Soil transport driven by biological processes over millennial time scales

Joshua J. Roering* Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403-1272, USA
Peter Almond Soil, Plant, and Ecological Sciences Division, P.O. Box 84, Lincoln University, Canterbury, New Zealand
Philip Tonkin Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
James McKean

ABSTRACT

Downslope soil transport in the absence of overland flow has been attributed to numerous mechanisms, including particle-based processes and disturbances associated with biological activity. Process stochasticity and difficulties associated with field measurement have obscured the characterization of relevant long-term soil transport rates and mechanisms. In a series of incised fluvial terraces along the Charwell River, South Island, New Zealand, we documented vertical profiles of tephra concentration and topographic derivatives along a hillslope transect to quantify soil transport processes. Along the undissected hilltop, we observed a thin primary tephra layer (ca. 22.6 ka) within loess deposits ~80 cm below the landscape surface. In the downslope direction, the depth to the highly concentrated tephra layer decreases, coincident with an increase in hillslope convexity (which is proportional to landscape lowering rate if soil flux varies linearly with hillslope gradient). Exhumation of the tephra layer results from landscape lowering due to disturbance-driven soil transport. Approximately 20 m downslope of the interfluve, the depth to the tephra layer declines to 40–50 cm, peak tephra concentrations decrease by a factor of 4, and tephra is distributed uniformly within the upper 40 cm of soil. The transition from a thin, highly concentrated tephra layer at depth to less concentrated, widely distributed tephra in the upper soil may result from soil mixing and transport by biological disturbances. Along our transect, the depth to this transition is ~50 cm, coincident with the rooting depth of podocarp and Nothofagus trees that populated the region during much of the Holocene. Our observations can be used to calibrate the linear transport model, but, more important, they suggest that over geomorphic time scales, stochastic bioturbation may generate a well-mixed and mobile soil layer, the depth of which is primarily determined by flora characteristics.

Keywords: hillslope evolution, soil transport, tephra, New Zealand, surficial processes, bioturbation.

INTRODUCTION

Soil transport on hillslopes regulates sediment delivery to channels, dictates hillslope morphology, and controls the cycling of organic material. Typically, the transport of soil in the absence of overland flow (often referred to as soil creep) is conceptualized as a slow, relatively continuous process resulting from particle-by-particle displacement (e.g., Culling, 1963). Sharpe (1938) stated that soil creep does not result from displacement along a discrete plane and can only be perceptible over long time scales. This downslope movement has been attributed to variations in soil moisture and temperature, soil water freezing, and disturbances associated with fauna and flora (Davis, 1892; Gilbert, 1909). Several soil creep theories (e.g., Kirkby, 1967) suggest that velocities should be highest near the surface and decrease gradually with depth (curve A, Fig. 1). Some studies in clay-rich soils report such convex-upward velocity profiles (e.g., Fleming and Johnson, 1975), which indicate that soil mixing should also steadily diminish with depth. In contrast, macrobiological disturbances in the upper soil column, such as root growth and tree turnover, may mix and transport soil (Schaetzl et al., 1990), such that the average particle velocity above a particular depth is relatively constant (curve B, Fig. 1). Measurement uncertainties and process stochasticity have obscured long-term patterns of soil transport and the efficacy of these two end-member models (Finlayson, 1985). In particular, annual to decadal estimates of soil velocity profiles have yielded highly variable and conflicting results, including cases where net transport was directed upslope (Clarke et al., 1999), and the dominant displacement orientation was normal to the slope (Young, 1978). Such motions seem impossible to persist over long time periods, such that their applicability to hillslope evolution remains uncertain. Unfortunately, field documentation of soil transport mechanisms and rates over geomorphically significant time scales is sparse (Heimsath et al., 2002).

Long-term characterizations of soil transport require a field methodology that documents the integrated effect of soil dynamics (Braun et al., 2001). Here we describe how primary tephra deposits can be used to quantify rates of erosion and soil transport, as well as characterize mechanisms of soil transport that have been dominant over geomorphic time scales. Our results from documenting tephra concentration profiles and topographic surveying along dissected aggradational terraces in the South Island of New Zealand illustrate for the first time that bioturbation associated with root growth and tree turnover may have outweighed other mechanisms of soil transport over the past 9 k.y. Our findings can be used for quantifying rates of erosion, transport, and soil mixing, calibrating soil transport models and simulating the development of hilly terrain.

SOIL TRANSPORT AND HILLSLOPE MORPHOLOGY

To simulate soil transport processes in numerical calculations of landscape evolution, numerous studies have represented soil transport as a slope-dependent process (e.g., Tucker and Bras, 1998). Here we use the linear, slope-dependent transport model, which is supported by field evidence (McKean et al., 1993; Small et al., 1999), to couch our field observations. This model is appropriate for low-gradient (<0.4) hillslope segments because fluxes tend to increase nonlinearly on steep slopes (Roering et al., 1999). According to the linear model, sediment flux, \(q_s \) (m³·m⁻²·yr⁻¹) varies proportionally with hillslope gradient \((\text{in one dimension}) \) as

\[
q_s = -K \frac{\partial z}{\partial x} \tag{1}
\]

Figure 1. Schematic soil velocity profiles for particle-based soil transport models (shown by curve A) and disturbance-dominated models (shown by curve B).

© 2002 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.

Geology; December 2002; v. 30; no. 12; p. 1115–1118; 4 figures, 1 table.

1115
Figure 2. Location and topographic maps of Charwell River, South Island, New Zealand. Bold line defines catchment area of Charwell basin (40 km²). Hope fault accommodates at least 20 mm yr⁻¹ of right-lateral slip and 3 mm yr⁻¹ of uplift.

where \(K \) is a transport rate constant \((m^2 \cdot yr^{-1}) \), \(z \) is elevation \((m) \), and \(x \) is horizontal distance \((m) \). In this framework, soil depth does not explicitly affect the flux of sediment; instead, the depth of actively transporting soil is controlled by the mechanical action of the transport mechanisms (e.g., the depth of soil water freezing or tree rooting), assuming transport-limited conditions. The relationship between landscape lowering and sediment flux can be quantified by combining equation 1 with the one-dimensional continuity equation, yielding

\[
\frac{\partial z}{\partial t} = K \frac{\partial^2 z}{\partial x^2}.
\]

This relationship indicates that erosion is proportional to local hillslope curvature and, when coupled with topographic surveys of hillslopes, allows us to quantify spatial variability in erosion rates.

STUDY SITE: CHARWELL RIVER, SOUTH ISLAND, NEW ZEALAND

Well-documented fluvial terrace remnants of the Charwell River, South Island, New Zealand, record episodes of aggradation and channel incision through the late Quaternary (Bull, 1991). Bounding the Seward Kaikoura Range to the north, the Hope fault separates the steep, highly dissected portion of the humid Charwell drainage basin (40 km²) from low-relief terrain where aggradational terraces are dominant (Fig. 2). High rates of right-lateral slip (20–35 mm yr⁻¹) and uplift (3–6 mm yr⁻¹) along the Hope fault allow for the accumulation and preservation of alluvial deposits south of the range, such that terrace remnants are progressively older southwest of the current channel location (Bull, 1991). These terraces exhibit varying degrees of dissection and relief development depending on their age and position along the Hope fault. We focused the current study on hillslope development in the Dillondale terrace unit, which has been associated with the penultimate glacial advance or a previous episode of high sediment yield (Bull, 1991). This terrace unit has undergone early stages of drainage development, as flat, undissected terrace surfaces alternate with low-gradient valleys that approach 30 m in local relief.

At least three distinct loess units (totaling more than 5 m in thickness) mantle the Dillondale aggradation gravels (Fig. 3A). Detailed soil stratigraphy reveals that loess production followed (and perhaps alternated with) valley incision into the terrace gravels. Palynological data from nearby sites (W. McLea, 2001, personal commun.; McGlone and Basher, 1995) indicate that grasses dominated the area during the Last

Figure 3. Morphology of study hillslope transect. A: Profile of hillslope surface elevation and soil stratigraphy. L1, L2, and L3 denote three loess units deposited on top of coarse fluvial gravels. Letters shown above surface profile denote location of continuous auger samples shown in Figure 4. B: Profiles of hillslope gradient (shown with diamonds) and hillslope curvature (shown with closed circles). Equation 2 (see text) indicates that convexity (defined here as negative curvature) is proportional to erosion rate. Error bars signify one standard error in our estimation of curvature.
Glacial Maximum. Trees, including podocarps (Podocarpaceae) and beech (Nothofagus), became prominent following the Holocene transition and persisted until widespread burning by indigenous peoples ∼700 yr ago. Primary Kawakawa tephra (22.6 ka) from the Taupo volcanic zone (see Fig. 2) occurs microscopically as glass grains within loess sheet 1, indicating that it was deposited during a period of loess production.

HILLSLOPE MORPHOLOGY AND TEPHRA CONCENTRATIONS

We documented hillslope morphology and depth profiles of tephra concentration along a 60 m hillside transect in the Dillondale terrace to quantify erosion and sediment transport (Fig. 3A). We began the transect on an undissected, flat section of the terrace where loess thickness approaches the maximum value of 5 m. Hillslope gradient increases nonlinearly downslope, rapidly approaching 0.2 near the valley margin (Fig. 3B). Downslope of the nearly planar hilltop, hillslope convexity (defined here as negative curvature) increases linearly, coincident with a decrease in the thickness of the loess mantle. According to equation 2, erosion rates should be greatest near the valley margin (Fig. 3B). For each of the top three auger sites (A, AB, and B), the depth-integrated mass of tephra grains is similar, suggesting that significant mass loss of tephra has not occurred (Fig. 4). Moving from site B to C the integrated mass of tephra decreases dramatically (>50%), such that the concentrated layer has been reduced to a narrow peak between 55 and 60 cm depth. Further downslope (sites CD1 through F), significant concentration peaks are not readily apparent and values in the upper 50 cm are relatively uniform. Along this lower half of the transect, concentrations below 50 cm are imperceptible, indicating that the tephra has been effectively exhumed and incorporated into the upper soil layer.

SOIL TRANSPORT MECHANISMS

If time-integrated soil velocities are highest near the surface and decrease with depth (curve A, Fig. 1), the distribution of tephra at our study site should exhibit different characteristics. According to such a model, the concentration peak would become increasingly diffuse as it approaches the surface. Instead, we observe an abrupt transition from concentrated tephra at depth to uniformly distributed tephra in the upper soil. This is particularly evident moving from site B to C, where downslope soil flux has reduced the total mass of tephra and a thin layer of high concentration remains just below the threshold depth (site C, Fig. 4). This pattern results from the combined effects of surface lowering and mixing by disturbance-driven transport processes. Bioturbation, including tree turnover and root growth (e.g., Schaez et al., 1990), may be the dominant mechanism responsible for detaching and displacing soil. At our study site, the depth of the transition between disturbed and undisturbed soil is consistently between 40 and 60 cm, similar to the rooting depth of Nothofagus and podocarp trees that colonized the area during the Holocene (W. McLea, 2001, personal commun.; McGlone and Basher, 1995; Hart et al., 2002).

Although the behavior and characteristics of individual fauna and flora may be stochastic, the integrated effect may produce a distinct signature such that soils in the active transport zone are well mixed and those below the threshold depth do not exhibit the signature of disturbance. Sites E and F provide the most compelling evidence for transport and mixing driven by disturbances. At these locations, >2 m of erosion has occurred over the past 9 k.y., and tephra grains are distributed uniformly throughout the upper 50 cm of soil. Thus, although the primary tephra layer has been exhumed and removed, re-
TABLE 1. DILLONDALE SOIL TRANSPORT CALIBRATION

<table>
<thead>
<tr>
<th>Site combinations</th>
<th>Δz (m)</th>
<th>ΔC (m$^{-1}$)</th>
<th>K^* (m2·yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-AB</td>
<td>0.13 ± 0.09</td>
<td>9 x 10$^{-3}$ ± 2 x 10$^{-4}$</td>
<td>0.015 ± 0.011</td>
</tr>
<tr>
<td>A-B</td>
<td>0.20 ± 0.11</td>
<td>1.9 x 10$^{-3}$ ± 2 x 10$^{-4}$</td>
<td>0.012 ± 0.006</td>
</tr>
<tr>
<td>AB-B</td>
<td>0.08 ± 0.07</td>
<td>9 x 10$^{-4}$ ± 1 x 10$^{-4}$</td>
<td>0.009 ± 0.008</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td></td>
<td>0.012 ± 0.008</td>
</tr>
</tbody>
</table>

$*K$ is calculated according to equation 4, where Δt is 9 ±1 k.y.

Recent interest in the cycling of organic material in soils has spawned efforts to quantify rates of soil mixing and turnover. Our results indicate that over thousand-year time scales, soils in forested landscapes are subject to relatively uniform mixing in the upper soil. This implies that climate-related changes in flora assemblages may have significant impacts on rates of soil transport and hillslope evolution, as well as cycling of nutrients and organic material.

ACKNOWLEDGMENTS

We thank Percy Acton Adams for access to his paddocks. Bill Bull for invaluable insights and detailed background information, and Polly Hall for solid laboratory work. We commend L. Hasbargen and S. Lanceate for their thorough and insightful reviews. This research was partially funded by the Department of Geological Sciences, University of Canterbury.

REFERENCES CITED

Manuscript received April 22, 2002

Revised manuscript received August 26, 2002

Manuscript accepted September 4, 2002

Printed in USA