Andrew C. Oishi
Team Leader (Acting), Research Ecologist
3160 Coweeta Lab Road
Otto
North Carolina
United States
28763-9218
Phone: 828-524-2128
Fax: 828-369-6768
Contact Andrew C. Oishi
Current Research
Forest ecosystem ecology, plant physiology, and ecohydrology. Examine the response of forest mass and energy cycling to biophysical drivers, including climate, topography, species composition, and management history. Quantify the components of the hydrologic and carbon budgets of southern Appalachian forests over the course of post-harvest stand development from 3 years to 200 years. Identify the magnitude of hydroclimate variability in the southern Appalachians and its effect on forest processes. Methodological approaches include leaf- and tissue-level physiology, efflux chambers, sap flux, eddy covariance, micrometeorology, and ecosystem modelling.
Research Interests
Forest ecosystem ecology, plant physiology, and ecohydrology
Past Research
Examining seasonal and interannual variability in the components of the hydrologic budget in a mature, Southeastern, deciduous forest. Quantifying factors affecting forest floor soil CO2 efflux, including species composition, site productivity, climatic forcing factors, nitrogen availability and fertilization, and elevated atmospheric CO2. Measuring and modeling components of the forest carbon cycle.
Why This Research is Important
Forests play an important role in the supply of clean water resources and the uptake and sequestration of carbon dioxide from the atmosphere. Our ability to understand forest biophysical processes will help us to predict the sensitivity of the hydrologic and carbon cycles are to climatic variability, disturbance, and management practices.
Education
- Duke University, Ph.D. Forest Ecology 2012
- Duke University, B.A. Environmental Science and Policy 1997
Professional Experience
- Research Ecologist, USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory
2013 - Current - Postdoctoral Associate, Duke University
2012 - 2013
Featured Publications & Products
- Oishi, A. Christopher; Miniat, Chelcy F.; Novick, Kimberly A.; Brantley, Steven T.; Vose, James M.; Walker, John T. 2018. Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest.
- Novick, Kimberly A.; Oishi, Andrew C.; Miniat, Chelcy Ford. 2016. Cold air drainage flows subsidize montane valley ecosystem productivity.
- Novick, Kimberly A.; Ficklin, Darren L.; Stoy, Paul C.; Williams, Christopher A.; Bohrer, Gil; Oishi, Andrew C.; Papuga, Shirley A.; Blanken, Peter D.; Noormets, Asko; Sulman, Benjamin N.; Scott, Russell L.; Wang, Lixin; Phillips, Richard P. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes.
- Oishi, A. Christopher; Palmroth, Sari; Butnor, John; Johnsen, Kurt; Oren, Ram. 2013. Spatial and temporal variability of soil CO2 efflux in three proximate temperate forest ecosystems.
- Ward, Eric J.; Oren, Ram ; Kim, Hyun Seok; Kim, Dohyoung ; Tor-ngern, Pantana ; Ewers, Brent E.; McCarthy, Heather R.; Oishi, A. Christopher; Pataki, Diane E.; Palmroth, Sari ; Phillips, Nathan G.; Schäfer, Karina V.R. 2018. Evapotranspiration and water yield of a pine-broadleaf forest are not altered by long-term atmospheric CO 2 enrichment under native or enhanced soil fertility.
- Domec, Jean-Christophe; King, John S.; Ward, Eric; Oishi, A. Christopher; Palmroth, Sari; Radecki, Andrew; Bell, Dave M.; Miao, Guofang; Gavazzi, Michael; Johnson, Daniel M.; McNulty, Steve G.; Sun, Ge; Noormets, Asko. 2015. Conversion of natural forest to managed forest plantations decreases tree resistance to prolonged droughts.
- Oishi, Andrew C.; Hawthorne, David; Oren, Ram. 2016. Baseliner: an open source, interactive tool for processing sap flux data from thermal dissipation probes..
Publications
- Zhang, Quan ; Barnes, Mallory ; Benson, Michael ; Burakowski, Elizabeth ; Oishi, A. Christopher; Ouimette, Andrew ; Sanders‐DeMott, Rebecca ; Stoy, Paul C.; Wenzel, Matt ; Xiong, Lihua ; Yi, Koong ; Novick, Kimberly A. 2020. Reforestation and surface cooling in temperate zones: mechanisms and implications.
- Denham, Sander O.; Coyle, David R.; Oishi, A. Christopher; Bullock, Bronson P.; Heliövaara, Kari ; Novick, Kimberly A. 2019. Tree resin flow dynamics during an experimentally induced attack by Ips avulsus , I. calligraphus , and I. grandicollis.
- Zhang, Quan; Phillips, Richard P.; Manzoni, Stefano; Scott, Russell L.; Oishi, A. Christopher; Finzi, Adrien; Daly, Edoardo; Vargas, Rodrigo; Novick, Kimberly A. 2018. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship.
- Tor-ngern, Pantana; Oren, Ram; Palmroth, Sari; Novick, Kimberly; Oishi, Andrew; Linder, Sune; Ottosson-Lofvenius, Mikaell; Nasholm, Torgny. 2018. Water balance of pine forests: Synthesis of new and published results.
- Kim, Dohyoung; Oren, Ram; Clark, James S.; Palmroth, Sari; Oishi, A. Christopher; McCarthy, Heather R.; Maier, Chris A.; Johnsen, Kurt. 2017. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes.
- Tor-ngern, Pantana; Oren, Ram; Oishi, Andrew C.; Uebelherr, Joshua M.; Palmroth, Sari; Tarvainen, Lasse; Ottosson-Löfvenius, Mikaell; Linder, Sune; Domec, Jean-Christophe; Näsholm, Torgny. 2017. Ecophysiological variation of transpiration of pine forests: synthesis of new and published results.
- Oishi, Andrew C.; Miniat, Chelcy F. 2016. An interactive tool for processing sap flux data from thermal dissipation probes.
- Ghannam, Khaled; Nakai, Taro; Paschalis, Athanasios; Oishi, Andrew C., A..; Kotani, Ayumi; Igarashi, Yasunori; Kumagai, Tomo'omi; Katul, Gabriel G. 2016. Persistence and memory timescales in root-zone soil moisture dynamics.
- Manoli, Gabriele; Domec, Jean-Christophe; Novick, Kimberly; Oishi, Andrew C.; Noormets, Asko; Marani, Marco; Katul, Gabriel. 2016. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.
- Bell, David M.; Ward, Eric J.; Oishi, A. Christopher; Oren, Ram; Flikkema, Paul G.; Clark, James S.; Whitehead, David. 2015. A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data.
- Sulman, Benjamin N.; Phillips, Richard P.; Oishi, A. Christopher; Shevliakova, Elena; Pacala, Stephen W. 2014. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2.
- Kim, Dohyoung; Oren, Ram; Oishi, A. Christopher; Hsieh, Cheng-I; Phillips, Nathan; Novick, Kimberly A.; Stoy, Paul C. 2014. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest.
- Oishi, A. Christopher; Palmroth, Sari; Johnsen, Kurt H.; McCarthy, Heather R.; Oren, Ram. 2014. Sustained effects of atmospheric CO2 and nitrogen availability on forest soil CO2 efflux.
Research Highlights
Highlight | Title | Year |
![]() SRS-2018-52 | Warmer temperatures reduce forest productivity but not water use Warmer temperatures are expected to lengthen the growing season for forests. Longer growing seasons may also increase forest water use and produ ... | 2018 |