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ABSTRACT. The estimation of area by land cover type is a key component of most large­
scale forest inventories. Historically, these estimates were derived from a large sample of 
points, taken from aerial photos, followed by a smaller sample of ground points, which 
were used to correct errors in the classification ofthe aerial photo points. There has been 
interest in replacing aerial photography with satellite imagery. One problem with using 
satellite imagery is the registration errors between a pixel and a plot or a point on the 
ground. The estimators and modes of inference can differ substantially depending on 
whether the sample unit is a plot or point on the ground. Two terms, tessellated and point 
paradigm, are used to differentiate between the two approaches when the ground data 
consists of plots or points, respectively. The effects of registration errors are compared 
using the two paradigms for estimating the area of land by cover type. The effects of 
registration errors on the expected value and variance of the forest area estimator under 
both the tessellated and point paradigm were studied using a simulation study, where a 
percentage of the samples had a random one- or two-pixel registration error. The 
simulation study shows that registration errors increased the variance of the estimator of 
forest area from 4% to 434%. The estimator of forest area under both the tessellated and 
point paradigm exhibited no detectable bias. In the presence of registration errors, the 
estimated variance under the tessellated paradigm tended to overestimate the true 
variance with the achieved coverage rate for a nominal 80% confidence interval ranging 
from about 81% to 86%. For sample i izes of fewer than 100 ground points, the estimated 
variance under the point paradigm tended to underestimate both the 80% confidence 
interval and the true variance, regardless of whether there were registration errors. 
Further testing showed that sample sizes of between 100 and 250 ground points were 
needed before the estimator ofthe variance under the point paradigm converged to within 
5% ofthe true variance ofthe estimator of forest area. Thus, we conclude that registration 
errors can drastically increase the variance of area estimators and the resulting confi­
dence intervals will not achieve their nominal coverage rates. In this study, the forest area 
estimator under the tessellated paradigm was clearly more robust to registration errors 
than the area estimator under the point paradigm. FoR. Scr. 49(1):110-118. 
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F OR SIMPLICITY, this article will focus on the estima­
tion of the area of forest within a larger area. The 
area of other land cover types can be estimated using 

these techniques without Joss of generality. 
In the past, the estimation of forest area was performed 

using a combination of aerial photography and ground points 
(see de Vries 1986, p. 133-140). A double sampling scheme 
was employed where n' first phase points were classified on 
aerial photos and a smaller second phase sample of n ground 
points was used to determine if the classification of the point 
on the photo matched the classification of the point on the 
ground. Thus, the second phase information was used to 
correct the estimated area from the first-phase sample. This 
approach assumes the first-phase sample points are distrib­
uted according to a multinomial distribution. This reliance on 
an assumed model means that inference under this paradigm 
is model-based (see Gregoire 1998). The statistical theory for 
this estimation problem originated in the quality control 
literature, where the proportion of photo points classified as 
forest is an inexpensive but potentially biased estimator of the 
true proportion. Ground points are a more expensive mea­
surement of a subsample of the same points used to correct 
the bias. Tenebein (1972) derives the maximum likelihood 
estimator of the proportion afforested area and its asymptotic 
variance. 

We shall refer to this approach as the point paradigm 
because the sample unit is a point on both the image and 
ground and the datum value indicates the cover type classifi­
cation. One of the key assumptions of the point paradigm is 
that a point on an aerial photograph can be co-located with its 
true location on the ground, which gives a true one-to-one 
correspondence between the first and second phase of sam­
pling. This is a reasonable assumption with aerial photogra­
phy because field crews can usually determine almf>stexactly 
where the photo point falls on the ground. 

The advent of readily available satellite imagery has had 
a number of distinct effects on the estimation of forest area. 
The first is that when the pixels of a satellite image are used, 
there is no natural one-to-one correspondence between a 
pixel and a point on the ground because the pixel contains an 
infinite number of possible points. A simple solution is to 
realize that all points in a pixel have a single classification. By 
doing this, every point within the pixel has the same classifi­
cation, and the desired one-to-one correspondence can be 
achieved without actually having to identify a single point on 
the satellite image. 

A second significant change because of the use of satellite 
imagery is that the first phase estimator of the proportion of 
the area that is forested is replaced by the true proportion. 
Card ( 1982) derives the maximum likelihood estimator of the 
proportion of forest area and its asymptotic variance making 
the adjustments for the known proportions. 

A third change brought about by satellite imagery is the 
possibility of using a completely different approach to the 
estimation problem. To do so requires that the pixels of the 
satellite image are used to tessellate the land base into an area 
frame containing N sampling units (see Sarndal et al. 1992, p. 
12). The other requirement is that the area of forest within 

each sample unit can be measured or estimated. Thus, the 
datum value for each sample unit is an area and must be 
measured on a plot rather than a point. This approach is based 
on finite population sampling theory, where the mode of 
inference is design-based (see Gregoire 1998). It will be 
referred to as the tessellated paradigm. The Forest Inventory 
and Analysis (FIA) program in the United States is a good 
example of a survey where the use of the tessellated paradigm 
is possible with some simplifying assumptions (for a discus­
sion of assumptions see de Vries 1982, p. 161-168, Williams 
and Patterson 2003, Williams and Eriksson 2002). This 
inventory uses a cluster plot of four I /60 ha fixed area plots, 
where three of the plots are located about a center plot with 
a separation distance of 36.6 m and 120°. Using 28.5 m 
Landsat pixels, the logical primary sampling unit for this plot 
is a 3 x 3 block of pixels. Williams and Patterson (2003) 
derive the estimator for the area of forest and its variance 
under the tessellated paradigm and compared the estimators 
under the point and tessellated paradigms in a simulation 
study. They found that neither estimator was consistently 
superior. The estimator under the point paradigm had the 
smallest variance when the forest/nonforest area was highly 
fragmented, and the accuracy of the satellite imagery was 
high (0.9 for the populations studied). The estimator under 
the tessellated paradigm had a smaller variance when the 
accuracy was lower and when the percentage of pixels that 
could not be reliably classified as either forested ornonforested 
was relatively large (>I 0% ). 

The use of satellite imagery is not without its own 
problems. One disadvantage is that the resolution of satel­
lite imagery is generally inferior to that of aerial photog­
raphy, increasing misclassification in some types of areas. 
The other disadvantage is the registration error between a 
pixel and a point or plot on the ground. These errors have 
been studied by Cooke (2000). He looked at the potential 
errors associated with using Landsat 7 thematic mapper 
(TM) data for the FIA program. The first source of regis­
tration errors is the error in the GPS coordinates, which 
were found to be accurate to within ±5 to 20m (16-64 ft). 
The accuracy of the coordinates depends on the time of 
acquisition, number of GPS locator satellites acquired, 
and interference caused by the forest canopy. The second 
source is the registration error of the pixel to its true 
location on the ground. These errors tend to be± 1 pixel in 
flat terrain, which is 28.5 m (93.5 ft). Steeper terrain can 
cause errors as large as 2 pixels. Cooke concludes that in 
the worst case, the total registration error in flat terrain is 
additive and nearly 50 m (20 + 28.5 = 48.5 m). Hoppus et 
al. (2001) and Riemann et al. (2001) also studied the 
relationship between the FIA ground plot and Landsat 
data. In these studies they used aerial photos, with the FIA 
plot location pin-pricked on the photo, overlaid on the 
Landsat image to correct for registration error. They found 
that even when using 3 x 3 blocks of pixels, 31.5% of all 
classification errors appeared to be due to registration 
errors between the ground and satellite data. Correcting 
these errors increased the accuracy of a forest area classi­
fication from 80% to 87%. Because only misclassified 
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ground plots were checked for registration errors, the true 
percentage of registration errors cannot be determined 
from this study. 

The common practice is to assume that errors caused by 
misclassification and registration errors are equivalent. How­
ever, the effects of registration errors are unique, and their 
influence on the estimators under the tessellated and point 
paradigms are different. For the former, registration errors 
cause the sample unit information on any given unit to be 
randomly assigned to one ofthe strata defined by the satellite 
image. Hence, the reference distribution (see Gregiore 1998) 
differs from the one defined by the area frame. This type of 
error is similar to the problem of coverage errors in the 
sampling frame (Sarndal eta!. 1992, p. 540-543), with the 
difference being that the assignment to the wrong element in 
the frame is random. For the estimator under the point 
paradigm, it is assumed that there is a one-to-one correspon­
dence between the point on the satellite map and the ground, 
with the point on the ground being the true value. In the 
presence of registration errors, this one-to-one correspon­
dence may no longer hold for all points. Thus, registration 
error under both paradigms is an additional random process 
that is not accounted for in the derivation of both the expected 
value and variance ofthe estimators. While it may be possible 
to derive new estimators that account for registration error, it 
seems unlikely that the parameters of a registration error 
model could be estimated without some additional data 
source, such as aerial photos. 

What is not clear from the literature is how these violations 
of the underlying assumptions affect the estimators and 
whether one estimator is more robust than the other. In 
practice, registration errors are often ignored, which we will 
show can have a number of undesirable consequences. Thus, 
the goals of this article are to: 

1 
~ determine the effects of registration errors on the expected 

value and variance of the estimator of forest area under 
both the tessellated and point paradigms, 

~ determine if the estimator of the variance is biased in the 
presence of registration errors, and if so, determine the 
magnitude and direction of the bias, 

~ compare the nominal and achieved coverage rates of 80% 
confidence intervals, and 

~ attempt to set some guidelines for the mjnimum sample 
size in order for the asymptotic estimators under the point 
paradigm to converge to the true mean and variance. 

These goals were accomplished using a simulation study 
that studied a series of artificial populations. The simulation 
study was loosely based on the FIA sampling design. For 
more details on the sampling design see Williams and 
Patterson (2003). 

The Estimators 
Common features to both paradigms are the following: 

Assume the area of interest is a flat plane denoted by A, with 
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known area jAj in hectares. It is assumed that the satellite map 
has already been classified and geo-referenced. For example, 
the satellite image may have been classified using the iterated 
conditional mode algorithm of Besag (1986) or a similar 
algorithm intended to achieve the best possible image. For 
our purposes, the satellite map must be fixed prior to sam­
pling. In producing the satellite map, registration errors can 
be confounded with classification errors. This can happen if 
ground plots are used for validation and training. This con­
founding will be ignored in this study. The plots used for 
estimation should not be used as training/validation plots and 
vice versa. 

Given a satellite image, the goal is to estimate the area of 
forest, denoted by AF, using the satellite imagery and a 
sample of n locations on the ground. It suffices to estimate the 
proportion of A that is covered by forest, denoted by p F• since 
AF = jAjP r Each pixel of the image is classified into one of L 
different classes. The classification scheme used here as­
sumes L = 3 classes, these being F, /,and NFto denote forest, 
indeterminate, and nonforest classes. The indeterminate class 
contains those pixels whose reflectance values do not strongly 
indicate either forest or nonforest cover. Examples of areas 
that are likely to be assigned to this class are the forest/ 
nonforest interface and areas where the tree cover is sparse. 
Methods to derive an indetermjnate class are proposed by 
Hjort and Mohn (1984). 

The Tessellated Paradigm 
The pixels of the satellite image are used to construct an 

area frame (Sarndal eta!. 1992, p. 12), with every element in 
the frame having an assigned stratum value. Under this 
paradigm it is assumed that A is divided into N plots of equal 
area, which are assumed to be the size of the primary 
sampling unit (PSU). Thus, the size of population is N =A I 
aPSU• where aPSU is the area of the PSU. This assumption 
does not account for the fact that some PSUs along the 
boundary of a population only partially cover A, but the 
number of straddler to interior PSUs is small for a large-scale 
survey, generally less than 0.5% for the FIA inventory. 

The linkage between Landsat TM pixels and the FIA 
ground plot is such that the individual pixels must be grouped 
to completely encompass the plot. Ignoring locational errors, 
a logical PSU is a 0.81 ha square comprised of9 pixels. Thus, 
the number of PSUs is N = jAj/0.81. Multistage cluster plot 
sampling results can be used to approximate the division of 
each PSU into M secondary sampling units (SSU), from 
which a sample of size m is chosen. Because the subplot 
locations are fixed and the subplots are circular, there can be 
no true randomization within the PSU. To approximate two­
stage cluster sampling, each subplot can be viewed as a 
secondary sampling unit. Assuming each subplot represents 
the area covered by a pixel, this yields m = 4 and M = 9. This 
is a higher sampling rate than for FIA, which is approxi­
mately m = 4 and M = 49 for the same size PSUs. 

The L pixel classes are used to define H strata. To reduce the 
variance of the estimator, each PSU is assigned to one of H strata. 
It may be that Lis not equal to H. One way to define strata would 
be to assign a score to each class based on whether the pixel 
appears to be forested and make stratum assignments based on 



the total of the score for the 9 pixels. For this study the L = 3 
satellite classes were forest, indetenninate, and nonforest, and 
were assigned scores 2, 1, and 0, respectively. H = 3 strata were 
used based on total scores ofO- 3, 4-14, and 15-18 points. [As 
suggested by Rao (1984), these scores were arbitrarily chosen 
prior to observing data from the simulation study.] Regardless of 
the method of assignment for each PSU, the goal is to estimate 
the proportion of forest in each stratum. To accomplish this, the 
n ground plots are treated as a poststratified sample with a 
random sample size nh in each stratum. For each ground plot, the 
proportion of the 0.81 haPSU covered by forest is estimated by 
mapping the forest/nonforest boundary on each subplot and 
measuring the proportion of the 4-point cluster plot covered by 
forest. Thus, given that the assumptions are reasonable, the 
estimator of forest area is a poststratified, two-stage cluster 
sample (Cochran 1977, Chapters 5 and 10), given by 

H r ~ 4 ~F l 
AF =IAIPF =IA[L ~ LL Phij I (1) 

h=l N L i=l j=l 4n, J 

where P~j is the percentage of forest in thejth subplot of the 
ith PSU within the hth stratum. For nh random, an approxi-
mate variance is given by !)_ s2 

(
+~ lh 

H L .!. N" 1 - ~ s~~ 
v.,[A,HAI' •·• n N [( N l 

( 
N 11 ) 1 [ 2 5 2 ] + 1--- s --s 
N n2 lh 36 2h 

(2) 

where sl2h and si, are the between cluster and within cluster 
variances for stratum h [see Appendix 2, Williams and 
Patterson (2003)]. Using results derived in Theorem 10.2 of 
Cochran (1977), it can be shown that an unbiased estimator 
for the above approximation of Var[AF] is given by 

(3) 

where s~11 and sih are the between cluster and within cluster 
sample variances for stratum h (Cochran, Chapter 10). The 
above sampling strategy and estimator will be referred to as 
the tessellated paradigm and tessellated estimator, respec­
tively . 

The Point Paradigm 
From the satellite data, the true proportion of points in 

each of the L classes is derived from a count of the pixels in 
each class divided by the total number of pixels covering A. 
Thus, the first phase estimator of the proportion of points in 
each remotely sensed class is 

N' 1t __ [ 
~ - N' 

where N' is the number of pixels in A and N f is the number 
in class l . 

The ground points are a random sample of size n for which 
both the ground and satellite classification are known. This 
allows the true multinomial proportions of all n points to be 
estimated. That the location of each ground plot for an 
inventory such as FIA has been predetermined means that the 
number of ground points that fall in each of the L classes is 
random. The ground points are broken down into classes 
based on both their ground and satellite classifications. The 
counts are denoted by nkl• where k = l, ... ,K indexes the true 
class determined on the ground and l = 1 , ... ,L is the satellite 
class, with 

This leads to the unbiased estimator of forest area 

where 

L 

AF =IAipF =IA[L1tt~F,l • 
1=1 

K 

~ F,t = nFt I Lnkt 
k= l 

(4) 

is an estimate of the proportion of the points assigned to class 
l on the satellite image that were truly forest land. Using the 
results of Card ( 1982), the asymptotic variance is 

The asymptotic variance estimator is 

L 

var[A.F] ""IAI
2

L~ F, 1(1- ~ F,t)1t1 In . (6) 
1=1 

The above sampling strategy and estimator will be referred to 
as the point paradigm and point estimator, respectively . 

Simulation Study 
There are no real data sets available where the amount of 

registration error is known or can be controlled. Thus a major 
part of the simulation study was the creation of landscape and 
satellite maps that we felt could be realistic approximations 
of actual conditions. Thus the goal was to simulate a very 
large number of artificial populations where the degree of 
registration error, strata size, fragmentation, and classifica­
tion accuracy could be varied. Then patterns could be estab­
lished between the performance of both estimators by look­
ing for similarities across all of the artificial populations. 

Each population consisted of two square arrays, one 
representing the satellite image and the other representing the 
ground "truth." Each array element represented a pixel on the 
satellite map, and the corresponding array element of the 
ground represented the actual ground condition. For simplic-
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ity, a ground element will be referred to as a pixel. The 
satellite map had three types of pixels: forested, indetermi­
nate, and nonforested. The ground map should be coded with 
the percentage of forest, but for simplicity, each pixel was 
either 100% forest or 100% nonforest. The two arrays will be 
referred to as a pair of maps. The array sizes used were always 
a multiple of 9 so that all PSUs were equal in size for the 
tessellated paradigm. 

Four aspects were involved in the simulations: fragmenta­
tion, indeterminate pixels, misclassification, and registration 
error. The starting point was to code both the ground map and 
the satellite map as completely nonforested. Fragmentation 
was accomplished by placing uniformly distributed irregu­
larly shaped patches of forested pixels within the nonforested 
region. The shape and size of the patches were random. 
Indeterminate pixels were placed on the satellite along ran­
domly selected edges of the forested patches. 

Misclassification was accomplished by changing the clas­
sification on the ground map of randomly placed and shaped 
patches of pixels. The number of such patches was fixed. 
These randomly shaped patches were generated from a "cen­
ter" point. A proportion of these misclassified patches were 
associated with randomly shaped patches of indeterminate 
pixels on the satellite map. The indeterminate patches were 
generated about the same "center" point as the associated 
misclassified patch. This was done because we felt that any 
grouping of misclassified pixels was likely to have some 
indeterminate pixels in the general vicinity. The rnisclassified 
and indeterminate patches about each point were generated 
from different random processes. 

The parameters that controlled the generation of each pair 
of maps were the number of forested and nonforested patches, 
the distribution of size and shape of these patches, the 
distribution of the number of sides to which indeterminate 
pixels were added, the number of misclassified forest and 
nonforest patches, the distribution of the size and shape of 
these patches, the distribution of the number of indeterminate 
patches associated with the misclassified patches, and the 
distribution of the size and shape of these indeterminate 
patches. 

Once a pair of maps was generated from a set of map 
parameters, 1,000 samples were drawn for both the point 
paradigm and the tessellated paradigm. A sample for the 
point paradigm was produced by drawing a simple random 
sample without replacement of size n of pixels on the ground 
and the associated pixels on the satellite map. This is equiva­
lent to a noninformative sample of ground points with the 
restriction that at most one point can be sampled from area 
covered by a pixel (for a discussion of noninformative sam­
pling see Sarndal et al. 1992 or Gregoire 1998). For the 
tessellated paradigm, a sample consists of a simple random 
sample of size n drawn from the PSUs and then from each of 
the sampled PSUs a simple random sample without replace­
ment of 4 ground pixels. For each of the 1,000 samples a 
"parallel" sample with registration errors was created by 
replacing the ground pixel with a ground pixel a distance of 
either 0, 1, or 2 pixels away. The stratification was deter­
mined using the original satellite pixels. For the tessellated 
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paradigm the same registration error was added to each 
ground sample unit within a sampled PSU. 

The parameters that controlled the registration error were 
the probability that a registration error occurred, and given 
that an error occurred, the probability that either a 1 pixel shift 
or a 2 pixel shift occurred. Once the number shift was 
determined, any pixel at that distance was equally likely 
(there are 8 or 16 pixels a distance 1 or 2, respectively, from 
a center pixel). 

The simulation was implemented in FORTRAN. Addi­
tional details of the implementation and the computer pro­
gram are available from the authors. 

The 1,000 samples were drawn from a fixed map and a 
fixed set of registration error parameters. For the map, both 
the true area of forest and the variance of the estimators was 
calculated for both paradigms. For each sample, the estimator 
AF and its sample variance were calculated for both para­
digms. From AF and its variance estimator, a two-sided 80% 
confidence interval for the percentage of forest was calcu­
lated using a t-distribution with degrees of freedom equal to 
1 less than the number of sample points. From the 1 ,000 
samples, an actual coverage rate was calculated. The differ­
ence between the sample estimates with and without registra­
tion error was quantified by calculating the ratio of the means 
of the I ,000 sample variances, which was expressed by 

R. = mean(var~AF(with registration error)]) 

mean(var[AF(without registration error)]) 

where R
1 

and RP denote using the tessellated and point 
estimator, respectively. An advantage of this metric is that R. 
gives an estimate of the increase in n needed to reduce the 
variance of an estimator when registration errors are ignored. 
Thus, it also gives a direct estimate of the cost of registration 
errors. It should be noted that for the tessellated paradigm, 
increasing n does not reduce the within-cluster variance. 
Thus, R

1 
is only a rough approximation of the increase in n 

needed to correct for the increase in the variance due to 
registration errors. 

Several populations were created that represented a wide 
range of patterns. The simulation attempts to imitate the wide 
variety of landscape patterns that might be encountered by a 
program such as FlA. Proving that any given simulated 
landscape mimics reality is next to impossible, but we con­
tend that the simulated landscapes are similar enough that 
running simulation over a varied set of input parameters 
would produce patterns of problems that arise from registra­
tion errors in "reality." Over all the sets of input parameters, 
the same pattern(s) occurred. In the Results section, these 
patterns are summarized, and the results of two of the simu­
lations are presented in detail. For several sets of input 
parameters, a parallel simulation was run with the only 
difference in the input parameters being that no indetermi­
nate pixels were created. The results from these simulations 
are also summarized in the Results section. 

The common factor of the simulations within a set was 
that the parameters used to generate the map were held 
constant. For a set of map parameters, simulations were 



run with differing amounts of registration error. For each 
set of registration error parameters, three to five 1 ,000-run 
simulations were conducted. Since the maps were gener­
ated using random processes, maps generated from the 
same parameters were not equal, thus several runs were 
completed to see how robust the results were. Three 
figures depicting the map pairs are given for each of the 
map parameter sets so the degree of fragmentation can be 
better understood. The first is the satellite map (Figures la 
and 2a). On these maps there are three types of pixels: 
forested, indeterminate and nonforested. The second is the 
ground map (Figures lb and 2b), which contain only 
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forested and nonforested pixels. The third is a map of the 
classification of the 3 x 3 pixel blocks (Figures 1 c and 2c ). 
Again, there are three types of pixels on these maps 
indicating the strata assignment of the PSUs for the tessel­
lated estimator. The first two maps are three pixels larger 
on all sides than the third map to accommodate registra­
tion errors. The parameters used to create these sets of 
maps will be discussed in the next section. 

Results 
First we present the results that were common to all the 

simulation runs, then the details from two specific popula-
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Figure 1c 

0 
0 ,... 

0 
<X) 

0 
<0 

0 ..q-

0 
C\1 

0 

0 20 40 60 80 100 

Figure 1. (a) Satellite map, (b) ground truth map, and (c) map of strata classification for 3 x 3 tessellation, for where 
the tessellated estimator has a smaller variance. There is a smaller degree of fragmentation than in Figure 2. Note 
the larger patches on nonforest in 1b t han in Figure 2b. Forest is light gray, indeterminate is white, and nonforest 
is dark gray. 
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Figure 2. (a) Satellite map, (b) ground truth map, and (c) map of strata classification for 3 x 3 tessellation, for a set 
of parameters where the point estimator has a smaller variance. Note the small number of indeterminate pixels in 
the satellite map (a) and the high degree offragmentation in the ground map (b). Forest is light gray, indeterminate 
is white, and nonforest is dark gray. 

tions are given. The first population depicts a situation where 
the tessellated estimator had a smaller variance than the point 
estimator when no registration errors existed. The second 
population depicts a situation when the point estimator had 
the smaller variance. 

In none of the simulations was there a detectable bias in the 
presence of registration errors for either the tessellated or 
point estimators of A F· The most extreme case of registration 
error used a 50% chance of a sample point having a registra­
tion error. For this case, if a point had an error there was a 70% 
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chance the location was shifted by 1 pixel and a 30% chance 
the point was shifted 2 pixels. Because there was no detect­
able bias associated with registration errors, the variances of 
the estimators are the primary concern. 

When the number of indeterminate pixels was small, the 
classification accuracy was high in both the forested and 
nonforested map classes and the sample size was 70, there 
appears to be a substantial bias in the variance estimator 
under the point paradigm. This is manifest in the actual 
coverage rate for the confidence interval being less than 80%. 



One reason for this is that when the accuracy of the image is 
very high, a significant percentage (as high as 7-10%) of the 
simulations had a variance estimate of zero (if all the pixels 
within a sample are correctly classified then the sample 
variance will be zero) . The bias decreased as the sample size 
was increased. However, for the coverage rates to approach 
the nominal 80% value, the sample size had to be increased 
sometimes to as high as n = 250. One of the most significant 
findings was that for any amount of registration error the 
point estimator always had a greater percentage increase in 
the mean of the variance estimates than the tessellated esti­
mator. 

As pointed out in Williams and Patterson (2003), the point 
estimator can have a smaller variance than the tessellated 
estimator when the classification accuracy is high in the 
forested and nonforested strata, size of the indeterminate 
strata is small, and the forest area is highly fragmented. When 
there is a high degree of fragmentation , the mean of the 
sample variances for point estimator showed large increases 
in variance for even small amounts of registration error (as 
little as 5% ). While the amount the variance increased due to 
registration errors also increased with an increase in frag­
mentation for the tessellated estimator, the increase was 
smaller. 

With respect to the confidence intervals, the presence of 
registration errors always increased the actual coverage, but 
never by more than 4%. When the classification accuracy was 
high in both the forested and nonforested strata and the size 
of the indeterminate class was small, the actual coverage rate 
for the point paradigm was much less than 80%. This is 
probably caused by the presence of samples which have zero 
sample variance. 

As mentioned in the simulation section, for several sets of 
input parameters, another simulation was run wjt:h the same 
input parameters, except the parameters for generating the 
indeterminate pixels were set to zero. For both estimators 
there was at least some increase in R when there were no 
indeterminate pixels. At all levels of registration error the 
amount of increase in R for the point estimator was greater 
than for the tessellated estimator. 

Tessellated Estimator Had Smaller Variance 
In this example, the degree of fragmentation was smaller 

than in the next example. This was accomplished by using a 
smaller number of patches of forest which are larger in size. 
The other main differences were that the number of indeter-

rninate pixels, and the number of misclassified pixels was 
greater than in the next example. The number of indetermi­
nate pixels was approximately 13%, with the number of 3 x 
3 pixel blocks (PSUs) classified as indeterminate being 30% 
(Figures la--c) . Approximately 21 % of pixels were classified 
as forested, while the percentage of 3 x 3 blocks classified as 
forested was approximately 12%. The variance of the point 
estimator was approximately 50% larger than the variance of 
the tessellated estimator. For each pair of registration error 
probabilities, results for one of the five runs of l ,000 samples 
are presented (see Table 1 ). The results for the other runs were 
within two to three percentage points for the nominal cover­
age rates and within 0.005-0.01 for R

1 
and 0.03-0.04 for R . 

The actual coverage rates for the point estimator were slightfy 
lower than the nominal rate. At all levels of registration error 
RP was consistently greater than Rr 

Point Estimator Had Smaller Variance 
In this example, there was a high degree of fragmentation, 

and only 3% of the pixels were classified as indeterminate 
(see Figures 2a and 2b). Forty-five percent of the pixels were 
forested and the remaining 52% nonforested. The high de­
gree of fragmentation led to a high percentage (33%) of 3 x 
3 pixel blocks being classified as indeterminate (see Figure 
2c), while 29% of the 3 x 3 pixel blocks were classified as 
forested. For each pair of registration error probabilities, 
results for one of the five runs of l ,000 samples are presented 
(see Table 2). The results for the other runs were within two 
to three percentage points for the nominal coverage rates and 
within 0.02-0.03 for R1 and 0.04-0.05 for Rp. Note how 
liberal the confidence intervals were for the pomt estimator. 
This occurred because there were a large number of samples 
(7%-9%) where the point sample variance was zero. When 
there were no registration errors, the point estimator's vari­
ance was approximately 12% smaller than the variance of the 
tessellated estimator. However, when there was even a small 
percentage of registration errors (5 % of samples) , the mean 
of the sample variance for the tessellated estimator was 
consistently smaller than the mean of sample variance for the 
point estimator. Another point of interest is the conservative 
coverage of the tessellated estimator when there were regis­
tration errors. 

Discussion and Conclusions 
An important observation is that across all the simulated 

populations, in the presence of registration errors the vari-

Table 1. Statistics for simulation runs where the design-based estimator has a smaller variance when no 
registration errors are present. The first column is the probability a sampled unit has registration error. The second 
column is the probability that a unit with registration error has a 1 pixel shift. The third through sixth columns are 
the percentage of confidence intervals that contained the true percentage of forest. The last two columns contain 
the ratios defined at the end of the simulation study section. 

Probability sample 
unit is shifted 

5 
10 
20 
50 
50 

Probability shift is 
I pixel 

100 
100 
100 
100 
70 

% actual coverage for an 80% nominal coverage 

Tessellated Point 
Unshifted Shifted Unshifted 

80.1 81.0 77.8 
80.7 81.1 77.2 
79.3 80.7 76.9 
79.6 83.3 75 .8 
79.6 83.8 75 .8 

Shifted 
77.5 
78.4 
78.5 
76.2 
76.6 

R, 
1.02 
1.04 
1.07 
1.20 
1.29 

R 
1.06 
1.13 
1.25 
1.61 
1.70 
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Table 2. Statistics for simulation runs where the model-based estimator has a smaller variance when no registration 
errors are present. The first column is the probability a sampled unit has registration error. The second column is 
the probability that a unit with registration error has a 1 pixel shift. The third through sixth columns are the 
percentage of confidence intervals that contained the true percentage of forest. The last two columns contain the 
ratios defined at the end of the simulation stud section. 

% actual coverage for an 80% nominal coverage 

Probability sample 
unit is shifted 

Probability shift is 
l pixel 

Tessellated Point 

Unshifted Shifted Unshifted Shifted R, R 
5 

10 
20 
50 
50 

100 
100 
100 
100 

80.4 80.7 71.7 73.2 
74.5 
74.2 
77.9 
76.9 

1.04 
1.07 
1.17 
1.36 
1.54 

1.29 
1.56 
2.22 
3.68 
4.34 

81.6 82.0 70.2 
80.6 83.0 71.2 
78.2 82.6 7 1.4 

70 80.0 86.2 71.1 

ance of the tesselated estimator was smaller than the variance 
of the point estimator. Thus, any advantage the point para­
digm may have is probably lost when registration errors are 
not accounted for. While it is possible that this pattern could 
be reversed in some situations by reducing the size of the 
second phase sample (m = 4 and M = 9 in this study), we sti ll 
conclude that the tessellated estimator is generally more 
robust in the sense that it is not affected as severely in the 
presence of registration errors, even for small sample sizes. 
A somewhat surprising result was that the tessellated para­
digm variance estimator performed reasonably well, although 
the effects of registration errors were not considered in the 
derivation. 

Another important point is that there are two obvious 
methods of counteracting the increase in the variance of 
estimators due to registration error. One is to increase the 
number of ground samples, which is extremely costly. The 
other is to correct for the registration errors between the 
satellite and ground data. One way this has been accom­
plished is to use an aerial photo, with the ground plot pin­
pricked and overlaid on the satellite image (Befort and Mellin 
1994). The center of the plot can then be moved to tile correct 
pixel when there is an obvious registration error. This pre­
sents a rather humorous predicament because one of the 
primary selling points of using satellite imagery was that it 
would be less expensive than acq uiring aerial photography. 
However, a careful cost-benefit analysis may show that the 
most effective method of reducing the variance could be to 
acquire aerial photography in addition to satellite imagery. 
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