Streamwater chemistry and sediment responses to wildfire in the Colorado Front Range
Chuck Rhoades¹, Deb Entwistle², Dana Butler² & Banning Starr¹

¹U.S. Forest Service, Rocky Mountain Research Station, Ft. Collins, Colorado
²Pike-San Isabel National Forest, Comanche-Cimarron National Grasslands

Introduction
The influence of forest fire on streamwater chemistry depends on the extent and conditions of the burn, the physical and biotic characteristics of the watershed and the flow regime. A monthly streamwater monitoring network initiated in 2001 on the Pike National Forest allows evaluation of fire effects in catchments burned by the 2002 Hayman fire and allows comparison of streams in burned and unburned drainages.

The Hayman Fire – Colorado’s Largest Fire
• Started: June 8, 2002
• Contained: July 2 Controlled: July 18
• Area: 556 km² (137,760 acres)
• Cost: $39,100,000

Site Characteristics
• Colorado Front Range, S. Platte River Drainage
• Montane Forest Ecosystem
• Ponderosa Pine (53%) / Douglas-fir (36%)
• Elevation: 1980 m to 2750 m (6500 to 9000 ft)

Background Information:
Graham R T 2003 Hayman Fire Case Study.
RMRS-GTR-114, Rocky Mountain Research Station

Study Watersheds, South Platte River Drainage, Colorado Front Range

<table>
<thead>
<tr>
<th>Watershed Area</th>
<th>Burned Area</th>
<th>Burn Severity</th>
<th>Burned Watersheds</th>
<th>Unburned Watersheds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Burned</td>
<td>Unburned</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>Mid</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>Mid</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

High Severity
• Crown fire
 Kills most of canopy, understory
 Kills all roots, rhizomes
 Consumes all surface organic matter
 Possible water repellency

Low Severity
• Surface fire
 Kills few canopy trees
 Creates open forest structure
 Rapid vegetation recovery
 Consumes little surface organic matter
 Little water repellency

Moderate Severity
• Intense surface fire
 Canopy is scorched in areas
 Stand-replacing in pockets
 (Romme et al. 2003)

Individual Streams
Pre-fire / Post-fire

Burned / Unburned
Mean Comparisons

Burn Extent & Severity

Summary
Water quality response to wildfire depends on
Relative extent and severity of burn
Catchment area (small basins respond most)
Immediate, Temporal, Prolonged responses
Cations, ANC increased then declined rapidly
Sediment, nitrate, water temp remain elevated after 3 seasons

Immediate 50% increase
 Recovery within 2 years
 Similar: Mg²⁺, NH₄⁺

Percentage burned –
Turbidity increases by 0.8X (r² = 0.42)
Nitrate increases by 0.3X (r² = 0.64)
High severity area
Nitrate increases by 0.4X (r² = 0.77)
Burn extent decreases with watershed area
Decline by -0.1X (r² = 0.65)