Summary
The Great Lakes Restoration Initiative is investing hundreds of millions of dollars to improve the quality of the Great Lakes. One of the projects promotes nearshore health and prevention of harmful algal blooms. But might these problems be minimized through wise management and stewardship of the lakes' watersheds Forest Service scientists demonstrated that sediment and phosphorus delivery to the lakes is influenced by land use and land cover and their change over time. For example, phosphorus levels in Lake Superior increased with the proportion of persisting forest, forest disturbed during 2000-2009, and agricultural land; sediments (turbidity) increased with the proportion of persisting forest, forest disturbed during 2000-2009, agricultural land, and urban land. In both cases, agriculture and forest disturbance were the most important predictors of water quality impairment. Water quality is not measured everywhere. Forest Service scientists developed models to predict likely water quality problems in streams that are not monitored. This will allow land managers to prioritize restoration investments and management activities across the entire basin, monitored and not monitored. The supporting inventory and forest canopy cover change data were published for the public's use in their own assessments.