent  Lower    Upper

  ----------------      --------   -----  -------- --------

  Cycle( 3), BA          129.56     68    118.00    146.00

                                    80    114.00    150.00

                                    90    109.00    157.00

                                    95    105.00    162.00

                                    99     99.00    173.00

  -----------------------------------------------------------

 Frequency distribution for (  500 ) bootstrap samples for "Cycle( 3), BA" from FVS.

 Interval  Midpoints   Counts

 --------  ---------  ---+------------------------------------------------------------

     1       95.05     2 |II

     2       99.15     3 |III

     3      103.25     9 |IIIIIIIII

     4      107.35    13 |IIIIIIIIIIIII

     5      111.45    20 |IIIIIIIIIIIIIIIIIIII

     6      115.55    31 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

     7      119.65    44 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

     8      123.75    40 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

     9      127.85    50 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

    10      131.95    83 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

    11      136.05    54 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

    12      140.15    43 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

    13      144.25    31 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

    14      148.35    31 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

    15      152.45    17 |IIIIIIIIIIIIIIIII

    16      156.55     9 |IIIIIIIII

    17      160.65    12 |IIIIIIIIIIII

    18      164.75     4 |IIII

    19      168.85     2 |II

    20      172.95     2 |II

 --------  ---------  ---+------------------------------------------------------------
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output for BA after the third cycle (Cycle (3)) for stand
1022144. In this example, the SEPI mean is the mean
predicted value basal area per acre (BA) from 500 FVS runs
made with 500 bootstrapped samples. The SEPI mean is
131.87, and the standard deviation is 14.00. The 95 percent
SEPI for BA ranges from 105-162 ft2 per acre. Except in rare
cases, the SEPI interval also includes the variation in the
parameters and model forms of FVS. This is because in FVS
the sequence of random numbers changes with very small
changes in the tree list. Bootstrapping implies changes in
the tree list sufficient to generate new random number seeds
in FVS over multiple time intervals. For this reason the
FVSPI is also reported with the SEPI statistics in the
FVSBoot output. In figure 2, the FVSPI summary statistics
are based on 201 projections, as described for figure 1.

For the third task, we pilot-tested FVSBoot using stand
exam data from the Gifford Pinchot National Forest. We
created 200 bootstrap samples for each tree list, ran the East
Cascades variant of FVS for 50 years, and evaluated the
projected values for variation in quadratic mean diameter.
Details, results, and potential implications for two tree lists
are reported in Hummel and others (this proceedings).

Summary ______________________
The FVSBoot program offers model users a tool that can

strengthen both the analysis of potential treatment effects
on stand development and the design of forest inventories.

If users rely on only one FVS projection of a tree list to
characterize stand development, then other outcomes pos-
sible from different combinations of sample data or from
other sequences of random events are not considered. We
think it is useful to characterize “extreme” outcomes as well
as “average” projected outcomes for FVS variables of inter-
est because analyses that consider the likelihood of different
outcomes are more informative than analyses that do not.
The value of this additional information will depend on the
real or perceived risk associated with rare events. In addi-
tion to strengthening FVS analysis for management plan-
ning, FVSBoot creates the possibility for computer-based
experiments. By generating intervals around FVS output, it
is possible to determine whether differences among treat-
ments on projected stand development are statistically sig-
nificant. Further, it provides a way to investigate assump-
tions about the distribution of populations and patterns of
variation through time.

Another promising area for using FVSBoot is in the evalu-
ation of sample design. We could, for example, characterize

the standard deviation from presampling and then calculate
the desired number of samples for a given level of acceptable
error. We could also ask whether within-stratum variation is
greater or less than that among strata to test the value of
different stratification methods.

FVSBoot does not cover all potential sources of variation
(climate change, for example), nor does it answer whether
statistically significant differences are, in fact, biologically
significant. Despite these shortcomings, we offer FVSBoot
as a new tool that can provide information about important
components of uncertainty in FVS model projections.
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