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In this article we use moving averages to develop new classes of models in a flexible modeling framework for stream networks. Streams
and rivers are among our most important resources, yet models with autocorrelated errors for spatially continuous stream networks have
been described only recently. We develop models based on stream distance rather than on Euclidean distance. Spatial autocovariance
models developed for Euclidean distance may not be valid when using stream distance. We begin by describing a stream topology. We
then use moving averages to build several classes of valid models for streams. Various models are derived depending on whether the
moving average has a “tail-up” stream, a “tail-down” stream, or a “two-tail” construction. These models also can account for the volume
and direction of flowing water. The data for this article come from the Ecosystem Health Monitoring Program in Southeast Queensland,
Australia, an important national program aimed at monitoring water quality. We model two water chemistry variables, pH and conductivity,
for sample sizes close to 100. We estimate fixed effects and make spatial predictions. One interesting aspect of stream networks is the
possible dichotomy of autocorrelation between flow-connected and flow-unconnected locations. For this reason, it is important to have a
flexible modeling framework, which we achieve on the example data using a variance component approach.
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1. INTRODUCTION

Some new models for stream networks, based on moving av-
erage constructions, have been described by Ver Hoef, Peterson,
and Theobald (2006) and Cressie et al. (2006). These authors
have developed models for stream chemistry data. One property
of these models is statistical independence of random variables
located on stream segments that do not share flowing water. Al-
though these are reasonable models for the passive movement
of particles in streams, they are not adequate for variables such
as fish or insects that may move upstream. In this case it is
desirable to allow spatial autocorrelation among random vari-
ables on stream segments that do not share flow. The goals of
the present work were to (a) develop these new classes of mod-
els, (b) provide a unified view of moving average models for
stream networks, (c) provide a flexible framework for model-
ing spatially continuous data from stream networks, and (d) ap-
ply these models to some data sets of national importance for
monitoring water quality in Australia.

Streams and rivers are important; clean water is used by hu-
mans for drinking and recreation, and it provides critical habi-
tat for certain plants and animals. A considerable amount of
time and money has been spent on sampling and monitoring
streams and rivers (e.g., Torgersen, Gresswell, and Bateman
2004; Yuan 2004). As with most environmental and ecological
data, a sample must be taken from a possibly infinite popula-
tion of values on a stream network; for example, sample units
could be counts of fish from a small stream segment or wa-
ter quality samples collected from points along a stream net-
work in a large region. Freshwater ecologists have begun to
explore stream network data using stream distance measures
(Dent and Grimm 1999; Gardner, Sullivan, and Lembo 2003;
Legleiter et al. 2003; Torgersen, Gresswell, and Bateman 2004;
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Ganio, Torgersen, and Gresswell 2005). Stream distance is de-
fined as the shortest distance between two locations, where dis-
tance is computed only along the stream network. These meth-
ods are mostly descriptive and do not include valid models of
spatial autocorrelation based on stream distance. By “valid,” we
mean an autocovariance model that yields positive definite co-
variance matrixes for any parameter values (within their range)
and any number and configuration of locations. Ver Hoef, Peter-
son, and Theobald (2006) presented some traditional time series
and geostatistical models that are not valid for stream networks
when stream distance is substituted for Euclidean distance.

As mentioned earlier, new models based on stream distance
and water flow are needed for stream networks. Ver Hoef, Peter-
son, and Theobald (2006) and Cressie et al. (2006) used spatial
moving averages to develop models that are valid when using
stream distance. Moving average models are being increasingly
used to construct valid autocovariances when confronted with
new problems, such as flexible, nonparametric models (Barry
and Ver Hoef 1996), multivariate models (Ver Hoef and Barry
1998; Ver Hoef, Cressie, and Barry 2004), and nonstationary
models (Higdon 1998; Higdon, Swall, and Kern 1999; Fuentes
2002). In this article we extend the use of moving average con-
structions to develop new classes of valid models for streams,
and also provide a unified approach to all models developed to
date.

After developing the models, we apply them to data from
the Ecosystem Health Monitoring Program (EHMP; 2006) in
Southeast Queensland (SEQ), Australia. This important data
set is used to provide a regional assessment of the status and
trend in ambient ecosystem health for 18 major watersheds,
18 estuaries, and Moreton Bay. One of the world’s most com-
prehensive aquatic monitoring programs, the EHMP is funded
and managed by the SEQ Healthy Waterways Partnership,
which includes local, state, and national government agencies;
catchment authorities; and industry, university, and community
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groups. The program serves as a model for new integrated mon-
itoring and reporting frameworks currently under development
throughout the world.

The rest of the article is organized as follows. Section 2
presents a unified view of moving average constructions for
stream networks. It begins with a stream topology and a re-
view of the tail-up models used by Ver Hoef, Peterson, and
Theobald (2006) and Cressie et al. (2006). It then introduces
the tail-down and mixed models. Section 3 gives two examples
from the EHMP data set from Queensland, Australia. Section 4
concludes with a discussion. The Appendix discusses two-tail
models, which are not used for modeling because of computa-
tional difficulties.

2. MOVING AVERAGE MODELS

Yaglom (1987) showed that a large class of autocovariances
can be developed by creating random variables as the integra-
tion of a moving average function over a white-noise random
process,

Z(s|θ) =
∫ ∞

−∞
g(x − s|θ)dW(x), (1)

where x and s are locations on the real line and g(x|θ)

is the moving average function defined on R1, which is
square-integrable. Recall that when W(x) is Brownian motion,
E[Z(s|θ)2] = ∫ ∞

−∞ g(x|θ)2 dx. The moving average construction
(1) allows the expression of a valid autocovariance between
Z(s) and Z(s + h) as

C(h|θ) =
∫ ∞

−∞
g(x|θ)g(x − h|θ)dx. (2)

Before making use of this result, we give some topology and
notation that we use for stream networks.

2.1 Stream Topology and Notation

As described by Ver Hoef, Peterson, and Theobald (2006),
here we define stream segments as lines between junctions in
a stream network. Note that a segment does not represent the
portion of stream located between two sampling locations, but
rather is based on the branching characteristics of the stream.
We consider a location downstream to be a lower real number
than a location farther upstream. Stream networks are dendritic,
and so the whole network will have a single most-downstream
point (sometimes called the outlet), which we set to 0. This is
the point from which all distances are computed. Any location
on a stream network can be connected by a continuous line to
the lowest point in that network; thus the distance from the low-
est point is simply the length of that line. We define this as “dis-
tance upstream.” To develop some of the moving average mod-
els, it will be convenient to let all terminal upstream segments
go to ∞, and we extend the stream network downstream of the
outlet as a single line to −∞.

A stream network will contain a finite number of stream
segments, which we index arbitrarily with i = 1,2, . . . . In a
branching stream network, many locations will have the same
distance from the outlet (our 0 point). To uniquely define indi-
vidual locations and keep track of distance upstream, we iden-
tify each location according to its distance as xi, where i indi-
cates that the location is on the ith stream segment. Figure 1,

shows three segments, with a location on each segment. Thus
r1 is the distance upstream, and it is located on the first seg-
ment. The location of the smallest upstream distance on the ith
segment is denoted by li [Figure 1(b)], and the largest upstream
distance on the ith segment is denoted by ui. The arbitrary la-
beling of segments in Figure 1 is apparent from the subscripts
on r1, s2, and t3.

Let the whole set of stream segment indexes be denoted by A.
The index set of stream segments upstream of xi, including
the ith segment, is denoted by Ui ⊆ A, and that excluding the
ith segment is denoted by U∗

i ⊆ A. The index set of stream
segments downstream of xi, including the ith segment, is de-
noted by Di ⊆ A, and that excluding the ith segment is denoted
by D∗

i ⊆ A. Using these definitions, we can say that two lo-
cations ri and sj on a stream network are “flow-connected” if
Ui ∩ Uj �= ∅ and are “flow-unconnected” if Ui ∩ Uj = ∅. As
another example, we can identify the set of stream segments
between two flow-connected locations ri ≤ sj, exclusive of the
ith and jth segments, as D∗

j \ Di. We also need notation for the
upstream and downstream domains with respect to points in ad-
dition to segments. In that case we use ∨s to denote the domain
upstream of a point s, including all branchings, and ∧s to de-
note the domain downstream of s that follows flow only (i.e., it
does not go downstream and then back upstream).

In Figure 1 the distance from each location to u1 is labeled
as a, b, or c. In general, for two flow-unconnected locations, we
use a to indicate the distance from one location to the nearest
junction downstream of which it shares flow with the other lo-
cation. Likewise, we use b to indicate the distance of the other
location to the same junction. We use c as the distance between
the stream junction and the downstream location. In Figure 1,
the distance between two flow-connected locations is c + a, but
in general we denote this simply by h.

2.2 Tail-Up Models

The moving average construction in (1) and (2) is well known
for the continuous real line from −∞ to ∞, such as for time
series models. Ver Hoef, Peterson, and Theobald (2006) and
Cressie et al. (2006) used moving averages for a stream net-
work to develop models as shown in Figures 1(a) and (b). We
call these the “tail-up” models, because they are unilateral in the
upstream direction. (Moving average function values are posi-
tive only upstream from a location.) In Figure 1(a), the moving
average function goes upstream from r1. When it reaches a fork
at u1, the function continues up each branch but is weighted.
The weights can be proportional to flow volume or another
meaningful metric. In Section 2.2.1 we show how to maintain
stationary variances when weighting, but nonstationary models
also could be developed. We do the integral in (1) piecewise,
summing up all segments that contain the moving average func-
tion g(x|θ). Because of the “upstream” construction, we need
only integrate the segments that are flow-connected and in Uj,
where ri < sj, to compute the covariance between ri and sj.

In Figure 1(a), when the moving average function of r1 over-
laps with the moving average function of s2, there will be au-
tocorrelation between them. In Figures 1(a) and (b), r1 is con-
nected by flow to both s2 and t3, but s2 and t3 are not con-
nected by flow. The limits of integration for the flow-connected
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Figure 1. Three locations on a stream network, r1, s2, and t3. The location of the farthest upstream distance on segment 1 is u1, and the
locations of the farthest downstream distances on segments 2 and 3 are l2 and l3, respectively. Effectively, u1 = l2 = l3, but it is convenient
to use the distinct notation. Two moving average functions are shown for tail-up flow-connected locations (a), tail-up flow-unconnected loca-
tions (b), tail-down flow-connected locations (c), tail-down flow-unconnected locations (d), two-tail flow-connected locations (e), and two-tail
flow-unconnected locations (f).

case for the tail-up models are shown in Figure 2(a). For flow-
connected locations, the unweighted covariance between two
such locations is

Ct(h|θ) =
∫ ∞

h
g(x|θ)g(x − h|θ)dx, (3)

where h is the stream distance between locations ri and sj [e.g.,
h = a + c in Figure 1(a)]. Then the moving average construc-
tion, as described by Ver Hoef, Peterson, and Theobald (2006),
is

Cu(ri, sj|θ)

=
{

πi,jCt(h|θ) if ri < sj are flow-connected

0 if ri and sj are flow-unconnected,
(4)

where πi,j are weights that we describe in the next section. Note
that there is no overlap in the moving average functions when

they are not flow-connected [Figure 1(b)], and thus the covari-
ance (2) is 0.

Table 1 gives some moving average functions that can be
used in the construction (3), and, when used in (4), provide
various tail-up models for stream networks. After integration
in (3), we reparameterize to put the models in forms typically
seen in the spatial statistical literature; for example, the “partial
sill” is the variance, which is the covariance function when the
distance is 0. This partial sill, denoted by θv, is usually some
function of both θ1 and θr in Table 1. Using Table 1 in (3), we
obtain the following models:

• Tail-up linear with sill model

Ct(h|θ) = θv

(
1 − h

θr

)
I

(
h

θr
≤ 1

)
,
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Figure 2. Moving average functions and limits of integra-
tion (solid black line) for tail-up flow-connected (a), tail-down
flow-connected (b), tail-down flow-unconnected (c), and two-tail
flow-connected (d) locations.

• Tail-up spherical model

Ct(h|θ) = θv

(
1 − 3

2

h

θr
+ 1

2

h3

θ3
r

)
I

(
h

θr
≤ 1

)
,

• Tail-up exponential model

Ct(h|θ) = θv exp(−h/θr),

• Tail-up Mariah model

Ct(h|θ) =
⎧⎨
⎩ θv

(
log(h/θr + 1)

h/θr

)
if h > 0

θv if h = 0.

Table 1. Moving average functions

Name Moving average function

Linear with sill g(x|θ̃) = θ1I(0 ≤ x/θr ≤ 1)

Spherical g(x|θ̃) = θ1(1 − x/θr)I(0 ≤ x/θr ≤ 1)

Exponential g(x|θ̃) = θ1e−x/θr I(0 ≤ x)
Mariah g(x|θ̃) = θ1

1
1+x/θr

I(0 ≤ x)

Here θv > 0 is an overall variance parameter (also known as the
partial sill), and θr > 0 is the range parameter. All of these mod-
els were first described by Ver Hoef, Peterson, and Theobald
(2006). The tail-up models are especially appropriate when
we want to enforce zero autocorrelation when sites are flow-
unconnected, which could occur when a variable is dominated
by flow (e.g., when a pollutant enters a stream and can flow
only downstream, causing measurements to be autocorrelated
only when flow-connected).

2.2.1 Weighting in the Tail-Up Models. A unique feature of
stream network models is the splitting of g(x|θ) as it goes up-
stream [Figure 1(a)]. This is achieved by assigning a weighting
attribute to each stream segment. To account for the splitting,
Cressie et al. (2006) modified (1) to construct a spatial process
on a stream network as

Z(si|θ) =
∫

∨si

g(x − si|θ)

√
�(x)

�(si)
dW(x),

where �(x) is an additive function to ensure stationarity in vari-
ance; that is, �(x) is constant within a stream segment, but
then �(x) is the sum of each segment’s value when two seg-
ments join at a junction. This definition leads to (4), where

πi,j =
√

�(sj)

�(ri)
. Ver Hoef, Peterson, and Theobald (2006) con-

structed a spatial process on a stream network as

Z(si|θ) =
∫ ui

si

g(xi − si|θ)dW(xi)

+
∑
j∈U∗

i

( ∏
k∈Bi,j

√
ωk

)∫ uj

lj
g(xj − si|θ)dW(xj),

where Bi,j = Dj \ Di is the set of segments between the ith
and jth (inclusive of the jth but exclusive of the ith), and at
each fork upstream of the ith stream segment, such that the
upstream segments are denoted j and k, we require that 0 ≤
ωj,ωk ≤ 1, and ωj + ωk = 1, which also ensures stationary
variances among variables. This definition leads to (4), where
πi,j = ∏

k∈Bi,j

√
ωk. Now, what is the relationship between the

specification of Cressie et al. (2006) and that of Ver Hoef, Pe-
terson, and Theobald (2006)? To make this relationship clear,
consider the example shown in Figure 3. In their application,
Cressie et al. (2006) specified that all terminal segments, q1
to q6, equal 1. The additivity condition implies q7 = 2, and so

Figure 3. Example stream network illustrating weighting for the
tail-up models.
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on, with q10 = 5; these segment weights are known as Shreve’s
stream order (Shreve 1967). The additive function �(xi) is
equal to qi; thus for this example, �(sj) = 1 and �(ri) = 5.
Ver Hoef, Peterson, and Theobald (2006) used arbitrary values
for all qi; i = 1,2, . . . ,11, based on basin area, but then cre-
ated weights that summed to 1 by taking ω1 = q1/(q1 + q2),
ω2 = q2/(q1 + q2), ω7 = q7/(q7 + q8), and so on. The weights
of Ver Hoef, Peterson, and Theobald (2006) would seem to be
more general, being defined arbitrarily; however, as we show
next, these weights can be turned into an additive function.

For the example shown in Figure 3, set �(x11) = ω11 = c for
all x11 in stream segment 11; that is, the outlet segment is the
only ω value that is arbitrary. Next, let �(x10) = ω11ω10 for
all x10 in stream segment 10 and �(x6) = ω11ω6 for all x6 in
stream segment 6. Note that even though we have multiplied,
�(xi) is an additive function so far (as described earlier), be-
cause ω6 + ω10 = 1. We continue these multiplications as we
proceed upstream [e.g., �(x9) = ω11ω10ω9], maintaining the
additive property. In general, we have �(x) = ∏

k∈Dx
ωk, where

the set Dx comprises all stream segments downstream of x (in-
clusive of the segment containing x). Then, under this construc-
tion, √

�(sj)

�(ri)
=

√√√√∏
m∈Di

ωm
∏

k∈Bi,j
ωk∏

m∈Di
ωm

=
√ ∏

k∈Bi,j

ωk

(see also Money, Carter, and Serre 2009); thus the weighting
scheme of Cressie et al. (2006) and Ver Hoef, Peterson, and
Theobald (2006) are equivalent.

Besides this connection, this result has an extremely impor-
tant computational consequence. Using the apparently more
general formulation of Ver Hoef, Peterson, and Theobald
(2006), computing

∏
k∈Bi,j

√
ωk for all pairs of locations might

seem necessary. This would involve storage in an n2 matrix
(where n is the number of flow-connected pairs) plus the inten-
sive GIS operations involved for each pair; indeed, Peterson,
Theobald, and Ver Hoef (2007) showed how to do this. The
additive function construction allows us to move up the stream
network just once in a GIS and store the additive function value
with each location, which involves only one intensive GIS oper-
ation and the storage of only the n �(s) values. The importance
of the unconstrained constant c for the outlet segment is that
it eliminates computational underflow when multiplying many
ωs, some of which may be near 0, for a large stream network.

2.3 Tail-Down Models

We now turn our attention to the construction of the tail-down
models, which have not been developed previously. We need to
consider the two situations in which locations are connected by
flow [Figure 1(c)] and are not connected by flow [Figure 1(d)].
The limits of integration for the flow-connected case for the
tail-down models are shown in Figure 2(b) and those for the
flow-unconnected case for the tail-down model are shown in
Figure 2(c). We define the moving average function such that it
is nonzero only downstream from a location. Note that we de-
fine all unilateral moving average functions with nonzero val-
ues on positive support only (as shown in Table 1). Using minus
signs turns these into tail-down functions in the models that fol-

low. Then, from (1) and Figure 2(b), we have for s2 upstream
of r1, that is, h = s2 − r1 > 0,

Cc(h|θ) =
∫ −h

−∞
g(−x|θ)g(−x − h|θ)dx (5)

for the flow-connected sites, where g(−x|θ) is a unilateral tail-
down function with nonzero values only on the negative side of
0. From (1) and Figure 2(c), we have, for b ≥ a,

Cn(a,b|θ) =
∫ −b

−∞
g(−x|θ)g(−x − (b − a)|θ)dx (6)

for the flow-unconnected sites, where h, a, and b are as de-
scribed in Section 2.1.

From the constructions in (5) and (6), using the moving aver-
age functions in Table 1, we can develop tail-down models for
stream networks. On reparameterization, we obtain the follow-
ing models:

• Tail-down linear with sill model, b ≥ a ≥ 0,

Cd(a,b,h|θ)

=

⎧⎪⎪⎨
⎪⎪⎩

θv

(
1 − h

θr

)
I

(
h

θr
≤ 1

)
if flow-connected

θv

(
1 − b

θr

)
I

(
b

θr
≤ 1

)
if flow-unconnected,

• Tail-down spherical model, b ≥ a ≥ 0,

Cd(a,b,h|θ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θv

(
1 − 3

2

h

θr
+ 1

2

h3

θ3
r

)
I

(
h

θr
≤ 1

)
if flow-connected

θv

(
1 − 3

2

a

θr
+ 1

2

b

θr

)(
1 − b

θr

)2

I

(
b

θr
≤ 1

)
if flow-unconnected,

• Tail-down exponential model

Cd(a,b,h|θ)

=
{

θv exp(−h/θr) if flow-connected

θv exp(−(a + b)/θr) if flow-unconnected,

• Tail-down Mariah model

Cd(a,b,h|θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θv

(
log(h/θr + 1)

h/θr

)
if flow-connected, h > 0

θv if flow-connected, h = 0

θv

(
log(a/θr + 1) − log(b/θr + 1)

(a − b)/θr

)
if flow-unconnected, a �= b

θv

(
1

a/θr + 1

)
if flow-unconnected, a = b,

where θv > 0 and θr > 0. Note that the covariance between
flow-connected sites is the same for the tail-down and tail-up
models, apart from the weights in the tail-up models, as is ap-
parent from Figures 2(a) and (b). Tail-down models are useful
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Figure 4. Tail-down linear with sill autocorrelation function (the
sill parameter θv = 1), where the range parameter is θr = 1.

for modeling variables, such as fish or aquatic insects, that can
move both upstream and downstream, creating autocorrelation
among the flow-connected and flow-unconnected locations.

The tail-down linear with sill model shown in Figure 4
demonstrates how network autocorrelation models differ greatly
from two-dimensional spatial (i.e., geostatistical) models and
time series models. The combination of branching and flow,
allowing for orientation of the moving average function, cre-
ates a rich and complex set of autocorrelation functions. Us-
ing Figure 4 to summarize, the tail-up linear with sill model
has zero autocorrelation for flow-unconnected sites and has the
same model for flow-connected sites as shown in Figure 4, but
weighted by the additive function described in Section 2.2.1.
A dichotomy of models between flow-connected and flow-
unconnected also occurs for tail-down models, which we fo-
cus on next. Note that in Figure 4, for the same stream dis-
tance, flow-unconnected sites have more autocorrelation than
flow-connected sites. A natural question arises: What if we
want more autocorrelation in flow-connected sites than in flow-
unconnected sites in tail-down models? We explore the rela-
tionship of autocorrelation between flow-connected and flow-
unconnected sites in the next two sections.

2.4 Ratio of Two Autocovariance Functions

Unlike the tail-up models, tail-down models can have non-
zero autocovariance between flow-connected and flow-uncon-
nected locations, which can be a distinct function of stream dis-
tance. Here we investigate the interplay of autocovariances be-
tween flow-connected and flow-unconnected locations through
their ratio. Consider a fixed distance, h, for two flow-connected
sites and the distance, a+b = h, for two flow-unconnected loca-
tions. From the definitions of tail-up and tail-down covariance
functions (4), (5), and (6), let

ruc(a,b, θ) =

⎧⎪⎪⎨
⎪⎪⎩

0

πi,jCt(a + b|θ)
for tail-up models

Cn(a,b|θ)

Cc(a + b|θ)
for tail-down models,

(7)

which is the ratio of flow-unconnected to flow-connected au-
tocovariances for a fixed distance and a set of covariance pa-
rameters θ . For example, in Figure 4, ruc(a,b) > 1 because
the flow-unconnected autocovariance is greater than the flow-
connected autocovariance for the same stream distance. Note
that the exponential model is a “symmetric” tail-down model,
because ruc(a,b) = 1 (where h = a + b). It appears that mov-
ing average functions with heavier shoulders than the exponen-
tial moving average function (like linear with sill and spherical)
have relatively more autocorrelation among flow-unconnected
sites than among flow-connected sites for an equal stream dis-
tance (see, e.g., Figure 4), making ruc(a,b) > 1. Moving aver-
age functions with heavier tails (Mariah) have slightly less au-
tocorrelation among flow-unconnected sites than among flow-
connected sites (data not shown), making ruc(a,b) < 1. This
also makes sense when considering Figures 1(c) and (d).

To examine this further, consider the powered exponential
moving average function,

g(x|η,α) = exp
(−xexp(η)/10α

)
I(0 ≤ x). (8)

This moving average function, with α = 0, for various values of
η, is shown in Figure 5(a). Note that the powered exponential
model tends toward a linear with sill model (i.e., a rectangu-
lar moving average function) as η → ∞. This is the exponen-
tial model at η = 0, and (8) has heavy-tail characteristics like
the Mariah model as η becomes negative. Analytical solutions
to the tail-down autocovariance functions (5) and (6) using the
powered exponential moving average function (8) are not avail-
able for all values of η; however, we can use numeric integrals.

The autocovariance divided by the variance is known as
the “autocorrelation.” For (8), this can be expressed for flow-
connected sites as

ρc(h, η,α) = Cc(h|η,α)

Cc(0|η,α)
. (9)

Both ratios (7) and (9) are now viewed as functions of η and α.
Figure 5(b) uses numeric integrals to compute (8) in (7) and (9)
for a range of η and α values,with the distance between loca-
tions held constant at a = b = 50. This choice is completely
arbitrary; any change in a fixed distance can be accommo-
dated by a change in α. Thus we compute ruc(50,50, η,α) and
ρc(100, η,α). Our goal is to investigate the ratio of autocovari-
ance between flow-connected and flow-unconnected sites (7) as
a function of flow-connected autocorrelation (9) (an expression
of the range of the moving average function).

Figure 5(b) plots ruc(50,50, η,α) versus ρc(100, η,α) for all
combinations of η and α ranging from −1.5 to 2.5 in increments
of 0.1. Some combinations create numerical integrals that are
beyond the precision of our computer; because these were es-
sentially infinite values, they were eliminated. The y-axis in
Figure 5(b) was cropped at 3, because the pattern is appar-
ent. Several interesting features are shown in Figure 5(b). Note
the effect of η and α in the ruc(50,50, η,α) × ρc(100, η,α)

space. For example, if η = 2 is held constant [Figure 5(b)],
then ruc(50,50, η,α) goes to ∞ for small values of α. As α in-
creases, ruc(50,50, η,α) > 1, but it approaches 1 as α [and thus
ρc(100, η,α)] increase. When η = 0 is held constant (the ex-
ponential model), Figure 5(b) shows that ruc(50,50, η,α) = 1
for all values of α. When η = −1 is held constant, Figure 5(b)
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Figure 5. (a) The powered exponential moving average function g(x) = exp(−xexp(η)/10α), where α = 0, for different values of η. (b) ruc
versus flow-connected autocorrelation for tail-down models using the powered exponential moving average function where distance is fixed.
The open circles show all combinations for which both α and η range from −1.5 to 2.5, in increments of 0.1. The solid lines are level curves,
where α is held constant. The arrows show the path through ruc × autocorrelation for increasing values of η. The dashed lines are level curves,
where η is held constant. The arrows show the path through ruc × autocorrelation for increasing values of α. The stippled bar at the bottom is
the ruc for tail-up models. The gray-shaded area cannot be attained with either the tail-down or tail-up models.

shows that ruc(50,50, η,α) goes to 0 for small values of α and
ruc(50,50, η,α) < 1, but approaches 1 as α increases.

Holding α constant also produces some interesting effects in
Figure 5(b). If α = 2.2, then ruc(50,50, η,α) is slightly less
than 1 for heavy-tailed models with negative η values, and it in-
creases for heavy-shouldered models to close to 2 for the largest
values of η as ρc(100, η,α) decreases to near 0.4. A similar pat-
tern emerges for α = 1.7, except that ruc(50,50, η,α) tends to-
ward ∞ and ρc(100, η,α) tends toward 0 as η increases. A dif-
ferent pattern emerges for the solid line labeled with α = 0
in Figure 5(b); initially, ruc(50,50, η,α) and ρc(100, η,α) de-
crease as η increases, but at very small ρc(100, η,α) values,
ruc(50,50, η,α) suddenly increases to ∞.

In summary, ruc(a,b, η,α) is not independent of ρc(h, η,α).
It is clear that as autocorrelation (ρc(h, η,α)) increases (i.e., the
range of the moving average increases), the ratio of autocovari-
ance between flow-connected and flow-unconnected locations
goes to 1. Of course, ruc(a,b, η,α) = 0 for all tail-up models.
This means that we cannot attain some values of ruc(a,b, η,α)

for a given amount of autocorrelation. The gray-shaded area in
Figure 5(b) is of particular interest. If, for example, the auto-
correlation between flow-connected locations is high (say, 0.7),
then we cannot have half as much autocovariance between flow-
unconnected locations as that among flow-connected locations.
The powered exponential covers the shapes of the four mod-
els with analytical solutions developed earlier—linear with sill,
spherical, exponential, and Mariah—for which we can develop
curves like the dashed lines shown in Figure 5(b). These all fall
within the bounds formed by the open circles in Figure 5(b),
and the gray-shaded area remains unattainable. This presents a
problem, because from an environmental standpoint, it is rea-
sonable to want high autocorrelation in our models [see the x-
axis in Figure 5(b)] but to have somewhat less autocovariance

for flow-unconnected locations than for flow-connected loca-
tions [the gray area in Figure 5(b)]; indeed, the example data in
Section 3 demonstrate this. We could tackle this problem with
the two-tailed models [Figures 1(e) and (f)] developed in the
Appendix, but these models also have severe computational is-
sues. Instead, we turn to mixed models, as discussed next.

2.5 Variance Component Models

The linear model is one of the foundations of statistical ap-
plications, including regression and ANOVA,

Y = Xβ + ε,

where the dimension of Y is an n × 1 vector. The relation-
ship between the response variable and covariates is modeled
through the design matrix X and parameters β . The classical
assumption is that the random errors ε are independent, and so
var(ε) is σ 2

n I, where I is the n×n identity matrix. In spatial sta-
tistics, the independence assumption is relaxed, and random er-
rors are allowed to be correlated. The geostatistical linear model
can be written as

Y = Xβ + z + ε,

where z contains spatially autocorrelated random variables with
var(z) = σ 2

z R, where R is a correlation matrix. When used for
spatial prediction, this model is referred to as “universal” krig-
ing (Le and Zidek 2006, p. 107), with “ordinary” kriging being
the special case where the design matrix X is a single column
of 1’s (Cressie 1993, p. 119). The general formulation of the
covariance matrix var(Y) = � has too many parameters to es-
timate. Based on such assumptions as ergodicity and stationar-
ity (Cressie 1993, p. 57), Euclidean distance has been used to
reduce the number of parameters, and numerous models have
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been proposed (e.g., Chiles and Delfiner 1999, p. 80). In the
geostatistical linear model, var(Y) = � = σ 2

z R + σ 2
n I. In the

geostatistical literature, σ 2
z is called the “partial sill” and σ 2

n is
called the “nugget effect,” but � can be viewed as a variance
components model often seen in mixed models.

We can extend the variance component idea to include a mix-
ture of tail-up and tail-down covariance models, along with a
nugget effect. Like anisotropy models in geostatistics, this re-
quires five parameters. A general purpose covariance model is

� = σ 2
u Ru + σ 2

d Rd + σ 2
n I, (10)

where Ru is a matrix of autocorrelation values from the tail-
up models, Rd is a matrix of autocorrelation values from the
tail-down models, I is the identity matrix, and σ 2

u , σ 2
d , and σ 2

n
are the variance components. In fact, we could add a component
using Euclidean distance with a traditional geostatistical covari-
ance model as well. For example, suppose that autocorrelation
among values was caused by an unmeasured covariate related
to underlying bedrock characteristics. In such a case, Euclidean
distance might be a better distance metric than stream distance.
The variance component approach allows a mixture of tail-up
and tail-down models that can yield values falling in the gray
area of the ruc × autocorrelation space in Figure 5(b). This is
accomplished by creating a proportional mixture between the
stippled bar at the bottom and the area encompassed by the open

circles. The variance component approach is useful because it
allows the development of models containing strong autocor-
relation among flow-connected locations, while still maintain-
ing some degree of autocorrelation among flow-unconnected
locations. In the next section, we apply the variance compo-
nent models to several important data sets from the EHMP in
Australia.

3. EXAMPLE

The data for this example were provided by the Ecosystem
Health Monitoring Program (EHMP) in Southeast Queensland
(SEQ), Australia [Figure 6(a)]. We used pH ([H+]), collected
in the spring of 2005, and conductivity (μS/cm), collected in
the fall of 2006. Conductivity is a measure of the ability of a
solution to carry an electrical charge based on ion concentra-
tion and temperature. The EHMP has 128 survey sites located
throughout SEQ; however, there were missing data values for
each variable. The full data set included 117 observations for
pH [Figure 6(b)] and 125 observations for conductivity.

We generated the model covariates, hydrologic distances,
and spatial weights in a GIS using the Functional Linkage
of Waterbasins and Streams (FLoWS) toolset (Theobald et al.
2005, 2006). A suite of watershed covariates were calculated
for each stream segment using a 25-m digital elevation model,

Figure 6. EHMP survey sites. (a) Study area in SEQ. (b) Network of all samples for pH. Line thickness is proportional to watershed area.
(c) Close-up of the outlined box, including prediction sites and their standard errors.
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the Queensland Geological Mapping data set, and the Queens-
land Land Use Mapping Program data set. The watershed co-
variates included % conservation area (land used primarily for
conservation purposes, based on the maintenance of the nat-
ural ecosystem), % mining (mines, quarries, or tailings), % wa-
ter (water features), % intensive animal production (intensive
forms of animal production such as feedlots), watershed area
(an area of land that drains downhill to a common stream out-
let), mean slope (mean rise/run∗100), distance upstream from
the stream outlet, % stratigraphic rock units (rocks formed in
layered succession, including sedimentary, volcanic, and meta-
morphic rock types), % intrusive rock units (rocks formed by
the solidification of cooled magma below the earth’s surface),
and % compound rock unit (two or more rock types). In addi-
tion, we used the elevation at the survey site and four categor-
ical variables for stream type developed by the EHMP: tannin-
stained, coastal, upland, and lowland regions. Several stream
networks located in SEQ drain directly into the ocean (Fig-
ure 6). It is possible to fit spatial models to the data in the indi-
vidual networks, which could result in unique fixed-effects and
covariance parameter estimates for each network. But subdivid-
ing the data also would reduce the number of data observations
used to fit the models, which in turn would decrease the relia-
bility of the parameter estimates. Thus we chose to fit a single
model to all of the observations, but to treat the networks as
independent when developing the spatial covariance matrixes.
We calculated the spatial weights by locating every confluence
in the stream network and weighting each segment in propor-
tion to its watershed area, where weights summed to 1. (For
a detailed description of the GIS methodology, see Peterson,
Theobald, and Ver Hoef 2007.)

To narrow down the number of covariates, we initially
used an exhaustive branch-and-bound algorithm (Miller 1990,
pp. 60–63) to obtain a subset of covariates for predicting each
response variable. We then considered regression models with
a spatial variance component model, specifically the tail-up ex-
ponential, the tail-down linear with sill, and a nugget effect as
described earlier. We chose this mixture because the linear with
sill tail-down model, in combination with any tail-up model,
covers the maximum area in the ruc × autocorrelation space [as
shown in Figure 5(b)]. We estimated the covariance parame-
ters using restricted maximum likelihood (REML) (see Cressie
1993, pp. 92–93 for REML applied to spatial models). We then
used the fitted covariance matrix to estimate the fixed effects
for the full model. This approach, termed “empirical” best lin-
ear unbiased estimation (EBLUE), is often used in software,
such as SAS (Littell et al. 1996). An exploratory analysis of
the residuals indicated that the conductivity data required a log
transformation. Once this was complete, the residuals for both
pH and conductivity models were distributed nearly normally
with a small number of outliers. Outliers can be overly influen-
tial when the covariance function is fitted to the data (Cressie
1993, p. 144); thus we examined the studentized residuals and
removed outliers from further analysis. We adopted a stepwise
elimination of covariates based on p-values after the branch-
and-bound selection, reestimating parameters by REML and
EBLUE each time and removing any new outliers, until all
covariates had a p-value < 0.15. The final data sets included
116 observations for pH [Figure 6(b)] and 122 observations for
conductivity.

3.1 Fitted Covariance Model to Conductivity

REML estimates for the final model of conductivity were
σ̂ 2

u = 0.00022 and α̂u = 26,484.84 for the tail-up exponential
component, σ̂ 2

d = 0.00031 and α̂d = 92.18 for the tail-down
linear with sill component, and σ̂ 2

n = 0.00006 for the nugget
effect. Empirical semivariograms of the residuals were gen-
erated using the classical estimator given by Cressie (1993,
p. 75), using stream distance in place of Euclidean distance.
Pairs of points that were flow-connected were separated from
those that were flow-unconnected [Figure 7(a)]. These must
be interpreted with some caution. Note that because there is
no weighting for flow volume in the empirical semivariogram,
using this semivariogram to estimate the covariance parame-
ters would be inappropriate. The absence of spatial weights
also hinders visual interpretation of the semivariogram, because
sites that are close in space are not guaranteed to be highly
correlated; however, this does provide a good visual diagnos-
tic and is instructive. Figure 7(a) also shows the fitted model
for each pair of points, again classified as flow-connected and
flow-unconnected. The fitted semivariogram model is obtained
by taking the estimated sill minus the autocovariance between
sites ri and sj, γ (ri, sj|σ̂ 2

n , σ̂ 2
u , α̂u, σ̂

2
d , α̂d) = σ̂ 2

n + σ̂ 2
u + σ̂ 2

d −
Cu(ri, sj|σ̂ 2

u , α̂u) − Cd(ri, sj|σ̂ 2
d , α̂d).

Figure 7. Fitted and empirical semivariograms on the model resid-
uals for conductivity (a) and pH (b). For the empirical semivari-
ograms, only lags with >15 pairs are shown, and the sizes of the cir-
cles/triangles are proportional to the number of data pairs averaged
for each value. Note that the fitted models are not simple functions of
distance.
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Note how fitted models for stream networks differ from fit-
ted models in geostatistics or time series, which provide smooth
variogram or autocovariance curves as a function of distance.
Consider, for example, the flow-connected points in Figure 7(a).
For a given distance, the tail-down part of the model will yield
a single semivariogram value; however, for the tail-up part of
the model, there can be varying numbers of branches between
two points, and these can have varying weights [the πi,j in (4)].
Thus there is no single fit for a given distance, and so we present
the fitted values for all pairs of observed points as a cloud, to
emphasize this fact (These could be binned and averaged, just
like we do for the empirical semivariogram.) Next, consider the
flow-unconnected points in Figure 7(a). From the tail-up part
of the model, the covariance among all points is 0; however,
from the tail-down part of the model, recall Figure 4. If a is
small, then we obtain higher autocovariance, but the range of
autocovariance is only slightly greater than α̂d = 92.18; how-
ever, if a is just less than α̂d , then we obtain lower autoco-
variance, but the range of autocovariance can be up to nearly
2α̂d = 184.36. These relationships are clearly evident in Fig-
ure 7(a). Once again, for flow-unconnected points, autocovari-
ance is not a simple function of distance; thus we present the
fitted values for all pairs of observed points.

Two other features of Figure 7(a) merit comment. First, note
that α̂u = 26,484.84, which means that Ct(h|θ) ≈ 1 in (3) for all
practical distances, and thus any decrease in the fitted autoco-
variance with distance is due almost completely to the weights
πi,j in (4). Second, note that we have relatively strong auto-
correlation among flow-connected sites, with somewhat weaker
(but still substantial) autocorrelation among flow-unconnected
sites. This demonstrates why we spent considerable effort (as
described in Sec. 2.4) exploring the model relationships be-
tween flow-connected sites and flow-unconnected sites. Neither
a pure tail-up model nor a pure tail-down model would fit these
data well, and the model wants to be in the gray-shaded area in
Figure 5(b), which is why we adopted the variance component
model presented in Section 2.5. The covariance model fitted to
conductivity data provides an instructive example of the behav-
ior of the variance component models. We next turn to the pH
data as an example of the full range of inference, from estima-
tion of fixed effects to prediction of unsampled sites.

3.2 pH Example

REML estimates for the final model of pH were σ̂ 2
u = 0.1969

and α̂u = 55.41 for the tail-up exponential component, σ̂ 2
d =

0.0333 and α̂d = 154.22 for the tail-down linear with sill com-
ponent, and σ̂ 2

n = 0.0002 for the nugget effect. The tail-up
model accounted for much of the variance explained in the pH
model [σ̂ 2

u /(σ̂ 2
u + σ̂ 2

d + σ̂ 2
n ) = 0.8546]. The empirical semivari-

ogram for pH [Figure 7(b)] corroborates these results, showing
only slight evidence of spatial autocorrelation between flow-
unconnected sites. In rivers, pH is a chemical attribute that
moves passively downstream through the network. The large
variance component for the tail-up model may reflect how pH
is strongly influenced by water flowing downstream to a site
and less so by the water in other portions of the stream net-
work.

The fitted fixed effects are shown in Table 2. Because of the
overparameterized model with streams classed as coastal, low-
land, upland, or tannin-stained, the class “Coastal” was set to 0.
Table 2 shows that pH decreased with increasing conservation,
with less significant effects due to mining and water. The pH
was highest in lowland streams, followed by (in decreasing or-
der) upland, coastal, and tannin-stained streams. The impor-
tance of a spatial linear model for stream networks, such as that
shown in Table 2, is that it allows scientists and managers to
establish relationships between variables and gain insight into
causes of pH variation throughout the stream network. But not
all important factors can be known or measured, and consid-
erable spatial variation in the residuals can remain, as demon-
strated by Figure 7(b). This spatial variation, along with covari-
ates, allows for predictions at unsampled locations throughout
the stream network, which is another important goal for scien-
tists and managers.

Figure 6(b) shows the locations and values of pH through-
out the EHMP monitoring network. Predictions are possible for
any location in the network. Figure 6(c) shows a close-up of
the bold rectangle in Figure 6(b) that contains four observed
values, with predictions made at many locations throughout
the small area. One unique property of stream networks is due
to branching, which has a major impact on predictions. Fig-
ure 6(d) shows a branch above an observed value. Notice how
the standard errors increase when going up branches. With no
other data nearby upstream, an observed value is obviously in-
fluenced by flow from the two upper branches, which increases

Table 2. Fixed-effects estimates for pH

Effect Estimatea SEb dfc t-value Probability td

Intercept 7.275 0.121 109 60.076 <0.001
% conservation −0.493 0.189 109 −2.602 0.011
% mining −8.696 4.670 109 −1.862 0.065
% water 8.945 6.414 109 1.395 0.166
Stream class coastal 0 NA NA NA NA
Stream class lowland 0.534 0.128 109 4.184 <0.001
Stream class upland 0.269 0.169 109 1.589 0.115
Stream class tannin-stained −0.696 0.194 109 −3.583 0.001

aEstimated value.
bEstimated standard error of the estimate.
cDegrees of freedom.
dProbability of observed t-value under the null hypothesis.
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uncertainty. For example, pH will be determined from the av-
eraging of waters from the two upstream branches. This aver-
age could be due to two similar values, or to two widely dif-
fering values that yield the same average. Thus branching in-
creases prediction uncertainty, unless there are other data on
the upstream branches. Flow volume also has a significant ef-
fect. In Figure 6(c), the width of the stream segment is pro-
portional to flow. Clearly, small terminal branches with low
flow have very high uncertainty, and predictions tend to center
on the expectation of the covariate model. Figure 6(e) shows
that the dominance of flow volume allows relatively precise
prediction upstream on the main channel, but the small side
channels have much higher prediction variances, and predic-
tions tend to drift to the expectation of the covariate model.
Whereas branching and flow volume require unique interpre-
tations of predictions for stream networks compared with clas-
sical geostatistics, other ideas remain intact; for example, the
main stream segment [Figure 6(f)] shows the typical pattern in
which prediction standard errors are smaller near the observed
locations (both upstream and downstream), with the prediction
standard errors increasing with distance from these two loca-
tions.

In summary, predictions are affected by the mean model and
autocorrelation with nearby sites. The distinguishing features of
stream networks are branching and flow volume, which alter au-
tocorrelation relationships so that they are not simple functions
of distance, which in turn affects predictions. It also has impli-
cations for sampling design on stream networks. This topic is
too broad to investigate in the present work, but certainly mer-
its further investigation. We do not expect the typical rules from
geostatistics to always apply.

4. DISCUSSION

We have developed spatial autocovariance models for spa-
tially continuous data on stream networks, using a constructive
process based on stream distance and moving average func-
tions. We presented four basic tail-up and tail-down models,
but many other models remain to be developed. We found that
one of the most important and fascinating aspects of stream net-
works is how autocovariance varies among locations that are
flow-connected versus those that are flow-unconnected. Fig-
ure 5(b) points up a glaring deficiency in these models. For
the one-tailed models, the tail-up models do not allow auto-
correlation between flow-unconnected sites (the stippled bar
at the bottom of the figure), and the tail-down models gener-
ally have more autocorrelation between flow-unconnected sites
than between flow-connected sites. With either set of mod-
els, it is not possible to achieve substantial autocorrelation be-
tween flow-connected sites while at the same time obtaining
a small, but still significant amount of autocovariance among
flow-unconnected sites [the gray-shaded area in Figure 5(b)].
A two-tail approach could solve this problem, but this entails
some computational difficulties.

A simpler alternative is the variance component approach.
As shown in Figure 5(b), the highest ruc values are obtained
when η → ∞; thus a good all-purpose model that covers the
maximum extent in the ruc × autocorrelation space is the lin-
ear with sill tail-down model in combination with any tail-
up model and a nugget effect. We suggest this to be a useful

and practical initial covariance model for an analysis of stream
networks. If either the tail-up or tail-down parts of the model
are not important (as demonstrated by the size of the variance
components σi, where i = u,d,n), then these can be removed.
We have provided several examples to illustrate this approach.
Note that in both fitted models, there was higher autocorrelation
among flow-connected sites, but some autocorrelation among
flow-unconnected sites (Figure 7), justifying the importance of
the variance component approach.

The ability to build valid models on stream networks presents
many new research opportunities. As mentioned earlier, more
models may be found by using moving averages and other
methods. Stream network covariance matrixes can replace the
more common ones based on Euclidean distance for Bayesian
models (Le and Zidek 1992; Handcock and Stein 1993) and
model-based geostatistics (Diggle, Tawn, and Moyeed 1998),
just to name a few. Space-time models are an area of active re-
search that combines spatial statistics and time series (Le and
Zidek 2006), which also have important applications for stream
networks. A moving average approach, as shown here, could
be extended into three or even more dimensions for space-time
models.

APPENDIX: TWO–TAIL MODELS

An obvious extension to the tail-up and tail-down models is a two-
tail model. The moving average functions are depicted in Figures 1(e)
and (f). Note that these figures are presented as if the tail-up part of
the function were the same as the tail-down part of the function. In
fact, allowing the halves to differ adds flexibility, but at the cost of
a few extra parameters. Because integrals are done piecewise, stream
segment by stream segment, there is no advantage to having one con-
tinuous moving average function in terms of solving the integrals. As
we noted in Section 2, a one-sided moving average function is char-
acterized by two parameters, and thus a flexible two-tail model gen-
erally will have four parameters. If we were to add a parameter for
a nugget effect (see Sec. 2.5 on variance component models), then
there could be up to five covariance parameters. This is very simi-
lar to geostatistical models with geometric anisotropy, which gener-
ally have five parameters: the nugget, partial sill, range, rotation, and
an axis ratio parameter (see, e.g., Schabenberger and Gotway 2005,
p. 151).

When two locations are flow-unconnected, the integrals for two-tail
models will be equal to those for tail-down models, as is evident in
Figures 1(d) and (f). For flow-connected locations [Figure 1(e)], the
integrals can be broken into three parts; upstream of the upstream lo-
cation will be equal to a tail-up model [Figure 1(a)], downstream of the
downstream location will be equal to a tail-down model [Figure 1(c)],
but the part in between is new. We did not fit two-tail models because
of computational issues, which we now explain using Figure A.1 as
an example. In Figure A.1, we need to further break up the integral
into all segments between branches, which we arbitrarily label stream
segments 1, 2, and 3 moving upstream. The tail-up function gets split
at each junction with weight

√
ωi. Thus the integral between r1 and s3

is
∫ u1
r1

gd(s3 − x|θd)gu(x − r1|θu)dx + √
ω2

∫ u2
l2

gd(s3 − x|θd)gu(x −
r1|θu)dx +√

ω2ω3
∫ s3
l3

gd(s3 − x|θd)gu(x − r1|θu)dx where gd(x|θd)

is the tail-down moving average function, controlled by parameters θd
and where gu(x|θu) is the tail-up moving average function, controlled
by parameters θu. Recall that both gd(x|θd) and gu(x|θu) are unilat-
eral with positive support, hence gd(s3 −x|θd) takes on nonzero values
downstream of s3.
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Figure A.1. An example of integrating the tail-up part times the
tail-down part in a two-tail model.

In general, then, the integral between ri and sj, ri < sj, where the
tail-up part is multiplied by the tail-down part, is

Cb(ri, sj,ui, . . . , lj, . . . |θ)

=
∫ ui

ri

gu(x − ri|θu)gd(sj − x|θd)dx

+
∑

m∈D∗
j \Di

( ∏
k∈Dm\Di

√
ωk

)∫ um

lm
gu(x − ri|θu)gd(sj − x|θd)dx

+
( ∏

k∈Dj\Di

√
ωk

)∫ sj

lj
gu(x − ri|θu)gd(sj − x|θd)dx, (A.1)

where θd are the parameters from the tail-down part of the moving
average function and θu are the parameters from the tail-up part of the
moving average function. The two-tailed covariance between ri and sj,
ri < sj, is

C2(ri, sj|θ) =
⎧⎨
⎩

Cn(a,b|θd) if flow-unconnected

Cc(h|θd) + Cb(ri, sj,ui, . . . , lj, . . . |θ)

+ πi,jCt(h|θu) if flow-connected,

(A.2)

where θ contains both sets of parameters θu and θd , Cn(a,b|θd) is
from (6), Cc(h|θd) is from (5), and πi,jCt(h|θu) is from (4). The main
problem with this model is related to the limits of integration in (A.1).
The pure tail-up and tail-down models allow us to work simply with
two distances: the stream distances for flow-connected sites and the
distances to a common junction for flow-unconnected sites. The in-
tegrals in (A.1) require us to store a ragged array of all segment dis-
tances and ω values between all pair of locations, which would be
stored in a fashion similar as in Table A.1. For example, ri(1) is r

distance upstream on the ith stream segment for location indexed by
1, and Bi,j(1,2) is the set of stream segments between locations in-
dexed by 1 and 2. In the foregoing table, rows for pairs of locations
that are not flow-connected can be eliminated. Storing information and
computing a covariance matrix are much more difficult for two-tailed
models than for one-tailed models. This is a consideration when fitting
models, which often are iterative and thus require many evaluations
of the covariances for the differing parameter values. For this reason,
we believe that the variance component models presented earlier are
viable alternatives that require much less computation.

Nevertheless, for completeness, we explore a few properties of the
two-tail models and develop one model here. Note that the autocovari-
ance ratio between the flow-unconnected and flow-connected sites for
a two-tailed model is

ruc(ri, sj,a,b|θ) = Cn(a,b|θd)

Cc(a + b|θd) + Cb(·|θd) + πi,jCt(h|θu)
. (A.3)

Unlike (7), (A.3) depends on the exact locations ri and sj and the
branching configuration between them. Because the positive values
of Cb(·|θd) and πi,jCt(h|θu) in the denominator can help fill in the
gray-shaded area in Figure 5(b), this would be a desirable model if
computational issues could be solved.

An example of a two-tail model is

gu(x|σu, αu) = σu exp(−x/αu)I(0 ≤ x ≤ ∞) (A.4)

for the tail-up part and

gd(x|σd, αd) = σd exp(−x/αd)I(0 ≤ x ≤ ∞) (A.5)

for the tail-down part. Then, from (A.1), again with ri < sj,

Cb(ri, sj,ui, . . . , lj, . . . |θ)

= σdσuαdαueri/αu−sj/αd

αu − αd

(
g(ui, ri|αu, αd)

+
∑

k∈D∗
j \Di

�k

�i
g(uk, lk|αu, αd) + �j

�i
g(sj, lj|αu, αd)

)
, (A.6)

where

g(x, y|αu, αd) = ex(1/αd−1/αu) − ey(1/αd−1/αu)

and �k is the additive function value for the kth stream segment, as
described in Section 2.2.1. The covariance function for the two-tailed
model is now obtained using (A.6) and the flow-connected parts of the
tail-down exponential and tail-up exponential in (A.2). This general
approach could be used to develop other models as well.

[Received May 2008. Revised January 2009.]
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Comment: Statistical Dependence in Stream Networks
Noel CRESSIE and David O’DONNELL

This note is based on an invited discussion of the article, “A Moving Average Approach for Spatial Statistical Models on Stream Networks”
by Jay M. Ver Hoef and Erin E. Peterson. Ver Hoef and Peterson (hereafter VHP) have extended the idea of flow-related statistical
dependence in streams to one where dependence may not respect flow, such as might happen when modeling data on fish in connected
streams. We congratulate VHP for their innovative paper on using moving average models in stream networks.

1. STREAM NETWORKS AS GRAPHS

A stream network could be viewed as a directed graph with
nodes defined by the stream confluences, edges defined by the
stream segments between confluences, and the directions of the
edges defined by the direction of flow. Assuming the network

Noel Cressie is Director of the Program in Spatial Statistics and Environ-
mental Statistics, Professor of Statistics, and Distinguished Professor of Math-
ematical and Physical Sciences, The Ohio State University (OSU), Columbus,
OH 43210-1247 (E-mail: ncressie@stat.osu.edu). David O’Donnell is Ph.D.
Student in the Department of Statistics, the University of Glasgow, Glasgow
G12 8QW, Scotland. Cressie’s research was supported by The Office of Naval
Research under grant N00014-08-1-0464, and the discussion was prepared
while O’Donnell was visiting the Department of Statistics at OSU under a Jim
Gatheral Scholarship awarded through the University of Glasgow.

under study has no side channels or a complicated delta, then
it has a tree-like appearance. In fact, if the directions defined
by flow are reversed, then the directed graph is a rooted tree
(e.g., Lauritzen 1996, p. 6), where the “root node” is the out-
let and the “branches” are smaller and smaller streams. In this
discussion, we shall draw analogies between statistical models
built on graphs and the sort of models VHP are building. For
example, the analogous models to VHP’s tail-down models are
those based on rooted trees. It is important to be aware that the
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