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Abstract Planted forests are increasingly contributing wood products and other eco-

system services at a global scale. These forests will be even more important as carbon

markets develop and REDD-plus forest programs (forests used specifically to reduce

atmospheric emissions of CO2 through deforestation and forest degradation) become

common. Restoring degraded and deforested areas with long-rotation planted forests can

be accomplished in a manner that enhances carbon storage and other key ecosystem

services. Knowledge from natural systems and understanding the functioning novel of
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ecosystems can be instructive for planning and restoring future forests. Here we summarize

information pertaining to the mechanisms by which biodiversity functions to provide

ecosystem services including: production, pest control, pollination, resilience, nutrient

cycling, seed dispersal, and water quality and quantity and suggest options to improve

planted forest management, especially for REDD-plus.

Keywords Biodiversity � REDD-plus � Ecosystem services � Planted forest � Forest

management � Plantation

Introduction

The estimated rate of decline of global natural forest area is 13 million ha/year. Despite

this loss, the area of planted forests1 has increased annually by an average of 5 million ha,

between 2000 and 2010, and now represents *7 % (264 million ha) of the total global

forest (FAO 2010). A significant proportion of these planted forests are plantations,2 which

may be distinguished from other planted forests by the objectives for their establishment

and intensity of management; so those managed primarily for timber and other wood

products as opposed to planted forests with many objectives such as sustainability, rec-

reation, food, and carbon storage (Brockerhoff et al. 2008). The extent of plantation forests

has been increasing in area by ca. 2 % annually between 1990 and 2005, to an estimated

140.8 million ha, or ca. 4 % of the global forest area (FAO 2010). At present, about 75 %

of the world’s plantations are comprised of native species and 25 % use exotic species

(FAO 2010). Exotic species plantations (typically pines, eucalypts, acacias, and teak) are

most common in South America, Southeast Asia, and Oceania and much of the plantation

area is through afforestation.

As a result of a high rate of deforestation over the past 40 years (FAO 2010), planted

forests have become increasingly important as sources of wood products. Carle and

Holmgren (2008) estimated that plantation forests will increase by an additional 32 % (vs.

area in 2005) and supply 53 % of global roundwood by 2030. More recently, climate

change mitigation, through enhancement of forest carbon sequestration and avoided

deforestation, has begun through private initiatives for carbon credits. REDD-plus mech-

anisms, a form of payment for ecosystem services from forests (Parrotta et al. 2012;

Pawson et al. 2013), will soon become a major focus for reforestation and recovery of

degraded lands, especially in tropical areas. REDD-plus is a climate mitigation mechanism

agreed to under the UN framework convention on climate change (UNFCCC) to reduce

carbon emissions from deforestation and degradation and to enhance forest carbon stocks,

especially in developing countries. As climate continues to change, however, it is

important for managers to consider ways to adapt planted forests to sustain their mitigation

value in the future.

Ecosystem processes, or functions, are the many actions performed by species in eco-

systems, such as photosynthesis, respiration, decomposition, water purification, mutualism,

competition, and predation (Cardinale et al. 2011; Parrotta et al. 2012). These processes

transfer energy and nutrients across food webs (Polis and Strong 1996). Ecosystem

1 Forests predominantly composed of trees established through planting and deliberate seeding (FAO 2010).
2 Forest of introduced species and in some cases native species, established through planting or seeding
mainly for production of wood or non-wood forest products (FAO 2010).
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processes of direct value to humans are referred to as ‘ecosystem services’ and include

provisioning, regulating, supporting, and cultural services, for example, carbon storage,

pollination, pest reduction, food, and recreation (Diaz et al. 2005). Ecosystem functioning

can increase with the amount of biodiversity in an ecosystem (Balvanera et al. 2006),

although some processes may be dominated by the most functional species (Diaz and

Cabido 2001; Petchey and Gaston 2002; Hoehn et al. 2008). The relationship between

biodiversity and ecosystem functioning is complex however, and at high species levels, it

may be obscured by competition for limiting resources and climate change effects (Mit-

telbach et al. 2001; Traill et al. 2010; Laliberté and Tylianakis 2012). Some ecosystem

services are more dependent on biodiversity (or specific species) than others, and many

biodiversity-related services result primarily in local benefits as opposed to benefits at

larger scales (Guariguata and Balvanera 2009).

Ecosystem processes and services are reduced or lost from natural ecosystems, as a

result of disturbances (mostly anthropogenic), through hierarchical nested thresholds that

reflect species declines at various trophic levels (Dobson et al. 2006). At low trophic levels,

most ecosystem functioning is controlled by a relative few common species, but there is a

high level of redundancy among species (Diaz and Cabido 2001; Petchey and Gaston

2002). Therefore, some loss of species at low trophic levels may not necessarily be cat-

astrophic to ecosystem functioning. At high trophic levels, however, predators are often

relatively rare and have little or no redundancy (Terborgh et al. 2001; Estes et al. 2011).

Losses of predators can have large consequences for ecosystems owing to a loss in reg-

ulation of herbivores, many of which become forest pests (Estes et al. 2011). Sufficient

species loss at any level, especially of keystone species, can produce a change in the

ecosystem state (Groffman et al. 2006) and in changing environments, species diversity

provides a buffer against the loss of processes (Isbell et al. 2011).

Climate change also alters ecosystem processes at small and large scales, through

changes in temperature, moisture, fertilisation effects, and increased severe weather events

(e.g. Parrotta et al. 2012). These factors alter the most fundamental processes of photo-

synthesis, decomposition, and respiration, with consequences for ecosystem assembly and

services in the future (Traill et al. 2010). Climate change has become a major cause of

global species loss, often as a synergistic effect with direct anthropogenic effects (Thomas

et al. 2004; Brook et al. 2008; Hellmann et al. 2008) and enhancing existing mortality

factors (Allen et al. 2010). These effects, coupled with variability among species responses

to climate change, result in a high level of uncertainty about consequences for ecosystems.

Nevertheless, species are already responding through altered ranges with consequences for

ecosystems and this process will be exacerbated as organisms respond to further climate

and habitat changes (Davis and Shaw 2001). Increased successful invasions by exotic

species are also predicted (Brook et al. 2008; Traill et al. 2010) and are already occurring

for many pest species that are altering ecosystems, including trees, mammals, and insects

(Mack et al. 2000; Van Wilgen et al. 2001; Tompkins et al. 2013). Changes in species and

conditions have important implications for planning REDD-plus forests with respect to

maintaining desired services.

We summarise key linkages between biodiversity and ecosystem services that forest

managers should consider in planted forests, especially to enhance long-term carbon

storage, including productivity, soil processes, pest control services, pollination, resilience,

and water quality and quantity (see Supplementary material). We use a reductionist

approach to discuss individual mechanisms and then take a broader ecosystem approach to

relate how these mechanisms could be used to improve the provision of ecosystem ser-

vices. We pose the question: under a changing climate, can an understanding of the
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ecosystem functions that are related to biodiversity be used to improve the likelihood that

planted forests will achieve REDD objectives of maximising carbon storage, while

enhancing the provision of other ecosystem services? We specifically distinguish industrial

short-rotation (or fastwood) ‘plantations’, typified by their low species richness, few

management objectives (i.e., mostly for wood products), and short rotation lengths, typi-

cally \10 year for Eucalyptus spp. and \25 year for Pinus spp., from the much longer

rotation of ‘planted forests’, where management maintains many characteristics of natural

forest ecosystems for multiple objectives (Pawson et al. 2013). Fastwood forest types are

not developed as functional ecosystems and so will store less carbon than planted forests

that are intended to be managed sustainably over longer rotations, with carbon stored in

trees, soils, dead wood, and ground covers including litter (Guo and Gifford 2002; He et al.

2013). We suggest practices to use or avoid in plantations and planted forests for REDD-

plus (Table 1), given the certainty of climate change effects on forests, including more or

less rainfall, increased fire, extreme weather events, fertilisation effects, altered pest spe-

cies regimes, and increased soil respiration (Pawson et al. 2013).

Ecosystem services and forest management

Production

The relationship between biodiversity and productivity in natural and managed ecosystems

has been the focus of ecological research for more than two decades, but interest in this

relationship goes back to the late 18th century, with debate over the relative merits of

single-versus mixed-species silviculture (Pretzsch 2005 referring to von Cotta from 1828).

The relationship between biodiversity, species richness, and net primary productivity is

complex, governed by many abiotic factors such as climate, precipitation and temperature

regimes, soil properties, limiting nutrients, and by biotic feedback (Willig 2011). Research

in temperate grassland systems has demonstrated positive diversity-productivity effects

(Mittelbach et al. 2001). In forests, however, the few studies have not been as conclusive

(Waide et al. 1999; Thompson et al. 2009; Vilà et al. 2013) due to the structural complexity

of forest ecosystems and the longevity, size, and diversity of trees (Leuschner et al. 2009).

Further, at a landscape scale, ecosystem processes can be affected by fragmentation and

edge effects that exacerbate species losses and population declines that, in turn, affect

ecosystem functioning (Laurance et al. 2007).

Current theory and increasing empirical evidence suggests that biodiversity promotes

net primary productivity in forests and other terrestrial ecosystems via three main mech-

anisms. The first is niche complementarity (Loreau et al. 2001), whereby different species

use different resources or the same resources in different ways, resulting in enhanced

resource use and reduced competition (Cardinale et al. 2004; Tylianakis et al. 2008; Zhang

et al. 2011). Complementarity depends on species performing functions in different ways,

thus, the strongest increase in functioning is observed when species have different func-

tional traits (Diaz and Cabido 2001; Fontaine et al. 2006; Hoehn et al. 2008). Furthermore,

there is evidence that turnover of species among regions (Loreau et al. 2003) and evenness

in abundances of several species also promote ecosystem functioning, including produc-

tivity (Zhang et al. 2012).

The second mechanism is facilitation, whereby species provide resources, or alter the

environment, enabling other species to perform better (Cardinale et al. 2002; Forrester

et al. 2006; Kelty 2006). For example, many studies have demonstrated the facilitative
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effect of planting nitrogen-fixing species with non-nitrogen fixing trees (Forrester et al.

2006). Nitrogen limitation may be exacerbated as a result of climate-change-related

reduced soil moisture (Groffman et al. 2012). Facilitation is also often used as a silvi-

cultural tool to grow desired shade-tolerant tree species beneath faster growing pioneer tree

species. The final mechanism is the ‘sampling effect’, whereby there is a higher probability

that a highly productive species will be included in a large group of species compared to a

smaller group (Cardinale et al. 2006).

While biodiversity-productivity relationships in complex natural forests remain some-

what obscure, studies of forest systems involving two or more planted tree species have

found positive relationships between species richness and evenness, and above-ground

productivity (Healy et al. 2008; Nadrowski et al. 2010; Potvin et al. 2011), especially at

small scales. Tree plantations may achieve higher production for a range of species

combinations, if species mixes involve complementary resource use and facilitation of

growth of one species by another (Piotto 2008; Forrester et al. 2006; Kelty 2006). A meta-

analysis of 54 studies of single-species and mixed plantations by Zhang et al. (2012) found

an average of 23.7 % higher productivity in forest polycultures than in monocultures. The

latter analysis indicated that evenness and heterogeneity of shade tolerance explained 63 %

of the observed variation in productivity, while species richness and stand age explained an

additional 28 %.

Table 1 Examples of practices to use in plantations and planted forests that will enhance the ecosystem
services and for planted forest results in increased carbon storage

Ecosystem
service

Fastwood exotic Semi-natural planted or assisted natural

Production Increase species mix; encourage
understory

Improve soils using multi-species; plant
close to natural forest; use reduced
impact logging

Pest control Plant close to natural forest; enhance
landscape connectivity

Plan to maintain predator habitat; allow
dead wood to stand; avoid congener
proximity

Nutrient cycling
and
decomposition

Leave residual deadwood and encourage
litter accumulation

Leave residual deadwood and encourage
litter accumulation; inoculate soils as
required; plant near natural forest

Seed dispersal N/A Plant close to natural forest; consider
habitat availability for seed dispersing
species

Pollination N/A Plant close to natural forest; foster habitats
for local pollinators

Water quality
and quantity

Reduce use of species with high water
demand; reduce spacing; leave and
accumulate litter and branches; use
mixed species; use 2 or 3 pass harvesting

Use selection harvesting and reduced
impact logging; increase litter quality;
avoid riparian zones

Resilience N/A Base harvesting plan on natural ecosystem
dynamics; improve habitats for top
predators; plan for stand and landscape
heterogeneity; understand and avoid
thresholds

N/A not applicable: plantations are planted and so require no seed dispersal or pollination, and as they are
logged and replanted, they have no resilience
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Support is emerging for the idea that the coexistence of functionally different species

increases forest productivity especially in low production, high stress environments. In

more productive environments, dominant and highly productive species competitively

dominate and so complementary effects are smaller or less frequent (Potter and Woodall

2013). Interactions between a given pair of species will change spatially and temporally as

resource availabilities and climatic conditions change (Forrester 2014). Further, for a given

species, complementarity can increase as growing conditions improve, such as when

species interactions improve light-use efficiency (Forrester 2014). Interactions that

improve nutrient or water availability could become increasingly useful, and improve

complementary effects, as nutrient and water availability declines, respectively (Forrester

2014). These dynamics may explain why biodiversity-productivity relationships have been

difficult to observe in some studies (e.g. Forrester et al. 2006; Thompson et al. 2009; Vilà

et al. 2013). For example, no relationship was found between species richness and either

above-ground or below-ground biomass or litter in naturally regenerating conifer stands in

China, ranging from 5 to 310 years (Zhang et al. 2011). Similarly, Firn et al. (2007) found

a negative relationship between overstory plant diversity and productivity in 23–72-year-

old planted forests of various native and introduced timber species in Australia, where

natural regeneration of native woody species had already enriched the plantations. Hence,

knowledge of local ecosystems is required to understand species interactions.

Conclusions for REDD planted forest managers

Management decisions that influence both biodiversity and productivity will play a key

role in determining outcomes of REDD-plus strategies for enhancement of forest carbon

stocks. Many deforested sites can naturally revert to highly productive species-rich sec-

ondary forest if the pressures on them (such as biomass harvesting, grazing, fire, etc.) are

lifted, particularly those that are located in proximity to biodiversity-rich native forests,

and if they retain some residual trees, seedling banks, and soil seed stores of native species

(Parrotta et al. 1997; Carnus et al. 2006; Brockerhoff et al. 2008).

Planted forests provide an alternative to restore ecosystem productivity and enhance

carbon sequestration on sites that do not meet the above criteria, for example where soils

and local biota have been severely degraded, such as in abandoned agricultural landscapes

that have become dominated by fire-prone grasses. Productivity (and carbon sequestration)

is highly likely to be increased in mixed-species forest, relative to plantation monocultures,

if mixes result in complementary resource use and facilitation among species (Piotto et al.

2003; Kelty 2006). Species mixtures may also eliminate the need for expensive fertiliza-

tion. For planted forests, key management decisions include (a) the choice of appropriate

species mixtures considering the adaptability to local site conditions of soils, aspect, cli-

matic tolerances, and species interactions and (b) intensity of management, including site

preparation, pre-harvest management, rotation lengths (which may have short term and

longer-term positive or negative effects on productivity), and practices that either

encourage or discourage enrichment of planted forest flora (and biota of other trophic

levels) via natural in-filling by non-planted species, such as reduced impact logging.

Whether the planted species are native or exotic does not necessarily have a direct

influence on productivity, instead site adaptability and possible complementarity and

facilitation relationships are the main determinants. Longer rotation native planted forests

harbour greater biodiversity (at different trophic levels) and so should be less susceptible to

productivity losses due to insects and diseases, than simpler systems with few tree species

(Jactel and Brockerhoff 2007).
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Fastwood exotic plantations are typically highly productive but low in species richness

relative to other planted forest types. Since a significant proportion of the production is lost

at short intervals via harvests, their value for directly meeting REDD-plus objectives is

limited. Nevertheless, short-term productivity in plantations may be enhanced by applying

ecological principles, including judicious use of mixed species plantings and management

practices that favour even short-term biodiversity development within plantations. Such

forests can be used to offset some logging in primary forests, increasing positive REDD-

plus benefit, and so better growth offsets more logging of primary forests.

Nutrient cycling and decomposition

Nutrient cycling is an important, primarily bottom-up, process that strongly affects soil

fertility by making nutrients from dead plant material biologically available to green plants

(Harris 2009; Sylvain and Wall 2011). Nutrient cycling is affected by temperature,

moisture, and soil type (Vitousek and Sanford 1986) and is largely performed by animals,

bacteria, moulds, and fungi in the soil and detritus. Nutrient cycling includes a complex

food-web of herbivores, fungivores, and carnivores with diverse processes. For example,

termites and fungi, which are sensitive to the extent and severity of forest disturbances,

play an important role in wood litter decomposition, and require that dead wood be

supplied or left on the forest floor (Davies et al. 1999; Schuurman 2005). Similarly,

detritivores require the presence of a permanent litter layer (Harris 2009). Restoring these

processes in degraded soils may take active management, including the use of N-fixing

plants, because soil community recovery is slow and depends on the level of forest deg-

radation (Davies et al. 1999; Macedo et al. 2008; Amazonas et al. 2011).

Some types of tropical soils are notably poor and so a rapid rate of nutrient cycling is

necessary for trees to grow. On these soils, the replacement of mixed species forests with

fastwood plantations has severe consequences for productive capacity because much of the

nutrients are stored in autotroph biomass (DeAngelis et al. 1989), especially phosphorus

that is limiting in most tropical systems (Vitousek 1984; Cleveland et al. 2011). A detritus

compartment can buffer and increase the resilience to disturbances on living components in

soils, and systems are slow to recover from perturbations affecting the detritus (Ewel et al.

1991; Laliberté et al. 2010). Individual species effects are important in reducing nutrient

leaching (Ewel and Bigelow 2011) and Macedo et al. (2008) found that the use of legu-

minous tree species restored C and N cycling in depleted tropical soils. Tree diversity, in

part, is important for maintaining the N and P pools in tropical plantations (Zeugin et al.

2010) but depends initial site conditions (Redondo-Brenes and Montagnini 2006), making

it difficult to generalise about nutritional interactions among tree species (Rothe and

Binkley 2001). Nutrient levels are also affected by plant species richness, with reduced

species numbers leading to nutrient limitations (e.g. Firn et al. 2007; Inagaki et al. 2010).

For example, Ewel et al. (1991) showed that poor soils developed under monoculture

forests in Costa Rica. Similarly, fertilisation is required to maintain growth rates in many

Eucalyptus plantations, where soils readily become depleted (Smethurst et al. 2004; Laclau

et al. 2010).

The amount and rate of nutrient cycling is partly affected by herbivores through litterfall

and dung (Fonte and Schowalter 2005). Insect herbivores can increase soil N and P fluxes

by as much as 30 % in tropical rainforests through their frass (Schowalter et al. 2011) and

defecation by monkeys and other vertebrate herbivores, with further processing by dung

beetles, contributes to improving soils, ultimately affecting carbon storage in these forests

(Feeley and Terborgh 2005; Neves et al. 2010). Elevated decomposer performance reflects
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high plant diversity and likely enhances autotrophic production, contributing to a positive

relationship between plant diversity and ecosystem functioning (Eisenhauer et al. 2012).

Ectomycorrhizal fungi are important symbionts on many tree species that improve root

nutrient uptake and enhance growth rate (Allen et al. 2005). Loss of these fungi through

poor management is responsible for declines tree productivity, as reported for Eucalyptus

production in Australia (Horton et al. 2013). Fungi are primarily dispersed by wind but

spores produced underground are dispersed by small mammals and arthropod fungivores

(Johnson 1995; Lilleskov and Bruns 2005). Dispersal is severely limited by fragmentation

and poor soil quality (Peay et al. 2010), absence of fungal dispersers in degraded forests

(Nunez et al. 2009), and soil desiccation following disturbances (Ashton and Kelliher

1996), which can be related to open canopy cover (Ingleby et al. 1998).

Conclusions for REDD planted forest managers

REDD-plus forest development will need to consider soil improvement and redevelopment

of soil food webs to maximise production and carbon storage. Under climate change,

tropical forests may become drier, reducing soil processes even further and intensive use of

many types of tropical sites will lead to nutrient depletion. Avoiding soil degradation is

possible by planting multiple tree species, fostering understory species and ground covers,

and eliminating fire, in part, by recovering moist soils. If soil litter is recalcitrant, inocu-

lating with soil fauna and flora from natural forests will enhance decomposition (Allen

et al. 2005). Planting REDD-plus forests near to existing natural forest can take advantage

of multiple biodiversity-related mechanisms for soil improvement through dispersal and

invasion by soil biota and herbivores from the natural forest. Better landscape connectivity,

reduced fragmentation, and a higher percentage of forest on a landscape will lead to

persistent occupation of planted forests by species than can help fertilize soils via dung

input and disperse fungi. The use of N-fixing ground cover plants can assist restoration on

sites where nitrogen has become limiting. Managers should be aware that most fastwood

forests will eventually require nutrient input, but that employing mechanisms to support

soil functions can reduce this requirement.

Pest and disease reduction

Plant diversity can decrease the rate of herbivory on focal plants through associational

resistance to herbivores (Barbosa et al. 2009). Similarly, forest trees are less prone to pest

insect damage when grown in mixed species stands rather than in monocultures (Brown

and Ewel 1987; Jactel and Brockerhoff 2007; Castagneyrol et al. 2014). Although less

studied, the same positive relationship exists between tree species diversity and resistance

to diseases (Pautasso et al. 2005; Hantsch et al. 2013). Several mechanisms have been

proposed to explain the pest and disease regulation service provided by tree species

diversity. Bottom-up processes operate through tree to tree interactions. In host and non-

host tree mixtures, the amount of available food for insect herbivores decreases with

increasing tree diversity through resource dilution (Hambäck et al. 2000; Giffard et al.

2012) and reduced host tree apparency (Endara and Coley 2011; Dulaurent et al. 2012;

Castagneyrol et al. 2013). Further, non-host tree volatiles can also disrupt olfactory-guided

host choice by specialist herbivores (Zhang and Schlyter 2004; Jactel et al. 2011). The

presence of non-host trees around focal trees may also slow the spread of root rot fungi

through the interruption of root contact (Linden and Vollbrecht, 2002) and the spread of

invasive pest at the landscape scale (Rigot et al. 2014). Schweizer et al. (2013) reported
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that planting young trees near conspecific old trees resulted in reduced survival, higher

levels of herbivory and diseases and slow growth rate, related to pests and diseases har-

boured by the older trees (Castagneyrol et al. 2014).

Tree species diversity can enhance insect pest control through the provision of suitable

resources and habitats for predators. The species richness of insect predators is positively

correlated with the number of plant and herbivore species (Castagneyrol and Jactel 2012).

Generalist insect predators and parasitoids benefit from alternative herbivore prey asso-

ciated with multiple tree species in mixed forests (Siemann et al. 1998; Jactel et al. 2006).

Tree mixtures are also more likely to provide habitat for nectar-rich plants supplying insect

parasitoids with complementary foods (Syme 1975; Hougardy and Grégoire 2000). Sim-

ilarly, the persistence and richness of vertebrate predators depends on sufficient habitat.

Habitats can be degraded at a landscape scale via fragmentation and habitat loss (Vié et al.

2009; Koh et al. 2010), or at a local scale through structural and compositional simplifi-

cation of the forest (Lewis 2009) resulting in the loss of niche space. Loss of keystone

predators can have large consequences for a system through cascading effects of expansion

of herbivore populations (Estes et al. 2011). For example, birds are important predators of

pest insects at chronic levels (Morrison and Lindell 2012; Giffard et al. 2012) and

Bridgeland et al. (2010) showed that bird predation on herbivores improved tree growth by

20 % for Populus spp. Similarly, bat predation reduces insect herbivory in tropical forests

(Kalka et al. 2008; Morrison and Lindell 2012). Mixtures of tree species can also provide

more suitable habitat to antagonistic fungi that control fungal pathogens (Fedorov and

Poleschuk 1981; Murray 1987).

Loss of predators can also have cascading effects on other functions within the eco-

system, such as nutrient cycling and plant community assemblage (Dunham 2007; Fornara

and Du Toit 2007), including altered ecosystem state (Terborgh et al. 2001; Didion et al.

2009). Reduction in key predators leads to trophic cascades resulting in altered arboreal

insect and soil faunas (Dyer and Letourneau 1999; Dunham 2007). Other studies, however,

have shown predator inability to limit herbivores in some forests, especially during severe

outbreaks (Strong et al. 2000; Schwenk et al. 2010) but none has quantified tree growth

parameters as a response variable.

Mutualisms occur in complex forest ecosystems, such as between native trees and ants

in tropical forests, and benefit the trees through reduced herbivory and resultant increased

production (Floren et al. 2002; Gaume et al. 2005). Such mutualisms are often lacking in

plantations where there can be a high incidence of pests (Kirton and Cheng 2007; Lom-

bardero et al. 2008). The incidence of insect pests may be lower in exotic tree plantations

(Zas et al. 2011; Lombardero et al. 2012) but this advantage may be offset by increased

fungal attack, as for example on exotic pines (Zas et al. 2011) and eucalypts (Wingfield

2003). Braganca et al. (1998) found that Eucalyptus plantations harboured higher levels of

lepidopteran pests than heterogeneous native forests in Brazil. Powers (1999) and Gadgil

and Bain (1999) noted that some exotic plantations had low incidences of pests or diseases,

which they attributed to the lack of native insect pests to attack phylogenetically isolated

trees.

Although in a majority of cases, trees in mixed stands suffer lower losses to herbivory

than those in pure stands (Brown and Ewel 1987; Jactel and Brockerhoff 2007), there are

some reported cases of associational susceptibility (White and Whitham 2000), i.e., more

herbivory damage in mixed forests. This mainly occurs when polyphagous insect herbi-

vores first develop on preferred host trees and then spill over onto neighbouring tree

species (Jactel and Brockerhoff 2007; Schuldt et al. 2010).
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Forests can play an important role in providing alternative hosts and prey to maintain

potential natural enemies (insects, spiders, and birds) of agricultural pests on broad

landscapes (Bianchi et al. 2006). Resource and landscape heterogeneity positively affect

insect natural enemies of agricultural insect pests, both at the landscape level (Tylianakis

et al. 2008) and at the stand level (Langellotto and Denno 2004; Bisseleua et al. 2013). At

the landscape scale, pest reduction service (and pollination) that can be expected for

agricultural crops from nearby forests is directly related to total forest area and patch size

(Tscharntke et al. 2008).

Conclusions for REDD planted forest managers

Avoiding disease and pest damage is crucial in recovering forests, maintaining ecosystem

stability, and to maintain ecosystem services. A lower incidence of pests and diseases can

be achieved by designing mixed species plantations and also through favouring the natural

regeneration of diverse tree species in planted forests. At a landscape scale, interspersing

plantations and planted forests would enable pest reduction services into the plantations

from the planted longer rotation forests. The composition of the mixture for planted and

plantation forests is often more important than the number of tree species per se. Even two

species mixed plantations can improve forest resistance. To enhance bottom-up processes

affecting pest regulation, managers can work to reduce host tree apparency by intermixing

crop trees with fast growing ‘nurse’ species, which can then be removed selectively as a

first fastwood crop. To favour top-down control by natural enemies, associated plant

species providing complementary foods or shelter (e.g., cavities) should be preferred and

attention to providing and maintaining habitat for key predators is important. In both cases,

associated tree species that are phylogenetically distinct from the important crop species

are of highest benefit and congeners should not be planted under existing trees of the same

species. For example, mixtures of conifers and broadleaved trees are more likely to be

resistant to a wide array of pests and pathogens. The relative share of species needs to be

adjusted according to trade-offs between different planned ecosystem services.

Pollination

Pollination is a service that is strongly related to biodiversity that has been well-studied for

agricultural production near forest ecosystems (e.g. Dobson et al. 2006). Approximately

87.5 % of flowering plants require animal pollination, including 78 % in temperate zone

and 94 % in tropics (Ollerton et al. 2011), and pollination accounts for 35 % of global crop

production (Klein et al. 2007). The value of pollination has been estimated to be billions of

dollars, including for important crops such as coffee and cacao in the tropics (Costanza et al.

1997; Ricketts et al. 2004). No estimates have been made for pollination of forest trees.

Successful pollination rates increase with pollinator species richness (Kremen et al.

2002; Tylianakis et al. 2008). Vertebrate pollination by bats, rodents, monkeys, and birds is

common in tropical regions, while insect pollination by bees, butterflies, beetles, and other

arthropods is most common in the temperate zone (Bawa 1990). Many animals that pol-

linate flowers have specific relationships with certain plant species, mediated by mor-

phology and phenology that have co-evolved (Stebbins 1970; Bawa 1990). Therefore, local

extinction of pollinators often results in the eventual extinction of the plants that they

pollinated (Biesmeijer et al. 2006). Moreover, because the distance between habitats of

pollinators and agricultural fields affects success of seed set, local conservation of poll-

inators and their high quality forest habitats is crucial (Klein et al. 2003; Kennedy et al.
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2013). For instance, the honey bees Apis spp. tend to nest in tree cavities that are more

abundant in natural forests than in plantations. Therefore, distance to natural forest rather

than plantation affects honey bee abundance and the amount of the seed set in crops

(Ricketts et al. 2008; Taki et al. 2011). (Aizen and Feinsinger 1994) found a negative

relationship between pollination services and forest fragmentation and reduced size of

remnant fragment. On the other hand, Winfree et al. (2007) found that moderately dis-

turbed landscapes with extensive forest still maintained most bee species and Taki et al.

(2013) found that a range of stand ages was needed to maintain all bee species in a

temperate forest landscaper.

Conclusions for REDD planted forest managers

Local habitat conservation for pollinators is essential to maintain pollination services for

planted forest ecosystems and associated agricultural fields, and keeping forest as a large

percentage of the landscape will help ensure a high level of pollination by animals. This is

important for REDD-plus forests where multiple services are desired, but unimportant for

fastwood plantations. Specifically, maintaining several old and large trees with cavities per

ha in planted stands could help to maintain social bee populations, thereby improving set in

local crops. Many flowers in tropical forests tend to have co-evolved plant-pollinator

relationships, both with arthropods and vertebrates, and so habitat conservation for nesting

and feeding by pollinators at the landscape level is also important. A range of forest ages

may be required to maintain bee species and local knowledge is needed to understand

pollinator ecology. Further work is needed to determine the optimal amount of forest in a

mixed forest and agriculture landscape.

Seed dispersal

Seed dispersal is an important process in planted forests where natural regeneration is

expected to contribute to the tree density. Although seeds of many tree species are wind

dispersed, many other tree and other plant seeds are only dispersed by herbivores and

frugivores, especially in tropical forests. For example, in Mexico, Cortes-Flores et al.

(2013) reported that 68 % of tree species were dispersed through zoochory. An absence or

reduced populations of seed dispersing animals results in poor to no dispersal, especially

for large-seeded trees (Anzures-Dadda et al. 2011; Brodie and Aslan 2012; Beaune et al.

2013). Also, because dispersal distances and food preferences differ among dispersers, it is

the local suite of animals that is important to maintaining plant communities (Garcia and

Martinez 2012; Gonzalez-Varo et al. 2013). The rate of seed germination for some species

is enhanced by passage of seeds through mammalian endozoochory (Traveset 1998;

Campos-Arceiz and Blake 2011). Absence of dispersal processes results in a homogeni-

sation of forest plant species (Terborgh et al. 2008; Lehouck et al. 2009; Markl et al. 2012).

Proximity of seed sources affects seed dispersal processes to adjacent areas, and so habitat

connectivity can improve the influx of animal-dispersed seeds, influencing the composition

and structure of forests (LeHouck et al. 2009; Jesus et al. 2012). Animal species that simply

drop seeds have effective distances of generally under 0.5 km (Wehncke and Dominguez

2007) but dispersal distances by seed-eaters is often many kilometres (Beaune et al. 2013).

Available suitable forest habitat for the disperser species is important to supporting their

populations (e.g. Anzures-Dadda et al. 2011; Uriarte et al. 2011). Although many ecosystem

functions have functional redundancy among species, most evidence suggests that frugivores

often provide complementary services (Gonzales et al. 2009). Hence, the loss of the seed
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dispersers ultimately means a decline in local or regional tree species richness (Lehouck et al.

2009; Beaune et al. 2013; Bueno et al. 2013). Gonzales et al. (2009) found that, while that

birds and bats competed for fruits in the dry season in the Philippines, both were important for

ectozoochory of different plant species throughout the year. Seidler and Plotkin (2006)

concluded that seed dispersal by mammals is a major process maintaining tree community

structure over the long term in tropical forests and is a key mechanism explaining the pattern

of low aggregation of conspecifics on tropical forest plots.

Conclusions for REDD planted forest managers

Protection of plant reproductive processes involves consideration of stand and landscape

level context for planted forests, and the presence of persistent populations of seed dis-

persers sufficiently near to use the planted forests. For example, isolated stands in a

fragmented landscape will suffer limited seed dispersal by animals and reduced tree spe-

cies recruitment. In areas where large wildlife species populations have been eliminated,

supplemental planting of tree species is needed to enable large-seeded tree species to

survive, and only the longer-term reintroduction of frugivore populations into sufficient

habitat will sustain these species (Brodie and Aslan 2012). Seed dispersal mechanisms

provide models for how community assembly can be achieved in planted forests, for

aspects such as tree species density and complementarity between species. Landscape

connectivity and attention to increasing total forest area are important to maintaining

dispersal processes in planted forests.

Water quantity and quality

Water is an important output from forest systems and water retention in forest soils is

necessary for many processes including decomposition and nutrient cycling. Forests are

important for maintaining water quantity and quality for domestic, agricultural, and

industrial uses, and for flood and flow regulation. The process and mechanisms of both are

similar; water vapour (fog and cloud) and precipitation becomes surface runoff and ground

water with flows infiltrated through vegetation and soils, or is taken up by plants, and

surface water and water in plants evaporates or is transpired (see Fig. 4 in Brauman et al.

2007). Although annual and long term change in water quantity is thought to be affected by

climate change and deforestation, the degree of the effect from deforestation is not clear

because many factors affect flows, such as irregular cyclic patterns of rainfall under quasi-

biennial oscillation, El Niño occurrences, sunspot activity, equatorial heat transport, and

human activities and the time lag between when an event and the output occurs at a

regional scale (Bruijnzeel 2004; Oki and Kanae 2006). Differences in scale among the

various factors and local water quantity makes assessing the direct effects of deforestation

alone unclear (Bruijnzeel 2004). There are both positive and no correlation between a

decrease of rainfall and loss of vegetation cover in the same region (Dirmeyer and Shukla

1994 in Amazon and Kanae et al. 2001 in Thailand for positive correlations; Costa et al.

2003 in cerrado in Brazil, for no effect). In Chile, the area of short-rotation plantations in

small watersheds reduced water quantity and provided irregular flows relative to larger and

more stable outputs from natural forest cover (Lara et al. 2009; Little et al. 2009). Simi-

larly, in Panama, Sprenger et al. (2013) found that a mixture of tree species maintained a

steady water flow compared to flows through monoculture stands. However, in Australia,

Brown et al. (2007) found no relation between plantation establishment and the availability

of water downstream. At a landscape scale, there was no effect of reforestation on water
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flows where\20 % of a catchment basin was forested (Zhang et al. 2006), suggesting that

forest restoration to affect water flow must be accomplished at a large scale.

Generally, ecosystem water use increases with ecosystem productivity (Law et al. 2002)

and fast-growing species are often used in plantations and are therefore more likely to use

more water negatively affecting local ground water supply and stream volume, such as

acacias in South Africa (van Wilgen et al. 2001). Treatments for faster growth rates

(fertilisation, thinning, etc.) can improve water-use efficiency (Binkley 2012). For exam-

ple, Eucalyptus and Acacia mixtures produced 73 and 243 % more biomass than Euca-

lyptus and Acacia monocultures, respectively, but only transpired (annually) 17 and 93 %

more water than the monocultures, respectively (Forrester et al. 2010). These species

mixtures, on this site, produced the same stand biomass using 54 % of the land area and

about two-thirds of the water that Eucalyptus monocultures would use (Forrester et al.

2010). The mixtures dried the soil more, however, and so any treatment that increases

water use, regardless of efficiency, could potentially increase the susceptibility of the

plantation to drought.

Water quality is related to both physical and chemical processes: purification by fil-

tration, and detoxification, respectively (Neary et al. 2009). Biological detoxification is

effective because it converts chemical pollutants to less toxic substances or removes them

entirely (Pimentel et al. 1997) and maintaining this ecosystem service costs far less than

treating water (Brauman et al. 2007). Although water quality is particularly important for

drinking water at the lower reaches of a river, the water is purified at a small scale,

generally in the upper level streams. Riparian and watershed deforestation has resulted in

reduced stream habitat and less water purification that results from channel narrowing and

too rapid runoff with high levels of silt (Sweeney et al. 2004; Postel and Thompson 2005;

Little et al. 2009). Hence upper stream and riparian protection with REDD-plus forests will

result in multiple ecosystem services.

Conclusions for REDD planted forest managers

Forest cover is clearly superior to bare ground for improving soil moisture levels and

reducing run-off, although total water availability will decline from evapo-transpiration

from forests (Vanclay 2008). Water availability is predicted to be a major concern under

climate change (Malhi et al. 2008) owing to reductions in regional precipitation and forest

drying as management fragments forests. Several mechanisms to alleviate the problem

include ensuring a closed canopy to reduce evaporation from soils, avoiding large plan-

tations of species that have high water requirements, and planning to maintain cover along

riparian zones. Because ecosystem services related to water are primarily provided by

upper streams, but delivered at the lower reaches of rivers, planning and assessment must

be conducted at the watershed scale (Little et al. 2009). A balance then needs to be sought

among the desired ecosystem services. If a large proportion of the catchment needs to be

covered by forests without excessive water use, then clearly it is not advisable to establish

plantations; rather, planted forests should be established. However, if fastwood production

is a major aim, the most water-use efficient way to do this would be to use very fast

growing and water-use efficient plantations, but on a small proportion of the catchment, to

minimise water use. Short-rotation plantations will negatively affect water quantity but the

effect can be reduced through tree selection and multiple passes over time for harvesting.

For example, eucalypts use more water than pines (Scott et al. 2005). Lastly, anthropogenic

disturbances, including forest plantations, should be avoided in riparian zones to maintain

the water filtration function of natural systems.
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Resilience and stability

Resilience is the capacity of forests to recover from large disturbances over space and time

(Gunderson 2000) and is important for permanence of carbon storage in REDD-plus for-

ests. Resilience is an emergent ecosystem property conferred through biodiversity, related

to genetic diversity, species diversity (especially those that dominate processes), and

ecosystem diversity (heterogeneity and beta diversity) across a forest landscape (Thomp-

son et al. 2009). Production, pollination, seed dispersal, nutrient cycling, and pest reduction

contribute to resilience in forests.

Several studies have related ecosystem stability to species abundance and response

diversity among functional species (Thompson et al. 2009; Isbell et al. 2011; Kuiters

2013). Such observations support the concept that maintaining resilience over time is

related to the capacity of species to re-assemble into communities and establish ecosystem

functioning. Redundancy is common in ecosystems and contributes to the capacity of

systems to resist change and maintain their resilience (Walker 1992). Species in the same

functional group often show different responses to disturbances (Laliberté et al. 2010), and

hence the value of redundancy. Some individual species perform key functional roles

(Walker 1992; Diaz and Cabido 2001) and are highly influential on process rates in the

ecosystem; the loss of these species can result in cascading effects that are sufficient to

alter the ecosystem state (Koh et al. 2004; Estes et al. 2011). An important related concept

is thresholds, which refers to a point where the system has been sufficiently disturbed to

result in a change to another state, which may or may not be stable, and is marked by

different plant and animal communities. Changes in state are associated with a substantial

change in biodiversity and often result in altered (usually reduced) ecosystem services

(Groffman et al. 2006; Chazdon 2008; Lewis 2009).

Forest resilience can be diminished through loss of landscape connectivity, habitat loss,

edge effects and fragmentation (Tylianakis et al. 2007; Laliberté et al. 2010). Land use

intensity is known to reduce functional diversity among plants (Laliberté et al. 2010).

Fastwood plantations have no resilience, because of the intensity of management and low

species richness. More complex planted forests, which can be managed sustainably over

time using assisted regeneration, can be resilient if planned properly by paying attention to

biodiversity at all scales. Recovery of forests after severe degradation requires energy input

in the form of active management to enable successful recovery from, for example, a

pasture or scrub forest, back to a more natural forest ecosystem (van Wilgen et al. 2001;

Griscom and Ashton 2011). Restoring a forest requires an understanding of how to

overcome the current stability of the particular ecosystem, through careful selection of tree

species and active management to enhance desired forest growth (Griscom and Ashton

2011).

An important aspect of forest resilience involves susceptibility to invasion by pests and

pathogens. Diverse forests provide, on average, less of the resources required by particular

invader species than a low diversity stand because the resources are increasingly diluted as

plant diversity increases. Results from experimental plots confirmed that invasion by alien

plants was negatively correlated with plant species richness of plots (Kennedy et al. 2002),

probably because species richness results in no available niches and inter-specific com-

petition. For host-specific invaders, such as certain phytophagous insects, a reduction in

host apparency (density) directly reduces their ability to locate host plants, thereby

reducing invasibility. For example, severity of beech bark disease in North America is

inversely related to the basal area of beech at large scales because of the limited dispersal

capacity of the disease (Griffin et al. 2003). The relative importance of all these
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mechanisms to resilience and the net effects on invasions vary across the spatial scales,

although this has only been examined for plant invasions (Fridley et al. 2007).

Conclusions for REDD planted forest managers

Maintaining resilience is an important consideration for REDD-plus forest managers

because loss of resilience necessitates considerable effort to recover a forest type over time

and the consequent loss of carbon from the forest. Resilience can only be achieved by

restoring ecosystems that function fully and provide multiple services, including sustained

production, soil quality, and reproduction over time, which requires attention to biodi-

versity and ecosystem processes. Mixed tree communities may have high resistance to

invasion thereby helping to maintain their resilience (Thompson et al. 2009). While native

species are usually recommended (Brockerhoff et al. 2008), the use of exotic species may

be required owing to an existing ecosystem state that can only be occupied by tree species

tolerant of the existing conditions (Griscom and Ashton 2011).

Conclusions for improving plantation forestry for REDD-plus

Several authors have suggested forest practices and silvicultural techniques for planted

forests for adaptation to climate change or to enhance biodiversity (Carnus et al. 2006;

Parrotta et al. 2012; Pawson et al. 2013). In this review, we illustrate the importance of

understanding ecological linkages and ecological functioning within ecosystems, as a

means to improving forestry practices in plantations and planted forests to enhance

delivery of expected services, including carbon storage. Adapting REDD-plus forests to

climate change includes using practices and planning to improve resistance and resilience,

such as by increasing functional redundancy among species, promoting a full suite of

ecosystem processes by paying attention to biodiversity, improving genetic diversity

within key species, and using practices to reduce the negative impacts from pests, diseases,

and drying.

In increasingly managed landscapes, however, novel forest assemblages that have

developed may not ‘play by the same rules’ as the original ecosystems and knowledge of

how these new assemblages function may not be gained for some period of time, resulting

in a challenge to our understanding of forest ecology (Hobbs et al. 2006; Gardner et al.

2009). Decoupling and mismatches within processes may result in less successful repro-

duction, for example, because of inadequate pollination or seed dispersal, resulting in a

need for assisted regeneration on a continuous basis. Certainly, it is understood that forest

structures and cover can be re-established before much of the biodiversity and the services

it provides can be recovered (Brook et al. 2008; Sodhi et al. 2010; Bullock et al. 2011),

resulting in low levels of redundancy and processes for some time. Under such circum-

stances, planning at a very large landscape scale (Chazdon et al. 2009; Gardner et al. 2009)

is essential and taking advantage of every opportunity to incorporate remnant forests into

larger-scale planning will increase the conservation potential of modified forests (Anand

et al. 2010). So, while REDD-plus projects will be carried out on a stand by stand basis, it

will be essential to incorporate these efforts into broad landscape-level thinking to achieve

success and optimality in terms of carbon and other ecosystem services.

Practices to avoid under climate change are generally the converse of the suggested

practices in Table 1. However, for planted forests in particular, careful thought must be

given to local predicted future conditions and the ecosystem services expected from a
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forest given those possible future scenarios. A main focus of REDD-plus is planted forests,

especially on degraded and deforested landscapes. Restoration of forest ecosystems can be

accomplished best by understanding the basic ecosystem functions and processes relevant

to local circumstances. For example, planning for restoration on peat soils will necessarily

differ from that on dry soils. A growing body of evidence suggests that increased levels of

biodiversity can play a role in enhancing many of the services that are derived from a

planted forests and plantations. Nevertheless, assuming that restoring some level of bio-

diversity will equate to a certain level of ecosystem services is likely to be incorrect. This is

especially true over short time periods because, while planting trees is relatively easy, the

recovery of functioning ecosystems takes time and depends considerably on the avail-

ability of source populations. Further, certain forest structures, such as dead wood and deep

detritus, only redevelop with time. Generally, the full complement of biodiversity is

missing from second-growth forests in tropical areas, even in well managed areas (Lewis

2009; Klimes et al. 2012; Putz et al. 2012). There are, however, excellent examples of

ecosystem recovery, with high species richness and recovered benefits and services from

well-planned forest ecosystems. Examples include the new forests of Puerto Rico (Lamb

et al. 2005) and the jarrah forests of western Australia (Koch and Hobbs 2007). We believe

that REDD-plus planted forestry can be best accomplished if planning is done in an

ecologically holistic manner and considers adapting to future climate, by the development

of fully functioning forest ecosystems across large landscapes.

Acknowledgments Support for this paper was provided in part by the International Union of Forest
Research Organisations (IUFRO) Task Force 24 on ‘Biodiversity and Ecosystem Services’ and the IUFRO
’Global Forest Expert Panel’. The participation of Kimiko Okabe and Hisatomo Taki was by the The Japan
Environment Research and Technology Development Fund S9.

References

Aizen MA, Feinsinger P (1994) Forest fragmentation pollination and plant reproduction in a Chaco dry
forest Argentina. Ecology 75:330–351

Allen MF, Allen EB, Gomez-Pompa A (2005) Effects of mycorrhizae and nontarget organisms on resto-
ration of a seasonal tropical forest in Quintana Roo Mexico: factors limiting tree establishment. Restor
Ecol 13:325–333

Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree
mortality reveals emerging climate change risks forest forests. For Ecol Manag 259:660–684

Amazonas NT, Martinelli LA, De C Piccolo M et al (2011) Nitrogen dynamics during ecosystem devel-
opment in tropical forest restoration. For Ecol Manag 262:1551–1557

Anand MO, Krishnaswamy J, Kumar A et al (2010) Sustaining biodiversity conservation in human-modified
landscapes in the Western Ghats: remnant forests matter. Biol Conserv 143:2363–2374

Anzures-Dadda A, Andresen E, Martı́nez ML et al (2011) Absence of howlers (Alouatta palliata) influences
tree seedling densities in tropical rain forest fragments in southern Mexico. Int J Primatol 32:634–651

Ashton DH, Kelliher KJ (1996) The effect of soil desiccation on the nutrient status of Eucalyptus regnans F
Muell seedlings. Plant Soil 179:45–56

Balvanera P, Pfisterer AB, Buchmann N et al (2006) Quantifying the evidence forest biodiversity effects on
ecosystem functioning and services. Ecol Lett 9:1146–1156

Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z (2009) Associational resistance and
associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol S 40:1–20

Bawa KS (1990) Plant-pollinator interactions in tropical rain forests. Ann Rev Ecol S 21:399–422
Beaune D, Fruth B, Bollache L et al (2013) Doom of the elephant-dependent trees in a Congo tropical forest.

For Ecol Manag 295:109–117
Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a

review on landscape composition biodiversity and natural pest control. Proc R Soc B 273:1715–1727
Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated

plants in Britain and the Netherlands. Science 313:351–354

Biodivers Conserv

123



Binkley D (2012) Understanding the role resource use efficiency in determining the growth of trees and
forests. In: Montes L, Schlichter T (eds) Forests in development: a vital balance. Springer, The Hague,
pp 13–26

Bisseleua HBD, Fotio D, Yede et al (2013) Shade tree diversity cocoa pest damage yield compensating
inputs and farmers’ net returns in West Africa. PLoS ONE 8:e56115

Braganca MAL, Zanuncio JC, Picanco M et al (1998) Effects of environmental heterogeneity on Lepidoptera
and Hymenoptera populations in Eucalyptus plantations in Brazil. For Ecol Manag 103:287–292

Brauman KA, Daily GC, Duarte TK et al (2007) The nature and value of ecosystem services: an overview
highlighting hydrologic services. Annu Rev Environ Resour 32:67–98

Bridgeland WT, Beier P, Kolb T et al (2010) A conditional trophic cascade: birds benefit faster growing
trees with strong links between predators and plants. Ecology 91:73–84

Brockerhoff E, Jactel H, Parrotta JA et al (2008) Biodiversity and planted forests—oxymoron or oppor-
tunity? Biodivers Conserv 17:925–951

Brodie JF, Aslan CE (2012) Halting regime shifts in floristically intact tropical forests deprived of their
frugivores. Restor Ecol 20:153–157

Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergistic extinction dynamics under global change. Trends
Ecol Evol 23:453–460

Brown BJ, Ewel JJ (1987) Herbivory in complex and simple tropical successional ecosystems. Ecology
68:108–116

Brown AE, Podger GM, Davidson AJ et al (2007) Predicting the impact of plantation forestry on water users
at local and regional scales: an example forest the Murrumbidgee River basin Australia. For Ecol
Manag 251:82–93

Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil forest the trees? Agric
Ecosyst Environ 104:185–228

Bueno RS, Guevara R, Ribeiro MC et al (2013) Functional redundancy and complementarities of seed
dispersal by the last Neotropical megafrugivores. PLoS ONE 8:e56252

Bullock JM, Aronson J, Newton AC et al (2011) Restoration of ecosystem services and biodiversity:
conflicts and opportunities. Trends Ecol Evol 26:541–549

Campos-Arceiz A, Blake S (2011) Megagardeners of the forest—the role of elephants in seed dispersal.
Acta Oecol 37:542–553

Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity enhances ecosystem functioning through
interspecific facilitation. Nature 415:426–429

Cardinale BJ, Ives AR, Inchausti P (2004) Effects of species diversity on the primary productivity of
ecosystems: extending our spatial and temporal scales of inference. Oikos 104:437–450

Cardinale BJ, Srivastava DS, Duffy JE et al (2006) Effects of biodiversity on the functioning of trophic
groups and ecosystems. Nature 443:989–992

Cardinale BJ, Matulich KL, Hooper DU et al (2011) The functional role of producer diversity in ecosystems.
Am J Bot 98:572–592

Carle J, Holmgren P (2008) Wood from planted forests (2005–2030). For Prod J 58:6–18
Carnus J-M, Parrotta J, Brockerhoff EG et al (2006) Planted forests and biodiversity. J For 104:65–77
Castagneyrol B, Jactel H (2012) Unravelling plant-animals diversity relationships: a meta-regression ana-

lysis. Ecology 93:2115–2124
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