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ABSTRACT. Knowledge of the canopy structure is essential to improving our understanding 
of forest structure. While numerous sampling techniques have been developed to estimate 
attributes of the forest canopy, these require either additional measurements or a sampling 
design and measurement techniques that differ substantially from the ones that are used to 
estimate more traditional forest attributes, such as basal area, number of stems, or volume. 
The root ofthe problem is that the sample element for a design that estimates canopy attributes 
is the tree crown, whereas the sample element is the bole for a design that estimates an 
attribute such as basal area. For example, if a fixed-area plot is used to estimate basal area, 
canopy cover cannot be estimated using the same design because a portion of the plot 
invariably is covered by the crowns of trees whose boles lie outside the plot boundary and 
would not be included in the sample under the standard sampling design. In this study, a 
technique called "morphing" is used to model the trees outside the plot boundary. For the 
purpose of comparison, the morphing technique is used to estimate canopy cover using data 
from a circular fixed-area plot, and this technique is compared with both dot count and line 
intersect sampling using a simulation study and two small forest populations. For the study, 
the populations were sampled using circular fixed-area plots with radii ranging from p = 3.05-
6.10 m (10-20ft) and line lengths ranging from L= 3.05-22.9 m (10-75ft). For both populations, 
the bias of the canopy cover estimator derived from the morphing technique was negligible. 
The estimator based on line intersect sampling is design-unbiased, but it generally had a much 
larger variance than the one based on the morphing technique. The dot count method 
consistently had the highest variance. FoR. Sc1. 49(2):235-246. 
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T HE PRIMARY OBJECTIVE of most forest inventories 
has been to assess standing timber resources. Thus, 
the sample elements are usually the tree bole with 

the criterion for inclusion in the sample being distance 
from the sample point and a minimum diameter measured 
at 1.37 m above the ground. Because the probability of 
inclusion of a tree bole can be determined, design-unbi­
ased and efficient estimators exist for making inferences 
about attributes associated directly with the bole. Ex-

amples are diameter, basal area, growth increment, height, 
age, percent defect, and volume. Another important class 
of forest attributes is the one related to the forest canopy. 
Forest canopy structure is of interest because it controls a 
host of different processes including heat and mass trans­
fer; temperature and moisture of soils (Campbell and 
Norman 1998); quantity and quality of light reaching the 
forest floor (Jennings et al. 1999); animal habitat, under­
story regeneration (Lowman and Nadkarni 1995); and the 
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reflected light which is the source of remotely sensed data. 
An example of a canopy-related attribute is canopy cover, 
which will be the focus of this study and is defined as the 
proportion of the forest floor covered by the vertical 
projection of the tree crowns (Jennings et al. 1999). 

For a large-scale survey that uses circular fixed-area 
plot sampling, such as the Forest Inventory and Analysis 
(FIA) program of the United States (see Frayer andFurnival 
1999), two problems exist when estimating canopy cover 
using standard forest inventory plots. The first is that when 
estimating canopy cover, the elements of the population 
are the tree crowns rather than the tree boles. Thus, an 
unbiased estimator of the proportion of a fixed-area plot 
covered by tree crowns cannot be obtained without includ­
ing those trees whose boles fall outside the plot boundary, 
but whose crowns cover a portion of the plot. The bias 
associated with ignoring these crowns was studied by 
Nelson et al. (1998) . The other problem is that canopy 
cover is the sum of the individual crown areas minus the 
intersection of their overlapping crown areas, rather than 
the sum of the crown areas . Thus, a sample design whose 
basic sample elements are tree boles is not appropriate for 
the estimation of canopy cover. Standard sampling de­
signs, such as dot counts and line-intersect sampling, are 
viable alternatives. However, these alternatives can add 
considerable time and expense to a survey. Another alter­
native is to use a model to predict canopy cover from other 
variables measured on the plot (Crookston and Stage 
1999, Gill et al. 2000). The primary concern with this 
approach is that estimators based on model predictions can 
have a very high mean square error in situations where the 
models do not adequately describe the forest condition. In 
this study we review some canopy cover sampling tech­
niques and test a technique, called the morpb'lng tech­
nique. This procedure is used to model the forest condition 
surrounding the plot. This information is then combined 
with the actual plot measurements to model the missing 
canopy information along the plot boundary. While infer­
ence for this sampling strategy relies on a model to de­
scribe the forest condition beyond the plot boundary, the 
reliance on models is not to the same degree as the 
regression models proposed by Gill et al. (2000) and the 
similar analytical result used by Crookston and Stage 
(1999). Another advantage of this procedure is that it can 
be used in the estimation of most canopy-related attributes 
using traditional circular fixed-area plot sampling without 
collecting any information beyond the plot boundary. 
Thus, it could be used in conjunction with techniques, 
such as those described in Song et al. (1997), to model 
canopy structure from traditional survey data. The proper­
ties of this new technique are illustrated and compared to 
dot count and line intersect sampling in a simulation study 
where percent canopy cover is estimated using two small 
forest populations. Throughout this study, some addi­
tional observations are made regarding the dimension of 
the plot in relation to the dimension of the elements that 
make up the population of interest. 
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Review of Estimation Techniques 
When estimating canopy cover on a forested tract, 

denoted by A, the elements of the population are the set of 
connected crown masses within the boundary of A. The 
attribute to be estimated is two dimensional (area). A 
number of different techniques exist for estimating canopy 
cover. The simplest is based on a count of points or dots . 
Jennings et al. (1999) provide an overview of the dot­
count technique and summarize the results of numerous 
studies. For this technique, the proportion of the plot 
covered by the canopy is estimated by visiting n randomly 
located points within the plot. At each point, a vertical 
measurement is taken to determine whether or not a verti­
cal line from the point would intersect a tree crown. The 
indicator variable 8 is given the value of 1 if the point is 
covered by a tree's crown and a value 0 otherwise. The 
dot-count estimator of canopy cover is 

n 

i DOT = L 8 j I n. 
j;l 

The mean and variance of Z0 m can be calculated by 
assuming that 8 is distributed as a binomial random vari­
able. Each measurement is taken at a point so the dimen­
sion of each plot is zero. Recommendations for the number 
of sample points vary, with suggestions for as few as n = 
20 (e.g., Ganey and Block 1994) existing in the literature. 
The reality is that n should probably be much larger. As 
pointed out in Jennings et al. ( 1999), "With 20 observa­
tions per plot, an estimated canopy cover of 50 percent has 
95 percent confidence intervals that range from less than 
30 percent to in excess of 70 percent. Any estimate made 
with fewer than 100 observations will be of very little 
utility in distinguishing between forest plots with all but 
the grossest differences in canopy cover." While this 
technique is straightforward to implement, and individual 
measurements are quick and easy, the overall cost can still 
be quite high if estimates of reasonable precision are 
required. For this reason, the dot-count technique will play 
a diminished role in this study. Instead, the properties of 
the binomial distribution will be used to make compari­
sons between the dot-count technique and the two methods 
described below. 

The standard alternative to the dot-count technique is 
line-intersect sampling (LIS). Thi s technique relies on the 
random placement of lines within the forested area A. In 
practice, a linear tape is randomly located, and the edges 
of the connected crown masses are used to determine the 
length of the tape covered by the canopy. Each measure­
ment is the length of a line so each plot is one-dimensional. 
Results for LIS using design-based inference have been 
presented by numerous authors, with Valentine et al. 
(2001) discussing LIS as an application of rectangular 
fixed-area plot sampling where the width of the plot goes 
to zero. Gregoire ( 1998) provides a broad overview and 
dispels the popular notion that the orientation of the lines 
must be random. Kaiser (1983) derives the estimators for 



;. 

LIS taking the traditional design-based approach to infer­
ence, where n lines of fixed total length Land either fixed 
or random orientation are located by some point (usually 
the midpoint) on the line that is determined in accordance 
with a uniform distribution over A. An advantage of LIS is 
that the length of the line can be very long, which tends to 
decrease the variance between the n lines and produce 
precise estimates in comparison with the dot count 
technique. The LIS estimator for the proportion of A 
covered by the canopy with n lines with fixed orienta­
tion is given by 

A 1 n m 

Zus =-~ ~ l 
nL..L.... L 11 

1=1 j=l 

where liJ is the length of the intersection ofthe ith line with the 
jth connected crown mass and mi is the number of connected 
crown masses intersected by the ith line. For our purposes, the 
orientation of the line will be fixed. 

O'Brien (1989) performed a field test of LIS and used the 
method of running means (Kershaw and Looney 1985) to 
determine that at least n = 8 lines, each of length 30.5 m (100 
ft), were needed to produce an overall estimate that varied by 
less than 10%. This study also compared the LIS estimates 
with estimates derived from stereo-plotted aerial photogra­
phy and found that while LIS was quite time-consuming, the 
accuracy of measurements derived from aerial photography 
was poor, with the aerial photo measurements falling outside 
of a 95% confidence internal based on n = 10 LIS samples 
about one half of the time. Due to the additional issues 
associated with estimating canopy cover from aerial photog­
raphy (e.g., resolution, bias, shadows, cost, and age of pho­
tography), the remainder of the article will only address 
ground sampling methods. 

Just as in fixed- and variable-radius plot sampling, an 
edge-effect bias can occur when sampling along the bound­
ary of A. Various adjustment technique~ have been derived 
to avoid this design-based bias in Zus - For example, 
Gregoire and Monkevich ( 1994) adapted the mirage method 
(Gregoire 1982), which is one practical technique that fan 
be implemented in the field. Kaiser ( 1983) shows that Zus 
is design-unbiased when the portion of transects that falls 
outside of the population is mapped back into A at a 
random displacement. A similar alternative that is prob­
ably more suited to simulation studies on rectangular 
populations allows a line that falls across the boundary of 
A to be mapped back into A on the opposite side. This 
method is similar to the torus mapping technique as de­
scribed in Fraser and Van Den Driessche (1972). This 
technique maps a rectangular area onto a connected three­
dimensional surface which yields a continuous space with 
no boundaries. This technique is implemented as follows: 
For the rectangular area D, connect the top and bottom 
boundaries to form a cylinder. Then connect the ends of 
the cylinder to form a torus (Figure 1). An equivalent 
interpretation is to replicateD eight times to form a grid of 
nine identical areas. The analysis is then carried out on the 

(a) Square plot D 

l 

(b) Connect top and bottom of(a) 

(c) Connect open ends of (b) to form the torus 

Figure 1. Torus mapping for a square plot (a) is performed by first 
connecting the top and bottom edges of the square to form a 
cylinder (b), then ends of the cylinder are connected to form a 
torus (c). 

central area with the replicated areas providing the needed 
boundary information (Figure 2). From a spatial modeling 
perspective, torus mapping makes the assumption that the 
point pattern observed on the plot also exists beyond the 
plot boundary, which is not always the case in a highly 
heterogeneous forest. However, Ripley (1979) found torus 
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Figure 2. Alternative interpretation of the torus edge correction 
procedure. The data represent the location and crown diameter, 
which are replicated eight times, and a grid of plots is formed. 
Analyses are carried out on the center plot. 

mapping to be an effective method of edge-correction in 
the fie ld of spatial modeling. Its utility is limited in 
forestry applications to applications where rectangular 
plots are used. No equivalent method exists for circular 
plots, which are common in forest survey. Williams et al. 
(200lb) found the simplicity of the torus mapping appeal­
ing and derived a technique, called morphing, for trans­
forming the data on a circul ar fixed-area plot into a square 
plot of equal area. The logical solution uf estimating 
canopy related attributes is to morph the data from a 
circular fixed-area plot to a square one and then use torus 
mapping to model the crowns of those trees whose boles 
fe ll outside the circular fixed -area plot boundary . The 
measurement taken on each plot is the area of the plot 
covered by the canopy, so the dimension of the plot and the 
dimension of the attribute are both two-dimensional. 

To present the morphing technique, both circular and 
square fixed-area plots have to be defined as fo llows: Define 
two spaces, the first being all points contained within a circle 
C with the origin of the polar coordinate system as its center 
and a radius of p. The other space, D, is all points contained 
by a square of equal area, with its center also at the origin. A 
formal definition of the spaces is 

C = { (x,y):x2 + y2 ~ p2 } 

and 

The morphing transformation maps any point (x,y) E 

C into a point (x', y') E D. Two premises were used to define 
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the morphing transformation. First, if the point (x,y) E C lies 
on a circle with the origin as its center and a radius r ~ p, then 
its transformed point (x', y') E D lies on a square with the 
origin as its center and with an area (nr2) equal to that of 
the circle. This ensures that the number of units/area is 
preserved. Second, the ratio of the di stance along this 
circle from (r,O) to (x,y) divided by the circumference 2 
1tr is equal to the ratio of the distance along the perimeter 
of the square from (r.Jn 12,0) to (x', y') divided by the 
perimeter of the square 4r.Jn. This ensures that membership 
in any quadrant is preserved. 

The equations for the transformation are derived from the 
equations that define the two premises and are 

x' =ll/ 3rt (8)+/ 7rt (8)-/3rt 7rt(8)l!...) 
(0.4] (4'2rt] 4 '4 2 

I n l I sn l 
1 2s(8- - ) 1 1 2s(8- - ) 1 

4 4 
-I rt 3rt < 8~ ---'-I+ I srt 7rt <8~ I 0) 

(4'4 1 l 1t J (4 '41 l 1t J 

, I Is) 12s8 l y =ll rt srt (8) -/ srt (8) - +I rt (8)-J 
c-.-l c- .2rtJ 2 co.- 1 L n 

4 4 4 4 

12 (8 37t) l 12 (8 77t) l (2) I s - - I I s - - I 
-I 3rtsrt<8~ 4 

I+I 7rt <8~ 4 
I 

(4'4] l 1t J (4.2rt] l 1t J 

where / (a,b](8) is l for a< 8 ~b, 0 otherwise and the following 
substitutions are defined: 

(3) 

(4) 

where 8 is in radians. These equation s appear to be quite 
complicated because they are fragmented by many indica­
tor variab les. Thi s occurs because while a circle can be 
easily defined by a single equation (x = r cos 8 , y = r sin 8) 
a square requires one equation for each side. Figure 3 
provides a graphical representation of the morphing tech­
nique where a circle of radius p =l contains 200 points. 
The arrows on the figure represent the direction and 
di stance each point is moved in the transformat ion from a 
circular to square plot. 

In most cases it is desirable to transform the morphed and 
replicated data back to a circular plot. This wi ll be referred to 
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Figure 3. Movement of points for the morphing technique. 
Arrows represent the distance and direction of the change in 
location for the points within the square plot. 

as demorphing. The inverse of the morphing technique to 
transform a point ( x', y' ) on a square plot back into a circular 
plot of radius p is given by: 

1 

1ty' r , , , 1 
8=-l/ 7t (8 )+/ 37t 57t (8 )+/ 77t (8 )J 

4x' (0. - 1 (-,-1 (-,2nl 
4 4 4 4 

(6) 

x =rcos8 (7) 

and 

y =rsin 8 

where the angle 8' is the angular displacement of the point 
(x',y') in polar coordinates. 

The following algorithm is proposed for estimating canopy 
cover on a circular plot of radius p: 

1. Morph the (x, y) coordinates of the tree locations on 
circular plot and their crown diameters into a square plot 
with coordinates (x',y') using Equations (1) and (2). 

2. Replicate the morphed plot eight times and tile the infor­
mation in accordance with the torus edge-correction 
method. 

3. Demorph the replicated plot data back to a circular plot of 
radius 2p. 

4. Estimate the canopy cover on the original plot of radius p 
by calculating the proportion of the plot covered by tree 
canopies. This estimate uses the original crowns found on 
the plot in conjunction with the crowns provided by the 
replicated data, which model the portion of the forest 
canopy that was not sampled by the original circular fixed­
area plot. This is referred to as the morphed-torus estima­
tor ZMT . 

Williams et al. (200 1 b) show that if points (x 1, 

y 1), ... (xm,ym) are an independently and identically distrib­
uted (iid) sample from an Uniform distribution over C, 
then the morphed points ( x),yl), ... { x;, ,y;,) are an iid 
sample from a Uniform distribution over D. The Uniform 
distribution of points is equivalent to saying that the m 
points are a realization of a stationary Poisson process 
(Stoyan et al. 1995, p. 102) with intensity A.= m/ IAI. This 
model has been used to describe tree counts and locations 
in numerous publications (e.g., Lappi 1991, Mandallaz 
and Ye 1999, Williams et al. 2001a). Further results on 
transforming the points of a Poisson process are discussed 
by Resnick (1992, p. 308-321). Some of the shortcomings 
of this modeling process are that the results only hold for 
stationary Poisson process models, and the size of indi­
vidual tree crowns is not accounted for in the morphing 
transformation. Thus, it is possible for some large trees to 
be placed closer together than would normally occur. 
Marked-point process models are a class of models that 
could account for the size of the crowns in relation to the 
locations of the trees (see Penttinen et al. 1992). Unfortu­
nate! y, fitting these models requires large data sets as well 
as adjustments to account for plot and population bound­
aries (Stoyan et al. 1995, p. 133-136). Williams et al. 2001 
studied the performance of the morphing transformation 
for estimating canopy cover when the distribution of 
points was either more regularly spaced or more clustered 
than points from a Uniform distribution. They found that 
the differences between actual and estimated canopy cover 
never exceeded 1.3%, even when the spatial distribution 
of tree locations was more clustered than would be found 
in any real forest population. Thus, it seems reasonable to 
assume that estimates derived from this technique will be 
sufficiently accurate for most purposes. 

The morphing technique has advantageous properties 
related to point process models. Thus, it could be used as a 
tool for studying the spatial properties of the trees on a 
circular fixed-area plot using standard spatial analysis tech­
niques (e.g., Cressie 1993). However, it is felt that many 
potential users are more interested in estimating the true 
canopy cover, denoted by Zcc• for a specific area using a 
sample of n fixed-area plots. The study area may be a forest 
stand or it could be the land area represented by a group of 
pixels on a §atellite image. Thus, properties of the morphing 
estimator ZMT must be addressed in the context of survey 
sampling. In deferenc~ to Gregoire (1998), a terse description 
of the properties of ZMT is follows. 
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The area of interest is a two-dimensional plane, A, of 
area IAI and the target parameter is the proportion of A 
covered by the forest canopy. Inference follows the de­
sign-based framework, which views the population, is 
fixed. The only source of randomness is the selection of 
sampling locations, which are determined by generating 
the (x,y) coordinates of n independent sampling locations 
from a Uniform distribution over A. Thus, the probability 
density function ofthe sample locations isf(x,y) = lilA I. At 
each location, a fixed-area plot of radius p is installed, and 
tree locations and crown diameters are measured for all 
trees on the plot. These data are morphed, replicated, 
demorphed, and then used to determine the morphing 
based measl!_rement of crown cover at ;he point (x,y), 
denoted by ZMT (x,y) .The infinite set of ZMT (x,y) values 
over A form the reference set, with the reference distribu­
tion being the infinite set of all equally likely samples of 
size n. 

A In the design-based framework, the expected value of 
ZMT is given by 

llMT =E[ZMd= JL f(x,y)ZMT(x,y)dx,dy 

=I~ I J L ZMT(x,y)dx,dy 

The estimator of canopy cover using the n plots is 

n 

ZMT = 1 In~: ZMTi 
i=l 

where ZMTi is the morphed-torus estimator for plot i. 
As illustrated by the simulation study in Williams et al. 

(2001b), the morphing estimator of canopy covel is not an 
unbiased estimator of the true canopy cover, with the bias 
being 

E[ZMT - Zcc] = llMT - Zcc · 

While the magnitude of the bias cannot be determined, it is 
assumed to be small in most cases. 

The variance is given by 

The sample-based variance estimator is derived from the 
observed variation among then sample plots. Thus, for then 
randomly located plots, the design-unbiased estimator ofthe 
variance is 

[

A ] 1 n A - 2 
v ZMT = ~ (ZMTi -ZMT) 

n(n-1) B 

Data Description 
Two data ~ets were used in this study. The first data set was 

used to test ZMT over a range of spatial patterns (Williams et 

240 Forest Science 49(2) 2003 

al. 200 I) and was gathered from a 0.58 ha square plot located 
on the Fraser Experimental Forest in Colorado. The data are 
an uneven-aged mixture of Engelmann spruce (Picea 
engelmanii [Parry ]Engelmann) and subalpine fir (Abies 
lasiocarpa Nutt.). The locations of alii, 193 trees diameter at 
breast height greater than 2.54 em were mapped. For each 
tree, the width of the projected crown was measured along the 
longest axis and at right angles to it. Area of crown was then 
derived, assuming a circular shape, from the quadratic mean 
of the two measurements. The largest crown in the data set 
had a width of 5.6 m (I 8.4 ft). We refer to these data as the 
Fraser data set. 

A simple analysis of the spatial properties of the tree 
locations was performed. Pielou's index of nonrandomness 
(Cressie 1993, p. 603-605) was 1.44, which fell outside the 
confidence interval (0.91, 1.09), indicating a significant 
degree of clustering. Ripley's L function (Cressie 1993, p. 
615) suggests an nonstationary point process. Figure 4 shows 
a plan of the projected crowns in the data set. 

While numerous stem-mapped data sets exist, none that 
included crown diameter information were available. This 
led to the creation of a second data set that was based on a 
stem-mapped mature hardwood stand measured in central 
New Jersey. Crown diameters for each tree were generated 
using the white fir (Abies concolor Lind!. and Gord.) crown 
radius model found in Gill et al. (2000). The largest crown 
diameter in the data set was 2.6 m (8.6 ft). This model 
probably does not represent the true crown widths of the 
original stand. However, eastern hardwood models (e.g. , 
Gering and May 1995) produced a population with I 00% 
cover, which has no utility for making comparisons because 
ZooT = Zus = ZMT for every measurement. 

Figure 5 illustrates the location and relative crown size 
of each tree. The New Jersey data covers 0.26 ha and 
contains 1,250 stems. This data set has three interesting 
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Figure 4. Plan of the projected crown diameters for the Fraser 
data. The diameter of each circle is proportional to the crown 
diameter. 
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Figure 5. Plan of the projected crown diameters for the New 
Jersey data. The diameter of each circle proportional to the 
model generated crown diameter. 

features. The first is the difference in forest structure 
between the lower left corner and rest of the stand. Thus, 
it is probably not reasonable to assume that any stationary 
point process model (Stoyan et a!. 1995, p. 102) ad­
equately describes this population . The second feature is 
the large number of overlapping crowns . These are prob­
ably due to forking of the main stem below breast height. 
The other feature of interest is that a visual inspection 
suggests numerous areas where the tree locations run 
parallel to the x-axis , though no pattern can be codfirmed. 

Pielou ' s index of nonrandomness was 1.04, which fell 
within the confidence interval (0.91, 1.09), indicating that 
there was no reason to reject the assumption of complete 
spatial randomness . However, it seems unlikely that any 
of the summary statistics of spatial pattern are meaningful 
due to the obvious nonstationarity of the point process. 

The true canopy cover was approximately 35.6% and 
48 .8% for the Fraser and New Jersey data sets, respec­
tively. These values were calculated by superimposing a 
fine dot grid over the population. At each location on the 
grid, the crown information was used to determine if the 
location was covered by a crown. While it is impossible to 
assess exactly how accurate this approximation is , further 
decreasing the grid spacing did not change true crown 
cover to four significant digits. 

An important point to note is that the variance of all 
three canopy cover estimat?rs is id~ntical Awhen the cover 
is either 0 or 100% (e.g., ZDoT = Zus = ZMT = Oor 1 for 
every measurement) regardless of spatial arrangement, 
basal area, number of stems, etc. Thus, forest populations 
where the canopy cover ranges from approximately 30 to 
70% are likely to show the greatest differences in the 
performance of the estimators. 

Simulation Study 
A Monte Carlo simulator was used to compare LIS and the 

morphing technique. The dot-count technique was not in­
cluded in the simulation study because a simple c!osed form 
solution exists for the mean and variance of Z DOT . The 
simulation study was designed to draw a large number of 
samples, where each sample consisted of n = 1 plot or line 
randomly established within the boundary of the population. 

~he goal wa~ to assess if the difference in the mean square 
of Zus and ZMT was sufficiently large to conclude that 
ZMT would be superior in terms of mean square error in 
most field applications. The simulator established random 
coordinates within the boundaries of each data set at which 
both a line of length L and a circular plot of radius p were 
located. The L values ranged from 3.05-22.9 m (10-75 ft) in 
1.52 m (5 ft) increments . The p values ranged from 3.05-
6.1 m (10-20 ft) in 0.305 m (1 ft) increments . While plot 
radii in the 3.05 m range are smaller than would be used in 
most forest inventories, these small fixed-area plot sizes were 
chosen to place the morphing technique at the greatest disad­
vantage because they create a large boundary to interior ratio 
as well as a small number of trees from which to model the 
surrounding condition. 

The locations and crown diameters of all trees within 
this plot were recorded. For the morphing technique, the 
data from the circular sample plot were morphed into a 
square plot, torus-mapped and demorphed back into an 
edge-corrected circular plot of radius 2 p. The canopy 
cover was approximated by establishing a two-dimen­
sional grid with the width of each cell being approximately 
0.15 m. Cells which were covered by a tree crown were 
given a value of 1, those not covered a value of 0. Canopy 
cover was calculated by summing the values for cells 
within the morphed and torus edge-corrected sample plot 
of radius p. Concurrently, at each of the random coordi­
nates, a line with fixed orientation and length L was also 
established. The proportion of the line covered by tree 
crowns was estimated using the same two-dimensional 
grid. To avoid biases associated with sampling along the 
boundary of the population, two differ~nt techniques were 
used depending on the estimator. For Z MT , the torus edge­
correction was applied to the entire population, while for 
Zus, any line that intersected the boundary was mapped 
so that it re-entered the boundary on the opposite side. 

To give some indication of the variance of the canopy 
cover estimators in relation to the estimators of other more 
common forest attributes, such as basal area or volume, 
the total number of trees (N) was simultaneously estimated 
using the sample of trees derived from the circular fixed­
area plot. The estimator used was 

where K is the number of trees tallied on the plot and 1tk is the 
inclusion probability for tree k. The simulation was repeated 
M = 20,000 times. The mean and standard error of canopy 
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cover and number of trees estimates over theM samples were 
used to compare the estimators. In order to present and 
discuss all the results simultaneously, the results were ex­
pressed using the coefficient of variation calculated from the 
M samples. The formula used was 

cv. =100 
M Iz. tM 

m=l 

where z. is the estimator of either canopy cover or number 
of trees derived from a sample of size n = 1. Another useful 
metric is the Monte Carlo relative efficiency of the morphing 
technique, which is given by 

RE = Var[~Z• ] 
Var[ZMT] 

The advantage of using RE to compare the methods is that 
the number of pojnts required to ac~hieve equal variance (nEv) 
between either Zvor or Zus or ZMT using a sample of size 
n is nEv = nRE. 

Results 
The difference between the true canopy cover and the 

mean of ZMT over the 20,000 simulation samples was less 
than 0.03%. Thus, for the populations studied, the bias 
associated with the morphing technique made n9 mean­
ingful contribution to the m~an square<) error of ZMT and 
the comparison between Zus and ZMT wit! be done 
strictly on the coefficient of variation of the estimators. 
The difference in the performance of the canopy cover 
estimators is summarized in Figures 6 and 7 for the Fraser 
data set. Figure 6 shows three interesting points: The first 
is that the coefficient of variation of the two estimators is 
equal only when Lis much greater than p. TheRE values 
can also be derived from Figure 6, with RE being the 
squared ratio of CV us to CV MT· The range of RE values 
across the entire range of plot radii and line lengths was RE 
= 0.56-10.1, which shows that only about 60% as many 
22.9 m lines are needed to achieve an equal variance as 
would be achieved from an inventory that used 3.05 m 
fixed-area plots. At the other end of the scale, more than 10 
times as many L = 3.05 m lines are needed to achieve a 
sampling variance that equaled that derived from an in­
ventory that used 6.1 m fixed-area plots. The second p9int 
of interest is that the coefficient of variation ~of ZMT 
decreases at a rate much faster than that of Z us. For 
example, when p = 3.05 m (10 ft) the coefficient of 
variation of the two estimators is equal when L""' 11.25 m 
(37 ft). When the plot radius is increased by less than a 
third of a meter ( 1 ft), the value of L needed to equalize the 
variance is approximately L = 14.6 m (48 ft). The final 
point of interest is that the coefficient of variation for ZMT 
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Figure 6. Comparison of the coefficient of variatiqn for the Fraser 
data set. The line intersect sampling estimator ( Z us) i1i graphed 
against the morphed and torus corrected estimator ( Z MT) as a 
function of line length L and fixed-area plot radius p. Where the 
horizontal lines intersect the two curves is the line length and 
plot radius at which approximately equal standard errors are 
achieved for this data set. The relative efficiency (RE) is the 
squared difference between the two curves. 

is smaller than Z/Y · Figure} shows the empirical sampling 
distribution for ZMT and Zus using a plot radius of p = 4.6 
m (15ft) and a line length of 16.8 m (55ft). The shape of 
the two distributions is similar, with the one for LIS having 
slightly fatter tails. 

Figures 8 and 9 summarize the results of the simulation 
study when the New Jersey data set was used. The range of 
RE values across the entire range of plot radii and line 
lengths was RE = 13.0-53.8, which shows that even in the 
least favorable situation for the morphing technique (p = 
3.05 m and L = 22.9 m) the sample size for LIS needs to be 
13 times larger to achieve an equal variance. As shown in 
Figure 8, there is no case in which the coefficient of 
variation of Zus is even remotely similar to that of ZMT. 
This occurs because a large number of the samples are 
such that the line is either almost completely uncovered or 
completely covered by tre~ crowns, which results in nu­
merous estimates where Zus is either less than 10% or 
greater than 90%. This result is summarized in Figure 9, 
~hich corr~pares the empirical sampling distributions of 
Zus and ZMT. In this figure, the bimodal distribution of 
estimates for LIS is clearly visible. From this we conclude 
that the LIS estimator can have a very large variance in any 
situation where the degree of canopy cover is moderate 
(30-70%) and the spatial distribution of the forest is such 
that it is likely that some lines are either completely 
covered or not covered by tree crowns. In these situations, 
the number of LIS samples required to generate estimates 
of reasonable precision may be much larger than any of the 
results in the literature would suggest, with the number of 
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Figure 7. Empirical sampling distribution generated from 1,000 
samples drawn from the Fraser data set. The line length and plot 
radius were L = 16.8 m (55ft) and 4.6 m (15ft), respectively. 

samples easily being in excess of n = 20. Ano~her point of 
interest is that the coefficient of variation for ZMT is again 
smaller than iN for this data set. Also note that the rate of 
the reduction in the coefficient of variation is similar for 
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Figure 8. Comparison of the coefficient of variation for the 
Nt~w Jersey data set. The line intersect sampling estimator 
( Zus) is cqmpared to the morphed and torus corrected 
estimator ( ZMr) as a function of line length Land fixed-area 
plot radius p. The relative efficiency (REI is the squared 
difference between the two curves. 
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both ZMT and ZN. Thu~, it seems likely that canopy cover 
can be estimated using ZMT with a degree of precision that 
is better than many of the common forest attributes (e.g., 
number of trees , basal area, and volume). 
, For the sample size n = l , the coefficient of variation for 

ZDoT is 

where Zcc is the true canopy cover. Using this result, the 
coefficient of variation is 134.5 and 102.7 for the Fraser 
and New Jersey data sets respectively. Figures 7 and 9 can 
provide a better und~rstanding of the performance of the 
dot count method ( ZDoT) in comparison with both LIS 
and the morphing_ technique. This is because the empirical 
distribution of ZDOT for n = 1 is a Bernoulli random 
variable whose discrete distribut~on places all of the mass 
on the points 0 and 100%. Thus, ZDoT is in some sense the 
maximum variance unbiased estimator of canopy, cover 
a!ld can never have a smaller variance than either ZMT or 
Zus for an equ~l number of sample locations (n). Compar­
ing theRE of ZDoT against the other twq methods yields 
two interesting results. The first is tpat ZDOT tends to be 
very inefficient when compared to ZMT, with the relative 
efficiency ranging from RE = 5.8-60.0, and the smallest 
RE occurring for the Fraser data. To try to put this in 
perspective, note that even in the worst case scenario (RE 
= 5.8) an inventory crew would have to establish six 
random locations within the 0.58 ha area of the Fraser data 
set in the same amount of time as it took to travel to one 
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Figure 9. Empirical sampling distribution generated from 1,000 
samples drawn from the New Jersey data set. The line length and 
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location and stem- and crown map approximately 6 trees. 
(For the Fraser data set, an average of approximately 5.6 
trees were sampled on each plot when the plot radius was 
p = 3,05 m,) A A 

When comparing ZooT and Zus, the relative efficiency 
ranged from RE = 1.1-10.3, with the smallest REoccurring 
f9r the New Jersey data set. The most interesting point is that 
Zus was only slighty more efficient for the New Jersey data 
set, with the maximum RE being 1.9 for L = 22 . .$) m. Thus, it 
can be concluded that situations exist where Zus may not 
perform much better than i DOT . 

Discussion 

The results of this study and experience with numerous 
other mensuration problems suggests that it is usually wise to 
match the dimension of the attribute and the measurement. 
Thus, when attempting to estimate area, a sampling strategy 
based on a fixed-area plot (two dimensions) will probably be 
superior to a sampling strategy that employs either lines or 
points, though counterexamples exist (Williams and Patterson 
2003). This observation also helps to explain why the dot 
count canopy cover estimator tends to have a much higher 
variance than the LIS estimator given an equal number of 
sample points (n). Whether this observation can be extended 
to other applications where either points, lines, or fixed-area 
plots can be used (e.g., estimating coarse woody debris or 
other canopy related attributes) cannot be determined with­
out further study. 

One of the advantages of the morphing technique is that it 
can be used to estimate canopy cover without actually mea­
suring the crown diameters on the plot. Numerous authors 
(e.g., Gillet al. 2000, Gering and May 1995, and references 
therein) have found that crown diameter is strongly corre­
lated with diameter at breast height, and models already exist 
for most common species. These models can also be used in 
conjunction with the morphing technique to estimate canopy 
cover for existing stem-mapped data sets. An example of 
such a data set is the approximately 120,000 forested ground 
plots measured by the FIA program. Another advantage of 
this technique is that because fixed-area plots and the pixels 
of a satellite image are both two dimensional, the linkage 
between a canopy cover measurement on a fixed-area plot 
and the classification of a pixel or group of pixels is likely to 
be better than the linkage between a LIS estimate and the 
same image. 

The primary disadvantage of the morphing technique is 
determining how to best model plots that straddle either a 
forest/nonforest boundary or stand boundaries where the 
structure of the stands is dissimilar. Provided the boundary 
is relatively straight, the data can be rotated on the circular 
plot so that the boundary is maintained within the repli­
cated data set, and the crowns that would cover the 
nonforested portion of the plot could be deleted. Another 
solution would be to morph the circular plot into a square 
and reflect the trees across a randomly placed line as 
described in Radtke and Burkhart (1998) . A plot that 
covers a corner point or irregular boundary will prove to be 
problematic with no clear method for implementing the 



morphing technique. In these cases, it may be advanta­
geous to actually measure the true canopy cover for this 
subset of the plots because the reduced tree tally probably 
offsets the cost of additional measurements. 

Another concern with the morphing technique is the 
potential for an additional bias due to irregularly shaped 
crowns. This bias occurs any time it is assumed that 
crowns are circular. This problem is similar to the bias 
associated with all of the common basal area measure­
ments (see Matern 1990, and references therein) . 

Comparing LIS and the morphing technique in terms of 
mean squared error and the cost of data collection is not 
straightforward. For an inventory such as FIA, where the four 
large fixed-area subplots (p = 7.3 m =24ft) at each sampling 
location are already stem mapped, the only additional cost is 
the crown diameter measurement on each tree. If crown 
diameters are estimated from a regression model, then there 
is essentially no additional cost. Thus, if the data are already 
stem mapped, it is hard to imagine how the dot count or LIS 
would ever be competitive in terms of overall efficiency (e.g., 
mean square error and cost). On the other hand, if the purpose 
of the survey was only to estimate canopy cover for a stand, 
it is possible for LIS to be more efficient in terms of both mean 
square error and overall cost. This could occur because only 
the edges of the connected crown masses along the line 
require a measurement, rather than having to measure each 
crown diameter and tree location. Thus, in a stand with nearly 
100% canopy cover, there would be little variation between 
LIS samples and only a small number of measurements 
would be required with LIS . 

Conclusions 
The morphing technique is a flexible modeling technique 

that can be used to estimate canopy attributes that, might 
otherwise be ignored due to the additional cost and complex­
ity required for estimation. It is expected A that the ,greatest 
difference in the mean squared errors of Yus and YMT will 
occur when the true canopy covers falls in the 30 to 70% 
range and the spatial arrangement of tree tends to be regular. 
Simulation results suggest that the bias of an estimator based 
on the morphing technique is likely to be small when 
estimating canopy fOYer. Thus, while design-unbiased 
estimators, such as Zus , have many theoretical advantages, 
they are not likely to be competitive in terms of mean squared 
error without a substantial amount of field work. 

Software to implement the morphing technique is avail­
able. Two versions are available. The first, which is written 
in S, is available at http://lib.stat.cmu.edu/S/morph. FOR­
TRAN subroutines are available from the authors. 
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