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Abstract

Landsat satellite data has become ubiquitous in regional-scale forest disturbance detection. The Tasseled Cap (TC) transformation for

Landsat data has been used in several disturbance-mapping projects because of its ability to highlight relevant vegetation changes. We used

an automated composite analysis procedure to test four multi-date variants of the TC transformation (called ‘‘data structures’’ here) in their

ability to facilitate identification of stand-replacing disturbance. Data structures tested included one with all three TC indices (brightness,

greenness, wetness), one with just brightness and greenness, one with just wetness, and one called the Disturbance Index (DI) which is a

novel combination of the three TC indices. Data structures were tested in the St. Petersburg region of Russia and in two ecologically distinct

regions of Washington State in the US. In almost all cases, the TC variants produced more accurate change classifications than multi-date

stacks of the original Landsat reflectance data. In general, there was little overall difference between the TC-derived data structures. However,

DI performed better than the others at the Russian study area, where slower succession rates likely produce the most durable disturbance

signal. Also, at the highly productive western Washington site, where the disturbance signal is likely the most ephemeral, DI and wetness

performed worse than the larger data structures when a longer monitoring interval was used (eight years between image acquisitions instead

of four). This suggests that both local forest recovery rates and the re-sampling interval should be considered in choosing a Landsat

transformation for use in stand-replacing disturbance detection.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The detection of forest disturbance is important in

research and policy related to global carbon cycles. It is

also useful for identifying spatial and temporal trends in

forest management. At regional and greater scales, the only

feasible means of monitoring forest change on a regular and

continuous basis is with the aid of remote sensing. Landsat

has been the workhorse sensor for regional analyses of

forest cover and change (Cohen & Goward, 2004). Many

change detection projects (e.g. Cohen et al., 2002; Franklin

et al., 2001; Seto et al., 2002) have opted to work with
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Landsat data that has been transformed using the Tasseled

Cap transformation (Crist & Cicone, 1984; Kauth &

Thomas, 1976). This transformation reduces the Landsat

reflectance bands to three orthogonal indices called bright-

ness, greenness and wetness. While there are clear opera-

tional savings involved with storing and processing only

three spectral bands per image date instead of six, there has

been little formal investigation of the impact of this

transformation on the accuracy of change maps. The goal

of this study was to quantify the degree to which it is

possible to identify stand-replacing disturbance (disturban-

ces removing almost all of the forest canopy) using different

combinations of the Tasseled Cap indices in relation to the

original Landsat bands and a newly developed Disturbance

Index (DI).
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In this paper, spatially co-registered multi-date stacks of

these competing transformations are called ‘‘data struc-

tures.’’ The framework for testing these data structures was

multi-temporal composite analysis (Coppin & Bauer, 1996).

In this procedure, a multi-date image is submitted to a

classification algorithm that attempts to identify pixels

exhibiting spectral characteristics consistent with a sudden

loss of vegetation. This procedure has proven successful in

several large-scale mapping projects (Cohen et al., 1998,

2002; Sader et al., 2003; Moeur et al., in press). Composite

analysis was performed using each of the competing data

structures in two coniferous forests in Washington, USA,

and one mixed hardwood-conifer forest in the St. Petersburg

region of Russia. The classifications produced using each of

the data structures were compared using manually digitized

maps of stand-replacing disturbance as a reference.

The choice of a data structure is a critical decision for

several reasons. First, different data transformations respond

to different compositional attributes (Cohen et al., 2001),

and, in disturbance detection, transformations should be

sought that maximize spectral distance and separability

between ‘‘disturbed’’ and ‘‘undisturbed’’ forest conditions.

Second, the duration of the spectral signal associated with

disturbance varies among transformations, such that a

project’s re-measurement schedule should be informed by

the signal decay rate of the data structure used. Third, large-

scale monitoring projects often cover a variety of forest

types and conditions, so the transformation used must be

robust across a range of conditions.

A final consideration in the choice of data structure is the

potential for the reduction of redundant or unnecessary

information. Aside from the higher storage and processing

costs, higher-dimensional data structures (i.e. those com-

posed of more bands per date) may in some cases result in

lower classification accuracies (Hughes, 1968). If the
Fig. 1. Plane of transformation for the Disturbance Index in Tasseled Cap space. V

The units for each axis are standard deviations above or below the mean Tasseled C

Red circles represent pixels disturbed immediately prior to 1991; blue circles repre

of pixels at that data point. Only data points representing at least .25% of the un
number of training samples is low in relation to the number

of dimensions, the variance of class parameter estimates can

be large, resulting in higher classification error (Fukunaga &

Hayes, 1989). Thus, if the disturbance signal in competing

transformations is equal in strength, duration, and robust-

ness, the transformation composed of the fewest bands may

be preferable.

The DI transformation that was tested here is expressed

in a single band per date. The transformation itself,

described later, is based upon the observation that recently

cleared stands typically have a higher Tasseled Cap bright-

ness value and lower Tasseled Cap greenness and wetness

values than undisturbed forest areas. The DI plane of

transformation (Fig. 1) divides Tasseled Cap space in a way

that segregates pixels fitting this ‘‘disturbed’’ profile from all

others. It is hoped that by testing DI and the other Tasseled

Cap-related data structures in different disturbance detection

scenarios, information will be gained regarding the sensi-

tivity of each structure to sudden forest canopy removal.

This information may contribute to the choice of appropriate

transformations for Landsat data in future disturbance

detection projects.
2. Methods

2.1. Study areas

Three study areas were used to compare the effectiveness

with which different Landsat data structures facilitate forest

disturbance composite analysis. Two of these areas were in

physiographically distinct regions of Washington State. The

East Cascades Washington (ECW) study area, centered at

47.3-N/120.9-W, included a 500,000 ha portion of the Path

45/Row 27 Landsat TM scene. The West Cascades
alues are taken from 1991 West Cascades Washington (WCW) study area.

ap brightness, greenness, and wetness values of the scene’s forested pixels.

sent undisturbed pixels. The size of each circle is proportional to the number

disturbed and disturbed classes are plotted.
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Washington (WCW) area, centered at 45.9-N/122.1-W, was

a 381,000 ha subset of the Path 46/Row 28 scene. The ECW

study area lies east of the crest of the Cascades, receives

between 500 and 1800 mm of rain per year (PRISM., 2003)

and is characterized by relatively open canopies of ponder-

osa pine (Pinus ponderosa) and Douglas-fir (Psuedotsuga

menzeisii). The WCW region lies west of the Cascade crest

and receives greater rainfall, 2000–2550 mm of rain per

year (PRISM., 2003), than the ECW site. The Douglas-fir

and western hemlock (Tsuga heterophylla)-dominated forest

of the WCW study area exhibits considerably denser canopy

cover than ECW. Both areas supported large-scale forest

harvesting during the two intervals studied (1988–1992,

1992–1996) and a 2700-ha stand-replacing fire occurred in

the ECW area during the second interval studied.

The other study area, RUS, was a 420,000-ha section of

the St. Petersburg region of Russia in Landsat scene Path

185, Row 19 (58.8-N/30.0-E). The natural vegetation of this
region belongs to southern taiga type; major conifer species

include Scots pine (Pinus sylvestris) and Norway spruce

(Picea abies) both growing in pure and mixed stands. After

disturbance, these species are often replaced by northern

hardwoods including birch (Betula pendula) and aspen

(Populus tremula). The climate is maritime with cool wet

summers and long cold winters. Annual precipitation is

600–800 mm. The region is a part of the East-European

Plain with elevations between 0 and 250 m a. s. l. The

terrain is mostly flat and rests on ancient sea sediments

covered by a layer of moraine deposits. Forests have been

repeatedly harvested on 80–100 year rotation, and fire

control is very effective throughout the region (Krankina et

al., 2004).

2.2. Data structures tested

In each of three study areas, the first data structure tested

was an 18-band composite stack of the 6 Landsat TM 30-m

reflectance bands covering the three test dates (two

intervals). Landsat data has been a common source of

information for regional change detection projects because

of its availability, resolution, and sensitivity to forest

change. While the original 18-band composite images

(hereafter called OB, for ‘‘original bands,’’) incur high

storage and computational costs, their inclusion in this study

provides a baseline against which to judge the performance

of lower-dimensional data transformations.

The Tasseled Cap transformation reduces the six TM

reflectance bands of a single image date to three indices:

brightness, greenness, and wetness (B , G , and W).

Combining these indices for three dates, we tested a 9-band

BGW composite of each study area. A six-band subset

containing only B and G for the 3 years was also tested.

This subset was investigated because of the ubiquitous use

of just B and G in change detection projects, especially

when Landsat MSS data is used. In addition, we tested W

alone, because several studies have emphasized its value in
detecting variation in forest structural characteristics (Cohen

& Spies, 1992; Collins & Woodcock, 1996; Skakun et al.,

2003), which are clearly affected by stand-replacing

disturbance.

2.3. The disturbance index (DI)

The final data structure tested as an input for composite

analysis was the Disturbance Index. DI was designed for

this study to highlight the un-vegetated spectral signatures

associated with stand-replacing disturbance and separate

them from all other forest signatures. Specifically, the DI is

a linear combination of the three Tasseled Cap (Crist &

Cicone, 1984; Kauth & Thomas, 1976) indices: B, G, and

W. The formulation of DI takes advantage of the

assumption that recently cleared forestland exhibits high

B and low G and W in relation to undisturbed forest (Fig.

1). This assumption was developed through pilot studies

using imagery from different regions in the Pacific

Northwest, and was further tested in the boreal forest of

Canada and mixed forest of Virginia (J. Masek, personal

communication).

For the DI transformation, linear combination of an

image’s B, G, and W values is facilitated by first re-scaling

(Eq. (1)) each band to its standard deviation above or below

the scene’s mean forest value,

Br ¼ B� Bl
� �

=Br

Gr ¼ G� Gl
� �

=Gr

Wr ¼ W �Wl
� �

=Wr; ð1Þ

where Br, Gr, Wr= rescaled Brightness, Greenness, and

Wetness, Bl, Gl, Wl= mean forest Brightness, Greenness,

and Wetness, Br, Gr, Wr= standard deviation of forest

Brightness, Greenness, or Wetness.

This re-scaling process normalizes pixel values across

Tasseled Cap bands in a way that allows their subsequent

algebraic combination (Eq. (2)). The reference population

from which mean (l) and standard deviation (r) values are
drawn should be representative of the scene’s forested

pixels. The work reported here used a reference population

composed of all pixels labeled as ‘‘forest’’ in pre-existing

maps of land cover. This process is separate from the later

selection of training data for supervised composite analysis.

Once the three component indices are normalized, they can

be combined linearly (Eq. (2)) as follows:

DI ¼ Br � Gr þWrð Þ: ð2Þ

Given the above assumptions that disturbed areas will

have high positive Br (brighter than average) and low

negative Gr and Wr (less green and wet than average)

values, recent cuts should display high DI values. Stands

displaying low negative Br and high positive Gr and Wr (e.g.

young, fully regenerated stands) will exhibit low DI values,



Table 1

Landsat TM and ETM+ imagery

Study Area Path Row Acquisition date Satellite

RUS 185 19 May 23, 1987 Landsat 5

RUS 185 19 July 13, 1994 Landsat 5

RUS 185 19 May 5, 2001 Landsat 7

ECW 45 27 July 23, 1988 Landsat 5

ECW 45 27 August 3, 1992 Landsat 5

ECW 45 27 July 13, 1996 Landsat 5

WCW 46 28 August 31, 1988 Landsat 5

WCW 46 28 September 9, 1991 Landsat 5

WCW 46 28 August 21, 1996 Landsat 5
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and all others will tend toward zero, as shown in Fig. 1. This

compression of undisturbed pixels toward a mean value

simplifies the ‘‘unchanged’’ forest class, and may reduce the

effort needed to correctly train that class in composite

analysis. Since DI is a single band, the disturbance

information present in three dates of imagery can be

visualized in a standard RGB display (Fig. 2), which

facilitates the training process in supervised composite

analysis.

2.4. Testing process

Supervised composite analysis (Coppin & Bauer, 1996)

was used as a framework for comparing the above data

structures. Composite analysis of multi-temporal Landsat

imagery has proven to be an effective change detection

technique in several regional-scale monitoring efforts (e.g.

Cohen et al., 2002; Sader et al., 2003). In each study area,

three dates of Landsat imagery (Table 1) were geo-rectified

using an automated tie-point program described by Kennedy

and Cohen (2003). In ECW and WCW, monitoring intervals

of 4 years were used. In RUS, available imagery only

allowed intervals of 7 years. No multi-date radiometric

normalization was performed on these images. Since the

change detection method used here, supervised classifica-

tion, does not rely upon radiometric calibration of the input

axes (Song et al., 2001), radiometric normalization was

unnecessary. After spatially co-registering the three dates at

each study area, the clearcuts and stand-replacing fires

occurring over the two periods were manually digitized

aided by simultaneous viewing of the Tasseled Cap imagery.

Cohen and Fiorella (1998) found little difference between

using Tasseled Cap data and other sources of reference data

for identifying stand-replacing disturbance. The digitized
Fig. 2. Three dates of DI as viewed in a typical RGB monitor. The first date

(1988) is plotted in the red color gun, the second (1992) in the green, and

the third (1996) in the blue. Using the assumption that DI is high in

disturbed areas, additive color logic can be used to interpret this multi-

temporal image. Blue pixels have a high DI only in the third date, indicating

disturbance between the second and third dates. Cyan-colored areas are

high in the second and third dates but not the first, indicating a disturbance

between the first and second dates. The yellowish colors, high in the red

and green color guns and lower in the blue, indicate stands disturbed before

the first date that are becoming re-vegetated by the third date.
disturbances were used to create ‘‘truth’’ layers against

which to evaluate the accuracy of change maps produced

using the data structures under study.

In each study area, six Landsat reflectance bands were

combined to create a three-date ‘‘stack’’ (the 18 band OB

structure). This stack was then used to create multi-temporal

stacks of the transformations discussed earlier: BGW (9

bands), BG (6 bands), W (3 bands), and DI (3 bands). All of

these data structures were masked to include only forest

pixels, using the Interagency Vegetation Mapping Program

land cover map (Weyermann & Fassnacht, 2001) in ECW

and WCW, and a locally produced land cover map for RUS.

Each data structure (OB, BGW, BG, W, DI) was classified

repeatedly using a maximum likelihood decision rule.

Classifications were trained from a pool of the larger

disturbances (>2 ha) that were digitized earlier. There were

at least 400 disturbance polygons larger than 2 ha in both

disturbance periods in each of the three study areas. Each

data structure was classified 50 times with 5 randomly

selected training polygons from each of the two periods,

then 50 times with 10 training polygons per period, then

with 15, up to 100 polygons per period. In other words, each

data structure was classified fifty times at twenty levels of

increasing amounts of training data. In addition to the two

change classes sought in each classification, a fixed set of

approximately 10 ‘‘no change’’ polygons was used in each

classification to create a class for unchanged forest.

The resulting classifications were compared to the

‘‘truth’’ layer created from the digitized disturbances,

resulting in a comprehensive error matrix for each classi-

fication. Table 2 displays an error matrix representative of

the 50 trials at the level of training in the RUS study area

that used 15 polygons per change period. From each such

matrix, overall and kappa (see Congalton & Green, 1999)

accuracies were derived. Kappa values of the classifications

produced in the 50 trials at each level of training data were

the basis for comparative analyses.

To test the duration of the disturbance signal in each

transformation, the middle date was removed from each data

structure, effectively doubling the length of the monitoring

interval. The two pools of disturbance polygons in each

study area were combined and were used to train a single

change class. Accuracies of these longer-interval classifica-

tions were measured as before except that fewer levels of



Table 2

Examples of error matrices used in comparison of data structures

DI Reference W Reference

No

change

Change

period 1

Change

period 2

Total No

change

Change

period 1

Change

period 2

Total

Map No change 2,245,104 5235 7833 2,258,172 Map No change 2,193,382 7298 10,303 2,210,983

Change

period 1

122,859 85,127 3864 211,850 Change

period 1

111,608 80,300 3913 195,820

Change

period 2

58,249 4588 65,823 128,661 Change

period 2

121,223 7352 63,304 191,879

Total 2,426,213 94,950 77,520 2,598,683 Total 2,426,213 94,950 77,520 2,598,683

BG Reference BGW Reference

No

change

Change

period 1

Change

period 2

Total No

change

Change

period 1

Change

period 2

Total

Map No change 2,235,637 9321 6628 2,251,585 Map No change 2,163,777 5019 6128 2,174,924

Change

period 1

94,501 32,932 20,986 148,419 Change

period 1

117,036 82,973 3633 203,642

Change

period 2

96,075 52,697 49,906 198,679 Change

period 2

145,401 6,957 67,759 220,117

Total 2,426,213 94,950 77,520 2,598,683 Total 2,426,213 94,950 77,520 2,598,683

OB Reference

No change Change period 1 Change period 2 Total

Map No change 1,892,549 4265 3853 1,900,667

Change period 1 178,176 80,621 6,639 265,436

Change period 2 355,488 10,063 67,027 432,579

Total 2,426,213 94,950 77,520 2,598,683

Matrices show the agreement, in number of pixels, between composite analysis results and manually digitized reference maps. These examples came from the

RUS study area when 15 polygons were used to train the disturbance class for each period. Fifty classifications were produced with each data structure at each

level of training data, and kappa statistics derived from the error matrices of these classifications were the basis of comparison among the different data

structures.
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training data were tested (5, 15, 25,. . .95 training polygons

instead of 5, 10, 15,. . .100 polygons).
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Fig. 3. Mean kappa values for change maps in RUS using two 7-year

monitoring periods. At each level of parameterization (X-axis), a fixed

number of randomly selected polygons per change period were used to train

a supervised classification. Each data point represents the mean kappa of 50

change classifications using a given number of training polygons per

change period. Change periods in this case were: disturbed 1987–1994 and

disturbed 1994–2001. A constant set of 10 ‘‘no-change’’ polygons was also

used in each classification.
3. Results

Although overall accuracies (i.e. the percentage of pixels

correctly classified) were-computed for the classifications at

each site, kappa was considered a better measure of

accuracy. Because the great majority of pixels are usually

unchanged, overall accuracy is relatively insensitive to the

quality of the change information. For example, if no effort

was made at change detection in the WCW area and all of

the pixels were mapped as ‘‘no change’’ for the 2 monitoring

periods, the overall accuracy would still be 95%. The kappa

value of this map, on the other hand, would be close to zero.

Thus, all discussions of accuracy will refer to kappa

accuracy.

Fig. 3 shows the mean kappa value of disturbance

detection classifications produced at the RUS site with

increasing numbers of training polygons. Although the

relative performance of the different data structures varied

among study sites (Fig. 4), the graph in Fig. 3 has two

features representative of all sites. First, using more than

15 training polygons per change period resulted in little or
no improvement in accuracy. Second, the differences in

accuracy between data structures, though small in some

cases, were consistent across levels of parameterization.



Fig. 4. Multiple comparisons among data structures. Structures are listed from left to right in descending order of mean classification kappa. Structures with

statistically similar kappas (using p =.05 Bonferoni simultaneous confidence intervals) are joined with underlines. Compared structures included: disturbance

index (DI); Wetness (W); brightness and greenness (BG); brightness, greenness, and wetness (BGW); and the original Landsat bands (OB). The left column

shows results using two shorter monitoring intervals (4 years each in ECW and WCW, and seven in RUS), and the right column shows results using a single,

longer monitoring period (8 years in ECW and WCW, 14 years in RUS).
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Therefore, a single representative level of parameterization

was chosen for comparative analyses. Specifically, com-

parisons were made using 15 training polygons of stand-

replacing disturbance per monitoring period (30, total, for

the 2-period classifications) in addition to a constant set of

ten polygons representing unchanged forest. Figs. 5 and 6

show the mean (of 50 trials) kappa accuracy of each of the

tested data structures. Analysis of variance (ANOVA) at

each site indicated that data structure had an effect on

kappa at the p <.01 level. Multiple comparisons of the

performance of the different data structures were made

using Bonferroni significant difference (BSD) method at

the 95% confidence level; the results of this analysis are

displayed in Fig. 4.
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Fig. 5. Mean kappa values for composite analysis using different data

structures to detect stand-replacing disturbance in two shorter monitoring

periods. Kappas were determined using manually digitized polygons for

each area as a reference. Change classes in each study area included: 1987–

1994 and 1994–2001 in RUS; 1988–1992 and 1992–1996 in ECW; and

1988–1991 and 1991–1996 in WCW.
The performance of the various data structures varied

among regions. The largest separation between data

structures occurred in the Russian study site. DI performed

significantly better than the Tasseled Cap structures, which

in turn performed better than the original Landsat bands.

This pattern was observed both in classifications using two

7-year monitoring periods and in those using a single 14-

year monitoring period. In WCW, the structures composed

of more than one band per year, including the original

Landsat stack, outperformed the single-band structures of

W and DI. The difference between multiple- and single-

band structures increased using a longer monitoring period.

There was little difference in performance in ECW;

classification accuracies were statistically similar among
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Fig. 6. Mean kappa values for composite analysis using different data

structures to detect stand-replacing disturbance in one longer monitoring

period. Kappas were determined using manually digitized polygons for

each area as a reference. Change classes in each study area included: 1987–

2001 in RUS, and 1988–1996 in ECW and WCW.
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all data structures except the original bands, which lagged

the others.

The most significant effect of using a longer monitoring

period was seen in WCW, the wettest and most biologically

productive of the sites. In this study area, the performance of

the two single-band structures, DI and W, fell dramatically

in relation to the performance of the other data structures

(Fig. 6). The only change seen in ECW using the longer

monitoring period was that the original bands gained in

relation to W. DI remained significantly better than the other

structures in RUS in the longer 14-year period, although the

other single-band structure, W, declined in relation to BGW

and BG.
4. Discussion

4.1. Choice of data structure for detection of forest

disturbance

The accuracy of change detection through composite

analysis was in many cases shown to depend on the

transformation of Landsat data used to support the

classification. In general, the Tasseled Cap-derived trans-

formations (BGW, BG,W, DI) performed significantly better

than the original Landsat TM band data. This suggests that

the Tasseled Cap and Disturbance Index transformations

successfully preserve and highlight information relevant to

forest disturbance while simultaneously reducing the

amount of information that must be processed and stored.

In general, the Tasseled Cap-derived structures produced

equally accurate change classifications. Exceptions to this

equality occurred in RUS when DI outperformed the others,

and in WCW, where DI and W were outperformed by the

structures containing more bands. These exceptions are

likely related. WCW is the most mesic of the three study

sites, and re-vegetation after disturbance is fastest there.

Clearcuts or fires occurring in the beginning of a monitoring

period may be covered with grass, shrubs or even small

trees after only 4 years. In cases such as this, supplementary

axes may be needed to characterize the more varied

conditions observed following stand-replacing disturbance.

Conversely, relatively slow re-vegetation at the RUS site

may be related to the superior performance of DI there.

Severe climate and poor soils contribute to lower succession

rates at the RUS site. In addition, post-harvest re-stocking is

less common in RUS than in Washington, and when re-

colonization does occur, it is usually led by relatively bright

hardwoods. Slow recovery of conifers may minimize the

spectral diversity of cuts occurring in different years during

a particular monitoring period, thereby, simplifying the

classes representing change in composite analysis. This

simplification may allow the use of lower-dimension data

structures.

The idea that more complex data structures are

required to define the more complex (i.e. variable)
change classes is also supported by the results of

disturbance detection using a longer monitoring period.

Increasing the time between monitoring dates allows

succession to create more variability among areas to be

identified as disturbed. Accuracies produced by the

single-band structures W and DI generally declined in

relation to larger-dimension data structures when longer

monitoring periods were used, particularly in WCW,

where succession is fastest.

In RUS, DI actually performed better than the data

structures containing more bands. This suggests that DI

has an advantage in this area that goes beyond band depth.

DI is designed to accentuate the separation between

undisturbed forest and stands showing high brightness,

low greenness, and low wetness, the presumed profile of

recently disturbed forest. As long as rapid succession does

not cause disturbed areas to deviate from this simplistic

profile, the separation of disturbed and undisturbed forest

that DI accomplishes may provide a fundamental advant-

age in identifying stand replacement. More work is needed

to determine if shorter monitoring intervals could be used

in areas of more rapid succession to produce the same

advantage seen in RUS.

There are several factors to be considered in choosing a

transformation of data to be used in the detection of stand-

replacing disturbance. In general, simpler data structures are

easier to store and process. Further, single-band trans-

formations can be displayed multi-temporally in a single

monitor to allow easy development of training data (e.g.

Fig. 2). In terms of performance, although little difference

was typically observed between any of the four TC-based

transformations studied, DI performed the best in the

simplest disturbance detection tasks, and the higher-dimen-

sion structures performed best in the most complex tasks.

Consequently, succession rate and length of monitoring

interval, both factors that influence the spectral variability of

disturbed pixels, should be considered in the choice of a

transformation for Landsat data in the detection of stand-

replacing disturbance.

4.2. The Disturbance Index

The DI value of an area at a single date relates little of its

disturbance history. DI simply quantifies how close in

Tasseled Cap space a pixel is to the areas in the scene having

the highest brightness and lowest greenness and wetness.

Clouds and exposed rock can often have high DI values.

When viewed in sequence, however, DI images provide a

direct way to highlight pixels that move from an average

forest condition to a disturbed condition. Fig. 7 shows the

mean response of DI to stand-replacing disturbance in the

three study areas. The DI of a stand typically goes from near

zero or slightly negative before disturbance to between 2

and 5 after being disturbed.

The variability in DI values among the different study

areas suggests that the contrast between disturbed and
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undisturbed forest is different from ecosystem to ecosystem.

Forests that are already bright, perhaps having a large

hardwood or ground component in their signal, may show a

smaller spectral change when cleared than darker conifer

stands. For example, forests in ECW are relatively open, so

the spectral distance between undisturbed and cleared forest,

which is essentially what DI quantifies, is smaller than it is

in the closed forests of WCW. Accordingly, the mean DI

value for new cuts in ECW is 2.9, whereas new cuts average

4.8 in WCW (Fig. 7). DI values in RUS fall between these

two sites, although RUS has a hardwood component not

present in the others that further affects the contrast between

disturbed and undisturbed forest.

In addition to varying geographically, the magnitude of

DI can also fluctuate by interval within the same area (Fig.

7). For example, disturbed areas in the 1991 WCW image

have a mean DI of 5.5 whereas disturbances in the same

scene in 1996 average a 4.2 DI. This variability may result

from atmospheric or phenological differences between the

two images. Another potential source of variability is the

dynamic nature of the reference or ‘‘norming’’ population

used to rescale the Tasseled Cap indices that are input into

the DI transformation. These rescaled indices are expressed

in standard deviations above or below the mean forest value

for each individual image. Since disturbance and re-growth

may somewhat alter the mean forest condition from year to

year, DI calibration may show a corresponding drift. The

change detection method used here, supervised composite

analysis, allowed date-specific parameterization of change

classes, minimizing the need for cross-date normalization.

However, a more automated thresholding procedure would

require a more stable interpretation of DI. While it is clear
that careful radiometric normalization would contribute to

DI stability, more research is needed to determine if

alternate norming techniques, such as drawing the mean

forest condition statistics solely from unchanged areas,

would also add stability.

The construction of the DI transformation itself also

merits more study. In the formulation given here, the

rescaled Tasseled Cap indices are all given the same

weight and are combined linearly. While this transforma-

tion has the advantage of simplicity and ease of

interpretation, a more complex formulation may maximize

the spectral separation between disturbed and undisturbed

forest. If research reveals that the Tasseled Cap indices

recover at different rates after disturbance, for example, it

may be desirable in some cases to give a higher weight to

the more stable components.

DI takes advantage of the fact that stand-replacing

disturbance creates a strong and relatively predictable

spectral signal. Although DI performed worse than larger

data structures in the case (WCW, 8-year interval) where

rapid succession and a longer monitoring interval allowed

the disturbance signal to decay, it performed as well as

any Tasseled Cap structure in all other cases and

significantly better than others in RUS, where slow

succession rates prolong the disturbance signal. DI has

several properties that make it attractive for automated

disturbance detection: it is easily calculated and inter-

preted; it reduces data storage and processing require-

ments; and it allows visualization of change between three

dates in a single color monitor. The results of this study

suggest that as long as monitoring interval length is

attuned to the local succession rate, the use of DI to
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detect stand-replacing disturbance involves no sacrifice in

accuracy.
5. Summary

Five multi-temporal, Landsat-derived data structures

(OB, BGW, BG, W and DI) were tested in change

classification exercises in three ecologically distinct

regions. The untransformed Landsat reflectance data

performed as well as the Tasseled Cap-transformed data

only in WCW, the study site with the most rapid re-

vegetation rate. There was little difference in classification

accuracy among the Tasseled Cap-based data structures.

However, the DI structure, described here for the first

time, created significantly more accurate disturbance maps

in RUS, where forest recovery is slower than in the other

areas. At the same time, DI produced less accurate maps

(along with W, the other single-band transformation) in

WCW when longer, 8-year monitoring intervals were

used. These results suggest that as long as monitoring

intervals are relatively short in relation to local forest

recovery rates, simple transformations can be used in

automated disturbance mapping to reduce Landsat data

volume without sacrificing accuracy. In the most straight-

forward disturbance detection projects, the DI transforma-

tion may provide a significant advantage over the Tasseled

Cap indices. It should be emphasized that the disturbances

mapped in these exercises involved complete removal of

vegetation; results from this study may not apply to the

identification of more subtle forest changes. DI values for

disturbed area were consistent neither across time nor

space. While the supervised classification algorithm used

here accommodated scene-specific interpretation of DI,

more general use of the transformation will require

methodology that standardizes the index. Research ques-

tions that may contribute to a more stable interpretation of

DI include: the sensitivity of the index to varying

‘‘norming’’ populations; the behavior of DI after disturb-

ance as stands develop, and the potential for using more

complex formulations of the transformation.
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