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Abstract

Landsat Thematic Mapper (TM) data were the basis in production of a statewide land cover data set for Wisconsin, undertaken in

partnership with U.S. Geological Survey’s (USGS) Gap Analysis Program (GAP). The data set contained seven classes comparable to

Anderson Level I and 24 classes comparable to Anderson Level II/III. Twelve scenes of dual-date TM data were processed with methods that

included principal components analysis, stratification into spectrally consistent units, separate classification of upland, wetland, and urban

areas, and a hybrid supervised/unsupervised classification called ‘‘guided clustering.’’ The final data had overall accuracies of 94% for

Anderson Level I upland classes, 77% for Level II/III upland classes, and 84% for Level II/III wetland classes. Classification accuracies for

deciduous and coniferous forest were 95% and 93%, respectively, and forest species’ overall accuracies ranged from 70% to 84%. Limited

availability of acceptable imagery necessitated use of an early May date in a majority of scene pairs, perhaps contributing to lower accuracy

for upland deciduous forest species. The mixed deciduous/coniferous forest class had the lowest accuracy, most likely due to distinctly

classifying a purely mixed class. Mixed forest signatures containing oak were often confused with pure oak. Guided clustering was seen as an

efficient classification method, especially at the tree species level, although its success relied in part on image dates, accurate ground truth,

and some analyst intervention.

D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

In 1992, the most current land cover data available for

Wisconsin were the U.S. Geological Survey (USGS) Land

Use and Land Cover (LULC) data (U.S. Geological Survey,

1990). The LULC data were compiled from aerial photo-

graphs dating from 1971 to 1982, with a majority of the

classes having a minimum mapping unit of 40 acres. A

number of data users involved in biodiversity studies or

landscape analysis were interested in updated and finer-

scale land cover data. At that time, the Environmental

Remote Sensing Center (ERSC) at the University of Wis-

consin-Madison had been investigating the use of Landsat

Thematic Mapper (TM) data to derive land cover maps for

Wisconsin. The studies had proven promising enough to use

satellite data for mapping land cover over the entire state.

Lillesand (1992) documented this in a report to the Soil

Conservation Service and proposed a set of methods, a

classification scheme, and an organizational structure for

large-area land cover mapping. On the basis of this docu-

ment, several state agencies and the USGS Biological

Resources Division’s Gap Analysis Program (GAP) (Scott

et al., 1993) undertook a satellite-assisted land cover map-

ping project for Wisconsin.

Previous research had been conducted to refine remote

sensing methods applicable to Great Lakes states’ vegetation.
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Studies indicated that image stratification could improve

classification (Harris & Ventura, 1995; Homer, Ramsey,

Edwards, & Falconer, 1997; Nagel, 1995; Stewart, 1994;

Stewart & Lillesand, 1995), that dual-date imagery was

useful for obtaining species-level classification in both

forest (Coppin & Bauer, 1994; Polzer, 1992; Schriever &

Congalton, 1993; Wolter, Mladenoff, Host, & Crow, 1995)

and agriculture (Lillesand, 1992; Stewart, 1998; Stewart &

Lillesand, 1995), and that a combination of classification

methods could be used to better distinguish tree species

(Bauer et al., 1994; Wolter et al., 1995). Most of these

studies had concentrated on one or two satellite scenes but

had not been applied to an entire state. GAP projects

previous to 1992, mainly conducted in western and south-

ern states, were not identically applicable to Wisconsin as

they had different classification schemes and resolutions

(e.g., in some western GAP projects, the final minimum

mapping unit was 100 ha). In creating new land cover data,

users required that the classification scheme be compatible

with existing schemes and applicable to vegetation classes

accurately mapped using Landsat TM data. The scheme

also needed to be suitable for the neighboring states of

Minnesota and Michigan, also involved in Upper Midwest

GAP (UMGAP) at that time.

In 1993, the Wisconsin Department of Natural Resources

(DNR) and the Wisconsin State Cartographer’s office began

organizing a consortium to purchase and process satellite

imagery necessary for a statewide land cover layer. Wis-

consin Initiative for Statewide Cooperation on Landscape

ANalysis and Data (WISCLAND) was formed, ultimately

consisting of five federal government agencies, four state

agencies, the Wisconsin Land Information Board, one

private sector organization, and one university representa-

tive (Lillesand, 1994). In total, $1.48 million were contrib-

uted in cash and in-kind donations to support the project

from January 1994 to June 1998.

Steps leading up to the project have been described in

Gurda (1994) and Lillesand (1994). This paper provides

information specific to a large area image processing effort

as seen in retrospect. Materials are described, such as

multiseasonal Landsat TM imagery and an extensive ground

truth database. The methods included a number of different

stratifications of the TM imagery, such as urban versus rural

stratification, wetland versus upland stratification, and strat-

ification of each TM scene into separate classification units

based on spectral similarity. Guided clustering, a hybrid

supervised/unsupervised classification, was used to achieve

a better species-level classification. Results are given in the

form of accuracy assessment matrices with discussion

following.

2. Project area

Wisconsin lies in the Midwestern United States

between 42j30V–47j00VN and 87j15V–93j00VW and

covers about 14 million ha (Fig. 1). Elevation ranges

from 177 to 576 m above sea level, with little local relief

except in the southwestern ‘‘unglaciated’’ area of the

state. A northern region of boreal and mixed deciduous

forests is separated from a southern region of agriculture

and temperate forests by a fairly distinct belt that Curtis

(1959) termed ‘‘the tension zone.’’ The northern forests

are a northern hardwood forest type consisting primarily

of (in alphabetical order) balsam fir (Abies balsamea),

red, silver, and sugar maple (Acer rubrum, Ac. saccha-

rinum, and Ac. saccharum), yellow and paper birch

(Betula lutea and B. papyrifera), various species of ash

(Fraxinus spp.), tamarack (Larix laricina), bigtooth and

trembling aspen (Populus grandidentata and P. tremu-

loides), white and black spruce (Picea glauca and Pi.

mariana), jack, red, and white pine (Pinus banksiana,

Pin. resinosa and Pin. strobus), white, northern pin, and

red oak (Quercus alba, Q. ellipsoidalis, and Q. rubra),

American arborvitae (Thuja occidentalis), basswood (Tilia

americana), and hemlock (Tsuga canadensis). The south-

ern portion of the state, while now primarily agricultural,

was previously tall-grass prairie, oak savanna, and sugar

maple-basswood forest. Wetlands originally covered

approximately one-quarter of the state. Today, more than

half (amounting to 2 million ha) of the original wetlands

Fig. 1. The state of Wisconsin.
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have been converted to agriculture or urban land uses

(Nagel, 1995).

3. Materials

3.1. Satellite data

Twelve full Landsat TM scenes were needed to cover

Wisconsin, and dual dates for each scene were acquired to

improve species discrimination. For the mixed northern

forests, it was preferred to have a summer date representing

leaf-on conditions and an early fall date depicting senes-

cence, while late spring and midsummer dates were pre-

ferred to show intra-annual crop conditions in the

agricultural areas (Lillesand, 1992). When available, data

within the same year were acquired to keep the effects of

potential land cover changes over time to a minimum.

Imagery was contributed by the GAP program, part of the

Multi-Resolution Land Characteristics (MRLC) consortium.

Final image dates were determined by the MRLC partic-

ipants’ specifications and availability of cloud-free data.

Image dates are given in Table 1. While the images obtained

were as cloud-free as possible, several scenes had a small

amount of cloud cover. These clouds and their correspond-

ing shadows were identified visually and a mask was

delineated manually.

The Landsat 5 TM data were geometrically precision

corrected by the EROS Data Center (Sioux Falls, SD) to less

than 1/2 pixel root mean square error, registered to Univer-

sal Transverse Mercator coordinates, zones 15 and 16, North

American Datum 1983, and resampled to 30-m pixels by

cubic convolution.

Three different image band combinations were tested for

classification efficiency: a 12-band file (all six reflective

bands from both dates), a six-band file (TM bands 3, 4, and

5 from both dates), and principal components calculated on

the six reflective bands of each image separately and

combined thereafter. Principal components gave the best

classification result, reduced the file size, and eliminated

redundant information due to interband correlation (Lille-

sand & Kiefer, 2000).

3.2. Facilities and personnel

Data processing and analysis were done at Wisconsin

DNR’s Geographic Information System Section on DEC

Alpha workstations, running UNIX Arc/Info and ERDAS

Imagine. Three full-time and one half-time remote sensing

analysts, one full-time administrator, one half-time GIS

specialist, and three summer employees were responsible

for data processing. Work began in early 1994 and was

completed around June 1998. Approximately 1260 person

hours were required to classify a full scene once a routine

was established.2 This figure includes work done on training

set selection, classification, postclassification smoothing,

and accuracy assessment. In addition, there was work on

ground truth data: initial delineation took 3–4 weeks per

scene, fieldwork was done at a rate of approximately 80

polygons (three National Aerial Photography Program or

NAPP photos) per work day, and total processing time for

incoming ground truth data was approximately 1400 person

hours.

4. Preclassification work

4.1. Classification scheme

Definition of a classification scheme is an initial step in

any classification project. In the WISCLAND project, this

task required more discussion than any other. The project

used Lillesand’s (1992) suggested classification scheme as

a point of departure. Several existing classification

schemes were also considered and incorporated to varying

Table 1

Landsat TM scenes used in Wisconsin land cover mapping project

Geographic location Dominant cover type Path/row Date 1: spring or summer Date 2: summer or fall

North Forested 26/27 May 10, 1992 August 28, 1991

North Forested 26/28 May 13, 1993 October 1, 1992

North Forested 25/28 May 6, 1993 September 8, 1992

North Forested 24/28 July 31, 1992 October 3, 1992

North Forested and agricultural 23/28 May 5, 1992 July 24, 1992

Central Forested and agricultural 24/29 July 31, 1992 October 3, 1992

Central Agricultural 26/29 May 13, 1993 October 1, 1992

Central Agricultural 25/29 May 19, 1992 September 8, 1992

Central Agricultural 23/29 May 5, 1992 July 24, 1992

South Agricultural 25/30 May 19, 1992 September 8, 1992

South Agricultural 24/30 July 31, 1992 October 3, 1992

South Agricultural and urban 23/30 May 5, 1992 no cloud-free date

2 Calculated as 240 h/upland area, 240 h/wetland area, and 80 h/urban

area for a total of 560 h to classify a single classification unit. Multiply the

560 h by 27 (the total number of classification units) and divide by the

number scenes (12).
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degrees, including Anderson’s classification (Anderson,

Hardy, Roach, & Witmer, 1976), the preferred GAP

classification scheme from The Nature Conservancy/

UNESCO (Faber-Langendoen, 1993; Grossman et al.,

1998; United Nations Educational, Scientific, and Cultural

Organization, 1973), NOAA Coastal-Change Analysis Pro-

gram’s classification (C-CAP) (Dobson et al., 1995), the

Wisconsin Wetland Inventory’s (WWI) classification, and

additional University of Wisconsin projects. Because the

land cover layer was to be interpreted from TM data, the

final classification scheme and definitions were based on

the abilities and limitations of the sensor as much as on the

vegetation of the Upper Midwest. The scheme went

through rigorous review by partner states in UMGAP,

potential users of the data, and other remote sensing

experts.

The final classification scheme included classes present

in Wisconsin’s vegetation but not always successfully

determined from remote sensing. This was termed the

‘‘extended’’ classification. A subset of the extended clas-

sification was proposed as a ‘‘base minimum’’ classifica-

tion, which the project would commit to classifying. This

subset contained classes previously attained using remote

sensing data with an accuracy of at least 70% and

Table 2

WISCLAND/UMGAP classification scheme

1 Urban/developed 4.2.2.3 Red oak

1.1 High intensity 4.2.3 White birch

1.2 Low intensity 4.2.4 Beech

1.3 Golf course 4.2.5 Maple

1.4 Transportation 4.2.5.1 Red maple

2 Agriculture 4.2.5.2 Sugar maple

2.1 Herbaceous/field crops 4.2.6 Balsam-poplar

2.1.1 Row crops 4.2.7 Mixed/other broad-leaved deciduous

2.1.1.1 Corn 4.3 Mixed deciduous/coniferous forest

2.1.1.2 Peas 4.3.1 Pine-deciduous

2.1.1.3 Potatoes 4.3.1.1 Jack pine-deciduous

2.1.1.4 Snap beans 4.3.1.2 Red/white pine-deciduous

2.1.1.5 Soybeans 4.3.2 Spruce/fir-deciduous

2.1.1.6 Other row crops 5 Open water

2.1.2 Forage crops 6 Wetland

2.1.2.1 Alfalfa 6.1 Emergent/wet meadow

2.1.3 Small grain crops 6.1.1 Floating aquatic

2.1.3.1 Oats 6.1.2 Fine-leaf sedge

2.1.3.2 Wheat 6.1.3 Broad-leaved sedge-grass

2.1.3.3 Barley 6.1.4 Sphagnum moss

2.2 Woody 6.2 Lowland shrub

2.2.1 Nursery 6.2.1 Broad-leaved deciduous

2.2.2 Orchard 6.2.2 Broad-leaved evergreen

2.2.3 Vineyard 6.2.3 Needle-leaved

2.3 Cranberry bog 6.3 Forested

3 Grassland 6.3.1 Broad-leaved deciduous

3.1 Cool season grass 6.3.1.1 Red maple

3.2 Warm season grass 6.3.1.2 Silver maple

3.3 Old field 6.3.1.3 Black ash

4 Forest 6.3.1.4 Mixed/other deciduous

4.1 Coniferous 6.3.2 Coniferous

4.1.1 Jack pine 6.3.2.1 Black spruce

4.1.2 Red pine 6.3.2.2 Tamarack

4.1.3 Scotch pine 6.3.2.3 Northern white cedar

4.1.4 Hemlock 6.3.3 Mixed deciduous/coniferous

4.1.5 White spruce 7 Barren

4.1.6 Norway spruce 7.1 Sand

4.1.7 Balsam fir 7.2 Bare soil

4.1.8 Northern white cedar 7.3 Exposed rock

4.1.9 White pine 7.4 Mixed

4.1.10 Mixed/other coniferous 8 Shrubland

4.2 Broad-leaved deciduous 9 Cloud

4.2.1 Aspen

4.2.2 Oak

4.2.2.1 White Oak

4.2.2.2 Northern pin oak

H.M. Reese et al. / Remote Sensing of Environment 82 (2002) 224–237 227



classifiable in the project’s time frame. Table 2 shows the

extended classification scheme with the base minimum

classes in bold.

4.2. Class and training set definitions

Precise definition of the land cover classes was difficult,

in part because Wisconsin’s forests can have a heteroge-

neous mixture of species. Due to the categorical nature of

thematic maps, however, characteristics that separate classes

must be defined. In reality, the classes can be more complex

and the boundaries between them are not always so clear.

Two issues concerning class definitions needed addressing:

(1) wording of class definitions and (2) defining percentages

of species composition for information class training sets.

Discussion regarding class definitions can be found in

UMGAP’s protocol (Lillesand et al., 1998). The following

discussion pertains particularly to forest class training set

definitions.

In some of the classification schemes reviewed (e.g.,

Anderson et al., 1976; Dobson et al., 1995), forest was

defined with a minimum of 10% canopy closure. This

definition was representative of the fact that some classi-

fication schemes were based on vegetation structures and

did not always correspond well to definitions used for

remote sensing training sets (Schriever & Congalton,

1993; Treitz, Howarth, & Suffling, 1992). When using

Landsat TM data, an area that, for example, had 10%

canopy closure and 90% grass understory would have a

spectral signature more similar to grass than forest. In these

cases, the traditional definition of 10% canopy cover did not

work well as a training set definition for forest. We therefore

decided to use a level of 70% canopy closure to define a

forest type training set. Other studies have also used 70%

canopy closure as a threshold (Boresjö, 1989; Mickelson,

Civco, & Silander, 1998).

After deciding on the forest class training set definition

of at least 70% canopy closure, subclass training sets

needed definition. The questions to address were, for

example, should a ‘‘mixed forest’’ training set be defined

as a canopy containing 60% deciduous and 40% conif-

erous trees, while a ‘‘deciduous forest’’ training set could

be defined as a canopy containing 70% deciduous and

30% coniferous trees? The species compositions of train-

ing sets needed to be defined and spectrally separable. At

the outset, it seemed there were few guidelines on how to

define these classes according to a remote sensing-derived

scheme. The decisions made regarding species composi-

tion percentages were based on the assumption that the

majority of reflectance from any pixel should be from the

information class targeted (i.e., because canopy closure

for forest was at least 70%, then the canopy should

contain a minimum of 80% of the information class’s

species). Training set definitions are described in Table 3.

For the sake of brevity, only forest class definitions are

described.

4.3. Ground truth data collection

An adequate ground truth database for classification and

accuracy assessment across the 14 million ha mapping area

did not exist and had to be created. A sampling strategy was

devised meeting the following criteria: have both systematic

and random components (Ott, 1988), have a statistically

appropriate sample density (Thomas & Allcock, 1984), and

be contemporary, accurate, and compatible with the classi-

fication scheme. Congalton (1991) recommended collecting

50 ground truth samples for each cover type within each

mapping unit. The WISCLAND project had 27 classification

units in all (from stratification of TM scenes into spectrally

consistent classification units or ‘‘SCCU’’s), resulting in a

total of 31,450 reference samples needed:3 11,350 upland

nonagricultural/nonurban, 5400 agricultural, 1200 urban, and

13,500 wetland. In actuality, WISCLAND used a total of

29,000 reference samples: 16,000 field-measured upland

nonagricultural/nonurban samples, 4000 agricultural samples

Table 3

Definitions for forest classes training sets

Forest: upland area covered with woody perennial plants, with trees reaching a mature height of at least 6 ft tall and crown closure of at least 70%.

Coniferous: meets forest definition, and no less than 2/3 (67%) of the makeup of the canopy should be coniferous, and if deciduous is present, should not

exceed 1/3 (33%) the makeup of the canopy.

Species level (e.g., jack pine): meets definition of coniferous forest, and no less than 80% of the canopy is that species (e.g., jack pine).

Mixed coniferous: meets definition of coniferous forest, but no more than 70% of the canopy is of a single coniferous species but rather a mix of

coniferous species (e.g., canopy total is 80% and made up of 50% jack pine, 30% white pine, and 20% maple).

Broad-leaved deciduous: meets forest definition, and no less than 2/3 (67%) of the makeup of the canopy should be deciduous, and if coniferous is present,

should not exceed 1/3 (33%) the makeup of the canopy.

Species level (e.g., aspen): meets the definition of deciduous forest, and no less than 80% of the canopy is that species (e.g., aspen).

Mixed deciduous: meets definition of deciduous forest, but no more than 70% of the canopy is of a single deciduous species but rather a mix of

deciduous species.

Mixed deciduous/coniferous forest: meets forest definition, and no more than 2/3 (67%) should be from either species group (e.g., canopy is 90% and made up

of 55% Northern pin oak and 45% jack pine).

3 Assumes number of classes actually classified for a classification unit.

The number would be higher still if multiplied by number of potential

classes.

H.M. Reese et al. / Remote Sensing of Environment 82 (2002) 224–237228



from farm reports, 1000 urban accuracy assessment samples

interpreted from aerial photography, and 8000 wetland accu-

racy assessment samples digitized from aerial photography.

However, the samples were not evenly distributed among

individual classes (e.g., jack pine may have had 50 ground

truth samples in a mapping unit, while birch had 20). It was

relatively easy to get the requisite 50 samples for dominant

classes within a classification unit. In poorly represented

classes such as shrubland, barren, or northern pin oak, it

was difficult to obtain, on a random basis, even 10 good

ground truth samples per classification unit.

After comparing raw TM imagery printouts, 1:15,480

scale DNR Forestry photographs, USGS 1:24,000 scale 7.5V
topographic quadrangles, and 1:40,000 scale NAPP panchro-

matic photos, NAPP photos were selected as a basis for

ground truth collection. They had sufficient resolution, were

easy to handle in the field, familiar to field personnel, imaged

the same year as the TM data (1992), and flown based on the

1:24,000 scale quadrangle system. Each 7.5VUSGS quad-

rangle in the state was systematically selected and then

nominally divided by four rows and four columns into

‘‘quarter-quarters.’’ Random selection of one quarter-quarter

per 7.5V quadrangle was made. This area approximated the

same extent as one NAPP photo, in which ground truth

sampling was carried out. For a more detailed description

of the sampling strategy, see Lillesand (1996).

Upland, agriculture, urban, and wetland classes each

required different ground truth collection methods. For

upland classes (forest, grassland, water, barren, and shrub-

land classes), 30 ground truth polygons, each a minimum size

of 5.5 acres (25 pixels), were identified within each quarter-

quarter. The remote sensing analysts identified these sites

visually, looking at TM bands 4, 3, and 2 of both dates to find

homogenous areas that also represented the spectral varia-

bility in the sampling area. Ground truth sites were then

digitized into an Arc/Info database using imagery as a back-

drop and simultaneously delineated on a mylar sheet placed

over the NAPP photo. Field collection of upland ground truth

data used the NAPP photos, the mylar overlay of ground truth

polygons, and a form for recording percent canopy cover,

percent of each species (adding up to 100% total), understory

type, method of observation, confidence in assessment, and

space for comments (see form in Lillesand et al., 1998).

Ground truth collection methods were tested in a pilot area

(one full TM scene) by the remote sensing analysts and

revised before being put into operation. This proved to be

useful in understanding the ground truth data as well as fine

tuning the procedure. The bulk of ground truth data collection

was done byWisconsin DNRForestry andWildlife personnel

who carried out this task in addition to their daily work. Their

contribution greatly reduced the cost of the project. In a few

cases, when photo interpretation was done by people with

less local knowledge, additional field checks were needed. Of

the approximately 1000 NAPP photos sent out, 3% of the

photos were never returned and approximately two ground

truth sites per photo were found to be inaccessible.

Agricultural ground truth data were obtained from 1992

Farm Service Agency (FSA) reports. Because of annual

crop rotations, only data from the same year as the TM

image acquisition could be relied upon. Lillesand (1992)

found that in Wisconsin, for every 1:24,000 quadrangle

area, two to three sections of FSA data should be requested

for training data and another two to three for accuracy

assessment. For each FSA section obtained, approximately

20 ground truth polygons were digitized, resulting in 4000

agriculture polygons for the state.

Urban area training sites were not delineated, as an

unsupervised classification derived the classes of low-

density or high-density urban. Golf courses were visually

identified in the satellite data and confirmed using

ancillary map data and photos. Accuracy assessment

ground truth for urban classes was generated as random

points within delineated urban areas and same-year NAPP

photos were photointerpreted by a separate analyst to

determine the class.

Wetland ground truth was taken from the WWI, which

was digitized from 1:20,000 scale aerial photographs and

had a minimum mapping unit that varied in size by

county. Nagel (1995) found WWI to have an overall

categorical accuracy of 78% with higher accuracy for

separating wetlands from nonwetlands. The WWI data-

base was used for both training and accuracy assessment.

5. Methods

The steps taken in processing the data occurred in this

order: urban versus rural stratification, unsupervised classi-

fication of urban areas, stratification of the scene into

spectrally consistent classification units (SCCUs), creation

of principal components in each classification unit, upland

versus wetland stratification, and finally classification using

guided clustering. Postprocessing involved smoothing and

assembly of the classifications.

5.1. Urban versus rural stratification

Urban areas, due to confusion with bare soil, can be

classified more accurately if done separately from rural

areas (Harris & Ventura, 1995; Luman, 1992; Northcutt,

1991; Robinson & Nagel, 1990). For this reason, TIGER/

Line files (Bureau of the Census, 1989) were overlaid on

the imagery to aid visual identification of urban areas. To

separate urban from rural areas more precisely than in the

TIGER/Line files, careful manual delineation was done

around urban areas greater than 100 contiguous pixels.

NAPP photos were visually checked for this delineation.

Urban areas were then clipped out of the image data and

classified separately with an ISODATA unsupervised

classification. Pixels classified as low-density or high-

density urban were masked out of the TM data, while

nonurban pixels were ‘‘put back’’ into the image data.
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5.2. Spectrally consistent classification units

Within each TM scene, spectrally similar areas,

referred to as SCCUs, were delineated and used as the

basic classification unit. Because vegetation is influenced

by both climatic and physiographic factors, ecoregion

maps can be used to guide this stratification (Stewart,

1994, 1998; Stewart & Lillesand, 1995). Different maps

were considered for guiding this stratification, including

the STATSGO soils map (U.S. Department of Agricul-

ture-SCS, 1991), Omernik’s ecoregions (Omernik, 1986),

Bailey’s ecoregions (Bailey, 1995), and Albert’s ecore-

gions (Albert, 1995). Albert’s ecoregions, derived from

evaluating multiple abiotic factors—including bedrock

geology, glacial landforms, soils, hydrology, and regional

climatic regimes—visually correlated best with the spec-

tral variation in the TM imagery. SCCUs were digitized

using Albert’s ecoregion map as a guide, although

boundaries were modified where the TM imagery seemed

to deviate from the ecoregion. Boundaries between TM

scenes were edge matched. No more than five SCCUs

were defined for a single TM scene, as using too small a

classification unit might over-reduce available ground

truth for that area. The mean size of a SCCU was

approximately 5200 km2. An example of SCCUs

delineated over a TM scene are shown in Fig. 2.

5.3. Principal components analysis

Before transforming the data using principal compo-

nents analysis, clouds and urban areas were masked out,

as these influenced the principal components results. The

Table 4

Accuracy assessment for upland classes at Anderson Level II/III

Reference data

High-density

urban

Low-density

urban

Agriculture Corn Other row

crops

Forage

crops

Grassland Jack pine Red pine White spruce

Classified data

High-density urban 248 7 0 0 0 0 0 0 0 0

Low-density urban 6 275 0 0 0 0 0 0 0 0

Agriculture 2 19 167 5 0 2 9 0 0 0

Corn 0 0 4 560 36 22 15 0 0 0

Other row crops 0 0 0 25 180 20 10 0 0 0

Forage crops 0 0 2 16 32 475 69 0 0 0

Grassland 0 0 16 14 18 78 472 1 0 0

Jack pine 0 0 0 0 0 0 0 74 5 0

Red pine 0 0 0 0 0 0 0 2 455 2

White spruce 0 0 0 0 0 0 0 0 1 4

Mixed/other coniferous 0 0 0 0 0 0 0 7 16 0

Aspen 0 0 0 1 2 2 10 0 0 0

Oak 0 0 0 0 1 1 1 1 0 0

Maple 0 0 0 2 0 0 1 0 0 0

Mixed/other deciduous 0 0 8 2 2 3 10 3 15 0

Mixed forest 0 0 0 0 1 0 0 3 9 1

Water 0 0 0 0 0 0 0 0 0 0

Barren 0 0 4 0 3 3 11 0 0 0

Shrubland 0 0 5 0 2 3 14 0 0 0

Total 256 301 206 625 277 609 622 91 501 7

Percent producer’s Accuracy 96.88 91.36 81.07 89.60 64.98 78.00 75.88 81.32 90.82 57.14

Total correct 5493

Total reference plots 7123

Overall accuracy (%) 77.12

KHAT (%) 74.52

Fig. 2. The SCCU boundaries displayed over a Landsat TM image (Path 26

Row 28).
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first three principal components (containing about 98%

information of the six bands) were then calculated on

each single-date SCCU from each TM scene of a date

pair and merged into a single six-band file for that

SCCU.

5.4. Wetland versus upland stratification

Wetlands were separated from uplands within each

SCCU by using the WWI vector data as a mask. This

limited confusion between spectrally similar wetland and

upland types such as corn and cattails (Nagel, 1995).

Errors in vector to image registration were corrected by

manually warping wetland arcs to fit the imagery.

5.5. Classification with guided clustering

A hybrid supervised/unsupervised classification called

‘‘guided clustering’’ (Bauer et al., 1994; Lime & Bauer,

1993) was used to classify upland areas (i.e., forest, agricul-

ture, grassland, water, barren, and shrubland classes). Land

cover classes to be classified in each SCCU were determined

by the presence of at least 10 ground truth sites meeting the

training set definition and quality level, recorded in field as

‘‘high’’ (very good), ‘‘medium,’’ or ‘‘low’’ (questionable).

Only ‘‘medium’’ and ‘‘high’’ confidence sites were used for

training. Within each information class, ground truth sites

were randomly divided 50-50 into training and accuracy

samples.

In guided clustering, an unsupervised classifier (ISO-

DATA) was first run on the pixel values for all of an

information class’ training sites in the SCCU, with an average

output of 20 clusters. From these clusters, a subset was

chosen on the basis of transformed divergence values, visual

assessment, and spectral space plots and was then labelled

with its information class. Eventually all subsets for each

upland information class were assembled into a single sig-

nature set. With these signatures, a maximum likelihood

classification was run on the upland area principal compo-

nents data for the SCCU. Results were examined, and if

necessary, signatures were removed and the classification

was run again.

For wetland classes, WWI polygons were initially used as

training sets in guided clustering. This did not work well

because the TM imagery often had more spectral heteroge-

neity than the WWI category implied, the polygons were

sometimes quite large and did not register well to the imagery,

and some WWI classes were defined as mixes of different

cover types. Therefore, the analyst created smaller training

polygons, as guided by the WWI data, and used them in a

guided clustering classification, giving an improved result.

If clouds were present in one date of imagery, the cloud-

free date was used to classify the area beneath the clouds

using an unsupervised classification to obtain general (non-

Mixed/other

coniferous

Aspen Oak Maple Mixed/other

decidous

Mixed forest Water Barren Shrublend Total Percent user’s

accuracy

0 0 0 0 0 0 0 0 0 255 97.25

0 0 0 0 0 0 0 0 0 281 97.87

0 1 0 1 2 0 0 1 3 212 78.77

0 0 2 0 1 0 0 3 1 644 86.96

1 0 0 0 0 0 0 0 0 236 76.27

1 0 5 1 12 0 0 0 0 613 77.49

2 8 3 3 14 0 0 3 11 643 73.41

5 0 0 0 1 10 1 0 0 96 77.08

55 1 0 0 8 16 0 0 0 539 84.42

3 0 0 0 0 0 0 0 0 8 50.00

112 2 1 0 3 9 0 0 0 150 74.67

3 245 5 16 69 9 0 0 6 368 66.58

6 6 311 1 108 8 0 0 0 444 70.05

0 6 37 130 71 1 0 0 2 250 52.00

12 129 157 75 1306 31 1 0 6 1760 74.21

26 12 10 2 27 84 0 0 1 176 47.73

0 0 0 0 0 0 244 0 0 244 100.0

0 0 0 0 0 0 0 97 0 118 82.20

0 4 0 0 4 0 0 0 54 86 62.79

226 414 531 229 1626 168 246 104 84 7123

49.56 59.18 58.57 56.77 80.32 50.00 99.19 93.27 64.29
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species specific) classes. For one area only one date of

imagery was available, and a cloud class had to be added to

the classification scheme.

5.6. Postprocessing

Postclassification smoothing was done using a ‘‘clump,

sieve, and fill’’ algorithm developed using ERDAS. Areas of

less than four contiguous pixels of the same class were sieved

from the classification and filled in with neighboring values

without directional bias. Uplands and wetlands were

smoothed separately, so wetland or upland ‘‘islands’’ smaller

than four pixels and surrounded by other classes would not be

eliminated. Pixels classified as urban were not smoothed, and

neither were open water pixels, as classification of water from

TM data is generally close to 100% accurate.

After smoothing, the urban, wetland, upland, and

cloud portions of the SCCU were assembled into one

file. Each SCCU was then clipped at the SCCU boundary

and all SCCUs in a TM scene were joined in a single

file. Classes along SCCU boundaries seemed to fit well

and no special edge-matching was done, as originally

planned.

6. Results

Fifty percent of the ground truth polygons collected

were reserved for accuracy assessment and consisted of

only ‘‘high’’ confidence sites. Accuracy was assessed

based on a simple majority of a class within a ground

truth polygon. Error matrices were generated separately

for each SCCU with errors of omission, commission,

overall accuracy, and j (KHAT) statistic. Upland and

wetland accuracies were assessed separately because an

assumption was made, based on the accuracy of the

digital wetlands coverage in separating wetland from

upland, that there was little confusion between these

two types. Due to the mixed categories of the WWI data

(e.g., ‘‘coniferous forested/deciduous shrub wetland’’

class), confusion matrices could not be produced and

only a user’s error was given. Urban classes were

assessed for accuracy by photo interpretation of randomly

generated points within delineated urban areas. Users of

WISCLAND data should refer to the individual SCCU’s

accuracy assessment. The actual range of accuracies

among the SCCUs could be wide. However, for the

purpose of presentation here, the separate SCCU’s accu-

racy tables were compiled into the error matrices in

Tables 4–6. An overview of the final classification at

Anderson Level II is shown in Fig. 3, with a more

detailed view at Anderson Level II/III given in Fig. 4a

and b.

7. Discussion

The classification accuracy goals for the project were

Anderson Level I class accuracies of 85% and Anderson

Table 5

Accuracy assessment of upland classes at Anderson Level I

Reference data

Urban Agriculture Grassland Forest Water Barren Shrubland Total Percent user’s accuracy

Classified data

Urban 536 0 0 0 0 0 0 536 100.00

Agriculture 21 1546 103 2 0 4 4 1705 90.67

Grassland 0 126 472 3 0 3 11 643 73.41

Forest 0 25 22 3727 2 0 15 3791 98.31

Water 0 0 0 0 244 0 0 244 100.00

Barren 0 10 11 0 0 97 0 118 82.20

Shrubland 0 10 14 0 0 0 54 86 62.79

Total 541 1717 622 3732 246 104 84 7123

Percent producer’s accuracy 99.08 90.04 75.88 99.87 99.19 93.27 64.29

Total correct 6676

Total reference plots 7123

Overall accuracy (%) 93.72

KHAT (%) 90.32

Table 6

Accuracy assessment of wetland classes at Anderson Level II/III

Classified

correctly

Total reference

points

Percent

accuracy

Open water 414 451 91.80

Emergent/wet meadow 1632 1914 85.27

Floating aquatic 22 26 84.62

Lowland shrub 329 443 74.27

Broad-leaved deciduous shrub 1083 1328 81.55

Broad-leaved evergreen shrub 166 197 84.26

Needle-leaved shrub 15 24 62.50

Broad-leaved deciduous forested 1517 1854 81.82

Coniferous forested 1045 1112 93.98

Mixed deciduous/coniferous forested 487 660 73.79

Total correct 6710

Total reference plots 8009

Overall accuracy (%) 83.78

H.M. Reese et al. / Remote Sensing of Environment 82 (2002) 224–237232



Fig. 3. The final WISCLAND classification at Anderson Level II.
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Fig. 4. A subset of the WISCLAND classification at Anderson Level II/III. The city of Madison in southern Wisconsin (a) and the St. Croix Flowage in

northern Wisconsin (b).
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Level II/III accuracies of 75%, and in general, these levels

were reached. Upland classes exhibited a Level I overall

accuracy of 94% (KHAT 90%) and Level II/III classes had

an overall accuracy of 77% (KHAT 75%). Wetland classes

showed a Level II/III overall accuracy of 84%.

‘‘Guided clustering’’ seemed well suited to forest species

classification, a process involving spectrally similar classes.

It was less automatic than hoped, requiring analyst inter-

vention to separate ‘‘good’’ and ‘‘bad’’ spectral signatures

within each class. However, the method worked more

efficiently in the forest and wetland classifications than a

purely unsupervised or supervised approach would have.

Multiseasonal imagery was essential for discriminating

among forest species and particularly between agricultural

crops and grassland. Using single-date imagery, the distinc-

tion between grassland and some agricultural crops could be

difficult to make. However, using dual dates, the grassland

spectral signature was not as likely to change significantly

between two dates, whereas agricultural fields exhibited

larger differences between image dates as a result of growth

or change of crop.

Accuracies for deciduous forest species were sometimes

lower than anticipated given the amount of ground truth and

effort. When deciduous species were misclassified, they

were often confused with the mixed/other deciduous class.

One explanation may be found in the imagery dates. A

number of scenes were from May (9 out of 12 scenes), with

some dates as early as May 5. This was an early date in

Wisconsin’s growing season, and while a spring date might

have been useful for differentiating agricultural classes, it

was disadvantageous for species-level classification in for-

ested areas. Fourteen SCCUs using a May scene had

average accuracies of 62% for aspen, 58% for oak, and

73% for maple compared to 11 SCCUs with summer/fall

dates and average accuracies of 81% for aspen, 75% for oak,

and 73% for maple. In areas with both forest and agriculture

cover types, it may be ideal to use three dates of imagery

(spring, summer, and fall—from the same year if possible)

for the best classification.

Mixed deciduous/coniferous forest was one of the

classes with the lowest accuracy (50% producer’s accu-

racy) and was most often confused with species of

coniferous or deciduous forest (22% and 29% commis-

sion error, respectively). This may have been due to the

difficulty of classifying a heterogeneous class as well as

labelling a distinct training set for mixed deciduous/

coniferous forest (or ‘‘mixed forest’’). In order for mixed

forest to be classified as such, it needed in reality to be

well mixed in each pixel over the 5.5-acre polygon area.

A reassessment or different way to define and classify the

mixed forest class (e.g., subpixel classifiers or postclassi-

fication neighborhood operations) might yield better

results.

During the project, the question arose as to whether

percentage limits set for training set definitions were

independent of the species in the mixture. This arose

when training sets containing oak and defined as mixed

deciduous (e.g., 50% oak and 50% aspen) or mixed

forest (e.g., 50% oak and 50% pine) would consistently

result in areas classified as oak. It seemed oak’s contri-

bution to the reflectance from mixed forest areas was

spectrally overlapping with the class defined as oak. This

agrees with Mickelson et al. (1998) who found that

mixed forest classes possessing a large oak component

were likely to be confused with other pure oak classes.

Oak was the only tree species for which we noticed this

effect, although it was not investigated further.

The assumption behind using SCCUs was that delinea-

tion was based on spectral characteristics related to the

vegetation and that field data were an approximate repre-

sentation of the species found in each stratum. Although it

was not assessed in this study, delineation of SCCUs most

likely improved discrimination of forest species. However,

on a large scale, the use of SCCUs resulted in variable

classifications from stratum to stratum. This may cause

comparison or analysis issues across SCCU borders.

Regarding the number of ground truth polygons collected

for this effort, it was at no time felt that the amount of

ground truth data was excessive. There was more likely a

lack of ground truth data for some classes. The accuracy

assessment of shrubland was low (64% producer’s accu-

racy) and more ground truth sites might have improved this.

Approximately half of the SCCUs did not have the suffi-

cient number of samples required to classify a shrubland

class. For SCCUs with sufficient shrubland ground truth, an

average of five polygons (the minimum required) were

available each for accuracy assessment and training. How-

ever, other studies have also had difficulty classifying

shrubland in particular (Scott et al., 1993).

While the method used for delineating ground truth

polygons seemed to work well, the larger problem was that

of surveying a 5.5-acre area as a single ground truth

polygon. This was perhaps too large an area to cover on

foot in the forest with so many ground truth sites to visit.

Global Positioning System (GPS) units were not used in

ground truth collection. If they had been used to survey

smaller polygons, it might have provided more locational

certainty.

8. Summary

A land cover database created from Landsat TM data was

completed for the state of Wisconsin as part of the UMGAP

and the WISCLAND consortium’s efforts. This project

combined various methods from previous land cover map-

ping studies for Wisconsin and areas with similar vegetation.

To classify the heterogeneous forest and agricultural areas at

a species level, multiseasonal imagery, principal components

analysis, extensive ground truth, stratification, and ‘‘guided

clustering’’ were used. The project took 4-1/2 years and

$1.48 million to complete.
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Overall accuracy for 7 Anderson Level I upland classes

was 94%, 9 Anderson Level II/III wetland classes exhibited

an 84% overall accuracy, and 15 Anderson Level II/III

upland classes had a 77% overall accuracy. Accuracy results

for deciduous forest species were lower than anticipated but

might be partially explained by use of an early May date in

imagery pairs. Summer/fall date pairs generally had higher

deciduous species accuracies than the May/other date pairs.

The class with the lowest accuracy was mixed deciduous/

coniferous forest. This result was most likely due to

attempting to distinctly classify a purely mixed class. Mixed

forest signatures containing oak were often confused with

pure oak, similar to reports by Mickelson et al. (1998).

Stratification of the scenes into similar spectral classification

units may have been effective but also resulted in variable

classifications from unit to unit. Guided clustering was seen

as an efficient and relatively easy way of classifying at the

species level, although its success relied in part on image

dates, accurate ground truth, and some analyst intervention.
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