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Abstract 

Broad-scale maps of forest characteristics are needed throughout the United States for a wide 

variety of forest land management applications. Inexpensive maps can be produced by 

modelling forest class and structure variables collected in nationwide forest inventories as 

functions of satellite-based information. But little work has been directed at comparing 

modelling techniques to determine which tools are best suited to mapping tasks given 

multiple objectives and logistical constraints. Consequently, five  modelling techniques were 

compared for mapping forest characteristics in the Interior Western United States. The 

modelling techniques included linear models (LMs), generalized additive models (GAMs), 

classification and regression trees (CARTs), multivariate adaptive regression splines 

(MARS), and artificial neural networks (ANNs). Models were built for two discrete and four 

continuous forest response variables using a variety of satellite-based predictor variables 

within each of five ecologically different regions. All techniques proved themselves 

workable in an automated environment. When their potential mapping ability was explored 

through simulations, tremendous advantages were seen in use of MARS and ANN for 

prediction over LMs, GAMs, and CART. However, much smaller differences were seen 

when using real data. In some instances, a simple linear approach worked virtually as well as 

the more complex models, while small gains were seen using more complex models in other 

instances. In real data runs, MARS and GAMS performed (marginally) best for prediction of 

forest characteristics.  

 

Keywords: predictive mapping, forest inventory, classification tree, regression tree, 

mulivariate adaptive regression spline, MARS, artificial neural network.
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1. Introduction 
 

Forest inventory data, like those collected by the Forest Inventory and Analysis (FIA) 

program in the United States, have historically been used to produce estimates of forest 

population totals over large geographic areas. Recent emphasis has been placed on expanding 

the traditional uses of this data by merging it with satellite-based information to produce 

regional maps of forest characteristics for use in a variety of forest land management 

applications. These applications include broad-scale activities like mapping wildlife habitat, 

assessing resource loss to fire, identifying lands suitable for timber harvest, and locating 

areas at high risk for insect and disease outbreaks.  

There are numerous sources of ancillary data, and a tremendous amount of effort has 

been directed at acquiring finer resolution data from a wide variety of newly developed air- 

and space-borne platforms. There are also numerous ways in which forest class and structure 

variables from forest inventories may be modeled as functions of remotely sensed and other 

ancillary variables. Yet, little work has been directed at comparing modern statistical 

techniques to determine which tools are best suited to mapping tasks given multiple 

objectives and logistical constraints. 

In this paper, five modelling techniques were compared for mapping forest 

characteristics in the Interior Western United States using forest inventory field data and 

ancillary satellite-based information. The research involved five statistical modelling 

techniques for predicting two discrete and four continuous forest inventory variables. The 

modelling techniques included: generalized additive models (GAM), classification and 

regression trees (CART), multivariate adaptive regression splines (MARS), and artificial 

neural networks (ANN). In addition, a simple linear model (LM) was used as a benchmark 
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against which to judge the other models. The two discrete inventory variables included a 

forest/non-forest classification, as well as a binary classification within forested areas. The 

four continuous response variables were tree biomass per acre, average tree age, quadratic 

mean tree diameter, and percent tree crown cover. The analyses were conducted within five 

ecologically different regions (two each in Montana and Utah, and one in Arizona). The 

predictor variables included elevation, aspect, slope, geographic coordinates, unclassified 

spectral data from the Advanced Very High Resolution Radiometer (AVHRR) sensor, and a 

national vegetation cover map derived from Landsat Thematic Maper (TM) imagery. 

Predictive performance (map accuracy) of all discrete and continuous variables were 

compared across modelling techniques, ecoregions, and predictor variable sets using 

independent test data.  All models were evaluated for suitability in a production environment.  

 

2. Materials and methods  

 

2.1. Data description  

 

2.1.1. Study Regions and Sample Design 

 

Portions of five ecologically different regions defined by Bailey et al. (1994) were 

selected for analyses and are illustrated in Figure 1.  The ecoregions range from the 

coniferous forests of northwestern Montana, to the semi-desert conditions of the mountains 

of central Arizona. MT1 and MT2 refer to two ecoregions in Montana, UT1 and UT2 are two 

within Utah, and AZ1 is in Arizona. Dates of forest inventory, sample grid intensity, and 
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field plot layout differ by ecoregion as well as by land owner and vegetation type, as 

summarized in Table 1.  Standardized per-acre responses were retrieved under each layout.  

 

2.1.2. Response variables 

 

At each FIA field location, extensive stand- and tree-level measurements were 

collected.  Individual tree measurements were compiled and combined with stand-level 

variables to produce location-level summaries. The two discrete response variables, 

FORTYP.2 and FORTYP.3, were created by collapsing a detailed forest type into forest/non-

forest (FORTYP.2) and timberland/woodland (or spuce-fir/other in Montana) within forested 

areas (FORTYP.3) respectively. Data files for modelling the discrete FORTYP.2 include all 

data from forest and non-forest locations while data for modelling FORTYP.3 include only 

forested field locations. This is analogous to applying a forested “mask” over a data set to 

focus modelling on within-forest conditions.  The four continuous response variables were 

tree biomass per acre (BIOTOT), average tree age (STAGE), quadratic mean tree diameter 

(QMDALL), and percent crown cover (CRCOV).  

 

2.1.3. Predictor variables 

 

Predictor variables were extracted from four sources: (1) elevation, aspect, and slope 

from 1000-m digital elevation models; (2) spectral and positional data from a biweekly 

AVHRR composite;  (3) vegetation cover type from the National Land Cover Data (NLCD); 

and (4) geographic coordinates in the Universal Transverse Mercator (UTM) projection. A 

list of predictor variables and their descriptions is provided in Table 2. 
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 The circular aspect variable is transformed to a radiation index (TRASP) used by 

Roberts and Cooper (1989). This takes the form 

2

))30aspect)(180/cos((1
TRASP

−−= π
. 

This transformation assigns a value of zero to land oriented in a north-northeast direction, 

(typically the coolest and wettest orientation), and a value of one on the hotter, drier south-

southwesterly slopes. 

Daily observations from the AVHRR platform are compiled biweekly to produce 

spectral composites of the U.S. These composites result in a near cloud-free image depicting 

maximum vegetation greenness for the compositing period.  One such composite dated (June 

1986) was used in these analyses and contains six bands of  “least cloud” information 

including five spectral channels [one visible, one near infrared (NIR), and 3 infrared (IR)] as 

well as a Normalized Difference Vegetation Index (NDVI) that is computed NDVI=(NIR-

IR)/(NIR+IR).   

The NLCD (http://edcwww.cr.usgs.gov/programs/lccp) is a land cover data set 

produced through a cooperative effort involving the U.S. Environmental Protection Agency, 

U.S. Geological Survey, U.S. Forest Service, and National Oceanic and Atmospheric 

Administration. This Thematic Mapper (TM)-based national data set (released in 2000) 

provides 21 mapped cover-types at 30-m resolution. In this study, cover-types were collapsed 

to a simple forest, shrubland, and non-forest type.  
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2.1.4. Test sets 

  

 Within each ecoregion, both the total and forest-masked data files were randomly 

split into two data sets, 70% of the data for modelling and 30% for testing. The 30% test data 

set was chosen because this is the approximate proportion of plots collected on an intensified 

(not the standard 5 km) sampling grid and withholding this additional amount gives an 

indication of predictive abilities given customary sampling intensities in forest inventories.   

 

2.2. Modelling 

 

The following section describes each of the five modelling techniques along with 

model fitting details for this forest inventory application. DeVeaux et al. (1993) and 

DeVeaux (1995) provide more general discussions comparing these techniques.  All 

modelling and analyses were conducted in S-PLUS. 

 

2.2.1. NLCD benchmark models 

 

By far, the simplest mapping strategy that could be adopted in these analyses is to 

predict discrete variables by collapsing NLCD cover types, and predict continuous variables 

by assigning the mean of the continuous variable within each NLCD class. This approach is 

implemented by either using a function that collapses cover type classes for discrete 

variables, or using a simple linear model for continuous variables. This is the benchmark 

against which other models were judged. 
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2.2.2. Generalized additive models 

  

 Generalized additive models (Hastie and Tibshirani 1986, 1990) have been described 

in detail by Guisan et al., (this issue). Illustrations of predictive modelling in forest inventory 

applications using generalized linear models and generalized additive models can be found in 

Moisen and Edwards (1999) and Frescino et al. (2001), respectively. 

Both the binary forest/non-forest (FORTYP.2) and timberland/woodland (or spruce-

fir/other) within forest (FORTYP.3) classifications were modeled using a binomial family. 

The selection of an appropriate link function and variance-to-mean relationship for the 

continuous variables, however, is more difficult. Encountering a large number of zeros (on 

non-forest lands) can confound the problem and dominate the mean/variance relationship. A 

non-forest mask was applied as described above in the data section and only continuous 

variables on forested plots were modeled, assuming the mask would be reapplied at time of 

mapping. The variances of continuous variables on forested plots (within bins defined by 

combinations of predictor variables) were plotted against the mean values of those bins, 

revealing no detectable patterns.  Consequently, a simple gaussian family was specified for 

continuous the responses. Alternatively, an option can be implemented within the program to 

run a regression of variances on means, determining if the variance is proportional to 1, µ , 

µ2, or µ3 , and then assigning a gaussian, poisson, gamma, or inverse gaussian family, 

respectively. For both continuous and discrete responses, predictor variables entered the 

model individually using a smoothing spline with a relatively large smoothing parameter to 

avoid fitting noise. Final models were selected by stepwise procedures. 
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2.2.3. Classification and regression trees 

 

Classification and regression trees, also known as recursive partitioning regression, 

dates back to Morgan and Sonquist (1963) and has received more recent attention through 

Breiman et al. (1984), (the use of the acronym here is not to be confused with any proprietary 

software or trademarks.) CARTs subdivide the space spanned by the predictor variables into 

regions {Rm} for which the values of the response variable are approximately equal, and then 

estimate the response variable by a constant, am, in each of these regions. That is, 

 mm Raf ∈= xx for,)( . 

The tree is called a classification tree if the response variable is qualitative, and a regression 

tree if the response variable is quantitative.  The initial node on a tree is called the root.  

From the root, the model is fit using binary recursive partitioning.  This means the data are 

successively broken into left and right branches with the splitting rules defined by the 

predictor variable values.  For example, a first split might occur where x1 < c1, where c1 is 

estimated. Then, ,for,)( 111 cxaf <=
∧

x  and 112 for,)( cxaf ≥=
∧

x . A second split might occur 

where x1 < c1 and x2 < c2,, and so on. Splits are chosen that maximize the "value" of a split, 

where this value may be computed in many different ways. For classification problems splits 

are chosen that most reduce the impurity of the distribution at the node, while in regression 

problems the value of a split is measured as the reduction in the residual sum of squares.  

Splitting continues down to the “terminal” nodes where response values are all the same 

within a node or data are too sparse for additional splitting.  At the terminal node, the 

predicted response is given that is the average or majority of the response values in that node 
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for continuous or discrete variables, respectively. Pruning the tree to avoid overfitting the 

data can be accomplished a number of different ways, as described below. 

In modelling the forest inventory data, an initial tree was fit using all the predictor 

variables. Tree pruning, analogous to variable selection in regression, is the methodology 

used to prevent overfitting the training data with too many splits.  Although many methods of 

pruning are available, pruning through crossvalidation is most popular. The optimal size for 

these trees was identified via 10-fold cross validation. While this process was repeatable for 

classification, the "optimal size" was very different under different crossvalidation runs for 

continuous variables. Consequently, 20 cross-validatory splits were run and  the “majority 

rule” (ie optimal size getting the most votes) was used to determine pruning size for 

continuous variables.   

 

2.2.4. Multivariate Adaptive Regression Splines 

 

MARS, developed by Friedman (1991) is a flexible nonparametric regression method 

that generalizes the piecewise constant functions of CART to continuous functions by fitting 

(multivariate) splines in the regions Rm, and matching up the values at the boundaries of the 

Rm.  One form for writing the MARS model is   

...),,(),()()(
321

0 ++++= ∑∑∑
===

∧

mmm K
kjiijk

K
jiij

K
ii fffaf xxxxxxx , 

but the notation requires further explanation. Here, the first sum is over all basis functions 

that involve only one variable. Each function in this first sum can be expressed as 
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where V(m) is the variable set associated with the mth basis function, Bm, that survives 

backward selection strategies. The second sum is over all basis functions that involve two 

variables, where each bivariate function can be expressed as 

),(),(

)(,
2
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mVji
K

jii Baf
m

xxxx

∈
=

∑= . 

The third sum is over all basis functions that involve three variables, and so on.   

Hastie and Tibshirani's (1996) mars function was loaded into S-plus and used to fit 

the MARS models. MARS automatically selects the amount of smoothing required for each 

predictor as well as the interaction order of the predictors.  It is considered a projection 

method where variable selection is not a concern but the maximum level of interaction needs 

to be determined. Taking a conservative approach, only 2-level interactions were specified. 

 

2.2.5. Artificial neural networks 

 

Neural networks have received considerable attention as a means to build accurate 

models for prediction, control, and optimization when the functional form of the underlying 

equations is unknown.  This modelling technique has permeated literature in many fields 

including statistics (e.g., Ripley 1994, 1996; Stern 1996; Cheng and Titterington 1994), 

remote sensing (e.g., Atkinson and Tatnall 1997; Skidmore et al. 1997; Wang and Dong 

1997), and ecology (e.g., Lek et al. 1996, Lek and Guegan 1999).   

Although there are a variety of ways to construct these models, “backpropagation 

networks” appear to be the most frequently used in practice.  In this description we have used 

statistical terms with corresponding neural network terminology in parentheses. A 

backpropagation network with one hidden layer is a nonlinear statistical model of the form 
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The response (output) is a transformation of a weighted combination of the predictor (input) 

variables.  The  σ  in the above equation is a bounded, monotonic, and differentiable 

function, with a logistic function the most common choice. That is,  

.
)exp(1

)exp(
)(

x

x
x

+
=σ   

         The numerous coefficients w (weights) and intercepts θ (bias terms) are estimated 

(undergo training, learning) through an optimization method similar to steepest descent 

(backpropagation).  Because so many parameters can be estimated, there is danger in 

overfitting the model.  By sacrificing an unlimited number of degrees of freedom, a modeller 

can eventually get a perfect fit.  In that case one would be modelling noise as well as the 

underlying phenomenon, and prediction for unvisited sites could be severely compromised.  

The preferred method to avoid overfitting involves using a large enough network to avoid 

underfitting, then limiting the number of iterations of the fitting procedure through 

crossvalidation.     

Nychka's FUNFITS S-Plus function library was obtained by ftp for fitting ANN's 

from http://www.cgd.ucar.edu/stats/Funfits/index.shtml. Although the computing time can be 

quite slow for full search options, the subjective choices about starting values, convergence 

criteria, and number of hidden units are done automatically.  
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2.3. Evaluation criteria  

 

Because the utility of maps for different management applications cannot be captured 

in a single map accuracy number, several global measures were used to assess the predictive 

performance of the models. Let x be an r x r contingency table or error matrix set out in rows 

and columns that express the number of sample plots (of which there are n) predicted to 

belong to one of r classes relative to the true ground class (on the diagonal). The percent of 

correctly classified (PCC) plots is calculated 

%100
1

1

×




= ∑

=

r

i
iix

n
PCC . 

Note that PCC can be deceptively high when frequencies of zeros and ones in binary data are 

very different. For example, if a model predicts only zeros for a data set with 10% ones and 

90% zeros, the PCC is 90%. The Kappa statistic (Cohen 1960) measures the proportion of 

correctly classified units after the probability of chance agreement has been removed. It has 

been used extensively in map accuracy work (Congalton 1991), and is calculated  

)1/()(Kappa 221 θθθ −−= , 
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Predictive performance of models of the continuous variables were evaluated through 

independent estimates from test sets of global root mean squared error (RMSE), 
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and proportion of plots within some user-specified range (PWI),  
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(eg., proportion of plots predicted to within 50 cubic feet of the true volume). The correlation 

coefficient (ρ) between observed and predicted values  
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was also calculated for each model. 

 In addition to the evaluation criteria above, the amount of time it took to run each 

model was recorded and considered in discussions about suitability of each of the models for 

a production environment. 

   

2.4. Mapping  

 

Predictions were produced for each response variable within each and imported into 

ArcView for display and analysis. The scale of the resulting maps is a function of the 

intensity at which predictor variables (as ArcInfo grids) are resampled. Here, a coarse 1 km 

grid was used for mapping to keep size and prediction times in check. Finer resolution maps 

may also be produced.  

When mapping over large geographic areas, one is guaranteed to run into values of 

predictor variables outside the range seen in the modelling data set and extrapolation is 

unavoidable. In addition, high dimensional models with interaction confound the 

extrapolation problem and it is likely that nonlinear and nonparametric models, such as those 
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used here, may produce unrealistic estimates. To prevent these few extreme values from 

completely overpowering evaluation criteria and map color schemes, model predictions were 

restricted from going below zero or above the maximum value seen in the model data set.  

 

3. Results 

 

3.1. Test simulations 

 

Before running data from all the ecoregions through the modelling system, a simple 

test was conducted to illustrate the known advantages and disadvantages of the modelling 

techniques. Following DeVeaux et al. (1993), 1000 each of ten uniformly distributed 

predictor variables X1-X10 were generated. Next, a response Y was specified as a function 

of only X1-X5, 

.1(X5).2(X4).5).4(X3X2)*X1*2sin(�Y 2 ++−+= , 

with no error term. A simple linear model along with a GAM, CART, MARS and ANN were 

used to fit the relationship between Y and the X1-X10. Results are shown in Table 3. These 

illustrate the effectiveness of MARS and ANNs in deciphering complex relationships. CART 

models identified the contributing predictor variable (X1-X5), but had an RMSE that was 10 

percent higher than a linear model, and 10 times the RMSE of ANNs. LM also had a high 

RMSE because of its inability to detect the non-linearity or interaction between terms. GAM 

residuals were considerably better, but the model’s stepwise procedures incorrectly identified 

X8 and X10 as contributing predictor variables in addition to the correct ones. Both MARS 

and ANN did exceptionally well, and MARS correctly identified the contributing variables 
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and order of interaction. Again, ANNs and MARS performed best overall but MARS had a 

much faster computing time.  

Next, simulations were run to illustrate the effect of random noise on the performance 

of each modelling technique. Following from the example above, the response was generated  

with increasing error. As expected, differences between performance measures diminished 

rapidly with increasing noise in the system. 

 

3.2. Discrete variables 

 

The PCC and Kappa values obtained using independent test sets for each modelling 

technique, response variable and ecoregion are illustrated in Figures 2 and 3, respectively. 

These graphics allow for quick visualization of a very large number of total model fits. Each 

individual dotplot shows the value of the evaluation criteria by modelling technique (y axis) 

and response variable (columns) within ecoregion (rows). Modelling techniques were 

ordered from best to worst (descending down Y axes in each plot) according to the mean 

value of each performance measure across all variables and ecoregions.  

The PCC and Kappa results suggest little difference between modelling techniques 

for identification of forest/non-forest but illustrate substantial gains over the NLCD approach 

when separated into three classes (FORTYP.3). These gains are made regardless of the 

nonlinear or nonparametric model and reflect the inability of the NLCD vegetation type maps 

to identify woodland areas in Utah and Arizona, or to identify spruce/ fir forest in MT2. The 

similarity in Kappa values in MT1 reflect the fact that the majority of forests in the ecoregion 

are, in fact spruce/fir, and one is highly likely to get a correct classification simply by chance. 

The top two modeling techniques (based on mean values for individual performance 
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measures) were MARS and GAMs for both PCC and Kappa (by a very slim margin). The 

NLCD and MARS models were fastest, computationally. 

An example of a 1 km resolution map of predicted forest/non-forest in UT2 is given 

in Figure 3. Files of UTM coordinates and predicted values can be brought into pre-made 

ArcView layouts, easing the chore of generating map displays.  

 

3.3. Continuous variables 

 

The RMSE, RHO, and PWI obtained using independent test sets for each modeling 

technique, response variable and ecoregion are illustrated in Figures 5, 6 and 7, respectively. 

Results suggest that all five models often perform competitively for RMSE and PWI, but 

occasional erratic behavior by ANN, MARS, and CART can be anticipated. As with the 

discrete variables, GAMs and MARS performed marginally best based on mean values of the 

performance measures. Only small gains are realized through alternative modelling 

techniques. The lowest values of RHO (~.1) were seen in UT1 in the BIOTOT models while 

higher values (~.6) were seen in MT2’s STAGECL, UT2’s BIOTOT, and AZ1’s BIOTOT 

and CRCOV. It is important to note the overall low PWI values in Figure 7, illustrating how 

difficult it is to accurately predict continuous response variables. As expected, simple NLCD 

and MARS models ran much faster than the others.  
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4. Discussion 

 

All techniques tried here proved themselves workable in an automated environment, 

although ANNs were a bit more problematic.  Computation run time is one area the 

modelling techniques differed substantially. Naturally, the simple NLCD model was 

extremely fast and straightforward. GAMs and CARTs are normally quite fast but were 

considerably slower here because of the stepwise procedures for GAM and iterative runs 

searching for best tree size for CART. ANNs were the slowest in these applications and have 

the potential to be cripplingly slow for “slow but safe” parameter optimization procedures in 

FUNFITS. Obviously, the simplest NLCD approach or another simple linear model is most 

readily incorporated into a production process. But of the more flexible techniques, MARS 

showed promise in a production environment because of its fast computing rate, little need 

for user “steering”, and tendency to produce reasonable models when optimal parameters for 

an ANN were not found. Certainly, any of the models could be made production suitable, and 

a sensible strategy may be to keep all the tools in the toolkit, using several for each 

application. 

When thinking about accuracy of maps produced through an automated modelling 

system, it is important to note that high scores for global performance measures do not 

necessarily mean that the maps will be better for management applications on the ground, 

and there is no substitute for application-specific testing. However, valuable lessons were 

still learned using global performance measures obtained both through simulations and 

diverse data sets. 

This simple simulation described in the beginning of the results section illustrated that 

use of a flexible and powerful modelling technique can make a huge difference in predictive 
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performance when one has a high signal to noise ratio (recall that our data did not). The test 

also shed some light on the character of each technique. It was surprising that CART 

performed worse than a simple linear model. It was also surprising that GAMs stepwise 

procedure was not able to exclude all the non-contributing variables. In addition, the ease 

with which both MARS and CART established the relationship of Y to the predictor 

variables was very informative.  

The differences between modelling techniques using real data were far less distinct. 

In fact, for a number of variable/ecoregion combinations, only small differences were 

realized using any of the modelling techniques over a simple NLCD approach, particularly 

for distinguishing forest/nonforest, or in RMSE for continuous variables.  Larger gains were 

realized, however, for further classification of forested areas (FORTYP.3) and in getting 

predictions that fell within a user-specified range. In addition, slightly higher correlations 

were realized for MARS and GAMs. This was seen in residual plots where more realistic 

predictions were obtained for extreme lows (in both MARS and GAMs) and extreme highs 

(for MARS). 

When starting this analysis with the real data, we had anticipated seeing marked 

differences between modelling techniques. The small gains seen with these data sets were at 

first surprising, but understandable given the tremendous amount of noise in the data. 

Sources of noise are numerous and include: positional error in field plots, registration 

difficulties between plots and images, scale differences between data collected in the field 

and the imagery, differences in date, and definitional differences. Based on the results one 

might be inclined to stick with a simple linear model for mapping. Yet, the data are in a 

constant state of change. GPS coordinates with national standards are now being collected on 

all field plots, better resolution imagery with standardized registration procedures are 
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becoming available, softcopy low altitude photography is under development, and better 

resolution topographic information is also available. Given all that, the true benefit of a new 

predictor variable might be overlooked if only linear models were in place. So, building more 

flexible modelling techniques like GAMs or MARS into a predictive mapping system up 

front is likely to yield large predictive gains in the future, even if differences between that 

and a much simpler approach are only small right now. 

 

5. Conclusions 

 

In comparing the different modelling techniques, all proved themselves workable in 

an automated environment, though the simple NLCD and MARS required the least amount 

of user guidance. When explored through a simple simulation, tremendous advantages were 

seen in use of MARS and ANN for prediction, but much smaller differences were seen when 

using real data because of noise or possible lack of nonlinear relationships between the 

response and predictor variables. While the simple NLCD model was the fastest and easiest 

of all to apply, MARS and GAMS performed marginally better than the others for prediction 

of forest characteristics. Although, little appreciable difference was seen between the models, 

as better predictor variables become available in the future, better predictions may be realized 

using more flexible statistical techniques. 
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Table 1.  Description of six study ecoregions, sampling intensity, and number of plots. 1 
 
 

 
 

Label 

 
 

Description 

 
Size 
(ha) 

 
Inventory 

Dates 

 
Grid 

Intensity 

 
# Plots 
Forest 

 
# Plots 
Total 

 
MT1 
 

 
Northern Rocky Mountain 
Forest Steppe - Coniferous 
Forest - Alpine Meadow 
Province 
 

 
4.43 M 

 
NF:  
1993-1996  
 
Other:  
1988-1989  
 

 
All: 5 k 

 
1393 

 
1677 

 
MT2 
 

 
Middle Rocky Mountain 
Steppe - Coniferous Forest 
- Alpine Meadow 
Province 
 

 
9.45 M 

 
NF:  
1996-1998 
 
Other:  
1988-1989 

 
All: 5 k 

 
1634 

 
3727 

 
UT1 
 

 
Southern Rocky Mountain 
Steppe - Open Woodland - 
Coniferous Forest - Alpine 
Meadow Province 

 
3.18 M 

 
All:  
1992-1996 

 
NF: 
double 5 k  
 
Other: 5 k  

 
  531 

 
968 

 
UT2 
 

 
NV/UT Mountains Semi-
Desert - Coniferous Forest 
- Alpine Meadow 
Province 
 

 
3.16 M 

 
All:  
1993-1996 

 
NF: 
double 5 k  
 
Other: 5 k  

 
  829 

 
1320 

 
AZ1 
 

 
AZ/NM Mountains Semi-
Desrt - Open Woodland - 
Coniferous Forest - Alpine 
Meadow Province  
 

 
2.85 M 

 
NF,res, 
Tmbr:    
1996-1997  
 
Other: 
1983  

 
NF, res, 
IR: 5 k  
 
Timber/ 
Other:  
double 10 k 

 
  664 

 
1141 

1 

                                                 
1 NF=National Forest; Other=lands outside NF; res=reserved lands; Tmbr=Timberland; IR=Indian reservations; 
Wdld=Woodland; F=Forested; Tot=Forested and Non-forested plots combined. 
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Table 2. Description of predictor variables. 

 

Type Name Description 
 
Discrete predictor  
      

 
NLCD 

 
 0  = Non-forest 
40 = Forest 
50 = Shrubland with trees 

 
Continuous predictor 

 
EASTING 

 
UTM Easting – Zone 12 
 

 
Continuous predictor 

 
NORTHING 

 
UTM Northing – Zone 12 
 

 
Continuous predictor 

 
ELEV.1K 

 
Elevation (m) from 1km DMA 
 

 
Continuous predictor 

 
TRASP.1K 

 
Radiation index derived by 
transforming aspect from 1km DMA 
 

 
Continuous predictor 

 
SLOPE.1K 

 
Slope (%) from 1km DMA 
 

 
Continuous predictor 
 

 
AVH.1 

 
Visible spectral band 1 from AVHRR 
composites 

 
Continuous predictor 
 

 
AVH.2 

 
Near-IR spectral band 2 from AVHRR 
composites 

 
Continuous predictor 
 

 
AVH.3 

 
IR spectral band 3 from AVHRR 
composites 

 
Continuous predictor 
 

 
AVH.4 

 
IR spectral band 4 from AVHRR 
composites 

 
Continuous predictor 
 

 
AVH.5 

 
IR spectral band 5 from AVHRR 
composites 

 
Continuous predictor 

 
NDVI 

 
NDVI from AVHRR composites 
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Table 3. Simulation results where first, ten uniformly distributed predictor variables X1-X10 

were generated (1000 each). Next, a response Y was specified as a function of only 

X1-X5, .1(X5).2(X4).5).4(X3X2)*X1*2sin(�Y 2 ++−+= , with no error term. A 

simple linear model along with a GAM, CART, MARS and ANN were used to fit 

the relationship between Y and the X1-X10. 

 

 

 

 
Model 
 

Selected variables2 RMSE PWI 
(25%) 

RHO TIME 

CART X4, X1, X3, X5, X2 .030 76 .843 202 
LM All .027 83 .873   1 
GAM s(X1), s(X2), s(X3), X4,  

          X5, s(X9), s(X10) 
.014 95 .966 201 

MARS X1*X2, X3, X4, X5 .004 100 .997 43 
ANN All  .001 100 1.000 336 
 

 

 

 

                                                 
1 Here, s indicates the variable came into the model in a nonlinear fashion using a nonparametric smoother, and 
* indicates interaction between variable. 
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Figure 1. Five ecologically different regions defined by Bailey, Avers, King, and McNab 

(1994) were selected for analyses.  Ecoregions range from the coniferous forests of 

northwestern Montana, to the semi-desert conditions of the mountains of central 

Arizona. MT1 and MT2 refer to two ecoregions in Montana, UT1 and UT2 are two 

within Utah, and AZ1 is in Arizona. 

Figure 2. PCC by modelling technique (y axis) and response variable (columns) within 

ecoregion (rows), ordered from best to worst according to the mean value of each 

performance measure across all variables and ecoregions. 

Figure 3. Kappa by modelling technique (y axis) and response variable (columns) within 

ecoregion (rows), ordered from best to worst according to the mean value of each 

performance measure across all variables and ecoregions. 

Figure 4. Example of a 1-km resolution map of predicted forest/non-forest in UT2 using a 

MARS model. 

Figure 5. RMSE by modelling technique (y axis) and response variable (columns) within 

ecoregion (rows), ordered from best to worst according to the mean value of each 

performance measure across all variables and ecoregions. 

Figure 6. Correlation by modelling technique (y axis) and response variable (columns) within 

ecoregion (rows), ordered from best to worst according to the mean value of each 

performance measure across all variables and ecoregions. 

Figure 7. Proportion of predictions with 25% of the truth by modelling technique (y axis) and 

response variable (columns) within ecoregion (rows), ordered from best to worst 

according to the mean value of each performance measure across all variables and 

ecoregions. 
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