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A successful understanding of linkages between different ecological scales is
central to the transition of landscape theory to application (O’Neill et al.
1991; Wiens 1989). Yet as a general rule, ecologists have been unable to
combine data collected at multiple scales to explore landscape theory, let
alone make the transition from theory to practice. Often landscape data have
scale-specific resolutions and extents as well as thematic content resulting
from methods of observation, making it difficult to scale measured responses
of ecological systems up or down. For example, use of satellite-derived data
such as the National Oceanic and Atmospheric Administration’s 1.1-km res-
olution advanced very high resolution radiometer (AVHRR) for mapping
animal habitat automatically limits the scale of animal study to a 1.1-km
resolution. Any gains in the ability to systematically map habitat over large
spatial extents are offset by a loss of resolution relating back to the animals
of interest. Similarly, the kinds of ecological characteristics that plants and
animals often are associated with (e.g., microclimates, forest structure attrib-
utes) often are of such fine resolution that they cannot be systematically
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mapped or modeled over large spatial extents. As before, gains in under-
standing the ecological processes that may determine species distributions
are offset by an inability to map these distributions over large spatial extents.
These types of limitations unfortunately limit research aimed at under-
standing how landscape process and pattern affect the distribution of plants
and animals and tend to force research efforts to focus at a single scale. For
example, birds have been found to be associated with landscape patterns
over large areas (Rosenberg and Raphael 1986; Dunning et al. 1992; Hansen
and Urban 1992; Freemark et al. 1995), the composition and structure of
vegetation in smaller areas (Cody 1968; James 1971; Wiens and Rotenberry
1981), and localized habitat features such as microclimate and nest substrate
(Calder 1973; Walsberg 1981; Rodrigues 1994). Yet each of these studies
necessarily focused on the relationship of birds to scale-specific variables
(landscape, home range, nest substrate) and therefore was of limited utility
for understanding how linkages between the scales affect landscape-level pat-
terns and distributions.

Vegetation modeling suffers similarly, often integrating information hav-
ing different thematic and spatial resolutions to depict plant and plant com-
munity distributions. Numerous studies have demonstrated the ability to
integrate environmental data with a variety of remote sensing platforms for
vegetation classification (Loveland et al. 1991; Homer et al. 1997), stratifi-
cation (Franklin 1986), and predictive modeling (Frank 1988; Davis and
Goetz 1990; Moisen and Edwards 1999). The underlying satellite data for
these analyses had resolutions ranging from the 1.1-km resolution AVHRR
to the 30-m, multispectral Landsat thematic mapper (TM) imagery and
occurred at a variety of spatial extents. In some cases, satellite information
was used to model fine-scaled attributes such as understory components
(Stenback and Congalton 1990), basal area and leaf biomass (Franklin
1986), and stand density and height (Horler and Ahern 1986), but results
and potential for application to landscape studies seem mixed. However,
these studies were focused at single scales and were highly detailed depic-
tions at small spatial extents or coarse depictions at large spatial extents. In
particular, those focusing on fine-scaled attributes of vegetation communi-
ties (e.g., basal area, leaf biomass, stand density) had limited spatial extrap-
olation, making it difficult to apply the results to landscape extents.

Differences in variables, explored at different spatial extents and resolu-
tions, limit any systematic exploration of possible linkages between ecolog-
ical scales for most of these studies. This limitation places serious constraints
on the application of landscape theory to conservation issues, such as wildlife
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habitat modeling, use and associations, or spatially explicit predictive mod-
els for resource management. Only recently have wildlife ecologists begun
to investigate habitat associations at multiple spatial scales within a single
study (Gutzwiller and Anderson 1987; Morris 1987; Schaefer and Messier
1995; Saab 1999). In part, the impetus for a multiscale approach can be
largely attributed to the introduction of hierarchy theory to ecology (Allen
and Starr 1982; O’Neill 1989; Lawler 1999).

The full exploration of landscape relationships entails spatially explicit
depictions of habitat and other variables at fine resolutions over large spa-
tial extents. Such depictions would allow simultaneous exploration of rela-
tionships of variables at small spatial extents (e.g., canopy closure at nest sites)
and over large landscapes (e.g., pattern of canopy closure within the home
range). Although it is possible to model structural attributes of habitats and
vegetation on small regions using satellite imagery, the regional-scale focus of
many cover-mapping efforts makes it difficult to build vegetation structure
into cover maps. Current efforts provide good maps of broad cover classes
at landscape levels (Homer et al. 1997) but typically provide no information
on the structure of the cover type or the spatial distribution of structure within
the cover type. Recently, emphasis has been placed on linking forest data with
satellite-based information not only to improve the efficiency of estimates of
forest population totals but also to produce regional maps of forest class and
structure and to explore ecological relationships (Moisen and Edwards 1999;
Moisen 2000; Frescino et al. 2001 Moisen and Frescino in press). Accuracy
of these types of map products is reasonably high (Edwards et al. 1998; Fres-
cino et al. 2001).

Here we describe our collective efforts to develop and apply methods for
linking different scales of landscapes for wildlife conservation modeling. Our
process includes two steps. The first focuses on methods for modeling habi-
tat that provide fine-grained estimations of habitat type and structure over
large spatial extents. The second step is to use these representations of land-
scapes for modeling habitat use by terrestrial vertebrates at multiple scales.
We illustrate how flexible regression techniques, such as generalized addi-
tive models (GAMs), can be linked with spatially explicit environmental
information to map habitat structure. In this chapter we focus on forested
systems. We demonstrate how these techniques can be used to develop spa-
tially explicit probability maps for presence of forest, presence of lodgepole
pine, basal area of forest trees, percentage cover of shrubs, and density of
snags. We next illustrate how the spatially explicit maps of forest structure
can be used to model wildlife habitat, focusing on the prediction of suitable
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habitat for cavity-nesting birds in forest systems at landscape scales. We close
with discussion of future directions necessary to link multiple scales in land-
scape ecology.

Modeling Vegetation Pattern and Structure

If a major objective of landscape modeling is to enhance understanding of
relationships at multiple scales as a precursor for regional conservation plan-
ning, then methods for modeling scale-related ecological parameters are para-
mount. From a vegetation perspective, the principal question is how to accu-
rately and efficiently model vegetation structure and patterns at multiple
scales. Recent advances in statistical modeling techniques (McCullagh and
Nelder 1989; Hastie and Tibshirani 1990; Hastie et al. 2001) and geographic
tools, such as remote sensing and geographic information systems (GISs),
have increased the opportunities for delineating and analyzing vegetation
structure and pattern. Numerous studies have demonstrated the use of sta-
tistical models to understand and display how plant species are distributed
throughout the environment (e.g., Austin and Austin 1980; Davis and Goetz
1990; Austin et al. 1984), yet the unpredictability of natural ecosystems,
along with the dramatic influence of human disturbance, has made it difficult
to draw conclusions about landscape-level vegetation distribution patterns
and relationships to environmental conditions. These limitations result, in
part, from past reliance on statistical tools that incorporate classic assump-
tions of normality (e.g., ordination methods; Austin and Noy-Meir 1971;
Austin 1985) rather than other distributions more closely related to under-
lying ecological processes. Other statistical models, such as GAMs (Hastie
and Tibshirani 1990) and so-called data-mining techniques (Hastie et al.
2001), are more flexible and better suited to handle nonlinear relationships
of vegetation and environmental gradients (Yee and Mitchell 1991).

In addition to advances in statistical modeling techniques, remote sens-
ing technology has made it possible to identify, analyze, and classify exten-
sive tracts of vegetation using satellite spectral information (e.g., 30-m res-
olution, multispectral, Landsat TM imagery). Satellite data have been used
mainly for constructing vegetation cover type maps (e.g., Loveland et al.
1991; Congalton et al. 1993; Homer et al. 1997), but current studies are also
using satellite data to explore ecological factors influencing vegetation pat-
terns (e.g., Horler and Ahern 1986; Franklin 1986; Frank 1988; Congalton
et al. 1993). One limitation of classified cover maps is that vegetation typi-
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cally is classified into discrete units, thus adding a measure of subjectivity
and bias. Recent studies have found that integrating ancillary data, such as
elevation, aspect, and slope, with spectral information can enhance the pre-
cision of delineation of forest attributes (Strahler and Logan 1978; Wood-
cock et al. 1980; Frank 1988; Frescino et al. 2001) and reduce the subjec-
tivity of classification procedures. When linked with flexible modeling tools
such as GAMs, such spatially explicit ancillary data provide a powerful con-
text for generating fine-resolution depictions of vegetation across landscapes
(Fig. 7.1).

Although new analytical tools have increased our ability to model vege-
tation over large spatial extents, most research still focuses on modeling
dominant vegetation features distinguishable from satellites or climax or
seral types strongly associated with environmental factors. But how do we
analyze the understory and composition of habitats that are not directly vis-
ible from satellites? For example, most assumptions are that stand compo-
sition in forested habitats is directly associated with the overstory canopy,
yet the density of down, dead material may be a function of slope rather than
of canopy cover type. The few studies that have attempted to link reflectance
values measured by satellites with understory components (Stenback and
Congalton 1990) or stand density and volume (Franklin 1986) have gener-
ally been unsuccessful.
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Figure 7.1   Conceptualized process for linking field data and remotely sensed infor-
mation (A) with flexible statistical tools (B) for creating fine-resolution, large-spatial-
extent maps of vegetation attributes.
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The Context: Modeling Wildlife Pattern
and Distribution

Wildlife habitat relations models (WHR; Salwasser 1982) are one common
approach for modeling animal distribution patterns. These models are essen-
tially databases consisting of lists of habitat types, suitability rankings for the
different habitat types, range maps, and species notes (Chapter 13, this volume;
Verner and Boss 1980). WHR models often are linked with coarse cover maps
of general habitat classes to build spatial predictions. They have general appli-
cation for regional perspectives, but lack local specificity (e.g., gap analysis;
Scott et al. 1993). Therefore, they may be accurate for addressing questions of
species richness at coarse spatial scales (Raphael and Marcot 1986; Edwards et
al. 1996) but are by nature less accurate for addressing questions involving indi-
vidual species occurrences at fine spatial scales. This is not a failure of this type
of model but rather a realized limitation of its applicability.

At finer scales habitat modeling often involves defining relationships be-
tween species occurrences or abundances and a set of factors related to veg-
etation structure and composition. Often called habitat suitability indices
(HSIs), these models typically use statistical tools (e.g., regression) to assess
the strength and shape of a relationship between species presence or abun-
dance and a suite of ecological predictor variables (Chapter 13, this volume).
Data for these models are gleaned primarily from previously published stud-
ies (U.S. Fish and Wildlife Service 1981). The fine-scaled nature of HSI-type
models may make them more accurate in specific environments at the expense
of generality; therefore, different models may be needed for the same species
in different habitats (Stauffer and Best 1986). Despite this limitation, HSIs
are likely to be more accurate and appropriate for the management of parks
and reserves than the coarser-scale WHR models.

Unfortunately, HSI models have no spatial component, representing instead
quantitative relationships between species presence or abundance and the pre-
dictor variables. Although the variables modeled in HSIs usually have relevance
to underlying ecological processes that influence the animal’s presence or abun-
dance, the lack of spatially explicit depictions of these variables makes it diffi-
cult to evaluate how they might be constrained by, or in turn affect, higher-order
landscape processes. To the extent that fine-grained predictor variables could
themselves be modeled in spatially explicit fashion, opportunity would exist
to evaluate links between different landscape scales (Chapter 1, this volume).
Spatially explicit depictions of vegetation-based habitat variables (e.g., canopy
closure, stem density, species type) linked to wildlife models using the same vari-
ables can yield more accurate spatially explicit wildlife models (Fig. 7.2).
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The Context: Our Study Areas
Our work in this arena has focused on forest systems in the intermountain
West, principally in the northern Utah mountain ecoregion (hereafter the Uinta
Mountains) in the United States. The Uintas have an east–west orientation, an
approximate length of 241 km, and a width of 48 to 64 km. Elevation ranges
from about 1,700 m to about 4,000 m. The area contains conspicuously deep,
V-shaped canyons on the south side of the range and less pronounced canyons
on the north side of the range. The climate consists of long winters and high
summer precipitation that is mainly a function of elevation, latitude, and storm
patterns from the west and the Gulf of Mexico, with local effects from slope
exposure or aspect (Mauk and Henderson 1984).

The distribution of vegetation in the Uinta Mountains is highly influenced
by topographic position and geographic location. Lodgepole pine (Pinus con-
torta) is the dominant vegetation type, ranging from 1,700 to 3,000 m eleva-
tion. At elevations between 2,400 and 3,000 m, lodgepole is mixed with aspen
(Populus tremuloides), with a few homogenous aspen stands at lower eleva-
tions. As elevation increases, lodgepole forests are gradually replaced by
spruce–fir (Picea engelmannii–Abies lasiocarpa) forest types and are often
interspersed with large patches of wet and dry meadows. Other forest types
include pinyon–juniper (Pinus edulis–Juniperus osteosperma) at lower eleva-
tions on the northeastern slope, Douglas fir (Pseudotsuga menziesii) on steep,
protected slopes, and ponderosa pine (Pinus ponderosa) forests on exposed
slopes on the south side of the range (Cronquist et al. 1972).
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Figure 7.2   Conceptual process linking spatially explicit representations of vegeta-
tion type and structure with a wildlife habitat model.
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Example Application

Readers are referred to Moisen and Edwards (1999), Moisen (2000), Fres-
cino et al. (2001), and Moisen and Frescino (in press) for details about the
complexities of generating spatially explicit forest structure models. The
process is necessarily complex, and only a short overview is presented here.
As noted earlier, the GAMs we used for modeling purposes are nonparamet-
ric extensions of the more commonly used generalized linear models (GLMs).
The GAM, like the GLM, uses a link function to establish a relationship
between the mean of the response variables (Table 7.1) and a smoothed func-
tion of the explanatory variables (Table 7.2). The main attraction of GAMs
for vegetation modeling is their ability to handle nonnormal features in the
data such as bimodality or asymmetry. GAMs are best described as data
driven rather than model driven, such that the data determine the shape of
the response curves rather than fitting a known function to the data. A scat-
ter plot smoother is fit to each predictor variable and then fitted simultane-
ously in an additive model. The major weakness of GAMs is the danger of
overfitting the data (Austin and Meyers 1996).
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Table 7.1   Summary of response variables for modeling forest attributes in the Uinta
Mountains, Utah, USA.

Forest 
Attribute Type Description Distribution

Forest presence Binomial ≥10% tree cover P = .77

Lodgepole pine Binomial Majority of forest cover P = .31
presence

Basal area (m2/ha) Continuous Area of trees at 1.37 m Range: 0–70
basal height (trees ›2.5 cm Median: 16
DBH*)

Shrubs (%) Continuous Sum of total cover from Range: 0–92
upper, middle, and lower Median: 15
layers

Snag density Continuous Total salvable and nonsalvable Range: 0–248
(snags ›10.2 cm DBH) Median: 5

* Diameter Breast Height (DBH)
P = proportion of model-building points defined as forest and lodgepole pine, respectively. See
Frescino et al. (2001) for additional details.
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Table 7.2   Summary of explanatory variables used to model forest attributes in the
Uinta Mountains, Utah, USA.

Variable Type Resolution Source

Elevation (m) Continuous 90 m DMAa

Aspect (°) Derived from DMA
Continuous 90 m Relative annual solar radiation 

(Swift 1976)
Discrete 90 m Nine categories (see text for 

descriptions)
Continuous 90 m Radiation/wetness index 

(Roberts and Cooper 1989)

Slope (%) Continuous 90 m Derived from DMA

Precipitation (mm) Continuous 90 m Downscaled from PRISMb; 
yearly precipitation climate 
maps (N. Zimmerman, 
unpublished data)

Geology Hintze (1980)
Discrete 1:500,000 Time frame (1, Precambrian; 

2, Mississippian to Eocene; 
3, Alluvium)

Discrete 1:500,000 Nutrients (1, sandstone and 
limestone; 2, sedimentary; 
3, alluvial)

Discrete 1:500,000 Rock type (1, sedimentary; 
2, alluvial)

Easting Continuous — UTMc easting coordinates

Northing Continuous — UTM northing coordinates

District Discrete — National Forest Ranger Districts
(1, Evanston; 2, Mountain 
View; 3, Flaming Gorge; 4, 
Vernal; 5, Roosevelt; 6, Kamas; 
7, Duchesne)

TM-classified Discrete 90 m Gap analysis (Homer et al. 1997)

AVHRR Continuous 1,000 m NOAAd (June 1990)

TM Landsat TM (June 1990 and 
August 1991)

Continuous 30 m TM band 3 (red)
Continuous 30 m TM band 4 (near-infrared)
Continuous 30 m TM band 5 (mid-infrared)

a Defense Mapping Agency (DMA)
b Puget Sound Regional Synthesis Model (PRISM); for more information, see 

www.prism.washington.edu/
c Universal Transverse Mercator Map Coordinate System (UTM)
d National Oceanic and Atmospheric Administration (NOAA)
See Frescino et al. (2001) for additional details.
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Forest Structure Modeling: The First Link

For forest and lodgepole presence (nominal responses), a logit link was used
to transform the mean of the response to a binomial scale (Hastie and Tib-
shirani 1990). For the continuous variables (basal area, percentage shrubs,
snag density), a Poisson link was used to transform the data to the scale of
the response (Hastie and Tibshirani 1990). A loess smoothing function (see
Venables and Ripley 1997 for description) was chosen to summarize the rela-
tionship between the predictors and the response. The loess smoother fits a
robust weighted linear function to a specified window of data (Venables and
Ripley 1997). One limitation of smoothed functions obtained from GAMs
is their inability to extrapolate outside the range of the data used to build
the model. To handle this problem, values of the validation data set that were
outside the range of the model-building data set were assigned the maximum
or minimum value of the respective variable in the data set.

The functional relationships between each explanatory variable and the
respective response variables were analyzed for potential parametric fits
following guidelines in Hastie and Tibshirani (1990) and Yee and Mitchell
(1991). If a potential parametric fit existed, piecewise and second- and
third-order polynomial functions were fit to the data and assessed based
on the relative degree of change to the residual deviance (Cressie 1991).
All explanatory variables, including all potential parametric fits, were run
through a stepwise procedure to determine the best-fit model for predic-
tion (see Chambers and Hastie 1992) using Akaike’s information criterion.
A percentage deviance reduction (D2) was also calculated for each model,
representing the percentage of deviance explained by the respective model
(Yee and Mitchell 1991). Once the model fits were derived (see Frescino et
al. 2001, Tables 3 and 4), the model was applied to all the explanatory dig-
ital layers (Table 7.2) and predictive map surfaces generated. The result
was a series of predictive maps of forest attributes having fine resolution
(about 0.8 ha) and covering large spatial extents (more than 1 million ha;
Fig. 7.3).

Accuracy of the models predicting forest and lodgepole presence was high
(86 and 80 percent, respectively). Sixty-seven percent of the basal area val-
idation points fell within ±15 percent (11.5 m2/ha) of the true value, 75 per-
cent of the shrub density validation points fell within ±15 percent of the true
cover, but only 54 percent of the points fell within ±15 percent of the true
snag count.
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Cavity Bird Nesting Habitat: The Second Link

Once the maps of forest attributes were generated, the next step was to gen-
erate models of bird presence based partly on the spatially explicit forest
maps. We modeled habitat associations, based on landscape patterns, for
four species of cavity-nesting birds nesting in aspen stands in the Uinta
Mountains in northeastern Utah. Cavity-nesting birds make up a large part
of the avian community in aspen forests in the western United States (Win-
ternitz 1980; Dobkin et al. 1995). We modeled habitat of red-naped sap-
suckers (Sphyrapicus nuchalis), northern flickers (Colaptes auratus), tree
swallows (Tachycineta bicolor), and mountain chickadees (Parus gambeli),
four common species in the study area. We concentrated on these species
because all four species are likely to be associated with landscape patterns.
Tree swallows and northern flickers nest on forest–meadow edges (Conner
and Adkisson 1977; Rendell and Robertson 1990). Mountain chickadees
are arboreal feeders (Ehrlich and Daily 1988) and tend to be associated with
forested areas (Wilcove 1985; Yahner 1988). Because they exploit a number
of different food resources, including willow bark, tree sap, and insects
(Ehrlich and Daily 1988), red-naped sapsuckers may select nest sites in land-
scapes that provide access to this diverse set of resources.

We built habitat models for each of the four species using classification
trees (Breiman et al. 1984; Venables and Ripley 1997). Classification trees

Modeling Multiple Ecological Scales 163 ■

Figure 7.3   Example maps of nominal (lodgepole presence) and continuous (basal
area) responses generated for an ~100,000-ha region of the Uinta Mountains, Utah
(from Frescino 1998).
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are a flexible and simple tool for modeling complex ecological relationships
(De’ath and Fabricus 2000). Trees explain the variation in a single response
variable with respect to one or more explanatory variables and offer a non-
parametric alternative to generalized linear models. Classification trees work
by recursive partitioning of the data into smaller and more homogenous
groups with respect to the response variable. Each split is made by the
explanatory variable and the point along the distribution of that variable
that best divides the data.

Tree models have several advantages for analyzing ecological data. First,
decision trees are nonparametric and assume no underlying distribution in the
data. Consequently the exact form of the relationship between the response
variable and the explanatory variables (e.g., normal, logit) does not have to be
known. Second, tree-based models readily capture nonadditive behavior and
complex interactions. This ability to deal with complex interaction better mir-
rors ecological reality and can lead to superior models of ecological systems.
Third, tree models are capable of modeling a large number and mixture of cat-
egorical and continuous explanatory variables. These types of data are very
common in ecological studies, and the application of traditional linear statis-
tical models can lead to erroneous conclusions. Finally, because their structure
is easy to conceptualize and graphically represent, they usually are somewhat
easy to interpret and explain. This latter point in particular is a critical aspect
of building useful habitat models. See De’ath and Fabricus (2000) and Lawler
and Edwards (2002) for a more thorough discussion of the use of classifica-
tion trees in ecological modeling.

The four species models included a number of variables pertaining to the
amount and configuration of aspen forest and open area (Fig. 7.4) (see
Lawler 1999, and Lawler and Edwards 2002, for model specifics). We used
these models to produce maps of predicted nesting habitat for each of the
four species (Fig. 7.5). The spatial configuration of predicted suitable habi-
tat differed between the four species. Red-naped sapsucker nesting habitat
often was spread throughout the sites but tended to be concentrated at
meadow edges. Tree swallow and northern flicker nesting habitat was even
more closely associated with meadow edges and riparian areas, whereas
mountain chickadee nesting habitat was patchily distributed and not neces-
sarily associated with aspen–meadow edges.

We tested these models by searching new field sites for nests. We then
mapped the nests on the prediction maps and assessed the accuracy of the
maps for predicting the nests (Lawler and Edwards 2002). The northern
flicker model was the most accurate (84 percent of nests correctly classified).
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Figure 7.4   Classification and regression tree (CART) model predicting nesting habitat
for red-naped sapsuckers. Models for the other species were similar in structure, vary-
ing only in the predictor variables and tree complexity (see Lawler and Edwards 2002).

Figure 7.5   Vegetation and spatially explicit prediction maps for northern flicker nest-
ing habitat. Medium gray in the vegetation map represents suitable nesting habitat and
is based on classic WHR approaches (see text). Note how the amount and distribution
of gray is reduced under the refined vegetation models, which then are incorporated
in the wildlife models as described in the text. Nests are represented as circles with
crosshairs.
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The red-naped sapsucker and tree swallow models were also accurate (80
percent and 75 percent of the nests correctly classified, respectively). The
mountain chickadee model was far less accurate, correctly predicting only
50 percent of the nests at the test sites.

Discussion

The ability to create spatially explicit depictions of vegetation type and struc-
ture depends, in part, on the flexibility and capability of the analytical pro-
cedures used to model vegetation. GAMs, in contrast to some analytical pro-
cedures (e.g., ordination and linear regression models), do not make a priori
assumptions about underlying relationships, thus allowing the data to drive
the fit of the model instead of the model driving the data. The graphic nature
of GAMs also allows a visualization of the additive contribution of each
variable to the respective response using smoothed functions. Smoothed
functions are capable of fitting unusual variance patterns such as skewness
and bimodality that are often overlooked with standard linear models
(Austin and Noy-Meir 1971). One limitation of GAMs is the uncertainty
associated with extrapolation of the smoothed functions, particularly at the
tails of the distribution. As suggested by Hastie and Tibshirani (1990) and
Yee and Mitchell (1991), we fitted parametric functions to the model when-
ever statistically allowable, thus constraining the behavior of the functions
in the extreme ranges of the data. Often this involved a subjective interpre-
tation based on visual inspection of the data.

Once the vegetation type and structure are modeled, the resultant maps can
be linked with wildlife models and used to create predictive maps. We have
demonstrated the potential for a linkage between habitat models and models
of vegetation at large spatial extents. Although predictive models based on
landscape patterns may prove to be accurate, models built solely at coarse spa-
tial scales will be less accurate when fine-scale associations with structural
attributes are strong. Cavity-nesting birds have been shown to respond to pat-
terns of vegetation at several spatial scales finer than those modeled in our
study. For example, nest tree size and condition (Dobkin et al. 1995; Schepps
et al. 1999), snag and tree density (Flack 1976; Raphael and White 1984), and
cavity availability (Brawn and Balda 1988) may all influence nest site selection
decisions. To improve the predictive capability of coarser-scale habitat mod-
els, they must be linked with models of finer-scale habitat associations. Until
now, making predictions with finer-scale models has been limited by the avail-
ability of fine-scale data over large spatial extents. Our vegetation modeling
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approach, which includes techniques capable of predicting fine-scale attributes
(e.g., canopy closure, stem density) at fine resolutions, overcomes this prob-
lem and generally increases model predictive capabilities.

Summary

In general, ecologists have been unsuccessful in attempts to link information
collected at multiple scales to explore landscape theory. Often these data
have different resolutions and thematic content, making it difficult to scale
measured responses of ecological systems up or down. This chapter explores
our collective efforts to develop and apply methods for linking different
scales of landscapes. Research focus has been at two levels. The first is
approaches to modeling habitat that provide fine-grained estimations of
landscape patterns at large spatial extents. The second is using these repre-
sentations of landscapes to explore habitat use by terrestrial vertebrates at
multiple scales. Current vegetation modeling efforts provide good maps of
broad cover classes at landscape levels but typically provide no informa-
tion on the structure of the cover type or the spatial distribution of structure
within the cover type. Our work demonstrates how flexible regression tech-
niques, such as generalized additive models, can be linked with spatially
explicit environmental information for mapping forest structure. We demon-
strated how these techniques can be used to develop spatially explicit prob-
ability maps for presence of forest, presence of lodgepole pine, basal area
of forest trees, percentage cover of shrubs, and density of snags. We illus-
trated how these spatially explicit maps of forest structure can be used to
model wildlife habitat, focusing on the prediction of suitable habitat for cav-
ity-nesting birds in forest systems. We closed with discussion of future direc-
tions necessary to link multiple scales in landscape ecology.
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