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Predictive Mapping of Forest Attributes on
the Fishlake National Forest
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Abstract.—Forest land managers increasingly need

maps of forest characteristics to aid in planning and

management. A set of 30-m resolution maps was pre-

pared for the Fishlake National Forest by modeling

FIA plot variables as nonparametric functions of

ancillary digital data. The set includes maps of vol-

ume, biomass, growth, stand age, size, crown cover,

and various aspen characteristics. Ancillary data lay-

ers included pre-classified TM data, raw TM bands,

and topographic variables. Predictive models were

built using automated multivariate adaptive regression

splines (MARS), and refined using local knowledge

and digital orthoquads (DOQs). Validation and appli-

cation issues are discussed.

National forest planners must frequently make decisions using

existing information (Campbell and O’Brien 2004). There is

rarely time or resources to collect new data specific to each

question encountered. Tabular summaries and analytical reports

prepared by the Forest Inventory and Analysis program (FIA)

have proven useful for past assessments, but there is an

increasing need for spatially explicit delineations of forest data.

For example, maps are needed to assess suitable wildlife habi-

tat, marketable harvest areas, desired future conditions, and his-

torical distributions of forest cover types. 

Our study demonstrates a method for generating spatially

explicit maps of various forest attributes for use on national

forests. The overall objective was to generate a series of maps

to facilitate national forest management planning and to assist

with a wildlife modeling study of cavity-nesting birds in aspen

stands (Schultz 2002; Schultz et al. 2004; Edwards et al. 2002,

2004). Specifically, our objectives were to (1) build predictive

models integrating FIA plot data with 30-m resolution digital

data using multivariate adaptive regression splines (MARS)

and geographical information systems (GIS) techniques; (2)

refine and validate the models with statistical and visual error

estimates; and (3) generate 30-m resolution maps of various

FIA variables.

Methods

Study Area

The Fishlake National Forest comprises approximately

1,434,500 acres of land located in central Utah (fig. 1). It is a

diverse forest with elevations ranging from less than 5,000 feet

to over 12,000 feet. The forest supports a variety of vegetative

cover types and forest resources. Pinyon-juniper cover types

occur at low elevations and provide valuable habitat for deer,

elk, and various small mammals and songbirds. Ponderosa pine

and aspen cover types appear at higher elevations. Ponderosa

pine provides valuable wildlife cover and is a valuable com-

1 Interior West Forest Inventory and Analysis, Rocky Mountain Research Station, U.S. Department of Agriculture, Forest Service, 507 25th Street, Ogden, UT 84401.

Figure 1.—Training data extents: Fishlake National Forest
boundary and the Nevada-Utah Mountain ecoregion boundary.
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mercial tree species. Aspen is widely known to be prime

wildlife habitat, affording beneficial cover, water, and food for

a variety of wildlife species. Aspen cover types are being

threatened by successional climax species, such as subalpine

fir, white fir, and spruce, which are crowding out the aspen and

diminishing the benefits to wildlife. Spruce-fir cover types

occur at the higher elevations. 

The Forest falls almost entirely within Bailey’s (1980)

Nevada-Utah Mountain ecoregion province, revised by Homer

et al. (1997) (F-1). FIA data were available throughout this

ecoregion. Because this ecoregion is ecologically similar to the

Fishlake National Forest, we considered modeling forest char-

acteristics for both areas.

Data

There were 836 forested locations within the Nevada-Utah

Mountain ecoregion and 231 forested FIA locations within the

Fishlake National Forest. We identified a set of eight FIA forest

attributes to assist with management planning (tree basal area,

tree volume, tree biomass, tree crown cover, trees per acre,

quadratic mean diameter, stand age, and net annual growth),

and a set of six additional variables needed for modeling aspen

habitats for cavity-nesting birds (aspen presence, aspen basal

area, percent aspen basal area, average tree height, snag densi-

ty, and aspen rot presence). We used data collected on the FIA

plots to compile individual tree measurements and combined

them with stand variables to produce location-level summaries

of all variables (table 1). 

Data extraction and mining routines were performed with-

in a GIS environment. We acquired a set of twelve 30-m reso-

lution digital layers that would be appropriate for predicting

forest attributes (table 2). Seven of these layers were based on

30-m resolution Enhanced Thematic Mapper (ETM) satellite

data obtained through the Multi-Resolution Land Characteris-

tics (MRLC) consortium. Three were raw spectral bands, one

was a normalized difference vegetation index (NDVI) derived

from the raw spectral bands, and the remaining three were clas-

sified ETM products generated by the Land Cover

Characterization (LCC) program of the U.S. Geological Survey

(USGS) Earth Resources Observation Systems (EROS) Data

Forest Attribute (Alias) Units Description

Tree basal area (BALIVE) Sq. ft./acre Basal area of live trees 1 inch diameter and greater

Tree volume (NVOLTOT) Cu. ft./acre Net volume of live trees 5 inches diameter and greater

Tree biomass (BIOMASS) Tons/acre Woody biomass per acre of live trees 1 inch diameter and greater

Tree crown cover (CRCOV) % Crown cover of live trees 1 inch diameter and greater

Trees per acre (TPA) # Trees Trees per acre of live trees 1 inch diameter and greater

Stand age (STAGE) Years Weighted average age of the stand

Tree diameter based on the weighted average basal area of live timber  
Quadratic mean diameter (QMD) Inches trees 1 inch diameter and greater and live woodland trees 3 inches 

diameter and greater

Annual net volume growth per acre of live growing-stock timber trees 5 
Net annual growth (NGRWCF) Cu. ft./acre inches diameter and greater and woodland trees 3 inches diameter 

and greater

Aspen presence (ASP) Yes/no Presence of aspen trees 1 inch diameter or greater

Aspen basal area (ASPBA) Sq. ft./acre Basal area of live aspen trees 1 inch diameter and greater

Percent aspen basal area % Percent basal area of live aspen trees 1 inch diameter and greater

Average tree height (TRHTAVG) Feet Average height of dominant or codominant trees

Snag density (SNAGNUM) # Snags Snags per acre of standing dead trees 5 inches diameter and greater

Aspen rot presence (ASPROT) Yes/no Presence of aspen disease

Table 1.—FIA forest attributes, including units and description
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Center (EDC) (Huang et al., in press). The other five predictor

variables were derived from 30-m resolution National Elevation

Dataset (NED) digital elevation models (DEMs), including eleva-

tion, aspect, slope, hillshade, and topographic class. Elevation

was extracted directly from the DEMs while aspect, slope, and

hillshade were derived from the DEM using functions from the

GRID module in ArcInfo GIS (ESRI Inc., Redlands, CA). The

topographic class variable was derived from the DEM using a

customized arc macro language AML (Zimmerman, unpublished

data). The aspect variable was transformed from degrees to a

symmetric radiation wetness index, calculated using the follow-

ing formula (Roberts and Cooper 1989):

Aspect = 1 – cos(aspect – 30)

2

This transformation assigns the highest values to land oriented

in a north-northeast direction, the coolest and wettest orienta-

tion in Utah. The hillshade variable was derived using an illu-

mination angle of 225 degrees. 

Models

Predictive models of various forest attributes were generated

using Multivariate Adaptive Regression Splines (MARS)

(Friedman 1991, Prasad and Iverson 2002, Steinberg et al.

1999). MARS is a flexible, nonparametric regression modeling

tool that automatically finds the complex relationships between

a response variable and a set of continuous and discrete predic-

tors. MARS builds models by fitting numerous piecewise linear

regressions, and approximates nonlinearity by allowing the

slope of the regression lines to change over different intervals

of the predictor space. These intervals are defined by basis

functions, which are the building blocks of a MARS model.

MARS starts by building a large and overly complex model

with many basis functions. An optimal model is then found by

deleting basis functions in order of least contribution to model

performance. This prevents over-fitting and ensures that the

mode will stand up to new data for prediction applications such

as mapping. Features of MARS that make it particularly well

suited to mapping forest attributes are that it handles both cate-

gorical and continuous variables, selects the relevant predictor

Forest Attribute (Alias) Units Description

ETM Band 3 (ETMB3) Brightness value 
(0-255) Red (0.63 - 0.69 micrometers); June 2000–leaf on

ETM Band 4 (ETMB4) Brightness value 
(0-255) Near-infrared (0.76 - 0.90 micrometers); June 2000–leaf on

ETM Band 5 (ETMB5) Brightness value 
(0-255) Mid-infrared (1.55 – 1.75 micrometers); June 2000–leaf on

ETM NDVI (ETMVI) 0.0 – 1.0 Normalized Difference Vegetation Index; June 2000–leaf on

2:Nonforest; 10:Pinyon/juniper;15:Douglas-fir; 20:Ponderosa pine; 

Classified ETM (LCC10) 10 classes 30:Spruce/fir; 35:Lodgepole; 50:Other western softwoods; 
75:Aspen/birch; 85:Western oak; 90:Other western hardwoods (based 
on June 2000–leaf on ETM)

Classified ETM (LCC4) 4 classes 2:Nonforest; 41:Deciduous; 42:Evergreen; 43:Mixed (based on June 
2000–leaf on ETM)

Classified ETM (LCC2) 2 classes 1:Forest; 2:Nonforest (based on June 2000–leaf on ETM)

Elevation (ELEV) Meters Elevation from mean sea level

Aspect (TRASP) 0 to 1 Transformed index representing radiation and wetness 

Slope (SLP) % The rate of change from one cell to the next

Hillshade (HLSHD) Brightness value Shaded relief considering shadows and an illumination angle of 225 
(0-255) degrees

Topoclass  (TOPOCL) 4 classes Classified to identify topographic features (1:Ridge;, 2:Slope; 3:Toe 
slope; 4:Valley bottom)

Table 2.—Ancillary data predictor variables, including units and description
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variables and specifies their relationship with the response

automatically, determines the level and nature of interactions as

well as transformations, handles missing values, protects

against over-fitting, and is fast and efficient for large data sets.

We examined the effect of using training data from the two

different data extents, the Fishlake National Forest and the

Nevada-Utah Mountain ecoregion. In all cases, we ran the

models with a maximum of 100 basis functions, specified ten-

fold cross-validation to select model degrees of freedom and

prevent over-fitting, and allowed second-order interactions

between predictor variables. Model performance was evaluated

and refined by looking at R2 and mean square error measures

generated by MARS on a subset of the forest variables. We also

visually assessed the model predictions using parallel screen

displays of digital orthoquads (DOQs) and the output maps. 

Maps

Maps were generated within a GIS environment. MARS output

was converted to Arc Macro Language (AML) using Visual

Basic (J. Nelson, unpublished data) and then run in Arc GRID.

Thirty-meter resolution, spatially explicit maps were output for

each FIA attribute. The nonforest class from the LCD classi-

fied-ETM product was used to mask the nonforest areas on the

ground. Alternative approaches to applying MARS models to

large geographic areas using Iterative Data Language are dis-

cussed in Terletzky and Frescino (2004).

Results

The models using the 836 training locations within the Nevada-

Utah Mountain ecoregion performed better than the models

using 231 training locations within the Fishlake National Forest

in most cases. Table 3 shows the R2 and MSE results from

MARS for eight different FIA attributes, comparing the models

built using different training data sets. The numbers in bold

represent higher R2 and lower MSE values, indicating better

model fits. For five of the eight attributes, the R2 values were

higher when using the Nevada-Utah Mountain ecoregion data

set. MSE values were lower when using the Nevada-Utah

Mountain ecoregion data set for seven of the eight attributes. 

Figure 2 shows an example of the visual assessment for mod-

els predicting aspen presence, comparing prediction results with

what is displayed from a DOQ. The visual assessments of the pre-

dictions from the models built from the Nevada-Utah Mountain

ecoregion data set appeared better than the predictions from the

models built using the Fishlake National Forest data set. 

Discussion and Conclusions

Predictive modeling is not an exact science. Many factors influ-

ence model performance. One is the extent of the training data

set. With several examples and evaluation procedures, we

Figure 2.—Visual assessment of aspen presence predictions compared to a DOQ. a. DOQ without predictions. b. Predictions
based on a model built using the Nevada-Utah Mountain ecoregion data set; c. Predictions based on a model built using the
Fishlake National Forest boundary data set. White represents the predicted aspen presence.
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determined that the models performed “better” when using a

larger data set. Although many of the data were outside the

area of interest, the data were ecologically similar and signifi-

cantly helped to establish functional relationships between the

forest attributes and the ancillary data products. 

What does “better” mean? Although we were able to

objectively compare model performance using R2 and MSE

measures, further analysis is needed to validate the model pre-

dictions using independent data and true tenfold cross-valida-

tion procedures. More importantly, global measures of map

accuracy often cannot capture what is obvious to a forest land

manager wanting to use predictive maps in real-world applica-

tions. Further investigation is needed to build measures of utili-

ty into the picture.

As mentioned previously, one of the features of MARS is

that it selects the relevant predictor variables. This allows us to

see which predictor variables most influence the occurrence of

the different forest attributes. Table 4 shows the predictor vari-

ables that were used to build the final models for eight forest

attributes. The order of the variables corresponds to the relative

importance of each in the model, or the amount of variance

reduced by each. In general, the variables that seemed to have

the most influence were the ETM raw spectral bands 5 and 3,

elevation, the classified-ETM 10 and 4 classes, and the topo-

graphic class. This makes sense since band 5 (mid-infrared)

characteristically indicates vegetation moisture and band 3

(red) responds to chlorophyll absorption. Elevation is a surro-

gate for temperature and moisture as well as the topographic

class that distinguishes ridges from slopes from valley bottoms.

The classified-ETM products would help distinguish differ-

ences between different forest classes, removing shadows and

other features that the raw imagery may confuse. 

Modeling forest attributes is an attempt to delineate char-

acteristics in the landscape using available field data and ancil-

lary resources, such as satellite imagery and topographic data.

We assume there are significant relationships between these

attributes and ancillary resources. Further research is needed to

refine these relationships and obtain new ancillary products to

build more accurate models. 

Attribute Training
data set R2 MSE

BALIVE Fnf 0.053 4,575.91

Uteco 0.284 3,012.26

NVOLTOT Fnf 0.419 1,255,907.10

Uteco 0.525 1,110,762.60

BIOMASS Fnf 0.348 372.43

Uteco 0.476 330.91

CRCOV Fnf 0.438 290.15

Uteco 0.385 295.51

TPA Fnf 0.335 110,635.50

Uteco 0.349 96,821.37

Stage Fnf 0.046 4,419.27

Uteco 0.114 3,335.20

Trhtavg Fnf 0.739 308.74

Uteco 0.554 195.20

Aspba Fnf 0.478 2,110.66

Uteco 0.396 1,956.01

Table 3.—R2 and MSE results from MARS for models built

using the Fishlake National Forest (Fnf) data set and Nevada-

Utah Mountain ecoregion (Uteco) data set (numbers in bold

represent the best-fit model)

Forest attribute Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 Variable 7

BALIVE ETMB5 ELEV LCD10 LCD2 TOPOCL

NVOLTOT ELEV ETMb3 ETMB5 LCD4 TOPOCL LCD10 ETMB4

BIOMASS ETMB5 ELEV LCD10 TOPOCL

CRCOV ETMB3 LCD4

TPA LCD4 ELEV ETMB5

STAGE LCD4 ELEV ETMB5

TRHTAVGN LCD10 ETMB3 ELEV TOPOCL

ASPBA LCD4 LCD10 ETMb3 ETMb5 ELEV SLP

Table 4.—Relevant variables contributing to model variance reduction
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National forest planners are enthusiastic about incorporat-

ing these spatially explicit products into their planning proce-

dures and integrating them with other digital data to help

understand the spatial diversity in the landscape and make deci-

sions related to wildlife habitat, marketable harvest areas,

desired future conditions, and so on. Wildlife modelers are also

enthusiastic about adding spatially explicit maps of specific

attributes into their models. These maps will provide valuable

information about structural components of the forest and allow

predictions of wildlife species, spatially across the landscape. 
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