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Abstract

Although partial harvests are common in many forest types globally, there has been little assessment of the potential to map the intensity of
these harvests using Landsat data. We modeled basal area removal and percent cover change in a study area in central Washington (northwestern
USA) using biennial Landsat imagery and reference data from historical aerial photos and a system of inventory plots. First, we assessed the
correlation of Landsat spectral bands and associated indices with measured levels of forest removal. The variables most closely associated with
forest removal were the shortwave infrared (SWIR) bands (5 and 7) and those strongly influenced by SWIR reflectance (particularly Tasseled Cap
Wetness, and the Disturbance Index). The band and indices associated with near-infrared reflectance (band 4, Tasseled Cap Greenness, and the
Normalized Difference Vegetation Index) were only weakly correlated with degree of forest removal. Two regression-based methods of estimating
forest loss were tested. The first, termed “state model differencing” (SMD), involves creating a model representing the relationship between
inventory data from any date and corresponding, cross-normalized spectral data. This “state model” is then applied to imagery from two dates,
with the difference between the two estimates taken as estimated change. The second approach, which we called “direct change modeling”
(DCM), involves modeling forest structure changes as a single term using re-measured inventory data and spectral differences from corresponding
image pairs. In a leave-one-out cross-validation process, DCM-derived estimates of harvest intensity had lower root mean square errors than SMD
for both relative basal area change and relative cover change. The higher measured accuracy of DCM in this project must be weighed against
several operational advantages of SMD relating to less restrictive reference data requirements and more specific resultant estimates of change.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Forest harvests that remove only a part of the canopy are
common throughout much of the world. In addition to allowing
the extraction of saleable forest products, partial harvests may
also address a range of other silvicultural goals. These goals
may include: improving the ability of retained trees to grow
vigorously, providing seed and ameliorating conditions for a
new cohort of trees, and increasing the stand's value as wildlife
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habitat (Smith et al., 1997). Partial cutting has also traditionally
been used in the management of tree density in young stands
and has increasingly been considered as a means of reducing
fire risk (Brown et al., 2004; Fight, 2004). The Pacific
Northwest of the United States, like other regions (e.g., Sader
et al., 2003), has seen an increase over the last several years in
the frequency of partial harvest (McNeel & Dodd, 1996; Oregon
Department of Forestry Annual Reports, 1989–2003).

Satellite-based monitoring is likely the most realistic means
of mapping forest harvests across the many ownership
boundaries in the Pacific Northwest. While public agencies
routinely publish spatially referenced harvest practice informa-
tion, private landowners often consider such data proprietary.
Information about harvest practices on private land is available
from tax records, but is provided in a spatially generalized
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format (e.g., Oregon Department of Forestry Annual Reports
provide such information only at the county level). Because of
its synoptic and historical nature, Landsat satellite data has been
a useful source of forest disturbance information at the regional
scale (Cohen & Goward, 2004). Landsat data has been used to
create relatively accurate regional-scale maps of stand-clearing
harvests in the Pacific Northwest (Cohen et al., 2002; Moeur et
al., 2005), but no work has extended the use of Landsat data to
the identification of partial harvests in the region. We
investigated two regression-based approaches to estimating
the intensity of partial harvests occurring in central Washington
from 1996 to 2004. In doing so, we also explored the relative
ability of various transformations of Landsat data to predict
removal of cover and basal area in this region.

1.1. Background

The Washington Departments of Fish and Wildlife (WDFW)
and Natural Resources (WDNR) were interested in reviewing
the spatial patterns and effects of harvests occurring between
1996 and 2004 in and around sensitive habitat for the northern
spotted owl (Strix occidentalis caurina). The most useful
existing source of information for harvest locations was a
spatially referenced database of harvest permits granted during
the period in question. This database had some shortcomings
with respect to estimating the effects of harvest on habitat,
however. First, not all permitted activities were actually carried
out, and of those that were, harvests rarely filled out the entirety
of delimited permit boundaries. Also, the database did not
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Fig. 1. Location of study areas in western Washington, USA.
address harvest intensity. Depending on the structural effects of
a harvest, a stand may or may not retain characteristics that meet
spotted owl habitat requirements (Washington Administrative
Code 222-16-085). WDFW therefore required a spatially
referenced map of harvest intensity that could be used to
address harvest effects on owl habitat. Remote sensing was seen
as a potential means to map harvests in WDFW's large and
varied area of interest in a uniform and retrospective way.
Landsat data has had a significant role in such studies, and
several studies have suggested the potential of Landsat data to
map partial canopy removals (Franklin, 2001).

Changes in percent cover and basal area were chosen as
measures of harvest intensity because these structural variables
were relevant to owl habitat definitions and because previous
studies have shown them to be correlated with Landsat data
(Franklin, 1986; Cohen & Spies, 1992; Cohen et al., 1995,
2001). Mapping efforts were focused on two areas in central
Washington (Fig. 1) that contained a high concentration of
recognized Spotted Owl Special Emphasis Areas (Federal
Register, 1996; Washington Administrative Code 222-10-041).
Ultimately, harvest maps were used to assess the degree to
which management activities have impacted the extent and
configuration of owl habitat in the region (Pierce et al., 2005).

1.2. Use of relationships between spectral and inventory
variables to estimate harvest intensity

A relatively thorough dataset comprised of historical photos,
management records, and field plots permitted estimation of
)

North Study Area
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Tasseled Cap brightness of the study areas is displayed.
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harvest intensity as the change in two forest attributes, basal area
and canopy cover. Changes were modeled as continuous
variables, which not only increased the precision of the spectral
variable selection process, but also produced flexible change
estimates that could later be binned into categories appropriate
for a range of objectives. Two modeling approaches were
explored. The first, hereafter called “state model differencing” or
SMD, was based upon the construction of a date-invariant
relationship between spectral variables and the forest inventory
variables. Assuming acceptable relative radiometric normaliza-
tion among image dates, this approach allowed estimation of the
basal area or percent canopy cover for a particular area at
different times. Estimates for successive dates could then be
compared (differenced) in order to produce an estimate of
change. The other approach, “direct change modeling” (DCM),
involved regression of measured changes in basal area and cover
against differences in spectral values for corresponding dates.

There were two primary lines of inquiry in this study: (1)
comparison of Landsat bands and derived indices for use in
support of partial harvest measurement; and (2) assessment,
through a leave-one-out cross-validation procedure, of how well
the DCM and SMD modeling approaches were able to predict
the measured changes in our reference data. In regards to the
first question, several studies have noted that the general
spectral response to canopy reduction involves increased
reflectance in the visible and shortwave-infrared (SWIR)
portions of the electromagnetic spectrum and decreased
reflectance in the near-infrared (NIR) range (Franklin, 2000;
Häme, 1991; Olsson, 1994). This response is consistent with
certain physical changes in the stand that may be expected upon
partial canopy loss: higher soil and litter reflectance in relation
to canopy reflectance, lower water absorption, and greater
shadow fraction (Franklin et al., 2000). However, slash patterns
(Nilson et al., 2001), understory and residual tree growth
response (Franklin et al., 2000), and shifts in species
composition (Olsson, 1994) may mitigate the expected spectral
response after a stand is thinned. In characterizing the intensity
of partial harvests, it is therefore important to choose spectral
variables that are sensitive to the canopy removal of interest but
that are relatively insensitive to these site-specific factors.

Prior studies have emphasized the importance of SWIR in
differentiating partial canopy removal. Olsson (1994) found that
bands 5 and 7 were the most effective Landsat bands for
predicting basal area removal. Spectral composite indices
featuring SWIR have also been used effectively to detect partial
forest removals. Tasseled Cap wetness (TCW) (Crist & Cicone,
1984), which emphasizes SWIR reflectance, has been identified
as a reliable indicator of both forest structure and forest structure
change (Cohen et al., 1995; Collins &Woodcock, 1996; Franklin
et al., 2000; Skakun et al., 2003). Jin and Sader (2005) found
NDMI, which contrasts SWIR and NIR reflectance, to be at least
as accurate as TCW in supporting the detection of disturbance
intensity inMaine. In the present project, these and other Landsat-
derived spectral variables were compared according to their
relationship with four forest inventory variables: basal area,
percent cover, relative basal area removal, and relative percent
cover change. Only single-variable models were considered
because of strong multicollinearity between most of the spectral
indices with respect to the variables predicted.

Independent of the spectral variable selection process, cross-
validation was used to assess the relative error rates of the SDM
and DCM change detection approaches. The relative change in
basal area and percent cover was predicted for each plot using
both SMD and DCM with information from all other plots used
as training data. So that cross-validation results would be
directly comparable, plots that did not have the multi-temporal
reference measurements needed for DCM were dropped from
both approaches. Since cross-validation used only a portion of
the dataset, this cross-validation procedure was used only to
compare SMD and DCM, not to compare spectral variables.
Together, it was hoped that the variable selection and cross-
validation processes would lead to insight both into the basic
effect of partial harvests in the region on surface reflectance and
into the ability of two change detection approaches to quantify
the effects of those harvests.

2. Methods

2.1. Study area

The boundaries of the study area were chosen to include
several designated Spotted Owl Special Emphasis Areas (Fig.
1). Forests in this region are coniferous, dominated primarily by
Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus
ponderosa), with ponderosa pine being replaced by western
hemlock (Tsuga heterophylla) in the western part of the southern
study area and by grand fir (Abies grandis) in the upper
elevations. Elevations range from 500m above sea level near the
Columbia River to approximately 2800 m near the crest of the
Cascade Mountains. Topography influences the amount of
rainfall in the area, with average precipitation ranging from 600
to 3000 mm/year across the two areas (Spatial Climate Analysis
Service, 2005). The northern study area is centered at 47.3° N/
120.9°W, and the southern area is centered at 45.9° N/121.5°W.

Forest cover in the area ranges from relatively open to
completely closed, with canopy structure ranging from
relatively uniform monoculture plantations to highly complex
older forests. The area has a long history of timber management,
and numerous permits for both even- and uneven-aged harvests
were granted for each 2-year interval in the 1996–2004 study
period (WDNR, 2004). Although the area is located in a region
where stand-replacing fires are common, a Landsat-based map
of stand-replacing disturbances (created following Cohen et al.,
2002) showed no such fires in the area from 1996–2004. Aerial
sketch mapping of insect activity (WDNR, 2003) showed a few
areas of mortality in the study area between 1996 and 2003.
However, the density of attacked trees was quite low (typically
fewer than 10 trees/hectare) in our study area, and insect activity
was therefore not explicitly considered in the modeling process.

2.2. Reference data

Three types of reference data were used to train and then
cross-validate the spectral models for partial harvest: a harvest
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Fig. 3. The relationship between basal (“stump”) diameter at 14 cm height and
diameter at breast height (DBH) for all live trees in which basal diameter was
measured (N=1983). This relationship was used to estimate the DBH and basal
area of harvested trees using stump diameter measurements.
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permit database, field plots, and historical aerial photos. This
permit database (WDNR, 2004) was used to identify likely
sites of harvest activity between the years 1996 and 2004.
Field crews were dispatched in the summer of 2004 to sites
on accessible land in the study area where harvest permits had
been granted in the previous eight years. Land was deemed
accessible if it was under state, federal or municipal
ownership or if it belonged to cooperating private companies.
Recent Landsat images for target stands were visually
inspected, and plots were sited in areas within the stand
that displayed relatively uniform spectral characteristics.
Seven plots were also sited in accessible stands where harvest
permits had been granted but where no activity was visible
from the imagery. Each one-hectare plot was composed of
nine fixed-radius subplots (Fig. 2). The radius for the subplots
in a given plot was fixed at 5, 10, or 12.5 m, depending on
the density of the stand. Larger subplots were required to
obtain adequate sample sizes in lightly stocked stands,
whereas smaller subplots could be used to efficiently sample
denser stands. Generally, subplot size was chosen so as to
provide 10–15 trees per subplot (90–135 per 1-ha plot).

A number of inventory measurements were recorded at each
subplot, including: the diameter at breast height (DBH),
species, and canopy class of all trees with DBH greater than 10
cm. The diameter of all stumps at a height of 14 cm was also
recorded. Further, the height and basal diameter (diameter
measured at a height of 14 cm) was recorded for a
representative tree for each canopy class (dominant, co-
dominant, intermediate, suppressed) found in the subplot.
The ratio of basal diameter to DBH for all such trees (Fig. 3)
was later used to estimate the DBH and basal area of the trees
removed from the stand. The percentage basal area removed
from a plot was calculated as the basal area of the stumps
divided by basal area of the combined stumps and live trees in
the plot. No attempt was made to back-calculate the basal area
of live trees at the time of harvest, which may have occurred
up to 8 years prior to the stand survey.

Eighty-four plots were established in which live tree basal
area information was recorded. For 38 of these plots, basal area
change was not calculated because local harvest records
indicated that multiple partial harvests had occurred in the last
100 meters

Fig. 2. Field plot layout, showing the location of circular subplots and scale of
re-sampled 25-m Landsat pixels within each 1-ha plot. The radius of each sub-
plot was fixed for each plot at 5, 10, or 12.5 m, depending on the density of the
measured stand.
20 years and that not all of the stumps could be attributed to the
time period of interest.

Percent canopy cover was estimated for most plots in both
1998 and 2002 using 1 :15,000 nominal scale black and white
aerial photographs (1998) and 1-m color orthophotos (2002).
Photo coverage was available for 83 and 77 plots in 1998 and
2002, respectively. Estimates were made using a percent tree
cover key that exhibited a variety of different clumping
arrangements for each of 10 (10% cover) classes from 5% to
95% canopy cover. The value for a given plot for a given year
was determined using the average estimate among three
photointerpreters. Canopy cover change between 1998 and
2002 was calculated as the difference between cover estimates
for the two dates.

To summarize, current basal area was measured at each plot,
basal area removal was measured in plots where existing stumps
could confidently be attributed to harvests in the study period,
and percent cover was estimated for 2 dates where supporting
photography was available.

2.3. Spectral data

Five late-summer Landsat TM and ETM+images in two-
year intervals were acquired for both the north and the south
study areas (Table 1). Frequent image acquisition has been
recommended to combat the potentially ambiguous effects of
Table 1
Landstat images used in this study

Landsat scene (WRS2) Acquisition date Landsat sensor

Path 45, Row 27 Jul. 13, 1996 TM
Path 45, Row 27 Aug. 4, 1998 TM
Path 45, Row 27 Aug. 9, 2000 TM
Path 45, Row 27 Jul. 22, 2002 ETM+
Path 45, Row 27 Sep. 21, 2004 TM
Path 45, Row 28 Jul. 13, 1996 TM
Path 45, Row 28 Aug. 4, 1998 TM
Path 45, Row 28 Aug. 9, 2000 TM
Path 45, Row 28 Sep. 24, 2002 ETM+
Path 45, Row 28 Aug. 20, 2004 TM
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forest re-growth following partial harvest (Jin & Sader, 2005;
Wilson & Sader, 2002). For each study area, the 1996 image
was chosen as a geospatial reference, and all other images were
co-registered to that image using an automated approach
developed by Kennedy and Cohen (2003). All the images
were resampled to 25 m resolution during this process, using the
UTM projection and WGS84 datum. The 1998 path 45/row 27
scene was used as the reference for radiometric calibration. The
COST atmospheric correction model of Chavez (1996) was
applied to that image to convert digital counts to reflectance.
Then, the other four images from row 27 were relatively
normalized to it using the multivariate alteration detection
(MAD) method of Canty et al. (2004), adapted by Schroeder et
al. (unpublished). The 1998 row 28 image was then normalized
to the row 27 reference image using the image overlap area and
the remaining four images of row 28 were subsequently
normalized to the row 28 1998 image.

In addition to the Landsat reflectance bands (1–5, 7), several
other Landsat-derived indices were computed. After all images
had been converted to reflectance and normalized to a Landsat 5
reference scene, Tasseled Cap brightness (TCB), greenness
(TCG), and wetness (TCW) images were created using
coefficients published by Crist (1985). Also derived for each
image was the Disturbance Index (DI), which has been used to
detect stand replacing disturbances (Healey et al., 2005; Masek,
2005). In this transformation, Tasseled Cap components are first
re-scaled to standard deviations above or below a forest mean
condition, and are then linearly combined in a way that
approximates their spectral similarity to clearcuts (which are
assumed to have high brightness, and low greenness and
wetness). This combination (Eq. (1)),

DI ¼ TCBre�scaled−ðTCGre�scaled þ TCWre�scaledÞ; ð1Þ

typically produces high positive values in highly-disturbed
areas and values near zero in most other forested areas. DI has
not been tested in partial harvest situations.

The normalized difference vegetation index (NDVI), a
measure of the ratio of NIR to red reflectance, was also
calculated (Eq. (2)) for each image, using:

NDVI ¼ ðNIR−redÞ=ðNIRþ redÞ ð2Þ
Further, the normalized difference moisture index (NDMI),

was also calculated (Eq. (3)). This index takes advantage of one
of the SWIR channels (band 5; Jin and Sader, 2005) using the
equation:

NDMI ¼ ðNIR−SWIRÞ=ðNIRþ SWIRÞ ð3Þ

For each plot center, a 16-pixel (1-ha) neighborhood (see
Fig. 2) of pixel values was extracted from each of the spectral
bands and indices. The average spectral value in this
neighborhood was the spectral signature associated with
each plot for a given date and band. In some cases, pixels
were removed from this averaging operation because they
contained unanticipated heterogeneity (new roads, clouds).
Since plots were the modeling unit in this project, it was
desirable to use plots that were as structurally and spectrally
homogenous as possible. Inventory measurements from sub-
plots overlapping removed pixels were removed from forest
condition calculations.

2.4. Modeling the relationship between spectral and forest
inventory variables

In this project, SMD and DCM were used to estimate partial
harvest intensity in terms of relative reductions in forest canopy
cover and basal area. Accordingly, there were four regression-
based modeling efforts: creation of date-invariant models of
cover and basal area for use in SMD, and models of basal area
and cover change for use in DCM. Regression analysis has been
a popular empirical method of modeling the relationship
between spectral data and forest attributes (e.g., Butera, 1986,
Turner et al., 1999). However, traditional (i.e., ordinary least
squares, OLS) methods of regression are not sufficient when
resulting biophysical surfaces derived from remote sensing are
subsequently used to drive ecosystem process models or
characterize habitat. With OLS regression, the variance of the
predictions is commonly compressed relative to the variance of
the observations (Cohen et al., 2003; Curran and Hay, 1986).
The degree of compression is a function of the correlation
between the spectral data and the biophysical variable of
interest: low correlation, high compression, and vice versa. In
this study, orthogonal RMA (reduced major axis) regression
method was used. Cohen et al. (submitted for publication)
recently demonstrated the value of RMA relative to OLS
regression to predict tree cover and leaf area index across a
number of sites in the western hemisphere.

Preliminary bivariate-plots showing the relationships be-
tween all possible 2-way combinations of spectral values
corresponding to the inventory plots suggested strong multi-
collinearity among the spectral measures under investigation.
Further, forward step-wise regression suggested that a second
spectral variable rarely made a significant contribution in
explaining the variance in the forest inventory data. For
simplicity's sake, therefore, only models using a single spectral
term were further considered. In the variable-selection process,
spectral bands were assessed in their relationship to the
inventory data using their respective coefficients of determina-
tion (R2). This process is outlined below for the four primary
inventory variables (basal area, cover, basal area change, cover
change).

The static (date-invariant) relationship between basal area
and the spectral variables was determined using basal area
measured in 2004 and corresponding spectral values from
imagery that had been cross-normalized with images from all
other dates. The static relationship between percent cover and
spectral data was derived from the percent cover estimates
obtained from 1998 1 :15,000 nominal-scale black and white
aerial photographs and 1998 spectral values. In both cases,
some plots had to be discarded either because disturbances
occurred between the date of the reference information and the
date of the imagery or because within-plot heterogeneity
prevented unambiguous interpretation of the mean spectral
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value. This left 71 plots for basal area modeling and 76 plots for
cover modeling.

Relationships between spectral changes and changes in the
inventory variables were assessed using reference data from two
dates in concert with contemporaneous spectral differences.
Cover change was assessed at 54 plots by combining the 1998
photo data with a similar interpretation of 2002-era color
orthophotos. Linear models using the absolute difference in
cover between these two dates (Cover98−Cover02) were
consistently weaker than models using relative cover change
((Cover98−Cover02) /Cover98). Accordingly, cover change
throughout this paper is expressed in terms relative to the
original percent cover.

Basal area change was likewise better captured in relative
terms ((Basal Areapre-removal−Basal Areapost-removal) /Basal
Areapre-removal); thus, removals of basal area (as measured
with stump data) were expressed as percentage decreases
relative to the starting basal area. The spectral change associated
with each harvest operation was calculated by taking the
difference in spectral values from the dates immediately
preceding and following harvest. Harvest dates were deter-
mined in consideration of the harvest permit database and
through visual interpretation of the time series of Tasseled Cap
images for each plot.

Only one plot in our dataset displayed relative basal area
removal of 60–80 percent. A similar phenomenon was found in
the dataset of Olsson (1994), and it is possible that removals of
this magnitude are uncommon in our study area. It also
appeared that although the relationship between spectral change
and basal area change was relatively linear for all spectral
variables up to 60% removal, different relationships occurred
above 60% removal. Thus, it was decided to limit this model to
values between 0% and 60% removal; only plots in that range (a
total of 42) were used to create the basal area DCM model, and
only that range of prediction was considered in the variable
selection and cross-validation processes.

Logarithmic transformations were performed upon the basal
area and cover variables in order to linearize them in relation to
the spectral variables. Relative cover change and basal area
removal were relatively linear with respect to the spectral
variables without transformation. Comparison of the R2 values
of each of these linear relationships was the basis for evaluating
the preliminary potential of each spectral band or index for
supporting prediction of harvest intensity.

2.5. Comparison of DCM and SMD through cross-validation

The above variable-selection process did not address the
larger question of how well SMD and DCM predict relative
basal area and cover removal. This question was the focus of a
leave-one-out cross validation analysis. For each plot, compa-
rable DCM and SMD estimates of relative basal area and cover
change were developed with data from all other plots. Estimates
were then compared plot-wise with change information from re-
measured reference data, and the root mean square error
(RMSE) for each approach was calculated. So that SMD and
DCM would be directly comparable, the absolute estimates
resulting from SMDwere transformed to relative terms to match
the output of DCM, and only those plots with reference
information supporting both SMD and DCM were used. Since
basal area removals above 60% could not be predicted with our
data using DCM, plots showing greater than 60% removal were
left out of both the DCM and SMD basal area cross-validation
exercises. All degrees of cover change were considered,
however.

In the leave-one-out process, SMD and DCM were used to
predict both the measured relative cover change between 1998
and 2002, and the relative basal area removal represented by the
stumps measured in 2004 and attributed to harvest in one of four
2-year intervals (1996–1998, 1998–2000, 2000–2002, and
2002–2004). Forty-two plots were available to support this
cross-validation procedure for basal area, and 54 plots were
available for cover. Cross-validation was repeated using each of
the spectral variables under study (bands 1–5, 7, TCB, TCG,
TCW, DI, NDVI, and NDMI).

2.6. Using SMD to map owl habitat loss

The harvest mapping methods investigated here were
intended to be integrated into a larger analysis carried out by
WDFW and WDNR of how harvests have affected spotted owl
habitat in the last several years (Pierce et al., 2005). WDFWand
WDNR used SMD estimates of cover change to identify
harvests resulting in the loss of owl habitat. A description of this
process is included here to illustrate a practical application of
the methods under investigation. While it is out of the scope of
this paper to detail how WDFW and WDNR defined and
identified owl habitat in the region, the use of SMD cover
change estimates to update habitat maps followed relatively
simple rules. If previously mapped owl habitat dropped either
from above 70% canopy cover to below 70% cover, or from
50–70% to below 50% cover, it was assumed that the structural
elements needed to support owl populations had been removed.
SMD was used to identify harvests because it provided needed
absolute estimates of both pre- and post-harvest cover. A “state”
model for percent cover was developed with photo-based
estimates of 1998 cover in conjunction with 1998 TCW values.
This model was then applied to each Landsat scene, and
estimated cover values from successive dates were compared to
identify areas in which cover was estimated to drop below the
70% and 50% thresholds. A masking step was devised to
minimize spurious identification of such pixels. Tasseled Cap-
transformed image pairs from each 2-year interval were
submitted to an independent supervised classification to
differentiate “changed” from “unchanged” pixels. Only pixels
identified as “changed” in this classification were permitted to
be labeled as harvest by SMD.

Errors in the resultant maps of habitat loss were assessed
using repeated cover measurements. Photos were used to
determine whether plots had dropped below the habitat-critical
70% and 50% cover thresholds between census dates, and
results were compared to SMD-based classifications of habitat
loss. In most cases (64 plots), the assessed interval was 1998 to
2002 because photos were available for those 2 dates. For 10



Fig. 4. Relationship between canopy cover removal and change in reflectance. Cover was assessed for 54 plots at two different dates using aerial photography, and
changes were plotted against corresponding spectral differences in 6 Landsat bands.
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plots disturbed between 1996 and 1998, it was possible to use
earlier 1993 1-m color orthophotos to determine “pre-harvest”
cover conditions; thus, the tested interval for these plots was
1996 to 2002. Plots thinned after the latest (2002) photo
mission, as well as plots in which no harvest occurred, were
estimated for the 1998–2002 interval.

3. Results

3.1. Spectral variable selection

The general relationship between spectral change and
thinning intensity was plotted in terms of both percent cover
(Fig. 4) and basal area (Fig. 5). Reference information was
available from 54 plots for Fig. 4 and 46 plots for Fig. 5. For
Fig. 5, 5 additional clearcut areas (100% removal) were
identified using aerial photos, and the spectral signatures of
these areas were used to augment available plot data. SWIR
reflectance (bands 5 and 7) displayed relatively strong
positive relationships with removal of both cover and basal
area. Weaker increases in reflectance were seen in bands
1–3. NIR response to thinning intensity was slightly different
Fig. 5. Relationship between basal area removal and change in reflectance. Basal area
removal. Only plots undergoing basal area removal of 60% or less were ultimately c
when measured by cover loss as opposed to basal area loss.
Although decreases in NIR reflectance were seen in both
measures when little or no harvest occurred, more complete
removals resulted in increasing reflectance when measured by
cover change and very little change when measured by basal
area. Since slightly different subsets of plots were available
for each figure, these discrepancies may highlight previous
findings (e.g., Franklin et al., 2000; Nilson et al., 2001) that
NIR reflectance is sensitive to factors such as understory
composition that are independent of the degree of forest
removal.

The strength of the relationship (R2) between spectral
variables and relevant inventory variables was used in the
variable selection process. Table 2 summarizes the strength of
the relationships between the 12 Landsat-based variables and
the inventory variables forming the basis for SMD (basal area
and percent cover) and DCM (relative removal of basal area and
cover). Coefficients were not strictly comparable among
inventory variables because relative basal area removal was
only predicted in a range of 0% to 60%. Nevertheless,
coefficients were comparable within each forest inventory
measure, and although R2 is not an absolute measure of a
removal was inferred from reference data for 62 plots ranging from 0% to 100%
onsidered in the (linear) regression-based DCM method described in this paper.



Table 2
Variable selection results

Ln Basal
Area, 2004
N=71

Ln Cover,
1998 N=76

Relative
Cover Change,
1998–2002
N=54

Relative Basal Area
Removal up to 60%
removal, multiple
2-year periods N=42

Band 1 0.055 0.476 0.185 0.086
Band 2 0.315 0.662 0.447 0.313
Band 3 0.388 0.736 0.357 0.502
Band 4 0.071 0.064 0.209 0.057
Band 5 0.548 0.745 0.636 0.618
Band 7 0.566 0.759 0.647 0.601
TCB 0.367 0.264 0.551 0.317
TCG 0.000 0.226 0.044 0.288
TCW 0.579 0.762 0.635 0.630
DI 0.555 0.761 0.636 0.645
NDVI 0.221 0.632 0.204 0.475
NDMI 0.434 0.695 0.492 0.641

Values represent the coefficient of determination (R2) for simple linear or log–
linear relationships between reference data and contemporaneous spectral data.
These relationships form the basis for the SMD (the Basal Area and Cover
variables) and DCM (Relative Cover Change and Relative Basal Area Removal)
change estimation approaches. The number of observations (N) for each
relationship was dependent upon the availability of reference data.
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model's value, certain general trends were apparent. First,
spectral variables dominated by SWIR (band 5, band 7, DI,
wetness, and, to a lesser extent, NDMI) showed the closest
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Fig. 6. Relationships between TasseledCapwetness and: percent canopy cover, basal a
regression lines and equations are shown in each graph. Also displayed is a dashed lo
relationship to all forest and forest change variables. DI may be
categorized as SWIR-dominated because further exploration
showed that DI was highly correlated with wetness in this
dataset. The relationship between wetness and the four change-
related inventory variables is plotted in Fig. 6; also displayed
are the RMA regression lines and coefficients. The other SWIR-
influenced bands showed similar relationships with the field
data. In general, the two untransformed SWIR bands (5 and 7)
were as strongly correlated with the inventory variables as their
derivative indices.

The weakest relationships with the forest change variables
were shown by band 1, band 4, and TCG. The dataset also
showed an apparently negative effect of NIR (band 4) in the
indices into which it is integrated. For example, NDMI is a ratio
of bands 4 and 5, and while it was more correlated to the forest
and forest change variables than band 4, it was less correlated,
in all variables except basal area change, than band 5 alone. The
same presumed negative effect of band 4 was observed in
NDVI, a combination of bands 3 and 4. Likewise, TCG, in
which band 4 is strongly weighted, displayed only weak
relationships with the forest structure variables. In general,
variable selection highlighted the importance of SWIR, as the
indices strongly influenced by SWIR — i.e., wetness, DI, band
7 and band 5 — had the most explanatory power for the forest
change variables.
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Table 3
Root mean squared error (in percent relative change) resulting from the leave-
one-out cross-validation procedure

Relative Basal Area
Removal (42 plots)

Relative Cover Change
(54 plots)

DCM (%) SMD (%) DCM (%) SMD (%)

Band 1 21.4 93.5 28.3 42.3
Band 2 16.9 77.1 21.7 33.4
Band 3 13.8 39.5 24.3 31.3
Band 4 22.0 27.3 27.7 40.9
Band 5 12.1 18.3 17.0 25.7
Band 7 12.4 18.2 16.7 26.8
DI 11.5 16.6 17.1 27.3
NDVI 14.2 39.6 27.8 33.9
NDMI 11.3 14.7 20.6 30.0
TCB 16.8 46.8 19.1 29.4
TCG 17.2 22.6 33.2 38.5
TCW 11.9 15.8 17.1 26.4

SWIR-influenced spectral variables (in bold: bands 5 and 7, TCW, DI, NDMI)
produced more stable estimates of change than those not featuring SWIR (bands
1–4, TCB, TCG, NDVI). Basal area change was modeled only for 0 to 60%
removal, whereas relative cover change was modeled up to 100% removal.
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3.2. Comparison of DCM and SMD

While the variable-selection phase of the project considered
simple relationships between spectral data and the forest
inventory measures, the cross-validation phase integrated
these relationships into estimates of forest removal based
upon the SMD and DCM approaches. DCM produced lower
root mean square error (RMSE) for prediction of both percent
cover loss, which was modeled for up to 100% loss, and percent
N
0

Washington

Fig. 7. Detail of a map of harvest impacts on owl habitat between 1998 and 2000
preliminary multi-temporal supervised classification. Of areas identified as “change
binning, at the pixel level, SMD results to match Washington forest practices criteri
basal area reduction, which was modeled only up to 60% loss
(Table 3). However, SMD-based estimates using the most
effective spectral variables (TCW, DI, band 5, band 7, and
NDMI) were within 5% of those resulting from DCM for basal
area removal (17% RMSE compared to 12%) and within 10%
for cover change (26% to 16%).

An extremely high error rate was noted for bands 1 and 2 in
cross-validation for basal area SMD. SMD's reliance on two
separate applications of a “state” model to estimate change
likely contributed to this error rate; the errors inherent in each
application may have compounded one another, particularly in
cases where the original state model was weak. The
relationship between bands 1 and 2 and the spectral variables
was so weak, for example, that the regression coefficients used
for some of the plots in the leave-one-out process were positive
while others were negative, leading to large prediction errors.
The fact that this phenomenon was not seen with other
variables such as band 4 and TCG, which according to the
variable selection results were also weakly correlated with
basal area, was possibly a factor of sample size. As plots were
dropped from the original dataset to enable direct comparison
of cross-validation results, the impact of spectral outliers
increased either by their retention or exclusion. Thus, because
this cross-validation generally incorporated fewer samples and
was designed only to compare the relative error rates between
SMD and DCM, it was considered a less appropriate means of
comparing spectral variables than the variable-selection
process. Nevertheless, cross-validation results generally sup-
ported the trend noted in the variable selection process: SWIR-
dominated indices produced the most accurate estimates of
change.
10 km

in the southern focus area. Areas in white were classified as “no change” in a
d,” classes for habitat loss (black) and no habitat loss (grey) were created by
a.



Table 4
Error matrix for classes of interest to WDFW and WDNR

Measured
condition

SMD-based prediction Total Producer's
accuracy

No Habitat Loss Habitat Loss

No Habitat Loss 36 7 43 0.84
Habitat Loss 11 20 31 0.65
Total 47 27 74
User's accuracy 0.77 0.74
Overall accuracy 0.76

Habitat Loss was defined as overstory removal resulting in cover conditions
below state forest practices criteria for spotted owl habitat. Observed values
came from repeated photo measurements for 74 plots.
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3.3. Use of SMD-based maps to support an assessment of owl
habitat change

Modified SMDmaps depicting harvests reducing cover from
above 70% to below 70% and from 50–70% to below 50% were
used by WDFW and WDNR to analyze changes in owl habitat.
While discussion of this analysis is not within the scope of this
paper, an example of one of the cover change maps used is
shown in Fig. 7. For each 2-year interval, these maps depicted:
areas identified as unchanged by an independent supervised
classification (white), areas with cover trajectories consistent
with habitat loss (cover above 70% to below 70% or 50–70% to
below 50%— black), and areas where estimated cover changes
did not meet criteria for habitat loss (grey). An error matrix was
constructed (Table 4) for two classes: those re-measured plots
that did and those that did not undergo changes in percent cover
consistent with the loss of spotted owl habitat. Fifty-six out of
74 re-measured plots (76%) were mapped correctly with respect
to these classes.

4. Discussion

4.1. Which spectral variables are most sensitive to forest
structure changes associated with partial harvest?

The general spectral response to forest removal shown in
Figs. 4 and 5 conforms to a pattern that has been relatively
consistent across several studies (Franklin, 2001): harvest
coincided with an increase in visible and SWIR reflectance
and a decrease in NIR reflectance. Few studies have assembled
datasets designed to support the modeling of forest harvest
effects as a continuous variable. Thus, there is little information
on how consistently and with what order of detail these general
spectral trends can be used to estimate degrees of harvest
intensity. In this context, our results provide information about
which Landsat-based variables are most sensitive to the forest
structure changes that accompany partial harvests in the Pacific
Northwest.

The relative performances of the spectral bands considered in
the variable selection phase of this study have two broad
implications. First, SWIR, as represented by bands 5 and 7,
TCW, DI, and potentially NDMI, is the most useful range of the
Landsat spectrum for characterization of forest structure
change. This corroborates results obtained both by studies
classifying tree mortality/removal into general levels of
intensity (Franklin et al., 2000; Jin and Sader, 2005; Skakun
et al., 2003) and by those measuring forest change as continuous
variables (Olsson, 1994; Collins and Woodcock, 1996). The
relative value of the various data transformations in predicting
harvest intensity varied slightly among inventory variables, and
would likely vary further in different forest systems and with
different harvest practices. Healey et al. (2005) demonstrated
that the relative value of different Landsat transformations for
supporting harvest-detection can vary by ecosystem; in fact, of
the three ecosystems they studied, the region containing the
current study area showed the least differentiation among
alternative transformations in terms of supporting accurate
harvest detection. However, it would seem that for harvest
characterization in our study area, the benefits of processing
data beyond the original Landsat SWIR bands are minimal. For
projects involving large areas and multiple dates, elimination of
this additional processing may offer a considerable reduction in
processing time. The value of indices relative to SWIR bands
alone should be tested in the future for consistency in other
regions.

The second implication of our results is that the relationship
between NIR and forest structure change is relatively
inconsistent. TCG, in which NIR is heavily weighted, and
band 4 were both weakly correlated with the forest structure
variables in the variable-selection exercise. NDVI and NDMI,
which incorporate NIR in ratios with red and SWIR,
respectively, were less correlated to forest structure and forest
change variables than their non-NIR components alone. Given
the ubiquitous application of NDVI in forest change detection,
the sometimes deleterious effect seen here of NIR was
significant. These results underscore findings of other studies
that suggest the general relationship between NIR and forest
structure can be compromised by factors like understory
conditions (Danson and Curran, 1993), slash patterns (Nilson
et al., 2001), and species differences (Olsson, 1994). Thus,
whereas SWIR bands showed relatively strong and consistent
relationships with measures of forest removal, the relationship
between our ground data and the NIR bands was more tenuous.

4.2. Approaches to modeling harvest intensity

The primary objective of this study was to test two change
estimation approaches, DCM and SMD, in their ability to
measure partial harvest with multi-temporal Landsat data. The
leave-one-out cross-validation process was developed to assess
and compare errors involved with predictions of harvest
intensity produced through these two approaches. In our study
area, DCM and SMD both produced estimates of relative forest
change with reasonably low RMSE when using SWIR-based
spectral bands and indices. The lower error rates achieved with
DCM were expected because relative change was modeled as a
single variable with a single error term instead of the difference
of two independently modeled “state” estimates, each with their
own error term.

However, there are a number of practical advantages to SMD
that, depending on the resources and needs of a project, may
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counterbalance the measured increase in error. First, SMD has
simpler reference data needs than DCM since it is concerned
only with identifying the static relationship between spectral
data and forest condition. As long as cross-date radiometric
normalization is reliable, one can pull reference data from any
date, match it to contemporaneous spectral data, and use it to
build a state model. That state model can then be applied to
similar imagery from any dates of interest to estimate change.
This flexibility, along with the elimination of the need to re-
measure each plot, represents a significant operational advan-
tage. Furthermore, unlike DCM, SMD does not require pre-
selection of disturbed areas for selecting plot locations. Such
areas may be rare, which may limit the number of available plot
locations, and their identification may add considerable pre-
processing time. Multi-date reference information is still needed
for validation, but this requires a considerably lower volume of
such data.

Another advantage of SMD is the specificity of its results.
Theoretically, DCM can provide an estimate of absolute change
(i.e., the gross difference in a forest structure variable).
However, in our dataset, the relationship between spectral
differences and absolute change was inconsistent because of the
lack of a reference point. For example, a reduction in cover from
90% to 65% resulted in a much different spectral change than
from 25% to 0%. This phenomenon was consistent with the
findings of Cohen and Fiorella (1998), who demonstrated the
inadequacy of using spectral differences alone for forest change
characterization. So in our study, DCM could only accurately be
modeled in terms of relative change (change as a percent of the
starting value). Because SMD provides an estimate of forest
condition for both before and after a harvest, harvest effects are
estimated in absolute terms.

The pre- and post-harvest reference points implicit in SMD
estimates of change were critical in the mapping of our study
area to meet WDFW's needs. Habitat loss was defined not in
terms of gross removal, but by the ability of the stand to meet
cover-based criteria for habitat both before and after harvest.
The need for specific cover estimates for both before and after
harvest necessitated the use of SMD.

The mere application of either SMD or DCM to a series of
normalized Landsat imagery does not necessarily constitute a
map. These approaches, rather, provide raw estimates to be used
in a map in light of the needs and tolerances of the user. WDFW
was concerned primarily about identifying harvests that
removed stands from pre-defined, cover-based definitions of
owl habitat. Flexibility to conform to varying classes of interest
is one of the strengths of modeling change as a continuous
variable as opposed to committing to a single classification
scheme. Although both the DCM and SMD processes may
produce continuous estimates of change, the flexibility of SMD
is augmented by the reference points implicit in its estimates.

Our results suggested that in the conifer-dominated forests of
the Pacific Northwest, relatively strong relationships exist
between SWIR-dominated spectral bands and measures of
harvest intensity. Further, both DCM and SMD can be used with
these bands to produce estimates of relative basal area and cover
removal with less than 25% RMSE. Although DCM estimates
of harvest intensity were more accurate than SMD estimates,
SMD's more flexible reference data requirements and model
output may be better suited to the resources and needs of some
mapping projects.
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