USDA Forest Service

Urban Forest Connections
webinar series

Second Wednesdays | 1:00 – 2:00 pm ET
www.fs.fed.us/research/urban-webinars

This meeting is being recorded. If you do not wish to be recorded, please disconnect now.

USDA is an equal opportunity provider and employer.
WILDLIFE CONSERVATION IN CITIES AND SUBURBS: RESEARCH, PROGRAMS, TOOLS

Susannah Lerman
Research Ecologist
USDA Forest Service & University of Massachusetts Amherst

David Mizejewski
Naturalist: Media/TV
National Wildlife Federation

Naomi Edelson
Director, State and Federal Wildlife Partnerships
National Wildlife Federation
Beyond Benefits for Humans: How Cities can Support Ecosystem Services for Wildlife

Susannah Lerman
US Forest Service Northern Research Station
Environmental Conservation, University of Massachusetts
The Birds and the Bees

Provisioning Services
- 7,000 – 9,000 insects per clutch
- $56 billion per year
The Birds and the Bees

Cultural Services
- 70 million watch wildlife
Wildlife and Urbanization

Biodiversity

Habitat Loss and Alteration
80% of Americans Live Here
The Urban Forest
The Urban Forest
The Urban Forest

- Nest
- Flying insects
- Cavity nest
- Water
- Nectar
- Earthworms
- Cover
The Urban Forest

- Nest
- Flying insects
- Cavity nest
- Water
- Nectar
- Earthworms
- Cover
Strategies for Enhancing the Urban Forest

Assessing Habitat

Conservation Partners

Creating Habitat
i-Tree Wildlife

Lerman et al. 2014 *Landscape and Urban Planning*
<table>
<thead>
<tr>
<th>CITY</th>
<th>Canopy % (0.04 ha)</th>
<th>Lg Tree Density (0.04 ha)</th>
<th>Basal Area (m²/ha)</th>
<th>Deadwood Density (0.04 ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lerman et al. 2014 *Landscape and Urban Planning*
i-Tree Wildlife

<table>
<thead>
<tr>
<th>CITY</th>
<th>Canopy % (0.04 ha)</th>
<th>Lg Tree Density (0.04 ha)</th>
<th>Basal Area (m²/ha)</th>
<th>Deadwood Density (0.04 ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTIMAL</td>
<td>35-62%</td>
<td>>6</td>
<td>8-14</td>
<td>1-3</td>
</tr>
<tr>
<td>PHL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lerman et al. 2014 *Landscape and Urban Planning*
i-Tree Wildlife

<table>
<thead>
<tr>
<th>CITY</th>
<th>Canopy % (0.04 ha)</th>
<th>Lg Tree Density (0.04 ha)</th>
<th>Basal Area (m² / ha)</th>
<th>Deadwood Density (0.04 ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHL</td>
<td>12.5%</td>
<td>0.68</td>
<td>1.91</td>
<td>1.26</td>
</tr>
<tr>
<td>NYC</td>
<td>19.5%</td>
<td>0.63</td>
<td>1.47</td>
<td>0.3</td>
</tr>
</tbody>
</table>

OPTIMAL

<table>
<thead>
<tr>
<th>PHL</th>
<th>Canopy %</th>
<th>Lg Tree Density</th>
<th>Basal Area</th>
<th>Deadwood Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.5%</td>
<td>5.11</td>
<td>10.91</td>
<td>9.06</td>
<td></td>
</tr>
<tr>
<td>NYC</td>
<td>36.0%</td>
<td>2.12</td>
<td>4.57</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Lerman et al. 2014 *Landscape and Urban Planning*
i-Tree Wildlife

<table>
<thead>
<tr>
<th>CITY</th>
<th>Canopy % (0.04 ha)</th>
<th>Lg Tree Density (0.04 ha)</th>
<th>Basal Area (m² / ha)</th>
<th>Deadwood Density (0.04 ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHL (0.2)</td>
<td>12.5%</td>
<td>0.68</td>
<td>1.91</td>
<td>1.26</td>
</tr>
<tr>
<td>NYC (0.15)</td>
<td>19.5%</td>
<td>0.63</td>
<td>1.47</td>
<td>0.3</td>
</tr>
</tbody>
</table>

OPTIMAL

<table>
<thead>
<tr>
<th>CITY</th>
<th>Canopy % (0.04 ha)</th>
<th>Lg Tree Density (0.04 ha)</th>
<th>Basal Area (m² / ha)</th>
<th>Deadwood Density (0.04 ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHL (0.7)</td>
<td>75.5%</td>
<td>5.11</td>
<td>10.91</td>
<td>9.06</td>
</tr>
<tr>
<td>NYC (0.3)</td>
<td>36.0%</td>
<td>2.12</td>
<td>4.57</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Lerman et al. 2014 *Landscape and Urban Planning*
i-Tree Wildlife

Highlights
- Assesses bird habitat potential
- Evaluates habitat improvement plans
- Provides detailed information of habitat requirements

Lerman et al. 2014 *Landscape and Urban Planning*
Neighborhood Nestwatch and Citizen Science
Neighborhood Nestwatch and Citizen Science

The Science

• Monitor backyard bird populations
• Identify management regimes
• Improve wildlife habitat
Neighborhood Nestwatch and Citizen Science

The Engagement

- Increase environmental literacy
- Reconnect people with nearby nature
Neighborhood Nestwatch and Citizen Science

The “Feel Good” Factor
Sustainability Begins at Home
Sustainability Begins at Home

163, 800 km²
- 1.9% of USA lands
- 40-55% of urban forest

Milesi et al. 2005 *Env Mgt*
Sustainability Begins at Home

The lawn as habitat

- Mow less:
- 2 weeks = 70% more flowers
- 3 weeks = 300% more flowers

![Graph showing the increase in lawn flowers with less mowing frequency](image)

$p=0.001$
How does mowing frequency influence ecosystem services?
Sustainability Begins at Home

Bee Abundance

<table>
<thead>
<tr>
<th># of Bees</th>
<th>1 week</th>
<th>2 weeks</th>
<th>3 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lawn Mowing Frequency

p = 0.02

Lerman et al. *in prep*
Sustainability Begins at Home

Bee Abundance

- 1 week: Low bee abundance
- 2 weeks: Increased bee abundance
- 3 weeks: Further increase in bee abundance

Significance: p=0.02

Soil Compaction

- 1 week: High soil compaction
- 2 weeks: Moderate soil compaction
- 3 weeks: Low soil compaction

Lerman et al. *in prep*
Sustainability Begins at Home

Mow less
- Supports beneficial insects
- Implications for stormwater mgt

Lerman et al. *in prep*
Final Thoughts

Building public support
• Improves urban sustainability
• For the birds and the bees
Opportunities

60% Slated for Development

40% Developed

Convention on Biological Diversity
Opportunities

60% Slated for Development
40% Developed

SEES Fellows Program
DEB #1215859

Keith Nislow
David Nowak
Peter Marra

Joan Milam
David Bloniarz
Alix Contosta

Steve DeStefano
David King
Erika Svendsen