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CHAPTER 2

BACKGROUND

Several metrics are used to quantify the lack of
available water in an environment and identify drought
occurrences. Each metric focuses on different effects
of water deficits, such as agricultural, meteorological,
hydrological, ecological, or socioeconomic drought
(Vose et al. 2016). Thirteen drought indices were
developed and used in the United States in the 20th
century, and some are still commonly used (Heim
2002). Zargar et al. (2011) described 74 indices used to
characterize droughts.

Many of the climatic parameters needed to calculate
these indices are based on observed values and are
available in digital formats at fine spatial resolutions
(Abatzoglou 2013, Daly et al. 2008). Other parameters
are downscaled from future projections at temporal
resolutions, either monthly (Thrasher et al. 2013) or daily
(Maurer et al. 2014). Indices that use remotely sensed
data to document past or near real-time droughts are
not suited to model potential future drought conditions.
This chapter focuses on the climate-based indices most
conducive to projecting future conditions.

Regardless of the metric used to define drought,

the ability to access past and projected future

climate data provides information for multiple types

of users: modelers seeking to improve climatic
models, researchers and decision makers who need
assessments on the current and potential future
vulnerability of sectors affected by droughts, and the
interested public wanting information on how climatic
conditions may change. Although much research

has focused on future changes in precipitation and
temperature, few studies have examined potential
changes in drought events for the United States (but
see Cook et al. 2015, Dai 2012, Ryu and Hayhoe 2017).
Regardless of scale, it is a challenging task to model
complex, interconnected processes that regulate
climatic patterns. Although modeling outputs may not
align precisely with observed data, the resulting general
trends provide insights into aspects of the climate
system that influence observed changes and thus help
to improve and refine modeling techniques (Hoskins
et al. 2008). Individual and ensembles of models that
indicate repeated periodic extreme events for one

or more locations help to develop risk assessments
(O’'Neill et al. 2017).

In this chapter, we present some of the challenges
associated with spatial modeling of drought in the
past and into the future, and we examine some
potential results from downscaled projections for the
conterminous United States. The results are
presented for the seven geographic regions used by
the most recent U.S. National Climate Assessment
(USGCRP 2017).

INDICES AND CLIMATIC DRIVERS
FOR EXAMINING DROUGHT

Several indices related to drought are derived from
climatic information; some also require soil properties.
Examples include precipitation only (McKee et al.
1993), precipitation and temperature (Heddinghaus
and Sabol 1991, Palmer 1965), precipitation and soil
moisture (Keetch and Byram 1968, McGuire and Palmer
1957), and precipitation, temperature, and soil moisture
(van der Schrier et al. 2013, Wells et al. 2004). These
examples are not exhaustive, but they are generally the
better known and more widely used indices applied in
the United States and elsewhere.

The Palmer Drought Severity Index (PDSI) (Palmer
1965) has been widely used to incorporate precipitation
and temperature into a water balance model to classify
meteorological and hydrological droughts. In response
to criticisms of spatial incomparability on the original
PDSI (Alley 1984, Guttman et al. 1992), it was modified
by Heddinghaus and Sabol (1991) and updated by Wells
et al. (2004) to account for local normal conditions via a
self-calibrating approach.

Potential evapotranspiration (PET) is used to determine
how much soil moisture could be lost under specified
temperature conditions. Potential evapotranspiration

is used by PDSI and other indices (e.g., standardized
precipitation evapotranspiration index [Vicente-Serrano
et al. 2010], moisture index [Koch et al. 2013]). Opinions
vary on the best way to calculate PET. A key issue

is whether temperature-only-based methods (e.g.,
Thornthwaite 1948) are sufficient, or if process-based
methods like the Penman-Monteith model (Burke

et al. 2006) are needed. Another issue is whether
solar radiation and vapor pressure deficit are needed

to calculate PET, especially when predicting future
climate model outputs. Both Dai (2011) and van der
Schrier et al. (2013) swapped the Thornthwaite model
with the Penman-Monteith model and found little
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effect on the resulting classification of drought by the
PDSI. However, Milly and Dunne (2017) conducted a
comprehensive study of several methods of calculating
PET and projecting into the future on a global scale.
For the period 1981-2000 compared to a multi-model
mean, temperature-based methods of calculating
evapotranspiration resulted in future projections

with a higher percentage of change, and process-
based methods (e.g., Penman-Monteith) had a lower
percentage of change. We chose to use the Penman-
Monteith approach to calculating PET because it is less
biased than other methods.

Limitations and challenges with PDSI and time-
series data—Palmer’s (1965) original equation used the
Thornthwaite (1948) method to calculate PET, where
temperatures below 32 °F do not result in positive
values of PET. The PDSI in this case therefore assumes
that evapotranspiration does not occur under freezing
conditions. However, PDSI is usually calculated using
weekly or monthly climate data, and temperatures

can fluctuate (above and below freezing) on smaller
time scales. Therefore, snowmelt functions have

been incorporated to account for delayed changes in
soil moisture (Dai et al. 2004, Yan et al. 2014). These
functions generally accumulate a snowpack when
monthly temperatures are <32 °F and release a portion
of the stored water when monthly temperature is above
some threshold, usually above freezing.

Another common issue with many of the currently used
drought and aridity indices (e.g., PDSI, standardized
precipitation evapotranspiration index) is that they
produce location-based, time series datasets that are not
conducive for examining and interpreting thousands of
locations over multiple periods. We sought a method to
simply evaluate long-term drought that could be applied
across the conterminous United States at a relatively
fine scale. As a historic example, Marcovitch (1930)
measured the severity of drought as a function of the
length of consecutive days with temperatures >90 °F,
weighted by total monthly precipitation for the period
June through September. This index results in a single
value that was originally intended to define conditions
that were favorable or unfavorable for the Mexican bean
beetle (Epilachna varivestis), but it could also be modified
to represent normal conditions by averaging among
many years. Although interesting, this index has limited
value because an arbitrary threshold of 90 °F is used to
define drought, but this criterion ignores soil moisture
or water-holding capacity. Nonetheless, the notion of
combining multiple time slices (e.g., months) has merit

when visually representing drought conditions, which
we sought to replicate in the analysis reported here.
By aggregating time series data into a weighted value,
such as the frequency of drought events weighted by
their intensity, a single value can represent the relative
droughtiness of a location over a given time.

In this chapter, we present indices that capture past and
projected future drought periods as well as potential
periods of excessive moisture. We present these
indices for each of four 30-year periods from 1980

t0 2099, showing the projected increase in drought
conditions over much of the conterminous United
States, especially under climate change scenarios
with higher levels of greenhouse gas emissions

(e.g., RCP 8.5, in which humans do not aggressively
pursue a substantial reduction of inputs that influence
atmospheric warming).

Two cumulative indices, the cumulative drought severity
index (CDSI) and the cumulative moisture severity index
(CMSI), were derived from the frequency of monthly
drought (CDSI) and excessive moisture (CMSI) events,
weighted by their intensity (Peters et al. 2015). Intensity
was defined by seven self-calibrated PDSI (scPDSI)
classes (Wells et al. 2004), three of drought, three of
excessive moisture, and one of normal moisture. To
represent the increase of intensity, each cumulative
month received a weighting. Extreme drought (scPDSI
<-3.9) or extremely moist (scPDSI >3.9) received a
weighting of 3; severe drought (scPDSI -3.9 to -3.0)

or a very moist spell (scPDSI 3.0 to 3.9) received a
weighting of 2; moderate drought (scPDSI -2.9 to -2.0)
or unusually moist spell (scPDSI 2.0 to 2.9) received

a weighting of 1. Normal conditions were assumed
when monthly scPDSI values ranged from -1.9 to +1.9
and received a zero weighting. Using the four 30-year
periods of 1980-2009, 2010-2039, 2040-2069, and
2070-2099, CDSI and CMSI values were calculated
from monthly scPDSI data derived from the climate

and drought indices tools (National Integrated Drought
Information System 2018) and accumulated for the

360 months in each 30-year period. The calibration
period (1960-2010) can also influence the later periods
by truncating the range of conditions representative

of “normal” for a location, resulting in more extreme
conditions (Dai and Zhao 2017). For this chapter, we
examined how conditions might differ going forward for
trees that were established over the last few decades
(1960-2010).
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Projected Drought for the Conterminous United States in the 21st Century

Data Sources

Climate: current and future projections—Monthly
precipitation, temperature, and mean PET were acquired
from the climate data prepared for the Resources
Planning Act (RPA) 2020 Assessment (Joyce et al.
2018). These data included the general circulation
model (GCM) and representative concentration pathway
(RCP) combinations of HadGEM2-ES365 4.5 (Had 4.5)
and 8.5 (Had 8.5), IPSL-CM5A-MR 8.5 (IPSL 8.5), and
MRI-CGCM3 4.5 (MRI 4.5) for a historical period of
1960-2005. Projections were modeled for the period
2006-2099. These GCM-RCP combinations represent
four potential future conditions: hot-wet (HW) (Had 4.5),
hot-slightly dry (HSD) (Had 8.5), hot-dry (HD) (IPSL
8.5), and warm-wet (WW) (MRI 4.5). These projections
were statistically downscaled by Abatzoglou and Brown
(2012) to ~4-km? grids.

In addition to using the climate data to calculate
monthly scPDSI values, mean 30-year total annual and
summer (June/July/August) precipitation and summer

Soil available water supply (in)
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maximum temperature values were summarized
across the conterminous United States for the
periods of 1980-2009, 2010-2039, 2040-2069, and
2070-2099.

Soil-available water supply—Soil-available water
supply (AWS) to a depth of 59 inches was obtained from
the State soil survey geographic database (STATSGO)
and aggregated to approximately 2.5- x 2.5-mile grids (fig.
2.1). The self-calibrated PDSI algorithm (Wells et al. 2004)
partitions the available soil moisture, a static variable, into
two bins: a top layer having a capacity to hold 1 inch of
soil moisture, and a lower layer equal to any remaining
soil moisture. Incorporating information about the soil's
capacity to hold water to a depth of 59 inches produces
PDSI values that are more relevant to the impact of
drought on tree species, which access soil moisture
much deeper than most agricultural and grassland
vegetation. Across the conterminous United States, AWS
ranges from 0 to 32 inches, with generally higher values,
>8 inches, in the Central Plains region and along portions
of East and West coasts (fig. 2.1).

r .

Figure 2.1—Soil-available water supply to a depth of 59 inches, derived from the U.S. Department of Agricul'iure, Natural
Resources Conservation Service gridded State soil survey geographic database mapped across the conterminous United States at

approximately 2.5- x 2.5-mile (1/24-degree) grids.

EFFECTS OF DROUGHT ON FORESTS AND RANGELANDS IN THE UNITED STATES



CHAPTER 2

REGIONAL ANALYSES—ASSESSMENT
OF TRENDS

To further evaluate the trends across the conterminous
United States, we used the regions in the fourth
National Climate Assessment (NCA4) (USGCRP

2017) to break out the patterns geographically with

the drought inputs and indices. The NCA4 divides the
United States into seven regions by State boundaries.
For each, we present the mean values from four GCM-
RCP scenarios for some precipitation, temperature, and
drought metrics (tables 2.1-2.7).

All seven U.S. regions show an increase in annual
precipitation by the end of the 21st century for the WW,
HW, and HSD scenarios, but a lessening of annual
precipitation for all regions except the Northeast and
Northwest under the HD scenario (tables 2.1-2.7). On
the other hand, summer precipitation, most important for
vegetative growth, is projected to decrease by the end
of the century for almost all regions and scenarios except
the WW scenario. As one example, in the Northern
Plains under the HSD scenario, annual precipitation

is projected to increase by 9.6 percent, but summer
precipitation is projected to decrease by 28.7 percent;
coupled with an 18.9-percent increase in temperature,
this yields a 470-percent increase in the CDSI (table 2.3).

Although these increases in precipitation under the

WW, HW, and HSD scenarios, if realized, could mitigate
some of the effects of projected warmer temperatures,
seasonal shifts in precipitation and reductions to
snowpacks can exacerbate warming by reducing soll
moisture at critical times in plant growth, producing
physiological stress on plants. The rate at which
precipitation is projected to change over the three periods
varied among regions, where some regions are expected
to experience increases in summer precipitation during
the 2010-2039 period and then reductions during the
middle and later portions of the century.

All regions and all scenarios show marked increases

in mean maximum summer temperatures, increasing
throughout the century (tables 2.1-2.7). These increases
were most severe in the HSD scenario (up to a
19.6-percent increase in the Northwest by 2099, rising

from 77.7 t0 92.9 °F), followed by HD, HW, and finally,
WW, which had only a 2.6- to 4.3-percent increase in
maximum summer temperatures. Each of the seven
U.S. regions is projected to experience differences in
the amount and rate of warming, especially under RCP
8.5, which may result in especially intensified drought
conditions in some locations due to a concomitant
reduction in summer precipitation. Northern regions
are generally expected to experience larger changes

in maximum summer temperatures by century’s end
(tables 2.1-2.4) compared to southern regions (tables
2.5-2.7). But because the southern zones are already
relatively hot, conditions in these locations could
become very stressful for many organisms, including
humans, at times when monthly average maximum
summer temperatures reach 100.6-105.4 °F (see also
Matthews et al. 2018). Thus, the “hot droughts” already
documented in the Southwest (Allen et al. 2015) will be
exacerbated there and may be observed in other parts
of the Nation.

Monthly scPDSI values, used to derive the CDSI and
CMSI, were examined as a percentage of each region’s
area experiencing five conditions under the four GCM-
RCP scenarios: extreme drought (scPDSI <-3.9), severe
drought (-3.9 to -3.0), moderate drought (-2.9 to -2.0),
near-normal (-1.9 to 1.9), unusual moist spell (2.0 to
2.9), very moist spell (3.0 to 3.9), and extremely moist
(>3.9) (fig. 2.2). Figure 2.2 shows changes in PDSI
among the four 30-year periods, with increased drought
conditions during the two later periods (2040-2069,
2070-2099) for all regions. Concomitantly, except for
three regions (Northern Plains, Southwest, Southeast)
under the WW scenario, all regions and scenarios
showed a decline in cumulative moisture severity by
end of the 21st century (tables 2.1-2.7). Although
drought frequency and/or intensity is projected to
increase regardless of scenario over this century,
reductions to the near-normal and moisture surplus
conditions varied regionally and by scenario. The two
wet scenarios (WW, HW) retain the most near-normal
conditions, whereas the two dry scenarios (HSD,

HD) vary among near-normal and moisture surplus
conditions (fig. 2.2).

The CDSI was derived by weighting the frequency
of monthly self-calibrated PDSI values representing
drought conditions as moderate (1), severe (2), and
extreme (3). Projections indicate more frequent and/
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CHAPTER 2

Projected Drought for the Conterminous United States in the 21st Century
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Figure 2.2—Palmer Drought Severity Index (PDSI) as the percentage of a 30-year period by area of each National Climate
Assessment region, under four climate change scenarios (see text). Scenarios: warm-wet (WW), hot-wet (HW), hot-slightly
dry (HSD), hot-dry (HD). Dates: historical (1980-2009), early century (2010-2039), mid-century (2040-2069), and late century

(2070-2099).
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CHAPTER 2

or intense drought conditions in the conterminous
United States by the end of the 21st century under all
four GCM-RCP scenarios (tables 2.1-2.7). Compared
to the baseline period, many regions could experience
little change in droughts during 2010-2039, even
under the two dry scenarios (HSD, HD) (figs. 2.5 and
2.6). However, CDSI values are projected to increase
by middle to late century in all regions. Under the
WW scenario, regional changes in CDSI in the first
period (1980-2009) show either little change or some
decreases (i.e., less drought), except in the Southern
Plains and Southwest (fig. 2.3). Nevertheless, under
all four GCM-RCP scenarios, the three later periods
(2010-2039, 2040-2069, 2070-2099) project
increases as much as <2 to thirteenfold by 2070 and
<2 to seventy-threefold by 2100 with the HD scenario
resulting in CDSI values much greater than twofold.
The only exception is for the Southwest, which shows
less drought in 2070-2099 under the WW scenario,
despite sizeable increases in CDSI under the other
three scenarios (tables 2.1-2.7). Under the two dry
scenarios (HSD, HD), all regions show comparatively
larger potential increases of CDSI for mid-century under
the HSD scenario and for late century under the HD
scenario, both indicating more drought if humans do not
curtail greenhouse gas emissions.

The CMSI is the inverse of CDSI, weighting the
frequency of monthly conditions with excess soil
moisture. CMSI generally shows a lessening of excessive
moisture conditions throughout the 21st century under
the HW, HSD, and HD scenarios. However, the Midwest,
Northeast, Northern Plains, and Southeast are projected
to experience slight increases in the frequency and/or
intensity of excess moisture conditions during the first
period (1980-2009) (figs. 2.3-2.6), but stark reductions
for the rest of the century (2010-2039, 2040-2069,

and 2070-2099). Three regions could experience little
change throughout the century: higher CMSI values for
the WW scenario in the Northern Plains, Southeast, and
Southwest. However, averaged across all regions, CMSI
values are projected to decrease under all four scenarios
by the end of the century.

DISCUSSION

Evaluating downscaled climate projections is a widely
used practice to help inform management decisions
and develop policies. However, uncertainties are
associated with the GCMs, RCPs, and downscaling
methods, and these must be considered when
interpreting such data. Therefore, the model results

and trends presented here are a guide, not precise
trajectories. Nonetheless, the four GCM-RCP scenarios
used in this evaluation represent bookends between
warmer-to-hot and drier-to-wetter conditions. All
scenarios show increasing maximum summer
temperatures, sometimes by up to 15 °F.

Precipitation estimates are more uncertain in the climate
models. For example, under the HSD scenario, the
largest increases in annual precipitation are projected
for the Northeast and Southwest regions during the
last 30 years of the 21st century (2070-2099); this
same scenario projects the lowest increases in annual
precipitation in the Northwest and Southeast during
the same period. All models suggest that important
seasonal shifts in precipitation are likely, especially
less precipitation during the summer months. Coupled
with warmer summer temperatures, less summer
precipitation could intensify and prolong physiological
drought conditions, leading to additional tree mortality
due to “hot droughts” (Allen et al. 2015).

Based on projections from four GCM-RCP scenarios,
the conterminous United States could experience
much warmer temperatures and seasonal reductions
in precipitation. The CDSI suggests that more frequent
and/or intense droughts are likely in the middle to latter
parts of the 21st century. Compared to the baseline
period of 1980-2009, the 2010-2039 period shows
little of the widespread increase in CDSI projected

by the end of the century. Some regions may even
experience fewer or less intense droughts during this
period due to projected increases in precipitation.
However, all regions show marked increases in drought
conditions after 2040.

The models presented here use the process-based
Penman-Monteith method to calculate PET. Although
this method is less biased than others (Milly and
Dunne 2017), it could show increasing uncertainty
into the future because several of the underlying
parameters (e.g., relative humidity, vapor pressure
deficit) are modeled with uncertainty and at broad
spatial scales. Therefore, these projections of CDSI
also carry increasing uncertainty as we move into the
latter decades of this century. Using four GCM-RCP
scenarios, we have presented a range of possible
drought conditions for the rest of the century.
Regardless of scenario or region, however, drought
conditions are likely to increase spatially and temporally.
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Figure 2.3—Cumulative drought severity index (CDSI) (A-D) and cumulative moisture severity index (CMSI) (E-H), derived from self-
calibrated Palmer Drought Severity Index values calculated for the warm-wet (WW, MRI-CGCM3 4.5) scenario (see text). Changes in
drought and moisture surplus, respectively, are shown for four 30-year periods: 1980-2009 (A,E), 2010-2039 (B,F), 2040-2069 (C,G),
and 2070-2099 (D,H). National Climate Assessment regions are outlined in bold.

EFFECTS OF DROUGHT ON FORESTS AND RANGELANDS IN THE UNITED STATES
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Figure 2.4—Cumulative drought severity index (CDSI) (A-D) and cumulative moisture severity index (CMSI) (E-H), derived from
self-calibrated Palmer Drought Severity Index values calculated for the hot-wet (HW, HadGEM2-ES365 4.5) scenario (see tables).
Changes in drought and moisture surplus, respectively, are shown for four 30-year periods: 1980-2009 (A,E), 2010-2039 (B,F),
2040-2069 (C,G), and 2070-2099 (D,H). National Climate Assessment regions are outlined in bold.
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Figure 2.5—Cumulative drought severity index (CDSI) (A-D) and cumulative moisture severity index (CMSI) (E-H), derived from

self-calibrated Palmer Drought Severity Index values calculated for the hot-slightly dry (HSD, HadGEM2-ES365 8.5) scenario (see
tables). Changes in drought and moisture surplus, respectively, are shown for four 30-year periods: 1980-2009 (A,E), 2010-2039
(B,F), 2040-2069 (C,G), and 2070-2099 (D,H). National Climate Assessment regions are outlined in bold.
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Figure 2.6 —Cumulative drought severity index (CDSI) (A-D) and cumulative moisture severity index (CMSI) (E-H), derived from self-
calibrated Palmer Drought Severity Index values calculated for the hot-dry (HD, IPSL-CM5A-MR 8.5) scenario (see text). Changes in
drought and moisture surplus, respectively, are shown for four 30-year periods: 1980-2009 (A,E), 2010-2039 (B,F), 2040-2069 (C,G),
and 2070-2099 (D,H). National Climate Assessment regions are outlined in bold.
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Much of the literature on meteorological droughts
focuses on soil moisture conditions within the top few
inches, which is essential for shallow-rooted species,
especially agricultural crops. However, the effects of
drought differ for deep-rooted species such as trees
and some grassland species. Therefore, it is important
to consider a deeper soil moisture profile when
parameterizing drought indices. \We have attempted

to address this issue by using a deeper soil horizon for
soil-available water supply, but additional modifications
may be necessary for this and other indices. The ability
of trees to access water in deeper horizons during
droughts is critical for survival.

Stress from drought can compound increased stress
from other sources (e.g., competitors, disease, fire,
pests), reducing the ability of trees to cope with overall
physiological stress (Allen et al. 2015, Clark et al. 2016,
Luce et al. 2016) and potentially resulting in the Manion
decline spiral (Manion 1991). For example, the effects
of drought and bark beetles on tree stress are well
understood in the Western and Southeastern United
States (Kolb et al. 2016). However, little is known about
how forest composition in the Eastern United States
might be affected by drought combined with insect
outbreaks (e.g., Asian longhorned beetle [Anoplophora
glabripennis], emerald ash borer [Agrilus planipennis],
gypsy moth [Lymantria dispar], hemlock woolly adelgid
[Adelges tsugael, mountain pine beetle [ Dendroctonus
ponderosae], southern pine beetle [D. frontalis]) and
pathogens (e.g., oak wilt [ Ceratocystis fagacearum],
sudden oak death [Phytophthora ramorum], white pine
blister rust [Cronartium ribicolal). Increasing numbers
of nonnative species add to stress in native forests
because nonnatives are often more competitive than
natives during drought conditions. Although effects of
drought on ecosystems in arid to semiarid regions of
the Western United States have been well documented
(Pederson et al. 2014), more droughts in the temperate
Eastern United States in the future may produce novel
climatic conditions and unknown effects on forests.

Concentrations of atmospheric CO, are expected to
increase during the 21st century, although plant species
responses over large regions to such increases is
uncertain (Allen et al. 2015, Swann et al. 2016). This
uncertainty can also influence the amount and even the
direction of change for species evaluated in vulnerability
assessments, depending on the metrics used to define

drought conditions and the role of CO, enrichment in
the analysis (Burke and Brown 2007, Swann et al. 2016).

Evaluation of GCM projections—Time will tell
whether GCM projections are accurate, but regardless
of the outcome, resource managers can make better
informed decisions by examining a range of potential
scenarios. The projections presented here include
ranges of warming and wetting that are within the
bounds of other model ensembles. Diversity of species
composition and structure can help to reduce the
overall effects of drought on forests (Clark et al. 2016).
Therefore, evaluations of GCM projections should not
only focus on how disturbances may change, but also
consider which species might be favored by newly
suitable habitat or increased resources (lverson et al.
2008, 2011, 2017; Matthews et al. 2011).

Long-term soil moisture data—Some drought indices
require information related to soil moisture, and spatial
datasets related to soil characteristics are improving and
becoming more available. Because of completeness
and computational issues, we chose to use the older,
coarse-level STATSGO data for the conterminous
United States evaluation, and we found that it does not
heavily influence the regional calculations of PDSI and
CDSI/CMSI. This dataset does not provide long-term
measures of soil moisture. Satellite-based imagery of
soil moisture conditions can help to identify trends from
around 1980 to the present (Nicolai-Shaw et al. 2017),
but these data are of limited value in highly vegetated
regions and represent only a series of snapshots along
a timeline.

CONCLUSIONS

Analyzing future projections of drought under multiple
climate change scenarios can provide insights on how
regional temperatures, precipitation, and drought may
change throughout this century, compared to baseline
conditions of the period 1980-2009. The projections
often show minimal changes in the next few decades,
followed by large changes in the second half of the
century. These changes will likely negatively affect
plant growth and survival, leading to changes in forest
composition and structure. These expected changes
are larger under the two dry scenarios, especially the
hot-dry scenario, emphasizing the value of reducing
greenhouse gas emissions.

These projections of drought, considered in light of
the model’s uncertainties, can help managers prioritize
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strategies that may allow ecosystems to adapt to newer
conditions. Forest management activities have the
ability to shape the next forest over the course of this
century, and the effects of different climate conditions
must be considered to ensure that management goals
are achieved.
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