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ABSTRACT. Knowledge of the canopy structure is essential to improving our understanding
of forest structure. While numerous sampling techniques have been developed to estimate
attributes of the forest canopy, these require either additional measurements or a sampling
design and measurement technigues that differ substantially from the ones that are used to
estimate more traditional forest attributes, such as basal area, number of stems, or volume.
Theroot ofthe problemisthatthe sample elementforadesign that estimates canopy attributes
is the tree crown, whereas the sample element is the bole for a design that estimates an
attribute such as basal area. For example, if a fixed-area plot is used to estimate basal area,
canopy cover cannot be estimated using the same design because a portion of the plot
invariably is covered by the crowns of trees whose boles lie outside the plot boundary and
would not be included in the sample under the standard sampling design. In this study, a
technique called “morphing” is used to model the trees outside the plot boundary. For the
purpose of comparison, the morphing technique is used to estimate canopy cover using data
from a circular fixed-area plot, and this technique is compared with both dot count and line
intersect sampling using a simulation study and two small forest populations. For the study,
the populations were sampled using circular fixed-area plots with radii ranging from p = 3.05-
6.10 m (10-20ft) andline lengths ranging from L=3.05-22.9 m (10-75ft). For both populations,
the bias of the canopy cover estimator derived from the morphing technique was negligible.
The estimatorbased on line intersect sampling is design-unbiased, but it generally had amuch
larger variance than the one based on the morphing technique. The dot count method
consistently had the highest variance. For. Sci. 49(2):235-246.
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r I Y HE PRIMARY OBJECTIVE of most forest inventories
has been to assess standing timber resources. Thus,
the sample elements are usually the tree bole with

the criterion for inclusion in the sample being distance

from the sample point and a minimum diameter measured
at 1.37 m above the ground. Because the probability of
inclusion of a tree bole can be determined, design-unbi-
ased and efficient estimators exist for making inferences
about attributes associated directly with the bole. Ex-

amples are diameter, basal area, growth increment, height,
age, percent defect, and volume. Another important class
of forest attributes is the one related to the forest canopy.
Forest canopy structure is of interest because it controls a
host of different processes including heat and mass trans-
fer; temperature and moisture of soils (Campbell and
Norman 1998); quantity and quality of light reaching the
forest floor (Jennings et al. 1999); animal habitat, under-
story regeneration (Lowman and Nadkarni 1995); and the
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Figure 2. Alternative interpretation of the torus edge correction
procedure. The data represent the location and crown diameter,
which are replicated eight times, and a grid of plots is formed.
Analyses are carried out on the center plot.

mapping to be an effective method of edge-correction in
the field of spatial modeling. Its utility is limited in
forestry applications to applications where rectangular
plots are used. No equivalent method exists for circular
plots, which are common in forest survey. Williams et al.
(2001b) found the simplicity of the torus mapping appeal-
ing and derived a technique, called morphing, for trans-
forming the data on a circular fixed-area plot into a square
plot of equal area. The logical solution tG estimating
canopy related attributes is to morph the data from a
circular fixed-area plot to a square one and then use torus
mapping to model the crowns of those trees whose boles
fell outside the circular fixed-area plot boundary. The
measurement taken on each plot is the area of the plot
covered by the canopy, so the dimension of the plot and the
dimension of the attribute are both two-dimensional.

To present the morphing technique. both circular and
square fixed-area plots have to be defined as follows: Define
two spaces, the first being all points contained within a circle
C with the origin of the polar coordinate system as its center
and a radius of p. The other space, D, is all points contained
by a square of equal area, with its center also at the origin. A
formal definition of the spaces is

C = {(xy)x? + 2 _<p2 1

and

s

D= (x.y):\x} < i
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The morphing transformation maps any point (x,y) €
Cintoa point (x’,y’) € D. Two premises were used to define

238  Forest Science 49(2) 2003

the morphing transformation. First, if the point (x,y) € Clies
onacircle with the origin as its center and a radius » <p, then
its transformed point (x’, y') € D lies on a square with the
origin as its center and with an area (nr?) equal to that of
the circle. This ensures that the number of units/area is
preserved. Second, the ratio of the distance along this
circle from (r,0) to (x,y) divided by the circumference 2
mr is equal to the ratio of the distance along the perimeter
of the square from (rr/2.0) to (x”. y’) divided by the
perimeter of the square 4rn. This ensures that membership
in any quadrant is preserved.

The equations for the transformation are derived from the
equations that define the two premises and are
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where Im.b](e) 15 1 fora <6 <b, 0 otherwise and the following
substitutions are defined:

s=ymx’ +v7) (3)

0 :{tanl Ly nl(wl[),(.\')][l g )]

X - 0

. 4)
{tanl A +2n?|1(0‘m,(x)1( Y (
X o

where 6 is in radians. These equations appear to be quite
complicated because they are fragmented by many indica-
tor variables. This occurs because while a circle can be
easily defined by a single equation (x =rcos 6, y =rsin )
a square requires one equation for each side. Figure 3
provides a graphical representation of the morphing tech-
nique where a circle of radius p =1 contains 200 points.
The arrows on the figure represent the direction and
distance each point is moved in the transformation from a
circular to square plot.

In most cases it is desirable to transform the morphed and
replicated data back to a circular plot. This will be referred to
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Figure 3. Movement of points for the morphing technique.
Arrows represent the distance and direction of the change in
location for the points within the square plot.

as demorphing. The inverse of the morphing technique to
transform a point (x’, y” ) on a square plot back into a circular
plot of radius p is given by:
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where the angle ' is the angular displacement of the point
(x’,y”) in polar coordinates.

The following algorithm is proposed for estimating canopy
cover on a circular plot of radius p:

1. Morph the (x, y) coordinates of the tree locations on
circular plot and their crown diameters into a square plot
with coordinates (x’,y’ ) using Equations (1) and (2).

2. Replicate the morphed plot eight times and tile the infor-
mation in accordance with the torus edge-correction
method.

3. Demorph the replicated plot data back to a circular plot of
radius 2p.

4. Estimate the canopy cover on the original plot of radius p
by calculating the proportion of the plot covered by tree
canopies. This estimate uses the original crowns found on
the plot in conjunction with the crowns provided by the
replicated data, which model the portion of the forest
canopy that was not sampled by the original circular fixed-
area plot. This is referred to as the morphed-torus estima-
tor Zyr .

Williams et al. (2001b) show that if points (x,
Y- (x,,.¥,,,) are an independently and identically distrib-
uted (iid) sample from an Uniform distribution over C,
then the morphed points (x/,y;)....(x/,,y, ) are an iid
sample from a Uniform distribution over D. The Uniform
distribution of points is equivalent to saying that the m
points are a realization of a stationary Poisson process
(Stoyan et al. 1995, p. 102) with intensity A = m/ |A]. This
model has been used to describe tree counts and locations
in numerous publications (e.g., Lapp1 1991, Mandallaz
and Ye 1999, Williams et al. 2001a). Further results on
transforming the points of a Poisson process are discussed
by Resnick (1992, p. 308-321). Some of the shortcomings
of this modeling process are that the results only hold for
stationary Poisson process models, and the size of indi-
vidual tree crowns is not accounted for in the morphing
transformation. Thus, it is possible for some large trees to
be placed closer together than would normally occur.
Marked-point process models are a class of models that
could account for the size of the crowns in relation to the
locations of the trees (see Penttinen et al. 1992). Unfortu-
nately, fitting these models requires large data sets as well
as adjustments to account for plot and population bound-
aries (Stoyanetal. 1995, p. 133-136). Williams et al. 2001
studied the performance of the morphing transformation
for estimating canopy cover when the distribution of
points was either more regularly spaced or more clustered
than points from a Uniform distribution. They found that
the differences between actual and estimated canopy cover
never exceeded 1.3%, even when the spatial distribution
of tree locations was more clustered than would be found
in any real forest population. Thus, it seems reasonable to
assume that estimates derived from this technique will be
sufficiently accurate for most purposes.

The morphing technique has advantageous properties
related to point process models. Thus, it could be used as a
tool for studying the spatial properties of the trees on a
circular fixed-area plot using standard spatial analysis tech-
niques (e.g., Cressie 1993). However, it is felt that many
potential users are more interested in estimating the true
canopy cover, denoted by Z., for a specific area using a
sample of n fixed-area plots. The study area may be a forest
stand or it could be the land area represented by a group of
pixels on a satellite image. Thus, properties of the morphing
estimator Zy; must be addressed in the context of survey
sampling. In deference to Gregoire (1998), aterse description
of the properties of Zyr is follows.
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Figure 5. Plan of the projected crown diameters for the New
Jersey data. The diameter of each circle proportional to the
model generated crown diameter.

features. The first is the difference in forest structure
between the lower left corner and rest of the stand. Thus,
it is probably not reasonable to assume that any stationary
point process model (Stoyan et al. 1995, p. 102) ad-
equately describes this population. The second feature is
the large number of overlapping crowns. These are prob-
ably due to forking of the main stem below breast height.
The other feature of interest is that a visual inspection
suggests numerous areas where the tree locations run
parallel to the x-axis, though no pattern can be confirmed.

Pielou’s index of nonrandomness was 1.04, which fell
within the confidence interval (0.91, 1.09), indicating that
there was no reason to reject the assumption of complete
spatial randomness. However, it seems unlikely that any
of the summary statistics of spatial pattern are meaningful
due to the obvious nonstationarity of the point process.

The true canopy cover was approximately 35.6% and
48.8% for the Fraser and New Jersey data sets, respec-
tively. These values were calculated by superimposing a
fine dot grid over the population. At each location on the
grid, the crown information was used to determine if the
location was covered by a crown. While it is impossible to
assess exactly how accurate this approximation is, further
decreasing the grid spacing did not change true crown
cover to four significant digits.

An important point to note is that the variance of all
three canopy cover estimators is identical when the cover
is either 0 or 100% (e.g., Zpor = Zyys = Zygr = Oor 1 for
every measurement) regardless of spatial arrangement,
basal area, number of stems, etc. Thus, forest populations
where the canopy cover ranges from approximately 30 to
70% are likely to show the greatest differences in the
performance of the estimators.

Simulation Study

A Monte Carlo simulator was used to compare LIS and the
morphing technique. The dot-count technique was not in-
cluded in the simulation study because a simple closed form
solution exists for the mean and variance of Zpor. The
simulation study was designed to draw a large number of
samples, where each sample consisted of n = 1 plot or line
randomly established within the boundary of the population.

The goal was to assess if the difference in the mean square
of Zys and Zyy was sufficiently large to conclude that
Zyr would be superior in terms of mean square error in
most field applications. The simulator established random
coordinates within the boundaries of each data set at which
both a line of length L and a circular plot of radius p were
located. The L values ranged from 3.05-22.9 m (10-75 ft) in
1.52 m (5 ft) increments. The p values ranged from 3.05-
6.1 m (10-20 ft) in 0.305 m (1 ft) increments. While plot
radii in the 3.05 m range are smaller than would be used in
most forestinventories, these small fixed-area plot sizes were
chosen to place the morphing technique at the greatest disad-
vantage because they create a large boundary to interior ratio
as well as a small number of trees from which to model the
surrounding condition.

The locations and crown diameters of all trees within
this plot were recorded. For the morphing technique, the
data from the circular sample plot were morphed into a
square plot, torus-mapped and demorphed back into an
edge-corrected circular plot of radius 2 p. The canopy
cover was approximated by establishing a two-dimen-
sional grid with the width of each cell being approximately
0.15 m. Cells which were covered by a tree crown were
given a value of 1, those not covered a value of 0. Canopy
cover was calculated by summing the values for cells
within the morphed and torus edge-corrected sample plot
of radius p. Concurrently, at each of the random coordi-
nates, a line with fixed orientation and length L was also
established. The proportion of the line covered by tree
crowns was estimated using the same two-dimensional
grid. To avoid biases associated with sampling along the
boundary of the population, two different techniques were
used depending on the estimator. For Zyr , the torus edge-
correction was applied to the entire population, while for
Z,s, any line that intersected the boundary was mapped
so that it re-entered the boundary on the opposite side.

To give some indication of the variance of the canopy
cover estimators in relation to the estimators of other more
common forest attributes, such as basal area or volume,
the total number of trees (N) was simultaneously estimated
using the sample of trees derived from the circular fixed-
area plot. The estimator used was

where K is the number of trees tallied on the plot and 7, is the
inclusion probability for tree k. The simulation was repeated
M = 20,000 times. The mean and standard error of canopy
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Figure 9. Empirical sampling distribution generated from 1,000
samples drawn from the New Jersey data set. The line length and
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location and stem- and crown map approximately 6 trees.
(For the Fraser data set, an average of approximately 5.6
trees were sampled on each plot when the plot radius was
p=3.05m.) ) R

When comparing Zpor and Zj s, the relative efficiency
ranged from RE = 1.1-10.3, with the smallest RE occurring
for the New Jersey data set. The most interesting point is that
Z, s was only slighty more efficient for the New Jersey data
set, with the maximum RE being 1.9 for L = 22.9 m. Thus, it
can be concluded that situations exist where Z;;5 may not
perform much better than z poT -

Discussion

The results of this study and experience with numerous
other mensuration problems suggests that it is usually wise to
match the dimension of the attribute and the measurement.
Thus, when attempting to estimate area, a sampling strategy
based on a fixed-area plot (two dimensions) will probably be
superior to a sampling strategy that employs either lines or
points, though counterexamples exist (Williams and Patterson
2003). This observation also helps to explain why the dot
count canopy cover estimator tends to have a much higher
variance than the LIS estimator given an equal number of
sample points (r). Whether this observation can be extended
to other applications where either points, lines, or fixed-area
plots can be used (e.g., estimating coarse woody debris or
other canopy related attributes) cannot be determined with-
out further study.

One of the advantages of the morphing technique is that it
can be used to estimate canopy cover without actually mea-
suring the crown diameters on the plot. Numerous authors
(e.g., Gill et al. 2000, Gering and May 1995, and references
therein) have found that crown diameter is strongly corre-
lated with diameter at breast height, and models already exist
for most common species. These models can also be used in
conjunction with the morphing technique to estimate canopy
cover for existing stem-mapped data sets. An example of
such a data set is the approximately 120,000 forested ground
plots measured by the FIA program. Another advantage of
this technique is that because fixed-area plots and the pixels
of a satellite image are both two dimensional, the linkage
between a canopy cover measurement on a fixed-area plot
and the classification of a pixel or group of pixels is likely to
be better than the linkage between a LIS estimate and the
same image.

The primary disadvantage of the morphing technique is
determining how to best model plots that straddle either a
forest/nonforest boundary or stand boundaries where the
structure of the stands is dissimilar. Provided the boundary
is relatively straight, the data can be rotated on the circular
plot so that the boundary is maintained within the repli-
cated data set, and the crowns that would cover the
nonforested portion of the plot could be deleted. Another
solution would be to morph the circular plot into a square
and reflect the trees across a randomly placed line as
described in Radtke and Burkhart (1998). A plot that
covers acorner pointorirregular boundary will prove to be
problematic with no clear method for implementing the










