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Abstract.   We modelled forest composition and structural diversity in the Uinta Mountains, 
Utah, as functions of satellite spectral data and spatially-explicit environmental variables 
through generalized additive models.  Measures of vegetation composition and structural 
diversity were available from existing forest inventory data.  Satellite data included raw spectral 
data from the Landsat Thematic Mapper (TM), a GAP Analysis classified TM, and a vegetation 
index based on raw spectral data from an advanced very high resolution radiometer (AVHRR).  
Environmental predictor variables included maps of temperature, precipitation, elevation, 
aspect, slope, and geology.  Spatially-explicit predictions were generated for the presence of 
forest and lodgepole cover types, basal area of forest trees, percent cover of shrubs, and density 
of snags.  The maps were validated using an independent set of field data collected from the 
Evanston ranger district within the Uinta Mountains.  Within the Evanston ranger district, model 
predictions were 88% and 80% accurate for forest presence and lodgepole pine (Pinus 
contorta), respectively.  An average 62% of the predictions of basal area, shrub cover, and snag 
density fell within a 15% deviation from the field validation values.  The addition of TM spectral 
data and the GAP Analysis TM-classified data contributed significantly to the models’ 
predictions, while AVHRR had less significance.
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Abbreviations: AIC = Akaike’s Information Criterion; AVHRR = Advanced Very High 
Resolution Radiometer; DBH = Diameter Breast Height; DMA = Defense Mapping Agency; 
GAM = Generalized Additive Model; GLM = Generalized Linear Model; FIA = Forest 
Inventory and Analysis; GIS = Geographical Information Systems; GPS = Global Positioning 
System; PCC = Percent correctly classified; RMS = Root Mean Square error; TM = Thematic 
Mapper; UTM = Universal Transverse Mercator

Introduction

Recent advances in statistical modelling techniques and geographical tools, such as remote 
sensing and geographical information systems (GIS), have increased the opportunities for the 
delineation and analysis of vegetation distribution patterns.  Numerous studies have 
demonstrated the use of statistical models to understand and display how plant species are 
distributed throughout the environment (e.g.,  Austin et al. 1990; Davis & Goetz 1990; Austin et 
al. 1994), yet the unpredictability of natural ecosystems, along with the dramatic influence of 
human disturbance, has made it very difficult to draw conclusions about vegetation distribution 
patterns and relationships to environmental conditions.  For example, research has demonstrated 
that the past assumption that vegetation responds in a bell-shaped (Gaussian) pattern along 
environmental gradients is not true for most species (Mueller-Dombois & Ellenberg 1974; 
Austin & Cunningham 1981; Austin 1987).  Many statistical models being applied to vegetation 
hold this assumption and therefore tend to misrepresent true distributional patterns (e.g., 
ordination methods; Austin & Noy-Meir 1971; Austin 1985).  Other statistical models, such as 
generalized additive models (GAMs), are more flexible and better suited to handle nonlinear 
relationships of vegetation to environmental gradients (Hastie & Tibshirani 1990; Yee & 
Mitchell 1991, Austin & Meyers 1996).

GIS and remote sensing technology have made it possible to identify, analyze, and classify 
extensive tracts of vegetation using satellite spectral data and digital environmental data.  Studies 
have shown the complementary effects of integrating environmental data with satellite spectral 
data for vegetation classification (Loveland et al. 1991, Homer et al. 1997), stratification 
(Franklin et al. 1986) and predictive modelling (Frank 1988; Davis & Goetz 1990; Moisen & 
Edwards 1999).  GIS tools allow such integration, storage, and spatial analysis of multiple layers 
of data and provide methods for generating georeferenced maps.  When analyzing large areas, 
questions arise whether to use a readily available satellite data source, such as 1.1 km resolution, 
National Oceanic and Atmospheric Administration’s (NOAA) advanced very high resolution 
radiometer (AVHRR) or a higher resolution data source, such as 30-m, multi-spectral, Landsat 
Thematic Mapper (TM) imagery which is more expensive and requires extensive storage space.

Although the development of large-scale analytical tools has increased efficiency, most research 
has focused on dominant vegetation features that are distinguishable from satellites or that 
represent climax or seral types most influenced by environmental parameters.  But how do we 
analyze the understory and composition of forested habitats that are not directly visible from 
satellites?  Studies have looked at the ability of satellites to capture reflectance values of 
understory components (Stenback & Congalton 1990), basal area and leaf biomass (Franklin 
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1986), and stand density and height (Horler & Ahern 1986), but in general, further research was 
suggested. 

This study outlines an approach for delineating forest composition using GAMs, remote sensing 
data, and GIS tools.  Our overall objective was to determine the ability of these techniques, when 
integrated, to model and map attributes of forest structure in the Uinta Mountains of Utah, and at 
the same time develop a systematic approach for application of these techniques to other forested 
landscapes.  Specifically, our objectives were to:  (1) develop spatially explicit predictive models 
of forest attributes using GAMs, integrating field-collected forest resource inventory data with 
satellite and digital environmental data; (2) determine the effects of three different forms of 
imagery (Landsat TM, AVHRR, and a classified TM-based vegetation cover map) on model 
predictive capabilities; and (3) test how well the models predict at a local level using an 
independent set of field data.

Methods
Study Area

Data for model-building came from a region of seven National Forest Ranger Districts 
encompassing the east-west mountain range of the Northern Utah Mountain Ecoregion (hereafter 
the Uinta mountains).   The seven ranger districts together cover approximately 1,000,000 ha of 
forest.  The Uintas are characterized by an east-west orientation, and have an approximate length 
of 241 kms and a width of 48 to 64 kms.   Elevation ranges from ~1,700 m to a high of ~4,000 
m.  The area contains conspicuously deep, v-shaped canyons on the south side of the range and 
less pronounced canyons on the north side of the range.  The geology consists mainly of a 
sedimentary layer of sandstone and limestone in the forested areas, glacial deposits in the valleys 
and drainages, and Precambrian quartzite in the high elevation, exposed regions.  The climate 
consists of long winters and high summer precipitation which is mainly a function of elevation, 
latitude, and storm patterns from the west and the Gulf of Mexico, with local effects from slope 
exposure and/or aspect (Mauk & Henderson 1984).

The distribution of vegetation in the Uinta Mountains is highly influenced by topographic 
position and geographic location.  Lodgepole pine (Pinus contorta) is the dominant vegetation 
type, ranging from 1,700 to 3,000 m elevation.  At elevations between 2,400 m and 3,000 m, 
lodgepole is mixed with aspen (Populus tremuloides), with a few homogenous aspen stands at 
lower elevations.  As elevation increases, lodgepole forests are gradually replaced by spruce-fir 
(Picea engelmannii-Abies lasiocarpa) forest types and are frequently interspersed with large 
patches of wet and dry meadows.  Other forest types include pinyon-juniper (Pinus 
edulis-Juniperus osteosperma) at lower elevations on the northeastern slope, Douglas-fir 
(Pseudotsuga menziesii) on steep, protected slopes, and ponderosa pine (Pinus ponderosa) 
forests on exposed slopes on the south side of the range (Cronquist et al. 1972).  Human impacts 
on natural successional processes within the Uintas include timber management and wood 
collection, fire suppression, intensive grazing, recreation, and intensive harvesting of lodgepole 
pine forests for railroad tie (= railway sleeper) production in the early 1900’s.



_____________________________________________________________________________________________

Table 1. Summary of response variables for modeling forest attributes in the Uinta Mountains, Utah.  Data collected 
from 0.4 ha-size plots following procedures and definitions in USDA (1993)._____________________________________________________________________________________________

Forest attribute Type Description Distribution
______________________________________________________________________________________________

Forest presence Binomial > 10% stocking (>61 m wide) P = 0.77 

Lodgepole pine presence
Binomial Majority of forest cover P = 0.31  

Basal Area (m2/ha) Continuous Area of trees at 1.37 m basal ht.
(Trees > 2.5 cm DBH)

Range:  0  to 70
Median: 16 

Shrubs (%) Continuous Sum of total cover from upper, mid, and 
lower layers

Range:  0  to   92
Median: 15 

Snag Density Continuous Total salvable and non-salvable
(Snags > 10.2 cm  DBH)

Range:  0  to 248
Median:  5______________________________________________________________________________________________

P = proportion of model-building points defined as forest and lodgepole pine.______________________________________________________________________________________________

Manuscript in press: Journal of Vegetation Science

4

Data
Response Variables

Forest attribute data were extracted from the U.S. Forest Service Rocky Mountain Research 
Station, Interior West Resource Inventory, Monitoring, and Evaluation Program (IWRIME) 
database (USDA 1993).  Five forest attributes were chosen as response variables for this study:  
two binomial (forest presence and lodgepole pine presence) and three continuous variables (live 
basal area, percent shrub cover, and snag density) (Table 1).  Forest was defined as land, 0.4 ha 
or more in size, having at least 10% tree cover.   A location was classified as lodgepole forest 
type when the majority of tree cover in a forested site was lodgepole.   Live basal area was 
calculated from measured diameter at breast height (DBH) of timber trees 2.5 cm or greater 
DBH, and a sum of diameter at root collar for woodland trees > 7.6 cm.  Percent shrub cover was 
derived from total shrub cover of three different height classes, calculated by summing the 
midpoints of each specified cover class (< 5%, 5-25%, 25-50%, 50-75%, or 75-100%) measured 
in the field.  Snag density was a measure of salvable and nonsalvable timber snags greater than 
10.2 cm DBH, per 0.4 ha plot.  Snags were counted within a 25.3 m radius and multiplied by 2 
for a 0.4 ha estimate.  For further information on FIA sampling and measurement procedures, 
accuracy standards, and other sampled parameters, refer to USDA (1993).

Explanatory Variables

The selection of explanatory variables for modelling was based on a priori ecological 
assumptions and published literature on vegetation responses to environmental gradients, and the 
availability of appropriate digital coverages within the study area.  Each initial model included 
total annual precipitation, three topographic variables (elevation, aspect, and slope), geology, 
three geographical location variables (UTM easting and northing coordinates and a discrete 
variable of ranger district), and one of three types of satellite spectral data (AVHRR, Landsat 
TM, or a classified Landsat TM-based vegetation cover map) (Table 2). 



______________________________________________________________________________________________

Table 2. Summary of explanatory variables used to model forest attributes in the Uinta Mountains, Utah, USA.
______________________________________________________________________________________________

Variable Abrev. Type Resolution Source______________________________________________________________________________________________

Elevation(m) Elev Continuous 90 m DMA
Asp (°) - - - Derived from DMA
    Asp1 Continuous  90 m Relative annual solar radiation (Swift 1976)
    Asp2 Discrete 90 m 9 categories (see text for descriptions)
    Asp3 Continuous 90 m Radiation/wetness index (Roberts & Cooper 1989)
Slope(%) Slp Continuous 90 m Derived from DMA 
Precipitation 
(mm)

Precip Continuous 90 m Downscaled from PRISM-yearly precipitation climate maps 
(N. Zimmerman, unpubl. data)

Geology - - - Hintze (1980)
Geol(T) Discrete 1:500,000 Timeframe (1-Precambrian, 2-Mississippian to Euocene, 3-

Alluvium)
    Geol(N) Discrete 1:500,000 Nutrients (1-sandstone and limestone, 2-sedimentary, 3-

alluvial)
   Geol(R) Discrete 1:500,000 Rock Type (1-sedimentary, 2-alluvial)
Easting East Continuous - UTM Easting coordinates
Northing North Continuous - UTM Northing coordinates
District District Discrete - National Forest Ranger Districts (1-Evanston, 2-Mountain 

View, 3-Flaming Gorge, 4-Vernal, 5-Roosevelt, 6-Kamas, 
7-Duchesne)

TM-classified GAPveg Discrete       90 m GAP Analysis (Homer et al. 1997)
AVHRR AVHRR Continuous    1000 m NOAA (June 1990)
TM - -    - Landsat TM (June 1990/August 1991)

TM3 Continuous  30 m TM Band 3 (Red)
TM4 Continuous  30 m TM Band 4 (Near-infrared)
TM5 Continuous  30 m TM Band 5 (Mid-infrared)______________________________________________________________________________________________
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Precipitation data came from a downscaling of coarse-scale Prism (Daly et al. 1994) climate 
maps (N. Zimmermann,  unpubl. data).  Elevation was extracted from the Defense Mapping 
Agency (DMA), 90-m resolution, digital elevation models.  Aspect and slope data were derived 
from the DMA using functions in the GRID module of ArcInfo GIS (ESRI Inc., Redlands, 
California).  From aspect, azimuth in degrees was transformed into three different variables.  The 
first variable (Asp1) was derived from a look-up table of slope and aspect providing estimates of 
relative total annual solar radiation normalized at 41 degrees latitude (Swift 1976).  The second 
variable (Asp2) was a discrete variable separated into categories of degrees.  The categories 
range from 1 to 9, with category 1 as north-facing aspect, moving clockwise to category 8 at 
northwest aspects.  Category 9 included slopes less than five percent.  The third aspect variable 
(Asp3) was a symmetric radiation wetness index transformed from aspect degrees (Roberts & 
Cooper 1989).

Geology data were obtained from a digitized coverage of a 1:500,000 stable base mylar  of the 
geology of Utah (Hintze 1980).  Three groups of discrete variables were derived from the 
geology coverage by combining features into classes based on nutrient quality (1-sandstone and 
limestone, 2-sedimentary, 3-alluvial), time era (1-Precambrian, 2-Mississippian to Euocene, 3-
Alluvium), and rock type (1-sedimentary, 2-alluvial) (see Frescino 1998: Appendix A1).  
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Geographic location was represented by the Universal Tranverse Mercator (UTM) easting and 
northing values.  The last explanatory variable was a discrete variable with seven components 
representing the seven National Forest Ranger Districts (1-Evanston, 2-Mountain View, 3-
Flaming Gorge, 4-Vernal, 5-Roosevelt, 6-Kamas, 7-Duchesne).  Although not ecologically 
defined, the districts have characteristic boundaries which are associated with geographical 
features. 

Three types of satellite data were compared in this study: TM-based classified imagery; 
AVHRR; and unclassified Landsat TM.  The TM-based, classified map of 36 classes was 
developed from a georeferenced mosaic of TM scenes (see Homer et al. 1997 for details).  For 
this study, these 36 classes were reclassified to match IWRIME forest type classes, resulting in a 
total of 8 categories (Frescino 1998: Appendix A3).  A binary variable of forest and non-forest 
types was also classified for use in the model predicting forest presence/absence.  The AVHRR 
data source used was the normalized difference vegetation index (hereafter AVHRR) (Loveland 
et al. 1991).  The third type of satellite data unclassified TM data.  Only bands 3 (Red), 4 (Near-
infrared), and 5 (Mid-infrared) were used in the TM-based models.  Visible bands, 1 and 2, and 
mid-infrared band 7 were highly correlated with bands 3, 4, and 5, and were removed from the 
analysis.

Each digital coverage was rescaled within the GIS to a cell size of 0.4 ha using the cubic 
convolution algorithm for the continuous data (DMA data, precipitation, temperature, AVHRR, 
and TM data), and the nearest neighbor algorithm for the discrete data (geology, the classified 
cover-map, and district), in order to correspond with the resolution of the forest inventory data 
(ArcInfo GIS, ESRI Inc., Redlands, California).

Model Development and Selection

The 447 model-building points were intersected through each digital explanatory layer and the 
value at each cell extracted for use in modelling.  The S-plus (StatSci Division, 1700 Westlake 
Ave. N., Suite 500, Seattle WA 98109) GAM function was used to generate relationships 
between each response variable (Table 1) and the explanatory variables (Table 2) according to 
the following specifications.  For forest and lodgepole presence, a logit link was used to 
transform the mean of the response to a binomial scale.  For the continuous variables, the 
Poisson link was used to transform the data to the scale of the response.  A Poisson link was 
selected after evaluation of mean-variance relationships for each continuous response variable.  
A loess smoothing function (Venables & Ripley 1997) was chosen to summarize the relationship 
between the predictors and the response.  The loess smoother fits a robust weighted linear 
function to a specified window of data.  In this study, the default (0.5) window size was 
arbitrarily set for all smoothed functions.

Partial residuals were graphically explored for unusual patterns and outliers and the major 
outliers were removed from the analyses.  The functional relationships between each explanatory 
variable and the respective response variables were then analyzed for potential parametric fits 
following advice of Hastie & Tibshirani (1990) and Yee & Mitchell (1991).  If a potential 
parametric fit existed, piecewise and second- and third-order polynomial functions were fitted to 
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the data and assessed from the relative degree of change to the residual deviance (Cressie 1991).  
The piecewise functions require a pre-chosen placement of ’knots’ or breakpoints within the 
range of the data at points where the relationships distinctively changed.  The knots split the data 
into separate sections.  A regression model is fitted to each piece of data and joined at each knot 
(Chambers & Hastie 1992).  For this analysis, only variables with one distinctive breakpoint 
were fitted, with the node specified from graphical characteristics.

All explanatory variables, including all potential parametric fits, were run through a stepwise 
procedure to determine the best-fit model for prediction (see Chambers & Hastie 1992) using 
Akaike’s Information Criterion (AIC) (Akaike 1973).  To examine the effects of different 
sources of satellite data, three stepwise procedures were performed for each forest attribute, each 
having the same set of explanatory variables but with a different type of satellite data.  One 
limitation of smoothed functions obtained from GAMs is their inability to extrapolate outside the 
range of the data used to build the model.  Therefore, values of the validation data set that were 
outside the range of the model-building data set were assigned the maximum/minimum value of 
the respective variable in the model-building data set.

Model Validation

An independent set of data was collected in the field and compared to model predictions using 
error matrix analyses for the discrete, binomial responses (forest and lodgepole presence), and 
root mean square error (RMSE) estimations for the continuous responses (basal area, percent 
shrub, and snag density).  RMSE was chosen as a measure that combines both bias and variance 
in the estimates, presented in units that have meaning to map users.  A systematic grid of 3000 m 
intervals was applied to the Evanston District and used to select validation sites.  A 3000 m 
interval was selected as the maximum amount of data that could be collected during one field 
season.  The grid was randomly placed within the district boundary and field validation data 
collected from 96 points using standard FIA plot design and measurement procedures (USDA 
1993).

The proportion correctly classified (PCC) was calculated by dividing the sum of the diagonal 
values of the error matrix by the total points analyzed.  A measure of randomness, the kappa 
statistic (KHAT) (Cohen 1960), was calculated to evaluate the effects of omission and 
commission errors.  KHAT ranges from -∞ to 1, with more accurate values closer to 1 and more 
’confused’ values closer to -∞.  Output from the binomial response models was a probability 
value scaled from 0 to 1 for each grid cell, with predictions closer to 1 indicating a greater 
chance of forest and lodgepole presence.  Z-tests (corrected for multiple comparison with the 
Bonferroni method) were used to test for significant differences in PCC and KHAT values 
obtained using different satellite data as predictor variables.  For the continuous response models, 
scatterplots were generated of field vs. predicted values to show, visually, the distribution of 
error, and a RMSE was calculated as:

RMSE = ∑(predicted − observed)2 n.



_____________________________________________________________________

Table 3. Best-fit models (bold) by satellite imagery type for predicting forest and 
lodgepole pine presence in the Uinta Mountains, Utah, USA.  See Table 2 for variable 
descriptions.
_____________________________________________________________________

Forest Presence Lodgepole Pine Presence

Predictor
Variables

TM AVHRR TM-
classified

TM AVHRR TM-
classified

AIC 164.7 199.2 169.1 198.9 272.6 210.1

TM3 -  -
TM4 - poly(3)
TM5 lo -
AVHRR - -
GAPveg + +
Elev trpw trpw poly(2) poly(2) poly(2) poly(2)
Slp - - trpw - - -
Asp1 - - - - - -
Asp2 - - - - - -
Asp3  - - - - - -
East - - - - lo lo
North - - - - - -
Precip - lo - - - -
Geol(T) - - - - - -
Geol(N) + + - - - -
Geol(R) - - - + + +
District - - - - - -

poly = polynomial of order specified in parentheses; trpw = piecewise polynomial; lo 
= loess smoothing function with default window span of 0.5; + = significant 
relationship; - = nonsignificant relationship
_____________________________________________________________________
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Predicted values within ±15% of field values were considered accurate and used to estimate 
PCC.

Results
Model Development and Selection
Binary Responses

For the forest and lodgepole responses, the models including TM data had the lowest AIC value 
(Table 3).  Both TM and TM-classified data were significant contributors to the forest and 
lodgepole presence models, whereas the AVHRR variable was excluded from each selected 
model (Table 3).  Elevation and geology were selected as significant predictors in all models of 
forest and lodgepole presence except for the TM-classified, forest presence model, where 
geology was replaced with the slope parameter.  Other significant variables included 
precipitation in the forest presence models and the UTM easting variable in the lodgepole 
presence models (Table 3).  For the forest presence response, the TM model was similar to the 
AVHRR model, except that precipitation was replaced by TM Band 5 (mid-infrared) (Table 3).  



Fig 1.  Explanatory variables selected from stepwise procedures as significantly 
contributing to the respective binomial response variables (see Tables 3 and 4 for 
definitions).  Each plot shows the relationship of the fitted function to the response 
and scaled to zero.  The plots include approximate 95% pointwise SE bands.  At 
the base of eachplot is a univariate histogram (rugplot) showing the distribution of 
each observation.  (a) Forest presence TM model. (b) Lodgepole presence TM model.

Manuscript in press: Journal of Vegetation Science

9

The probability of forest presence was found to be greater at decreasing values of TM Band 5 
data, elevations less than 3200 m, and on sedimentary and alluvial substrates (Fig. 1a).

The TM-classified model was similar to the lodgepole AVHRR model, but had a slightly better 
fit (Table 3).  The primary difference between the two models was the replacement of the UTM 
easting variable in the AVHRR model by the TM Band 4 (near-infrared) variable in the TM 
model (Table 3).  The probability of lodgepole cover was found to be highest at decreasing 
values of TM Band 4 data, elevations between 2500 and 3200 m, and on alluvial substrates (Fig. 
1b). 

Continuous Responses

For all continuous responses except the AVHRR snag density model, all variables were selected 
as additively contributing to the model predictions (Table 4, Fig. 2).  For the snag density model, 
the only variable not included was geology.   As with the binomial response models, both 
parametric and smoothed functions were significant in each model, with models based with TM 
data having the lowest AIC values.

The relationship of elevation to basal area and snag density corresponded with the probability of 
forest and lodgepole presence, with high values peaking between 2500 and 3200 m, whereas 
shrub cover gradually declined with increasing elevations (Fig. 2).  TM Bands 3 and 4 followed 
similar trends for each continuous response, while basal area increased and snag density slightly 
decreased with declining values of TM Band 5.  The relationship of slope with basal area and 
snag density followed similar decreasing patterns, whereas the relationship of slope with shrub 



______________________________________________________________________________________________

Table 4. Best-fit models (AIC and D2) by satellite type for predicting basal area, % shrub cover, and snag density in 
the Uinta Mountains, Utah.  Variable names are describe in Table 2.  ______________________________________________________________________________________________

Basal Area % Shrub Cover Snag Density

Predictor
Variables TM AVHRR

TM-
classified TM AVHRR

TM-
classified TM AVHRR

TM-
classified

AIC 8618.4 11198.7 9061.9 2983.9 3141.7 3085.1 4263.5 4640.7 4606.3
D2 43.3 29.6 45.0 30.7 30.1 32.1 43.5 39.9 41.1

TM3 lo N/A N/A lo N/A N/A lo N/A N/A
TM4 lo N/A N/A lo N/A N/A lo N/A N/A
TM5 lo N/A N/A lo N/A N/A lo N/A N/A
AVHRR  N/A lo N/A N/A lo N/A N/A lo N/A
GAPveg  N/A N/A + N/A N/A + N/A N/A +
Elev trpw trpw trpw lo lo lo poly(3) poly(3) poly(3)
Slp trpw lo lo lo lo lo lo lo lo
Asp1 lo - lo poly(2) poly(2) poly(2) lo lo lo
Asp2 - + - - - - - - -
Asp3 - - - - - - - - -
East lo poly(3) lo poly(3) poly(3) lo poly(3) poly(3) poly(3)
North lo poly(3) poly(3) lo poly(3) lo lo lo lo
Precip poly(2) poly(2) poly(2) poly(2) lo poly(2) lo lo poly(2)
Geol(T) - - + - - - - - +
Geol(N) + + - + + + - - -
Geol(R) - - - - - - + - -
District + + + + + + - + +

poly = polynomial of order specified in parentheses; trpw = piecewise polynomial; lo = loess smoothing function 
with default window span of 0.5; + = significant relationship; - = nonsignificant relationship______________________________________________________________________________________________
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cover showed an initial increase up to 18% (Fig. 2).  Precipitation tended to have a greater 
positive effect on basal area than on shrubs and snags.  Basal area was greatest on alluvial 
substrates, shrub cover greatest on shale substrates, and snag density greatest on sedimentary 
rock types.

Basal area was higher at the northern and southern extremes of the mountain range, shrub cover 
higher at mid-latitude zones of the mountain range and snag density higher on the western edge 
of the range.  Basal area was high in districts on the north slope, shrub cover high in Mountain 
View, Flaming Gorge, and Vernal districts, and snag density high in Kamas and Duchesne 
districts on the western end of the range.

Validation

Accuracy of the models predicting forest and lodgepole presence was high (Table 5).  
Differences in accuracy were not significant among the three models for either variate.  RMSE 
values for estimates of basal area ranged from 13.9 m2/ha for the TM-classified model to 16.0 
m2/ha for the AVHRR model (Fig. 3a).  Sixty-three percent of the points fell within ±15% (11.5 
m2/ha) of the true value for the TM model, 55% for the AVHRR model, and 67% for the TM-



_____________________________________________________

Table 5. Percent correctly classified (PCC) and estimates of 
Kappa (KHAT) for TM, AVHRR and TM-classified models 
predicting forest and lodgepole pine presence in the Uinta 
Mountains, Utah.  Bold-faced values indicate highest accuracy.
_____________________________________________________

Forest
Attribute Satellite Type PCC KHAT
_____________________________________________________

Forest TM 86.5 0.58
Presence AVHRR 82.3 0.43

TM-classified 85.4 0.54

Lodgepole TM 71.9 0.38
Presence AVHRR 71.9 0.37

TM-classified 80.2 0.56_____________________________________________________
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classified model.  There was little difference between RMSE values for the models predicting 
shrub cover, with values averaging 13.8%.  Seventy-five percent of the points fell within ±15% 
of the true cover using TM data, 77% for the AVHRR model, and 75% for the TM-classified 
model (Fig. 3b.).  RMSE for snag density ranged from 18.1 snags for the TM model to 20.2 
snags for the AVHRR model (Fig. 3c).  Forty-nine percent of the points fell within ±15% of the 
true snag count using TM data, 41% including AVHRR data, and 54% with TM-classified data. 

Discussion
Generalized Additive Models

Clearly, vegetation communities do not exhibit ’normal’ (Gaussian) distribution patterns 
throughout the environment (Austin et al. 1990, 1994); therefore, predictability is dependent on 
the flexibility and capability of the analytical procedures used to model vegetation distribution.  
GAMs, in contrast to some analytical procedures (e.g., ordination and linear regression models), 
do not make a priori assumptions about underlying relationships, thus allowing the data to drive 
the fit of the model instead of the model driving the data.  The graphical nature of GAMs also 
allows for the opportunity to visualize the additive contribution of each variable to the respective 
response using smoothed functions (Figs. 2, 3).  Smoothed functions are capable of fitting 
unusual variance patterns such as skewness and bimodality that are often overlooked with 
standard linear models (Austin & Noy-Meir 1971).  A limitation of GAMs we encountered in 
this study was the uncertainty associated with extrapolation of the smoothed functions, 
particularly at the tails of the distribution.  As suggested by Hastie & Tibshirani (1990) and Yee 
& Mitchell (1991), we fitted parametric functions to the model whenever ‘statistically 
allowable’, thus constraining the behavior of the functions in the extreme ranges of the data.  
Often this involved a subjective interpretation based on visual inspection of the data.

We found GAMs to be powerful exploratory tools for detecting simple linear relationships as 
well as complex patterns in forest attribute distribution, and tools flexible enough for integrating 
both parametric and non-parametric functions in the models.  For example, most of our models 



a.

c.

b.

Fig 2.  Explanatory variables selected from stepwise procedures as 
significantly contributing to the respective binomial response variables 
(see Tables 3 and 4 for definitions).  Each plot shows the relationship 
of the fitted function to the response and scaled to zero.  The plots 
include approximate 95% pointwise SE bands.  At the base of eachplot 
is a univariate histogram (rugplot) showing the distribution of each 
observation.  (a) Basal area.  (b) % shrub cover.  (c) Snag density.
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included at least one smoothed function as 
a predictor variable, indicating a better 
model fit was achieved using a nonlinear 
distribution.  This supports findings of 
other studies (Austin & Cunningham 1981; 
Austin 1987; Margules & Stein 1989; 
Leathwick & Mitchell 1992), where 
relationships of environmental variables to 
plant species’ responses were not always 
best described by Gaussian distributions.

Elevation was a significant predictor in all 
models.  This is not surprising in a 
mountainous environment like Utah, where 
elevation, a surrogate for moisture and 
temperature gradients (Barbour et al. 
1987), is a driving mechanism for 
vegetation distributions.  The limitation of 
using an indirect variable, such as 
elevation, as a predictor variable is that the 
vegetation response is limited to the 
characteristics of the species’ local 
environment (Austin et al. 1984, Austin & 
Smith 1989).  Model effectiveness may 
therefore be limited when applied to 
environments outside the range where the 
model was developed.

The forest presence models indicated the 
additive importance of geologic features 
(nutrients) and moisture variables, such as 
total annual precipitation and the spectral 
signatures of moisture (TM Band 5), along 
with elevation.  This is not surprising 
given that the essential environmental 
gradients influencing vegetation 
production are moisture, temperature, and 
nutrients (Barbour et al. 1987). The 
difference between the lodgepole and 
forest presence models was the added 
significance of geographic location (UTM 
Easting coordinates) and Band 4 (near-
infrared) of the TM data in predicting 

lodgepole presence.  TM Band 4, which discriminates green biomass, was a better predictor for 
lodgepole than the moisture-related TM spectral Band 5 (mid-infrared).  This suggests the 
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Fig 3.  Scatterplots of field reference data vs. model predictions, including RMS values.  The
solid lines represent perfect correlation between the predicted and reference values, and the 
dotted lines show user-defined acceptable deviations fromperfect correlation.  (a) Basal area
with reference lines at +/- 11.5 m2/ha.  (b) % shrub cover with reference lines at +/- 15%.
(c) snag density with reference lines at +/- 15 snags.
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importance of spectral data for discriminating highly disturbed or successional-stage forest types, 
such as lodgepole pine. 

The distribution of basal area, shrub cover, and snag density within the Uinta Mountain range 
appeared to be related to all environmental variables specified in the initial model.  Questions 
remain on the magnitude of forest attribute response to each environmental gradient and whether 
variables not represented in this study are affecting vegetation structure.  Other considerations 
include the impact of the human population on forest diversity.  Human intervention has 
introduced fragmentation of vegetation communities from roads and clear-cuts, and extensive 
habitat and diversity loss from human development, timber management, wildfire suppression, 
and livestock grazing.  These disturbances strongly effect forest composition and can weaken the 
relationship between predicted and actual forest attributes.

Validation

Assessing model accuracy was not without questions.  For validating discrete data sets, PCC 
provides a measure of overall accuracy, but does not provide information about omission and 
commission errors included in the predictions.  This study included coinciding Kappa (KHAT) 
values, which provide a measure of improvement of the model over random predictions, 
incorporating omission and commission errors (Cohen 1960).  In general, the accuracy of forest 
and lodgepole presence models was high, with PCC ranging from 82.3% to 86.5% and 71.9% to 
80.2%, respectively.  These values are well within the range of accuracies estimated for discrete 
cover-types (Edwards et al. 1998).

Error matrix calculations work well for discrete data types, but are not appropriate for analyzing 
continuous data.  RMSE provided an estimate of model variance, averaging 14.7 m2/ha for basal 
area, 13.8% for shrub cover, and 19.0 for number of snags.  The scatterplots of field reference vs. 
prediction displayed the distribution of error in the data.  In general, the models tended to 
underpredict at high values of basal area, shrub cover, and snag density and overpredict at 
locations sampled as having no forest cover (Fig. 3).  This bias between observed and predicted 
values may be caused by the influence of "naughty noughts", or zero values which, when large 
numbers of zero values are included in the model building data set, tend to distort the shape of 
the response function (Austin & Meyers 1996).  Overdispersed data with additional zeros (from 
whatever cause) appear common in ecological data sets; further research on this topic is needed 
from both an ecological and a statistical perspective (See Austin & Cunningham 1981; Austin et 
al. 1994; Austin & Meyers 1996 for examples).

Satellite Data

A satellite data component was selected as significant in all models except the forest and 
lodgepole presence models including AVHRR.  This supports findings that satellite data used in 
conjunction with environmental digital data enhances model predictions (Strahler et al. 1979; 
Davis et al. 1991).  The AVHRR component did not contribute to the model-building process as 
much as the TM-classified or TM data (Table 3, Table 4), and had lower accuracy when 
compared with our validation data set (Table 5, Fig. 3).
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Spectral values influenced by shadows or extreme moisture differences may actually detract 
from useful information for prediction.  In a classified map, these values are discriminated by 
ecological characteristics and nearby pixels and therefore enhance information extraction from 
the raw spectral data.  This may be a reason why the TM models in most cases were less accurate 
than the TM-classified models.  Also, only three TM spectral bands (3, 4, and 5) were included 
in the TM models for this study, whereas the TM-classified cover map included all six bands (1, 
2, 3, 4, 5, and 7) for classification procedures.  Questions remain on the effects of using different 
bands or combinations of bands in the model.  For example, Franklin (1986) found significant 
relationships between visible reflectance bands (Bands 1, 2, and 3) and stand basal area and leaf 
biomass for coniferous vegetation while Ahern (1992) found significant relationships between 
bands 7/4 and spruce-fir volume.  Unfortunately, GAMs are not effective at high dimensions, and 
modelling approaches examining many variables simultaneously, such as would be needed to 
analyze the interaction among many different spectral bands, should be explored with caution.
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