You are here: Home / Research Topics / Research Highlights / Individual Highlight

Research Highlights

Individual Highlight

Use of Airborne Digital Imagery to Examine Floodplain Complexity at Varying Discharges

Photo of Aerial view of island braided study reach of the Clark Fork River as it flows through the Missoula valley in western Montana. U.S. Department of Agriculture Forest Service.Aerial view of island braided study reach of the Clark Fork River as it flows through the Missoula valley in western Montana. U.S. Department of Agriculture Forest Service.Snapshot : The typical way water moves through a floodplain is considered a river’s natural flow regime and it includes the size, timing, and duration of flooding events. The normal pattern of a river’s discharge is linked to the construction and destruction of its floodplain, which then affects biodiversity, plant and animal life cycles, and ecological integrity. Understanding the link between discharge and floodplain structure is critical as natural flow regimes are increasingly threatened by irrigation, dams, and climate change.

Principal Investigators(s) :
Driscoll, Katelyn P.  
Research Location : Montana
Research Station : Rocky Mountain Research Station (RMRS)
Year : 2016
Highlight ID : 1057

Summary

This Forest Servie study used aerial photographs collected at varying discharges throughout a flood to examine how the amount of water moving through a floodplain is related to the abundance and diversity of different habitats. The floodplain was divided into three zones, the main channel, the parafluvial (active channel), and the orthofluvial (seasonally flooded), and researchers tracked changes within each zone. The results demonstrated that diverse habitats were created and destroyed throughout the flood, which directly affected habitat heterogeneity at different flows. The three zones evolved and provided different habitat types at each discharge and the complexity of the floodplain as a whole was driven by the parafluvial zone. Furthermore, habitats that occupy a small proportion of the landscape were very important to habitat diversity and therefore ecological integrity. The area of some habitat types, but not all, changed throughout the flood, indicating that discharge was only a partial driver of the abundance of aquatic habitats. While the researchers concluded there was a relationship between discharge and floodplain complexity, the association is influenced by location on the landscape. The study underscores the importance of natural flow patterns and how the timing, size, and frequency of flooding impacts complexity.

(Related publication: Driscoll, Katelyn P. 2015. Use of airborne digital imagery to examine floodplain complexity at varying discharges. Thesis, University of Montana, Missoula, MT.)

Forest Service Partners

External Partners

 
  • Dr. Ric Hauer, PI, University of Montana