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ABSTRACT.  With the increasing demand for broad-scale vegetation maps for ecosystem 
management and conservation planning comes the need for flexible tools to assess thematic 
accuracy of these maps.  In this paper, we use a generalized linear mixed model (GLMM) to 
explore the relationship between thematic accuracy in the blackbrush cover-type of a satellite-
based vegetation map of Utah  and various topographical and heterogeneity components of that 
map   Because of the difficulty in accessing many rugged areas of this State, two strata were 
defined based on proximity to roads.  Vegetation type was recorded on heterogeneous linear 
clusters of sample points within the "off-road" strata, and on randomly distributed sample points 
within the "road" strata on selected USGS quadrangle maps.  A binary response (correctly 
classified / incorrectly classified) was modeled as a function of both fixed and random effects 
accounting for spatially autocorrelated observations and different covariance structures for the 
random effects.  The modeling exercise suggested a strong relationship between map error in the 
blackbrush cover-type of the Colorado Plateau of Utah, and stratum, slope and local 
heterogeneity.

INTRODUCTION

Thematic accuracy of vegetation cover maps derived from satellite imagery may be related to 
many factors,  including elevation, aspect, slope, local heterogeneity and distance to vegetation 
boundaries.  Exploring the relationship between the components of the vegetation classification 
model and its uncertainty is a logical step in an analysis of map error that is sensitive to both map 
use and subsequent improvements of the map.

Although many new techniques are being explored to address map uncertainty, generalized linear 
mixed models (GLMM’s) have yet to be applied.  Through a GLMM, data from any one of a 
variety of continuous and discrete distributions can be linked to a linear structure that may 
contain both fixed and random effects.  GLMMs can also account for correlation among 
observations as well as among random effects terms in the linear structure (Wolfinger and 
O’Connell 1993).  This flexibility may prove valuable in addressing map uncertainty as well as 
have numerous other broad-scale applications.

In this study, we use a GLMM to explore the relationship between the error in the blackbrush 
cover-type of a vegetation map of Utah and various topographical and heterogeneity components 
of that map.  

DATA

A cover-map of Utah, ~219,000 km2 in size, was developed from a state-wide Landsat Thematic 
Mapper (TM) mosaic created from 24 scenes at 30 m resolution (Homer et al. 1997).  A total of 
38 cover-types were modeled.  Modeling was accomplished using a four step modeling 
approach.  Steps included: (1) the creation of a statewide seamless mosaic of TM images; (2) the 
subsetting of the mosaic into 3 ecoregions, the Basin and Range, Wasatch-Uinta and Colorado 
Plateau (after Omernik 1987); (3) the association of 1,758 state-wide field training sites to 
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spectral classes; and (4) the use of ecological parameters based on elevation, slope, aspect and 
location to further refine spectral classes representing multiple cover-types.  

Following development of this cover-map, field data were collected to assess its thematic 
accuracy (see Moisen et al. 1994 for design considerations, Edwards et al. 1997 for analysis).  Of 
primary interest were estimates of by-class and by-ecoregion accuracy of the map at the base 
model of one ha. A total of 100 7.5-min quadrangles were randomly selected roughly 
proportional to the area of the three ecoregions.  Two strata were identified on each quadrangle 
based on proximity to roads.  The "road" stratum consisted of all land within 1 km of a secondary 
or better road.  All other lands fell within the "off-road" stratum.   On each quadrangle,  ten 
points were randomly selected within the road stratum, while ten were collected in a randomly 
oriented heterogeneous linear cluster within the off-road stratum.  Data were then used to assess 
map accuracy based on procedures outlined in Edwards et al. (1997).

For this study, a subset of the state-wide data comprised of the blackbrush cover-type within the 
Colorado Plateau was modeled under a GLMM.  Data consisted of 96 sample points collected on 
two strata (road, off-road) on 15 quadrangles.   Anywhere from one and ten blackbrush points 
were available for each quad/stratum combination.  Clustered blackbrush data in the off-road 
stratum were not necessarily adjacent sample points because blackbrush polygons were often 
intermixed with other cover-types not considered in this analysis.

MODEL

Using a logit link function, the binary response (correctly classified / incorrectly classified) was 
modeled as a function of both fixed and random effects while accounting for several covariance 
structures for random effects and for spatially autocorrelated errors.  For this analysis, the 
observations on the 96 sample points were coded as 1 when the mapped cover-type agreed with 
the ground cover-type, and as 0 when they did not agree.  Define y to be our data vector of 96 0s 
and 1s satisfying

y = µ + ε.                                                                (1)

We used a logit link function

g(µ) = log{µ/(1 − µ)}                                                       (2)

and modeled

g(µ) = Xβ + Zν.                                                           (3)

Here, β is a vector of unknown fixed effects with known model matrix X, and ν is a vector of 
unknown random effects with known model matrix Z.  Assume E(ν) = 0 and cov(ν) = G, where 
G is unknown.  An effect may be considered fixed if the inference space is limited to the 
observed levels of that effect.  An effect may be considered random if the inference space is 
applied to a population of levels, not all of which are observed.  Fixed effects considered in this 
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application included both discrete and continuous variables.  Because quadrangle maps were 
randomly selected for subsampling from a population of quadrangles, quadrangles were modeled 
as random effects.  Also, ε is a vector of unobserved errors with E(ε|µ) = 0 and

cov(ε|µ) = R1/2
µ RR1/2

µ .                                                       (4)

Here Rµ is a diagonal matrix containing evaluations  at µ of the variance function 

V(µ) = µ(1 − µ).                                                            (5)

R and G were modeled using covariance structures detailed below.

Fixed Effects

Nine fixed effects variables were considered.  Three were topographical variables used in the 
classification model itself.  These were extracted from a 90 m Digital Elevation Model and 
include elevation in meters (ELEV),  slope in degrees (SLOPE), and aspect.  A transformation of 
aspect (TRASP), used by Roberts and Cooper  (1989), takes the form

TRASP =
1 − cos(aspect − 30)

2
.                                                 (6)

This transformation assigns the highest values to land oriented in a north-northeast direction, the 
coolest and wettest orientation in Utah.

In addition to the three topographical variables, we considered four different measures of 
heterogeneity surrounding the sample point.  Richness (RICH) is defined as the number of cover-
types found in the surrounding 8 pixels.  The other three heterogeneity variables, eveness 
(EVEN) and two measures of diversity (D1 and D2), are defined in Table 1.  Higher values for 
all indices indicate increasing heterogeneity.

Two other fixed effects considered were the minimum distance in meters to a different map 
cover-type (DIST) and a variable indicating membership in the road or off-road stratum 
(STRATA).  Strata was the only categorical fixed effect variable.  All others were continuous. 

Covariance Structures

Because quadrangle maps (QUAD) were randomly selected for subsampling from a the 
statewide population of quadrangles,  these were included as random effects in the GLMM.  
Three covariance models for G were considered (Table 2). 

A spherical spatial covariance structure, illustrated in the last row of Table 2, was considered for 
R.  Here covariance between sample points is modeled as a function of distance between those 
points, accounting for both correlation between clustered locations and potential correlation 



______________________________________________________________________________

Table 1.  Measures of heterogeneity. Here S equals richness, n equals 8 pixels, and ni is the 
number of pixels belonging to the ith of S cover-types.
______________________________________________________________________________

Variable Source Formula
______________________________________________________________________________

D1 Hill (1973)
D1 = exp
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EVEN Ludwig and Reynolds (1988) EVEN = ( )D2- 1 ( )D1- 1              (9)
______________________________________________________________________________

______________________________________________________________________________

Table 2.  Covariance structures for G and R.______________________________________________________________________________

Structure Form
______________________________________________________________________________

Simple Gij = σ2 for  i = j,  else 0 (10)

Compound symmetry Gij = σ2
1 +σ2  for (i = j),   else σ2

1 (11)

Varying coefficients Gij = σ2
ij  for (i = j), else 0 (12)

Spherical spatial Rij = σe
2[ ]1-( )3dij /2ρ +( )d3

ij/2ρ3

 for dij £ r, else 0 (13)

______________________________________________________________________________
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between sample points in relatively close quadrangles.  Although numerous spatial structures 
could have been tried, the spherical structure is very flexible and converged more readily in 
preliminary trials. 



______________________________________________________________________________

Table 3.  Parameter estimates and their standard errors for final GLMM.
______________________________________________________________________________

Parameter Estimate SE Pr > χ2 or (Z* )
______________________________________________________________________________

Intercept - 1.78     0.85 0.04
STRATA (off-road) - 1.39     0.59 0.02
SLOPE    0.12     0.07 0.08
D2    0.58     0.31 0.06  
r 322.46 124.86  0.01*
s2    1.63     1.37  0.23*

______________________________________________________________________________
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Model Fitting Strategy

Parameters in the GLMM were estimated through pseudo-likelihood procedures as described in 
Wolfinger and O’Connell (1993) using a SAS macro supplied by Russ Wolfinger of SAS 
Institute Inc.  This macro uses PROC MIXED and the Output Delivery System, requiring 
SAS/STAT and SAS/IML release 6.08 or later.

An iterative model fitting strategy was adopted.  After identifying quadrangle maps as our 
random effects, all fixed effects were included in the model.  We tried all combinations of 
covariance structures for G as listed in Table 2.  The best covariance structure was selected 
based on Akaike’s Information Criterion and Schwarz’s Bayesian Criterion (Wolfinger 1993).  
In subsequent iterations fixed effects were dropped based on significance of parameter estimates, 
likelihood ratio tests, and predictive capability of the model.  Again, best covariance structure 
was selected for each iteration. Because of collinearity, the four measures of heterogeneity were 
considered in the model separately.  

RESULTS

Likelihood ratio tests and parameter significance levels led us to favor a parsimonious model 
containing only STRATA, SLOPE and D2 as fixed effects.  Exclusion of other variables had 
little impact on the predictive capability of the model based on confusion matrices and plots of 
predicted values from different model trials.  The covariance structures selected were simple and 
spherical for G and R, respectively.    The signs of the fixed effects parameters indicate the 
relationship between error and the variables (Table 3).  In this case, positive values for SLOPE 
and D2 indicate that error increases as SLOPE and D2 increase (Figures 1a -b).  In contrast, the 
negative value for the off-road stratum indicates that probability of error is less in the off-road 
stratum and greater in the road stratum.  The estimate of r, the spatial covariance parameter in R, 
suggests that spatial dependence is negligible between sample units greater than 322 meters apart 
(Figure 1c). 
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Figure 1a-b.  Relationship between probability of map error and fixed effects.
Figure 1c.  Correlation modelled as a function of distance between sample points.
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DISCUSSION

Frequently in broad-scale sample surveys clustered and subsampling sample designs are adopted 
for the sake of  efficiency in estimation of population means and totals.  However, such cost-
effective designs can hamper efforts to further explore ecological relationships under a classical 
linear model framework by violating model assumptions like independence and normality of 
errors.  In this study we illustrated how a GLMM affords the flexibility to analyze sample survey 
accuracy data. Through a GLMM we were able to include both fixed and random effects, 
account for spatially autocorrelated errors, and allow for a variety of covariance structures for the 
random effects. 

The model we fit for blackbrush contained some information for map users beyond simple 
probability of misclassification by cover-type, and also provided information to the map-maker 
for model improvements.  We learned that incorrect mapping of this cover-type tended to occur 
near roads in steep and heterogeneous areas.  The fact that strata was a significant contributor to 
our model of map error could be an indication that vegetation away from roads differs from that 
near roads, and is governed by an environmental factors not accounted for in the other fixed 
effects.  However,  the  better performance in the off-road strata could be an artifact of different 
quality in data collection efforts between the two strata.  For example, georeferencing data in 
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linear clusters may have been easier or done with greater care , making off-road data less subject 
to positional error.  

The inclusion of slope in our model might highlight the difficulty of classification in steep and 
often shadowy areas.  Slope was not included in the initial classification model for blackbrush in 
the Colorado Plateau, and its inclusion might improve maps of that cover-type.  The notion that 
classification in heterogeneous areas is tougher than in homogenous areas is not new, but our 
model  helps determine the magnitude of heterogeneity’s contribution to error.  Also, numerous 
indices of heterogeneity are available in the literature and we illustrated that some indices may be 
make a more significant contribution than others to models of map error.  Map users might also 
find the model results helpful, making them more skeptical of mapped blackbrush on steeper 
slopes and in more heterogeneous areas.
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