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Abstract.--Landscape- and ecoregion-based conservation efforts increasingly use a spatial 
component to organize data for analysis and interpretation.  A challenge particular to 
remotely-sensed cover-maps generated from these efforts is how best to assess the accuracy of 
the cover-maps, especially when they can exceed 1,000s km2  in size.  Here we develop and 
describe a methodological approach for assessing the accuracy of large-area cover-maps, using 
as a test case the 21.9 million ha cover-map developed for Utah Gap Analysis.  As part of our 
design process, we first reviewed the effect of intracluster correlation and a simple cost function 
on the relative efficiency of cluster sample designs to simple random designs.   Our design 
ultimately combined clustered and subsampled field data stratified by ecological modelling unit 
and accessibility (hereafter a mixed design).  We next outline estimation formulae for simple map 
accuracy measures under our mixed design and report results for 8 major cover-types and the 3 
ecoregions mapped as part of the Utah Gap Analysis.  Overall percent correct accuracy of the 
map was 83.2% (SE=1.4).  Within ecoregions, accuracy ranged from 78.9% to 85.0%.  Accuracy 
by cover-type varied, ranging from a low of 50.4% for barren to a high of 90.6% for 
man-modified.  In addition, we examined gains in efficiency of our mixed design compared to a 
simple random sample approach.  In terms of precision, our mixed design was more precise than 
a simple random design given fixed sample costs.  We close with a discussion of the logistical 
constraints facing attempts to assess the accuracy of large area, remotely-sensed cover-maps.
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INTRODUCTION

Conservation efforts are increasingly focused at the landscape or ecoregion level rather than at 
localized sites.  While the goals of these efforts vary, most use a spatial component to organize 
data for analysis and interpretation.  One such effort, the National Biological Service’s (NBS) 
Gap Analysis Program (Scott et al., 1993; Edwards et al., 1993; Edwards and Scott, 1995), uses 
land-cover/land-use classes and terrestrial vertebrate species as indicators of biological diversity 
and is designed to identify "gaps" in the protection of biological diversity.  Once identified, gaps 
can be filled through land acquisition or changes in existing land-use practices.

Central to the goal of Gap Analysis is the creation of a thematic map depicting 
land-cover/land-use cover-types.  In general, cover-types are derived by clustering reflectance 
values from spatially explicit locations (pixels) obtained from satellite imagery (Richards, 1986) 
and assigning them to cover classes based on field observations, aerial photographs, and existing 
maps (Scott et al., 1993).  Uses of these types of cover-maps range from bioregional 
conservation planning (Merrill et al. in press) to more finely focused management efforts aimed 
at specific species (Homer et al., 1993; Stoms et al., 1993).  Because Gap Analysis data are 
organized by states and  ecoregions, such as the Great Basin, maps can easily cover thousands of 
square kilometers.  The sheer size of areas modelled in Gap Analysis poses immense field and 
fiscal logistical difficulties that complicate any sample design for accuracy assessment.  
Nonetheless, estimates of the spatial and classification accuracy of Gap Analysis coverages are 
needed to assist land managers confronted with conflicting demands from user groups and to 
provide a defensible basis for use of the coverages in conservation decisions (Karieva, 1993; 
Edwards et al., 1996).

Assessing the accuracy of spatial data bases has received considerable attention in the literature, 
as witnessed by Veregin’s (1989a) extensive annotated bibliography.  Bolstad and Smith (1992) 
discuss both positional and attribute accuracy in a resource management setting.  Lunetta et al. 
(1991) discussed how error propagates through the map-making process, beginning with data 
acquisition and flowing through analysis, conversion, and presentation of the final product.  The 
taxonomy of error discussed by Veregin (1989b) also reflects the complexity of the issue.  
Various research agendas have been proposed for more creative error modelling strategies for 
geographic information systems (GIS).  Chrisman (1989), Goodchild (1989), Openshaw (1989), 
and others have recognized the unique problems posed by combining data of a diverse nature 
collected at different scales and at various levels of error and uncertainty.  Improved models of 
map error must be joined by better techniques to visualize spatial data base accuracy. Beard et al. 
(1991) discuss the research needed to develop these techniques.

Although a general conclusion of these studies is that more comprehensive models of thematic 
map error are needed, simpler measures of map accuracy are most common in the remote 
sensing literature.  Frequently, sample data are used to construct a contingency table or "error 
matrix" from which many measures of thematic accuracy may be derived, including total percent 
of pixels (or other sample units) classified correctly, percent commission and omission error by 
class, and the Kappa statistic (Rosenfield, 1986; Story and Congalton, 1986; Congalton, 1991; 
Monserud, 1992; Green et al, 1993).  Numerous studies have addressed the problem of choosing 
appropriate sample sizes and designs to assess classification accuracy (Berry and Baker, 1968; 
Hord and Brooner, 1976; Ginevan, 1979; Hay, 1979; Rosenfield, 1982; Congalton, 1991).    
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Congalton (1988a, b) discussed simple random, systematic and cluster sampling and the effect of 
spatial autocorrelation (dependency between neighboring "pixels", or units) on the efficiency of 
sample designs used for classification assessment.  Stehman (1992) followed with a discussion of 
common misconceptions about systematic designs and appropriate criteria for evaluating various 
sampling schemes.  In addition, Moisen et al. (1994) evaluated the relative efficiency of various 
sample designs for map accuracy assessment, applying a realistic cost function to data collection 
on a large-area map.

While a growing body of literature is available on assessing map accuracy, little seems to have 
been done to assimilate the wide variety of  techniques into a single, broad-scale application.  
Issues of accuracy assessment include not only how to design and perform statistically sound 
sampling protocols and analyses, but also include consideration of  how the map was modelled, 
travel time between sample units, logistical constraints in locating sample points, existing 
sources of ground truth data, and the potential uses of the map.  Further, little attention has been 
paid to the obvious linkage between user needs and accuracy assessment.  Because the 
technology supporting the construction of broad-scale vegetation maps is evolving so quickly, 
the problem itself is dynamic.  Our goal, then, was not to come up with the ultimate solution to a 
rapidly changing problem, but to begin bridging some of the gaps between existing tools for 
assessing map accuracy and the unique logistical challenges posed by large-scale applications. 

We briefly describe the building of a cover-map of Utah developed for the Utah Gap Analysis 
program (Edwards et al., 1995; Homer et al. in press).  As part of our design process, we first 
reviewed the effect of intracluster correlation and a simple cost function on the relative 
efficiency of cluster sample designs to simple random designs.   Our design is described next, 
coupled with points on how we attempted to work around logistical difficulties.  This design 
ultimately combined clustered and subsampled field data stratified by ecological modelling unit 
and accessibility (hereafter a mixed design).  We next outline estimation formulae for simple 
map accuracy measures under our mixed design and report results for cover-types and 
ecoregions mapped as part of the Utah Gap Analysis (Edwards et al., 1995).  In addition, we 
examine gains in efficiency of our mixed design compared to a simple random sample (SRS) 
approach.  We close with a discussion of the strengths and weaknesses of our mixed design, and 
a discussion of the unique logistical challenges faced when conducting an accuracy assessment 
of large area cover-maps.

METHODS
Cover-map development

A cover-map of Utah, ~219,000 km2 in size, was developed from a state-wide Landsat Thematic 
Mapper (TM) mosaic created from 24 scenes at 30 m resolution.  A total of 38 cover-types were 
modelled using a four step modelling approach.  Steps included: (1) the creation of a statewide 
seamless mosaic of 14 TM images plus 10 pieces used to fill in cloud cover; (2) the subsetting of 
the mosaic into 3 ecoregions, the Basin and Range, Wasatch-Uinta and Colorado Plateau (after 
Omernik, 1987); (3) the association of 1,758 state-wide field training sites to spectral classes; 
and (4) the use of ecological parameters based on elevation, slope, aspect and location to further 
refine spectral classes representing multiple cover-types (see Homer at al., in press).  
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Once the mosaic was created, each ecoregion was independently classified, modelled and 
subsequently edgematched into a state-wide coverage.  Spectral modelling was based on 
statistical relationships between field data and spectral information.  A second phase of the 
modelling incorporated ancillary data to clarify cover-type associations by spectral class.  
Ancillary data focused on topographic and regional patterns of vegetation.  Ancillary data used to 
support modelling included 3 arc-second resolution digital elevation data, slope, aspect, and 
region-specific vegetation polygons.  Region-specific vegetation polygons were developed from 
existing literature and maps, and used to limit the geographic extent of some cover-types.  
Information from field data, literature, localized maps, and personal communications provided 
the input for specific ancillary modelling parameters.  Environmental parameters collected from 
field training sites were summarized to enhance and verify published vegetation parameters.  
Further details on development of the Utah cover-map can be found in Homer et al. (in press) 
and Edwards et al. (1995).  

Map scale is dependent on user needs.  In Utah, for example, vegetation was modelled at a 1 ha 
base minimum map unit (MMU) and ecologically based aggregation routines used to create 
larger MMUs as needed (Bassett et al.; in review).  Nationwide, the NBS Gap Analysis Program 
desires a 100 ha MMU since its primary focus is at ecoregion scales.  In contrast, many regional 
and local conservation planning efforts require finer-grained mapping resolutions.  As a 
consequence, the Utah 1 ha base modelling MMU represents a convenient starting point for 
assessing uncertainty that is independent of user needs.

Efficiency of cluster sampling

In general, cluster samples contain less information per unit sampled than simple random 
samples (SRS).  On the other hand, it is often easier or less expensive to obtain samples from 
cluster sampling.  This trade-off between sample unit cost and information content for large area 
cover-maps was previously illustrated by Moisen et al. (1994), who concluded that information 
return was sensitive to the cost of collecting data under a clustered versus a SRS.

The ratio of the variance of the proportion of misclassified sample units obtained under a SRS to 
the variance obtained from a sample of equivalent size under another design is known as 
"relative efficiency".  Under cluster sample designs, relative efficiency is driven by intracluster 
correlation, ρ.  Roughly speaking, ρ is a measure of the similarity of sample units within clusters.  
It determines the relative efficiency of cluster sampling to a simple random design; the larger the 
value of ρ, the more redundant the information content of the cluster is and the less efficient 
cluster sampling becomes.

Suppose within a strata or subpopulation there are N clusters each comprising M sampling units.  
The observation on the jth sampling unit in the ith cluster is denoted by yij and takes on the value 
of 1 if the sample unit is correctly classified and 0 if it is incorrectly classified.  Finally, let P 
denote the true proportion of correctly classified sample units.  We now define the intracluster 
correlation coefficient, ρ, by



5

ρ =

2∑
N

∑
M

∑
M

(yij − P)(yik − P)
k = j + 1j = 1i = 1

(M − 1)(NM − 1)σ2                                                  (1)

where

σ2 =

∑
N

∑
M

(yij − P)
j = 1

2

i = 1

(NM − 1)
  .                                                      (2)

Now consider a SRS of n’ clusters within the stratum and compare it to a SRS of size n’M in 
each stratum.  Letting p denote the sample proportion of correctly classified sample units, and 
Vsrs(p) and Vclus(p) the variances of p under the two sampling schemes, then the relative 
efficiency of the cluster sample to the SRS is given by 

Vsrs(p)
Vclus(p)

=
1

(1 + (M − 1)ρ)
                                                   (3)

This quantity is always <1 for positive ρ and the dependency of the efficiency on the intracluster 
correlation is clear.

Instead of comparing cluster and simple random samples of the same size, consider comparing 
samples of the same total cost according to the following cost functions.  For a SRS, total cost 
was set equal to a product of the number of sample units and cost of traveling to, and collecting 
data on, each of those units. That is,

                                                          cost = +n c n c1 3                                                              (4)
where c1 is the cost of traveling between sample units, c3 is the cost of collecting data on the 
sample unit, and n is the number of sample elements in a SRS.  For a sample of n’ linear clusters, 
or primary units, each containing M units within a cluster, or secondary units, total cost can be 
expressed as, cost = + − + − +n c n M c n M bc n M ch h h h h h h’ ’( ) ’( ) ’1 2 2 31 1 where c2 is the cost of 
locating and traveling between units within a cluster and b is the proportion of c2 it costs to 
travel back across the unit.

Multiplying (3) by the ratio n′M/n gives a cost-sensitive relative efficiency (REc) that weighs 
redundancy of information in a cluster against larger quantities of data that become affordable 
through clustering.  Specifically: 

REc =
Vsrs(p)
Vclus(p)

n′M
n

  ,                                                   (6)

where
n′M

n
=

M(1 + c3/c1)
(1 + (1 + b)(M − 1)c2/c1 + Mc3/c1)

 .                                     (7)



Figure 1.  Intracluster correlation based on simulated error and relative efficiency as a function 
of different ratios of cost of traveling between points within a cluster (c2) and costs of travleing 
between clusters (c1).
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When  n′M is >> n for a given cost, the variance of a cluster sample may become smaller than 
that of a SRS, making the cluster design more efficient for a fixed cost (see Moisen et al., 1994).

To estimate REc for our specific application, we determined that the time to travel between and 
accurately locate sample points, c2, within a linear cluster would be approximately 30 min, and 
that the time to identify and record existing cover types on the sample points, c3, would be <10 
min. Travel back across points in the cluster when finished, b, expressed as a proportion of c2, 
was also expected to take <10 min.  The cost of traveling between clusters in the state, c1, was 
allowed to range from 30 min to over 12 h.  Using these cost parameters and intracluster 
correlations obtained from simulated error patterns described in Moisen et al. (1994) for the 
Wasatch-Uinta, Basin and Range, and Colorado Plateau ecoregions, intracluster correlation and 
relative efficiency were plotted by linear cluster size in Figure 1. This figure illustrates for what 
cluster sizes and c2 to c1 ratios cluster sampling is more cost-effective than SRS (REc>1). While 
these three simulated error patterns do not necessarily yield the same level of intracluster 
correlation as that in the true error population, they serve as a tool for considering a range of 
scenarios. Given that the c2  to c1 ratio was expected to be well above 1:15 in Utah, we believed 
that logistical constraints, described later, would be more the limiting factors than intracluster 
correlation in determining a sensible cluster size.

Sample design

Vegetation in Utah was modelled by three ecoregions, each of which had different modelling 
algorithms and hence required separate assessment.  For accuracy assessment, each ecoregion 
was divided into road, defined as a 1 km-wide corridor centered on a road, and offroad strata.  
Because of financial constraints and length of field season, we sought a design that maximized 
the amount of information that a 2-person field crew could collect in approximately 4.5 months.  
Preliminary work determined that in an average day, a crew could collect information on 20 
sample points, 10 of those being clustered in the offroad stratum and 10 randomly distributed in 



Figure 2.  Location of sample quadrangles by ecoregion.  Representative depiction of road and 
offroad strata, with random sample points located in the road strata and a linear cluster of 10 
points in the offroad strata.
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the road stratum.  Of course, this would only hold if travel time between sample points was not 
excessive.  To ensure relatively close proximity of sample points, 100 of 1435 Utah USGS 
quadrangle maps distributed proportionally among the 3 ecoregions were randomly selected for 
subsampling and placement of clusters.  

Utah lands used for Department of Defense (DOD) maneuvers were excluded from the 
population upfront, and those land areas were not included the stratum weights.  In addition, 185 
of the 1435 (13%) Utah quadrangles were unavailable in orthophoto form and were precluded 
from the sample of 100.  However, the precluded quadrangles followed what appeared to be a 
random pattern and we have assumed the 100 selected quadrangles are a random sample from 
the population. The choice of 10 linear clustered points was believed to be conservative based on 
earlier relative efficiency simulations by Moisen et al. (1994), and logistically sensible in terms 
of distance a crew would have to walk. The choice of the additional 10 road points provided a 
realistic target for work that could be completed in one day.  Accordingly,  a total of 20 sample 
points were evaluated on each quadrangle, 10 randomly selected within the 1 km-wide corridor 
and one randomly selected starting point for a linear cluster of 10 off-road sample points (Figure 
2).  The sample unit was defined as a 1 ha block, the base MMU for the cover-map.

All sample points were randomly generated in the lab prior to field work.   Selection of sample 
points was accomplished by creating a numbered 500 m grid and overlaying orthophoto 
quadrangles on top.  Sample points were randomly selected from the grid, digitized into 
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Table 1.  Cover-types modelled and evaluated for accuracy in the Utah cover-map.  Although the 
Utah cover-map includes a total of 38 cover-types, only forest, woodland, shrubland, herbaceous, 
man-modified, aquatic and barren classes are analyzed here.  
______________________________________________________________________________

Forest
Aspen
Aspen/Conifer
Lodgepole
Lodgepole/Aspen
Mountain Fir
Mountain Fir/Mountain Shrub
Spruce-Fir
Spruce-Fir/Mountain Shrub

Woodland
Juniper
Lowland Riparian
Mountain Riparian
Pinyon
Pinyon-Juniper
Ponderosa Pine
Ponderosa Pine/Mountain Shrub

Shrubland
Blackbrush
Creosote-Bursage
Greasewood
Maple

Shrubland (cont.)
Mountain Shrub
Oak
Pickleweed Barrens
Sagebrush
Sagebrush/Perennial Grass
Salt Desert Scrub

Herbaceous community
Alpine
Desert Grassland
Dry Meadow
Grassland

Man-modified
Agriculture
Urban

Aquatic community
Water
Wetland
Wet Meadow

Barren
Barren (<5% vegetation)
Lava

______________________________________________________________________________
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coverages, and noted on the orthophoto quadrangles. The orthophoto quadrangles were carried 
into the field during data collection for aid in field orienteering. 
Sample points were located with the aid of a GPS unit.  Information collected at each sample 
point included: (1) cover-type within which sample point fell (Table 1); (2) primary and 
secondary cover-types within a 1 ha block surrounding sample point; (3) primary and secondary 
cover-types within 200 m of the sample point; and (4) a subjective measure of certainty with 
which cover-types were assigned in the field.  In order to be considered a separate cover type, an 
area on the ground had to be at least 1 ha in size (base MMU of the cover-map) and 30 m wide 
(base pixel size of the TM data).

Measures of accuracy

We estimated the proportion of correctly classified units within each of the three ecoregions,  six 
strata, and  seven cover-types, as well as for the entire State map.  The 6 strata, h, were based on 
the 3 ecoregions and the road and off-road categories and are defined as:
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h = 1 Basin and Range ecoregion, road;
2 Basin and Range ecoregion, offroad;
3 Wasatch Uinta ecoregion, road;
4 Wasatch Uinta ecoregion, offroad;
5 Colorado Plateau ecoregion, road; and
6 Colorado Plateau ecoregion, offroad.

On each of the 100 quadrangles, ten sample points, j, of 1 ha size were randomly selected in the 
road stratum, and ten were aligned in a linear cluster in the offroad stratum.  Our design most 
closely resembles a stratified version of what Cochran (1977:303-305) calls subsampling with 
units of unequal sizes.  However, it differs in two ways.  First, quadrangles, or primary units, 
were randomly selected for subsampling then road and off-road strata identified within each of 
those quadrangles.  Here, strata are not independent as would have been the case had quadrangles 
been selected independently for the road and off-road strata.  Second, subsampling usually 
involves random selection of secondary units within each primary unit.  While this is what was 
done in the road strata, a single cluster was selected in the off-road strata. We define yhij to be the 

sample data collected within stratum h and quadrangle i, at point j.  Here, yhij has a value of one 
if the sample point is correctly classified.  For this analysis, a point was considered correctly 
classified if the mapped cover-type matched the field call of primary cover-type within one ha of 
sample point. Misclassified points have a value of zero.  The proportion of correctly classified 
units within stratum h, ph, is estimated by a mean of all nh quadrangle means, weighted by the 
area of stratum h within quadrangle i (Mhi), where 

ph =

∑
n

Mhiphi

i = 1

nh∑
n

Mhi

i = 1

,                                                              (8)

where

   phi =
1
m∑

m

yhij

j = 1

  .                                                           (9)

The formula for the variance of ph under subsampling with units of unequal size accounts for 
variation both between and within quadrangles.  In order to estimate within-quadrangle variation 
in the off-road strata, data would have had to been  collected on more than one cluster.  However, 
the contribution of within-quadrangle variation is weighted by the ratio of quadrangles selected 
for subsampling to the number of quadrangles in the population.   Because this ratio was quite 
small, and because between-quadrangle variation was much larger than that within quadrangles, 
the variance for  ph was estimated using the formula  
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v( )ph =

∑
nh

M2
hi( )phi − ph

2

i = 1

nh(nh − 1)M2
h

.                                         (10)

where M2
h is the mean area of stratum h within a quadrangle.

Given these within strata estimates and their variances, an estimate of the proportion of correctly 
classified units in the entire state map,  p, is

p = ∑
6

Whph

h = 1

                                                         (11)

where
Wh = ratio of the area in stratum h to total area in the state.

Caution must be exercised in computing the variance of p because data collected in the road and 
offroad strata within an ecoregion were collected from the same quadrangle maps and are not 
independent.  Accounting for covariance between strata, the variance of p is

v( )p = ∑
6

W2
hv( )ph + 2 ∑ WhW(h + 1)cov( )ph,p(h + 1)

h = 1,3,5h = 1

,                        (12)

where

cov( )ph,p(h + 1) =
1

( )n2
h ( )nh − 1

∑
nh

( )phi − ph ( )p(h + 1)i − p(h + 1)

i = 1

.                      (13)

Estimates of the proportion of correctly classified units in each of the three ecoregions are 
obtained by summing equations (11) through (13) over the two strata within each ecoregion.  
Estimates of proportion of correctly classified area by each of seven cover-types and three 
ecoregions are obtained by replacing  yhij in (9) with what we will label ykhij sample data 
collected within map class k, stratum h, and quadrangle i, at point  j.  As above, (11) through (13) 
are then summed over the two strata within each ecoregion.

RESULTS

Six of the initial 100 quadrangles were eliminated because of problems with access (i.e., private 
lands) and were replaced with other randomly selected quadrangles.  Although every effort was 
made to ensure that the full 20 sample points (10 road, 10 off-road) were evaluated in every 
quadrangle, logistical constraints occasionally precluded field personnel from visiting every 
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Table 2.  Percent accuracy (SE) by ecoregion.
__________________________________________

Ecoregion % correct (SE) na
__________________________________________

Basin and Range 85.0 (3.2) 380
Wasatch-Uinta 78.9 (3.1) 540
Colorado Plateau 84.5 (1.6) 1000__________________________________________

aIncludes observations in clusters.
__________________________________________

__________________________________________

 Table 3.  Percent accuracy (SE) by cover-type.
__________________________________________

Cover-type
% 

correct (SE) na

__________________________________________

01-Forest 74.2 (7.3) 114
02-Woodland 73.3 (4.3) 330
03-Shrubland 77.2 (2.8) 1009
04-Herbaceous community 75.0 (4.3) 292
05-Man-modified 90.6 (3.5) 118
06-Aquatic community 52.4 (11.9) 43
07-Barren 50.4 (17.1) 14__________________________________________

aIncludes observations in clusters.__________________________________________
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point.  Problems encountered were principally access, either an impassable road or uncertainties 
regarding ownership and our desire to avoid trespass on private lands without permission.  An 
additional 4 quadrangles were eliminated because of inaccessibility, leaving a total of 96 
quadrangles containing 960 road and 960 off-road points in 96 clusters (n=1920) (Appendix I).  
Like lands on quadrangles that were unavailable in orthophoto form, these inaccessible quads 
were assumed not to differ from the population at large.

Although our design optimized field 
logistics, sample sizes were too small to 
adequately estimate accuracy for each 
ecoregion by cover-type combination.  
Instead, results are presented separately 
by ecoregion and cover-type.  Within 
ecoregions, percent correct accuracy 
ranged from 78.9% to 85.0% (Table 2).  
Accuracy by cover-type varied, ranging 
from a low of 50.4% for barren to a high 
of 90.6% for man-modified (Table 3).  
Overall accuracy for the entire cover-map 
was 83.2% (SE=1.5).

To illustrate the gain realized through 
stratification and clustering, we 
considered how precise our estimates 
would have been had we performed our 
assessment using a SRS.  Optimistically, a 
field crew could have visited an average 
of three randomly located sample points 
per day, yielding a total of 300 
proportionally distributed among the three 
ecoregions.  Given these sample sizes we 
estimated variance under a SRS and 
computed the ratio of v2

SRS to v2
Mixed (Table 

4).  Ratios were >1 in all cases, indicating 
that the estimates from our mixed design 
were more precise.

DISCUSSION

Several lessons were learned from this exercise.  One is the importance of a clear articulation of 
the objective of the accuracy assessment.  As noted by Hunter and Goodchild (1995), treatment 
of the kind of spatial error we modelled must be expanded to include a user-oriented perspective.  
As an example, Moisen et al. (1996) extended the analysis presented in this paper by fitting 
generalized linear mixed models to our original sample data.  They  explore the relationship 
between classification error in the blackbrush cover type of the vegetation cover-map of Utah, 
and elevation, aspect, and slope. Numerous approaches to modelling error exist (see 
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Table 4.  Ratio of V2
SRS  to V2

Mixed for the overall map and by ecoregion accuracy values.  Ratios 
>1.0 indicate a more precise estimate of error from the mixed design.
______________________________________________________________________________

Comparison
p n

a V2
SRS 

b V2
Mixed V2

SRS / V2
Mixed

______________________________________________________________________________

Overall 0.832 300 0.000467 0.000228 2.05
Basin and Range 0.850 102 0.001262 0.001026 1.23
Wasatch-Uinta 0.789 78 0.002162 0.000980 2.21
Colorado Plateau 0.845 120 0.001101 0.000285 3.86______________________________________________________________________________

an=the number of samples realized under a SRS, distributed proportionally among the 
ecoregions.

bEstimated from 
p(1- p)

n- 1
 , where p=estimated proportion of correct classifications.

______________________________________________________________________________
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introduction), but it is important to consider needs of the end-user prior to selecting any single 
approach.  Although meeting user needs is a primary concern, one consequence of the 
application of unique solutions to modelling error is the associated difficulty in comparing error 
statements among different maps evaluated for different purposes.

In our case, we were interested in overall state, state by ecoregion, and state by ecoregion by 
cover-type estimates of accuracy.  This necessarily complicated our design because each 
estimate could legitimately necessitate a different design.  If our only objective was accuracy by 
cover-type, for example, it would have been more sensible to equally distribute sample points 
among cover-types.  However, another realized problem with cover-maps of this size is 
computational limitations that can preclude prestratification and allocation of sample points to 
each cover-type.  Basically, we did not have the computational resources to prestratify 21.9 
million spatially explicit sample units and randomly select an equal sample size within each 
stratum.  Moreover, this approach would have immediately compromised any attempt to 
maximize logistical efficiency.  Hence, it was necessary to randomly distribute points within the 
framework of our design and examine the distribution of sample points within cover-types.  We 
echo Congalton’s (1991) recommendation that a primary objective of any accuracy assessment is 
to balance statistical recommendations with practical limitations such as those we encountered 
during our assessment of the Utah cover-map.  

Another problem of concern is undersampling of certain cover-types.  In our example, sample 
sizes for two cover-types, aquatic community and barren, were <100, a rule-of-thumb sample 
size proposed by Congalton (1991).  In cases where sample sizes for specific cover-types are 
low, supplementary visits could be made to these cover-types and the additional samples 
required could be collected.  Unfortunately, this information would be restricted to these cover-
types only, and could not be combined with other cover-types to estimate accuracy in higher 
level groupings like ecoregions (Aronoff, 1982).  An attempt to use these supplementary data 
changes the fundamental design to one stratified by cover-type, which requires that we be able to 
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prestratify the 21.9 million possible sample units by cover-type.  As noted previously, we were 
unable to prestratify by cover-types for computational reasons.

The inability to use the supplementary samples for higher level accuracy estimates does not, 
however, pose significant problems.  Although additional samples never hurt, sample sizes for 
higher level accuracy estimates from our mixed design were large enough for our estimates to be 
considered sufficiently precise.  Collection of supplementary data that is focused on specific 
cover-types also helps to maintain the overall efficiency of our design.  In most cases, low 
sample cover-types are likely to be localized and relatively rare components of any large area 
map.  Consequently the effort required to travel to and sample these cover-types will be a small 
portion of the overall sample effort.  This modification for dealing with undersampled cover-
types is easy to make without compromising our analytical approach, suggesting our mixed 
design is flexible in terms of user objectives and its ability to deal with low sample cover-types.

Yet another lesson involved the choice of quadrangles as primary sample units.  We had  thought 
that sample units within quadrangles would be easier to collect than sample units spread over the 
entire state.  In hindsight, quadrangle maps may not have been the best surrogate for assuring 
proximity of sample points.  For example, in a topographically rugged state like Utah, it is not 
unusual for sample points within a quadrangle to be quite close linearly but distant in terms of 
access time because of geographic features and road layout.  A more sensible approach might 
have been to have defined accessibility zones based on travel route.  Instead of randomly 
selecting quadrangles, these travel zones could have been established a priori and the road and 
offroad strata distributed among zones.  Alternatively, both clusters in the offroad strata, and 
single points in the road strata could have simply been randomly distributed throughout the state 
then later grouped for data collection efforts.  Irrespective of the choice, a quadrangle- or travel 
zone-based selection of primary sample units, our mixed design is sufficiently flexible and 
provides a solid statistical basis for analysis.

The logistical constraints we encountered were varied but nontrivial.  Consequently they cannot 
be dismissed, but must be considered when designing any sampling scheme for large-area 
cover-maps.  For fieldwork, they included the cost of movement between sample points, the time 
and money necessary to support field assessment, and access, an increasingly difficult 
proposition as private landholders become more vocal in their opposition to resource surveys for 
fear of new-found information that might limit options on their land.  In the case of access, use of 
data collected from clusters located on lands where permission for access has been granted 
should reduce the number of private landowners from whom permission must be acquired.  By 
treating private/public lands as analogous to our offroad/road strata, relatively fewer parcels of 
private lands need be sampled to achieve reliable estimates of accuracy.  

Additionally, accuracy of field geographic position systems (GPS) is variable, even when linked 
with use of orthophoto quadrangles or other types of photographs (August et al., 1994).  GPSs 
also face a host of problems in remote, hilly areas and deep forests, with the signals necessary to 
locate position frequently difficult to obtain.  Last, mapped classes are not necessarily mutually 
exclusive when viewed on the ground, creating an additional  level of uncertainty (see Gopal and 
Woodcock, 1994).
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The major constraint we considered in assessing the accuracy of ecoregion-scale vegetation 
cover-maps was excessive time of movement between sample sites.  Although tempting to apply 
a SRS for selection of sample units, the cost of collecting information at locations randomly 
distributed across the entire state is, intuitively, substantially higher than collecting information 
at clustered locations.  The mix of an off-road linear cluster and randomly selected points within 
a road corridor returned greater information per unit sampling cost for this broad-scale map for 
two reasons.  First, sample units next to roads were easy to access, rapidly assessed, and cheap to 
collect, thereby boosting sample size.  Second, use of a linear  cluster for off-road points reduced 
sampling effort and reduced the per sample unit cost (see Moisen et al., 1994).  Field personnel 
needed only  to find a single starting sample point and locate subsequent sample points along a 1 
km transect.  When coupled with the flexibility described above, our mixed design provides a 
reasonable strategy for assessing accuracy of large area cover maps.
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Appendix I.  Number of observationsa by ecoregion and cover-type and corresponding confusion.
____________________________________________________________________________________________________________

Cover-type
__________________________________________________________________________

Ecoregion
01

________
02

________
03

_______
04

________
05

_______
06

_______
07

_______ Row

Cover-type R OR R OR R OR R OR R OR R OR R OR Total
____________________________________________________________________________________________________________

Basin and Range
01-Forest 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2
02-Woodland 0 0 33 52 4 10 0 0 1 0 0 0 0 0 100
03-Shrubland 0 0 3 11 104 85 9 4 2 0 0 0 0 0 218
04-Herbaceous community 0 0 2 0 4 0 15 26 1 0 0 0 0 0 48
05-Man-modified 0 0 0 0 1 0 0 0 9 0 0 0 0 0 10
06-Aquatic community 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
07-Barren 0 0 0 0 1 0 0 0 0 0 0 0 1 0 2

Ecoregion total 0 1 38 64 105 90 23 25 13 0 0 0 1 0 380

Wasatch-Uinta
01-Forest 37 47 2 1 4 3 5 2 0 0 0 0 1 0 102
02-Woodland 1 1 29 11 5 3 0 2 0 0 0 0 0 0 52
03-Shrubland 8 2 8 21 62 102 3 4 3 0 1 0 0 3 217
04-Herbaceous community 0 1 0 1 3 2 19 11 2 0 0 0 0 0 39
05-Man-modified 0 0 2 0 4 1 1 0 63 19 1 0 0 0 91
06-Aquatic community 0 0 0 0 1 2 0 1 1 0 2 30 0 0 37
07-Barren 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2

Ecoregion total 46 51 41 34 79 113 28 20 69 19 4 30 3 3 540

Colorado Plateau
01-Forest 6 3 0 0 0 0 1 0 0 0 0 0 0 0 10
02-Woodland 5 1 75 75 12 7 2 0 1 0 0 0 0 0 178
03-Shrubland 4 2 18 23 231 258 12 15 3 0 0 0 6 2 574
04-Herbaceous community 0 0 12 3 10 5 72 96 3 0 0 0 1 3 205
05-Man-modified 0 0 0 0 1 0 0 0 16 0 0 0 0 0 17
06-Aquatic community 0 0 0 0 0 1 0 0 0 0 4 0 0 1 6
07-Barren 0 0 1 0 3 0 0 1 0 0 0 0 1 4 10

Ecoregion total 15 6 106 101 266 276 88 117 23 0 4 0 8 10 1000

Column total 61 58 185 199 450 479 139 162 105 19 8 30 12 13 1560
____________________________________________________________________________________________________________

aNumber of observations includes samples within clusters.
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