
Use of Species Distribution Models in Conservation Biology 
 

Report to the Interagency Special Status and Sensitive Species Program 
USDA Forest Service, Region 6 and  

USDI Oregon/Washington Bureau of Land Management 
 

27 February 2013 
 

Richard Helliwell and Josh Chapman 
Umpqua National Forest, Roseburg, Oregon 

 
 

 
 

 
Cite as: Helliwell, R and J. Chapman. 2013. Use of Species Distribution Models in Conservation Biology.  Report 
on file with: Interagency Special Status/Sensitive Species Program. U.S. Department of Interior, Bureau of Land 
Management, Oregon/Washington and U.S. Department of Agriculture, Forest Service, Region 6.  Portland, Oregon. 
22p. 
  



1 
 

Table of Contents 

Introduction …………………………………………………………………………….…. 2 
The Species Niche Concept ………………………………………………………….......... 2 
Types of Species Distribution Models ……………………………………………………. 4 
Maxent Model Inputs ……………………………………………………………………...  6 
 Species Presence Records ……………………………………………………….… 6 
 Environmental Variables ………………………………………………………..… 7 
 Running the Model ………………………………………………………………. 8 
Maxent Model Outputs …………………………………………………………………. 9 
 Continuous Prediction Map ……………………………………………………… 9 
 Model Evaluation …………………………………………………………………. 10 
 Determination of a Threshold for Classification of Habitat ……………………… 12 
Management Applications of Species Distribution Models ……………………………… 13 
 Conservation Planning and Reserve Design ……………………………………… 13 
 Model Extrapolation – Climate Change and Invasive Specie Range Expansion … 15 
 Models to Guide Surveys ………………………………………………………… 16 
 Project Effects Analysis ………………………………………………………… 17 
Concluding Remarks ……………………………………………………………………… 18 
Literature Cited ……………………………………………………………………………. 19 
 
  



2 
 

Introduction 
 
As of this writing, the US Forest Service and Bureau of Land Management (BLM) in the Pacific 
Northwest were responsible for management of 821 sensitive species along with tracking another 
466 strategic species and 315 survey and manage species.  Although there is some overlap 
between the latter category with the first two, this represents well over one thousand fungi, 
lichens, bryophytes, vascular plants, mammals, birds, amphibians, reptiles, invertebrates and fish 
species of conservation concern. Responsible management of such an immense and diverse 
assemblage of organisms requires finding efficient means of prioritizing, inventorying and 
planning for these taxa.  Species distribution models (SDM) can provide a valuable tool for 
identifying the range and distribution of species often revealing patterns that would not be 
otherwise evident from existing data.  This information is in turn, valuable for guiding inventory, 
informing conservation strategies, designing preserves, and evaluating project effects.   
 
The focus will be on Maxent, a SDM that can generate predicted habitat using only existing 
presence records (i.e. it does not require both presence and absence data).  Maxent is a machine 
learning software package that uses a maximum entropy approach for species distribution 
modeling.  Maxent uses species presence points and a set of environmental variables selected for 
their significance for the species whose habitat is to be modeled to predict environmental 
suitability for the species as a function of the given environmental variables (Phillips et al. 2006).  
In 1979, George E.P. Box declared that, “essentially, all models are wrong, but some are useful”. 
The purpose of this paper is to introduce biologists and botanists to basic modeling theory, model 
creation, and suggest ways models may be used in practical ways to benefit conservation 
planning, species surveys, and project level effects analyses so that they may gain a better 
understanding of how some models can indeed be useful. 
 
 
The Species Niche Concept 
 
Species Distribution Models are based on the Hutchinsonian concept of the species niche.  A 
basic appreciation of this concept is fundamental to understanding SDMs.  In 1957 G. Evelyn 
Hutchinson expanded upon the concept of niche by describing it mathematically in three-
dimensional space.  While a predicted habitat map produced by a SDM is displayed in 
geographic space, the model that produced the map analyzed the environmental space of the 
target species.  This environmental space reflects the various inputs that shape any species 
habitat requirements for food, shelter and reproduction. If an organism has only two 
requirements then its environmental space could be graphed on a simple figure with an x and y 
axis.  However, organisms would typically have myriad requirements requiring a multi-
dimensional graph or three-dimensional model.   This space, or hypervolume, defined in three-
dimensional space is what Hutchinson called the fundamental niche of a species (Figure 1).  
When this fundamental niche is overlapped with the available environment (what Hutchinson 
called the biotope) the area of intersection represents the area that is actually available for the 
species to occupy (Figure 1).  This area is known as the realized niche.  Because the 
fundamental niche would typically include an optimal part with suboptimal areas towards the 
boundaries, the realized niche may only be a subset of the overlap.  This is actually a 
simplification of the real processes that shape habitat because it does not explicitly address 
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niche and habitat interchangeably with the acknowledgement that this imprecision is not 
desirable but it does reflect the entangled history of the two terms (Chase and Leibold 2001).  
 
Types of Species Distribution Models  
 
The extraordinary memory and speed of modern computers has allowed for an increasingly 
myriad number of modeling algorithms available for constructing SDMs, all of which have their 
strengths and weaknesses.  The simplest means of identifying habitat involves a non-statistical 
filtering of the landscape through a Geographic Information System (GIS).  Typically this would 
involve identifying, through empirical or intuitive means, one or more environmental variables 
and intersecting the spatial layers to create a map.  This may produce a useful model if the target 
species exhibits strong fidelity to one or a few well-represented environmental variables in GIS 
and these relationships are well-understood.  For example, if the target species occurs only above 
timberline in subalpine seeps and you are only concerned with the habitat under your 
jurisdiction, then you may not require a sophisticated model to meet your needs.  These habitats 
are usually readily delineated and represent a small fraction of the landscape.  However, if you 
have the apparent habitat but the species isn’t known from your area, this simple model can’t 
predict if past inventory has been inadequate or if habitat is actually unsuitable for some other 
reason.  Because a simple filter exercise doesn’t analyze how the environmental variables 
interact with each other or the target organism it offers only limited predictive or explanatory 
capacity.            
 
Species distribution models generally conform to one of two types: statistical models and 
machine-learning models.  Statistical models typically involve use of some form of regression to 
relate a dependent (or response) variable to an independent (or predictor) variable(s).  There are 
number of statistical models that employ regressions including: Generalized Linear Models 
(GLM), Generalized Additive Models (GAM), Resource Selection Function (RSF) and Non-
Parametric Multiplicative Regressions (NPMR).  All of these use various link functions to fit the 
predictor function to the response function.  Each can perform well depending upon the type of 
data available.  One requirement of each of these models is that they all require that the input 
data be collected using a randomized sampling design that identifies both presence and absence 
locations for the target organism.   
 
Having absence records can improve model performance, however absence data collection is 
expensive and can be difficult to confidently demonstrate, particularly for species that are not 
well understood.  For example, fungi typically fruit inconsistently and only briefly so a sampling 
design based on sporocarp production would require multiple visits per season over several years 
to adequately determine absence.  Distinguishing non-detection from absence is routinely an 
issue with sampling wildlife as well.  In one mark-recapture study of small mammals, detection 
error estimates varied greatly among seven species with one species exhibiting a 23% rate of 
erroneous non-detection (Gu and Swihart 2004).  Detection reliability typically increases with 
more intensive sampling but this can be cost-prohibitive.    
 
Several models are available that require only presence data.  Maxent and Ecological Niche 
Factor Analysis (ENFA) are two machine learning methods that compare environmental data at 
presence locations against the background data throughout the rest of the study area.  Machine 
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learning methods are algorithms that inductively learn the mapping function or classification 
rules directly from the training data (Franklin 2009).  Both statistical and machine learning 
models are correlative methods in that the algorithms can reveal environmental relationships that 
correlate with the areas where a species is known to occur but can’t infer causal relationships.  A 
third type of model that we will refer to only slightly is mechanistic models that attempt to link 
fine scale environmental data directly to physiological or functional traits of species, rather than 
simply presence (Kearney et al. 2010).  This type of model can reveal causal relationships with 
the environment but is very data intensive and requires a greater understanding of the target 
species than is often the case.   
 
Presence-only models allow existing specimen records and observation databases to be utilized 
often without any additional fieldwork.  However, collection area bias can adversely influence 
the resulting model so the quality of these data requires review.  For example, herbarium and 
museum records tend to be associated with roads where access is easy.  Regions that are close to 
populated areas, particularly universities, also tend to be better represented than remote rural 
areas.  Another factor that should be considered is the age of record.  In many instances, a 
collection that was made from a forest or field a century ago is now an urban area.  Also, 
presence records gathered during a different climatic cycle may obscure the role of climate in its 
current potential distribution.  Sample bias leads to overfitting of the data, particularly for small 
data sets, in which the predicted habitat is too closely fitted to the presence points.   Maxent 
utilizes a regularization feature to reduce overfitting and has been demonstrated to perform well 
with few species presence records.   
 
Another consideration in model selection is the type of environmental data that are available.  
Some models can utilize only continuous data (a range of relative values) but not categorical data 
(discrete classes of data values).  Most GIS data that are of interest to modelers are continuous.  
This includes variables such as climatic data, elevation and aspect related data.  In some cases 
categorical data can be converted to binary values based on some predetermined threshold in 
order to be used as continuous data.  Soil Series would be an example of categorical data.  The 
values associated with each geographic unit stand on their own, that is to say the series name is 
not a value that can be quantifiably related to any other series name.  On the other hand, a 
quantity associated with a soil series, such as percent rock, could be entered as continuous data.  
 
Geospatially accurate, fine scale habitat variables are often very hard to come by and the modeler 
must look to surrogates for these variables.  Vegetation variables are often not available across 
multiple landownerships, so often times modeled vegetation variables like those available from 
Landfire (www.landfire.gov), Gap Analyses (http://gapanalysis.usgs.gov/), LEMMA GNN 
(http://www.fsl.orst.edu/lemma/main.php?project=master&id=modelDownloads) or variables 
derived from Landsat (http://landsatlook.usgs.gov/) imagery (e.g., leaf cover, EVI (Enhanced 
Vegetation Index), NDVI (Normalized Difference Vegetation Index), brightness, greenness, 
wetnesss, reflectance, etc.) among others are used as surrogates to approximate finer scale habitat 
requirements. The modeler must have a good grasp on the ecology of the species of interest, or 
have access to species experts to review and suggest habitat variables that have geospatial data 
equivalents to use in creating SDMs. 
 



6 
 

Maxent, which is a contraction of the phrase maximum entropy, has been demonstrated to 
perform as well or better than other models (see Hernandez et al. 2006, Gibson et al. 2007, 
Townsend Peterson et al. 2007, Wisz et al. 2008, Elith and Graham 2009, Rupprecht et al. 2012).  
It requires only presence data, performs well with few presence points and can use both 
continuous and categorical data.   It also is a relatively easy to use program that is available as a 
free download (http://www.cs.princeton.edu/~schapire/maxent/).  For a more in-depth look at 
how Maxent works, and the statistics behind the model creation see: Phillips et al. 2006, Phillips 
2008, Elith and Leathwick 2009 and Elith et al. 2011. Species Distribution models will be 
discussed in the context of Maxent throughout the remainder of this overview although the 
principles apply generally to other SDMs as well.   
 
 
Maxent Model Inputs 
 
Species Presence Records 
Presence records inputs for model development are known as the training data.  Because it is a 
density estimation method rather than a regression method, Maxent is able to perform well with 
very few presence points.  For this reason having accurate, reasonably unbiased presence records 
can be more important than having large numbers of records, however more data are an 
advantage for cross-validation of the model.  Maxent has been reported to perform well with as 
few as 5-10 presence points.  Hernandez et al. (2006) found it to be little improved with more 
than approximately 50 known sites although Wisz et al. (2008) and Feeley and Silman (2011) 
found that predictions made from larger sample sizes generally outperformed those with smaller 
sample sizes.  How many presence points are necessary will ultimately depend upon how 
representative the sample population is (i.e. how unbiased it is).  The fidelity of the species to the 
environmental variables available in a GIS is also going to affect model predictions based on few 
training data.  If presence data are based upon limited sampling from only a couple of locations 
with many observations, caution is needed in interpreting model results.  Such a model can be 
useful for guiding additional inventory but it would likely be inadequate for other purposes.   
 
The precision of the training data should generally be that of the pixel or grain size of the 
environmental variables.  If the model is trained only to variables at a 1 km2 scale then the 
precision of the known sites is less of a concern then if 30 m2 environmental data are being 
employed.  There should not be more than one training point per pixel (Figure 2).  Where the 
training point is placed within each pixel is irrelevant.  The presence point for a terrestrial 
species may be located in the middle of a lake if that lake is entirely contained within the pixel 
that the species truly occurs in.  That this is true highlights the importance that the scale of the 
species to be modeled must be assessed against the scale of available environmental data in GIS.  
A narrow endemic whose distribution is predicated by microsite landscape features cannot be 
adequately modeled with coarse scale global data.   
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FIGURE. 2.  An example of a data set in which redundant species locations have been removed so that there is only 
one location (black circles) per 30 m2 pixel.   

Environmental Variables 
The model works within a Geographic Information System (GIS) environment so ultimately the 
precision of the model output is dependent upon the accuracy and precision of the spatial data 
that is available in GIS.  Environmental variables that are chosen based on an assumed 
relationship with the organism will be more useful than simply throwing every available variable 
into the model to see what sticks.  Environmental variables are generally selected based upon an 
individual’s knowledge and scientific literature review of the habitat requirements of the species 
of interest, along with discussions with taxonomic experts for the species.  The most commonly 
employed variables include: climate (e.g., WorldClim, DayMet), topography (DEMs, aspect, 
slope) and remote sensing derived vegetation variables (e.g., GNN or Landfire data).  Some other 
variables such as waterbodies, streams, soils and geology are often useful but may not be 
consistently mapped across the intended study area.  For example, mapped soils on private lands 
are typically mapped at a finer level of classification than on National Forest lands.  Stream layer 
detail, particularly involving Class 4 streams, is often highly variable between watersheds and 
land owners.  Detailed geology mapping is typically done by USGS quad and may not be 
available across the entire extent of the sampling region.    
 
Vegetation data are typically derived from Landsat data in combination with topographic and 
climatic data.  Gradient Nearest Neighbor (GNN) data available through the LEMMA website 
(http://www.fsl.orst.edu/lemma/main.php?project=master&id=modelDownloads) includes useful 
data on forest composition, structure and cover for Oregon and Washington.  All variables must 
be converted from vector data (e.g. shapefile, feature class) to raster data.  Digital elevation 
model (DEM) data may be utilized directly as a measure of elevation or transformed to represent 
units of aspect, slope, solar radiation or landform.   
 
Spatial data are typically available at a range of scales.  DEMs are available at a scale as fine as 
10 m2 while climate data are typically represented at 1 km2.  Variables of different grid sizes can 
be used together but they would all be masked to the scale of the finest variable.  All variables 
used in a habitat model must be masked to the same extent and projection to ensure that each 
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variable’s pixels extent and placement are identical.  Highly correlated environmental variables 
should be removed otherwise they can result in misleading interpretation of the variable 
contribution to the model.  When variables are closely correlated it allows for multiple, equally 
reasonable, pathways to generate the same model.  It is common for many climatic variables, in 
particular, to be highly correlated with each other as well as to DEM variables.  This evaluation 
is readily accomplished using ArcMap’s Band Collection Statistics tool in the Spatial Analyst 
extension.  
 
Finally, the accuracy of each of the environmental variables used needs to be considered in 
assessing the model.  This is especially important in the case of vegetation variables, which are 
most often created from modeled relationships between orthophotography and fixed vegetation 
plots (like LEMMA GNN and Landfire data). Most data sources will provide the methodology in 
which the data were derived and in some cases accuracy assessments of specific products.  For 
example, GNN evaluates each of their species distribution products against plot data using a 
Kappa statistic and their vegetation condition products with histograms.  The accuracy of some 
of the individual plant species products, in particular, is quite low so this needs to be considered 
when using and interpreting these data.   
 
Running the Model 
Once the species presence records and environmental data have been properly formatted to a 
study area that is appropriate for species of interest, these data are input into Maxent’s user 
friendly input screen (Figure 3).  Maxent sequentially evaluates the values of each of the 
environmental variables for each pixel with a presence location against those pixels that don’t 
have a presence noted (Figure 4).  These non-presences are treated as background data (rather 
than pseudo-absences as in other methods) so the result of the analysis is a relative probability of 
occurrence for each pixel on a scale of 0 to 1.  In actuality, the highest probability of occurrence 
is typically less than one therefore the values might read something like 0.00 to 0.89.  By 
checking the “create response curves” box, the output will display graphically how each 
individual environmental variable affects the prediction (Figure 5).  There are actually two sets 
of response curves.  One set displays how the variables performed individually, the second 
displays how they performed in conjunction with the other variables.   
 
 
Maxent Model Outputs 
 
Continuous Prediction Map 
The immediate output of Maxent is an .html file which includes a .png map of the predicted 
habitat rated on a continuous scale between 0.0 and 1.0 (Figure 6).  The file also displays the 
contributions of each individual environmental variable to the model.  In addition there will be a 
graph displaying the average omission and predicted area and a second graph illustrating 
sensitivity vs. specificity.  If selected when the model is run, response curves of each variable 
will be displayed, both as they perform individually and in combination with the other variables.  
Maxent can also compute and display how each variable contributed to the model, both 
individually and in conjunction with the other variables.  Post-model evaluation is facilitated by 
the inclusion of maps in ASCII 
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FIGURE. 3.  An example Maxent data entry screen.  The file with the species location or training data is entered at 
the left.  Only a single species is being analyzed in this example.  The environmental variables are on the right.  Note 
that all the variables in this example are continuous variables.   

 
 

  
 
 

FIGURE. 4.  A diagrammatic representation of how species presence data and environmental data interact to 
generate a mapped probability of occurrence on a pixel by pixel basis throughout a geographic area.     
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FIGURE. 6.  Two examples of continuous prediction output maps generated by Maxent.  Blue is non-habitat while 
increasingly warmer colors represent the best habitat.  These maps are simply png. files but the ascii file can be 
converted into a raster for further analysis in GIS.   
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model, then it is probably unrealistic to assume a precision of more than about a kilometer.  
Typically, 30 m2 is the finest resolution that is practical so this would be about the highest degree 
of precision that could be expected.  SDMs wouldn’t generally be able to identify microsites 
within a meadow complex that a species occupies because the scale is too small for the 
environmental variables available.  Returning to the concept of niche, appreciation of the model 
requires looking at the variables that contributed to the model and putting this in the context of 
what we know about the species.  Some models, for example, will necessarily map more habitat 
than will be occupied at any given time because the species has dispersal limitations or competes 
poorly with another species whose niche overlaps.    
 
 
Management Applications of Species Distribution Models 
 
While SDMs provide fascinating conceptual insight into a species’ range, distribution and habitat 
requirements, it is the practical applications that are of immediate concern to land managers.  
Model outputs can be used in a variety of ways for conservation planning, species survey design 
and layout, or for analyzing the effects of proposed projects on species habitat.  In this way, 
habitat models can augment expert opinion to provide a quantitative means of filling gaps in the 
knowledge base for species.  This is particularly the case where species data are extremely 
limited, incomplete or spatially biased.   
 
Conservation Planning and Reserve Design  
Probably the most common application of SDMs is as a quantifiable approach for the 
identification of areas of high conservation value for designation of nature preserves (Wilson et 
al. 2005, Elith and Leathwick 2009).  Historically, designation of conservation preserves has 
often been opportunistic rather than strategic.  For example, wilderness designation in the United 
States has used as its principle limiting criterion simply the absence of roads.  While designated 
wilderness areas offer tremendous scenic, recreational and conservation benefits, they do not 
necessarily represent a strategic, prioritized network for conservation of biological diversity.  In 
this case, conservation of biological diversity was never the principle objective of wilderness 
areas so it would be unfair to evaluate them using this standard.  Here we consider the utility of 
SDMs where the objective is to preserve biological diversity within a given landscape, either as 
conservation of a single species or multiple species.   
 
The US Forest Service and Bureau of Land Management (BLM) in the Pacific Northwest use 
Conservation Strategies for guiding preservation of sensitive/special status species and 
Management Recommendations for Survey and Manage Species.  Each of these documents 
requires an assessment of the range, distribution and habitat of the species in question although 
this information is typically incomplete.  It is usually impossible to assess or rank the 
conservation value of individual sites or estimate what percentage of the actual range, 
distribution and abundance the currently known sites represent.  As a result, the precautionary 
principle is invariably applied to all currently known and subsequently discovered sites, just as 
would likely have occurred without a conservation strategy.   
 
In many cases, a SDM can provide the basis for a quantifiable assessment for prioritizing the 
value of specific areas across the landscape so that conservation efforts may be focused in the 
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most promising areas.  In situations where the known or suspected species distribution is 
significantly incomplete, an SDM can provide a more meaningful basis for evaluation of the 
distribution by land allocation.  This would be a quantifiable assessment of acreage and habitat 
quality by land allocation rather than a simple count of sites per allocation, thus assuring that the 
analysis represents actual habitat rather than simply a likely biased or opportunistic collection of 
sites.   
 
Because modeled habitat is spatially explicit it also allows for predicted core habitat to be 
assessed against current habitat quality for a quantitative evaluation of restoration activities.  
Hunter et al. (2012) used Maxent to identify potential wetland mitigation sites in New York 
State.  They found that the model correctly classified wetlands 92% of the time while the expert 
opinion model performed at only a 62% success rate.  Taecker (2007) found Maxent to 
outperform CART for identifying and classifying Piedmont Prairie remnants for potential 
restoration.  Similarly, SDM have been used to identify areas for reintroduction of threatened and 
endangered species.  Examples of this include modeling habitat for reintroduction of an 
endangered tree (Adhikari et al. 2011) and an endangered freshwater mussel (Wilson et al. 
2010).  In some cases, habitat models may help to identify areas that are being prevented from 
being recolonized by recovering populations because of natural or anthropogenic dispersal 
barriers (Hernandez-Santin et al. 2012).  Analysis of connectivity issues often involve habitat 
modeling as the first phase of the process to identify habitat patches which may be followed by 
further analysis such as graph theory (Decout et al. 2010) or least-cost modeling (Poor et al. 
2012) to examine permeability of the landscape between the patches.   
 
Perhaps the most exciting recent development in the application of habitat models is their use in 
conjunction with phylogenetic analysis to inform delineation of cryptic or otherwise difficult to 
define species.  By identifying niche differentiation between genetically unresolved lineages, 
habitat models may clarify the potential for gene exchange between parapatric and allopatric 
populations (Rissler and Apodaca 2007).  A habitat model for the rare orchid, Cypripedium 
fasciculatum validated the lack of potential habitat between the highly disjunct eastern 
Washington and southwestern Oregon population centers for this species (Helliwell and Benz 
2011).  The model also suggested that there may be slightly different habitat preferences between 
the population centers that would be consistent with long genetic isolation and perhaps the initial 
phase of allopatric speciation.     
 
Model Extrapolation – Climate Change and Invasive Species Range Expansion 
An obvious application of SDMs is to extrapolate habitat under a projected changed climate or 
future potential expansion of the distribution of an introduced invasive species – or both.  The 
results of published studies on climate change projections are sometimes alarming.  For example, 
Loarie et al. (2008) used Maxent to model 591 of California’s 2387 endemic plants under current 
and projected climates.  They concluded that up to 66% of these endemic species will have range 
reductions of 80% or more.  On a global scale, Thomas et al. (2004) projected that, by 2050, 15-
37% of plant and animal taxa within the representative geographic regions that they sampled 
would be “committed to extinction”.  This paper was widely reported in the press.  Some popular 
accounts extrapolated extinctions from this paper to be over a million species to up to a third of 
all species on the planet (Ladle 2004)!   
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Although modeling future distribution based on changed climatic conditions is one of the most 
common applications of SDMs, it is also possibly the most contentious application of SDMs 
(Jeschke and Strayer 2008, Franklin 2009).  Much of the debate returns to the question of what is 
actually being modeled.  Jeschke and Strayer (2008) identified three key assumptions of 
bioclimatic models that may not be met: that the biotic interactions are unimportant or don’t 
change, that there is no genetic response to change and that there are no dispersal limitations.  
Recognize that these are all factors that describe the realized niche of a species.  There is no way 
to fully account for all the various biotic interactions, complexities associated with dispersal and 
genome expression that cascade through systems in response to changes in the climate.  If, on the 
other hand, there is reason to believe that the projected potential distribution is substantially 
constrained by current biotic interactions, the model becomes much more difficult to interpret.  It 
is unlikely that the relationship between climate change, the target organism and the constraining 
biotic factors will occur as a linear function therefore the component relationships would have to 
be analyzed separately and then brought back together in a mechanistic model.  Other criticisms 
of species response to climate change projections include the failure to adequately display 
uncertainty and overly simplistic interpretation of species-area relationships (Franklin 2009).  
Solutions to these deficiencies include working with local, fine-scale data rather than global data 
(Randin et al. 2009) or combining multiple types of models to identify points of congruence 
(Kearney et al. 2010).   
 
Despite the identified shortcomings of climate change model impacts on species distribution and 
extinction risk, there is general agreement that such models provide an essential tool for 
assessing first order risks to taxa under future climate scenarios but, like all models, they do need 
to be understood within the context of their underlying assumptions (Heikkinen et al. 2006).  
Beyond the alarmist predictions of mass extinction, such models are beginning to be applied to 
potential management for species conservation.  Carroll et al. (2010) assessed current and 
projected modeled habitat for the northern spotted owl (Strix occidentalis caurina) and 130 
survey and manage species against the system of reserves established under the Northwest Forest 
Plan.  Pauly et al. (2008) estimated the future distribution of evidently introduced populations of 
red-legged frogs (Rana aurea) in Alaska and British Columbia under global climate change and 
then evaluated management options to address the projected trend. 
 
Predicting future expansion of invasive species is similar to predicting response to climate 
change in that both are predicated on a changed condition.  In the case of invasive species the 
environmental variables, including climate, are held constant (although projecting both invasive 
species spread and effects of climate change is routinely attempted).  Invasive species expansion 
models assume dispersal into its full potential distribution is principally limited by time since 
introduction into the new alien landscape so dispersal represents the changed condition.  Since it 
is assumed that dispersal is limited, the SDM must necessarily predict the fundamental niche of 
the invading species to be useful or at least that something broader than the realized niche is 
being projected.   
 
Modeling invasive species expansion can be done one of three ways: presence data from the 
native range may be projected onto a novel geographic area; presence data from the invaded area 
may be projected into a larger geographic extent beyond the currently invaded area; or data from 
both the native and invaded range may be employed.  Modeling invasive species spread 
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represents a particular challenge since it violates one of the assumptions of SDMs: that the 
organism is in equilibrium with the environment (Václavík and Meentemeyer 2009).  For this 
reason it has been suggested that using data from the native range of the invasive species where 
the species has achieved distributional equilibrium should be an advantage (Jimenez-Valvérde et 
al. 2011).  However, using only data only from the native range has been demonstrated to 
produce misleading models (Loo et al. 2007, Ibáñez et al. 2009).  This is particularly true of 
regression models that effectively treat areas that have yet to be colonized as unsuitable habitat 
(Sutherst and Bourne 2009).  Maxent, on the other hand, does not use pseudo-absences but rather 
treats non-presence pixels simply as background data, which avoids this particular problem.  It 
has been suggested that predictions of both invasive species spread and species distribution shifts 
under climate change could be improved by combining correlative SDMs with mechanistic 
models (Kearny and Porter 2009, Kearny et al. 2010).   
 
Despite identified shortcomings, models of invasive species spread continue to be useful as a 
tool to focus prevention and inventory measures.  For example, the California Invasive Plant 
Council (2011) used Maxent to model the potential spread of 29 noxious weed species 
throughout California under both current and projected 2050 climate conditions with the intent of 
identifying the areas that would be most at risk in the near future.  Habitat models can also be 
used to help understand the factors associated with the spread of invasive species.  Kumar et al. 
(2009) determined that mean temperature during the warmest quarter was the most important 
factor influencing the distribution of the invasive diatom, Didymosphenia geminata.  Although 
water chemistry would have been a more direct means of determining suitable habitat, these data 
are not widely available.  It is important to understand that non-mechanistic models, such as 
Maxent, are describing only correlations rather than causal relationships.  This is still useful 
information as long as the model is applied in the context of the organism rather than the other 
way around.    
 
Models to guide surveys 
One of the challenges in managing rare species is distinguishing truly rare taxa from simply 
underreported taxa.  This is particularly the case with difficult to detect or inconspicuous species. 
(Molina and Marcot 2007).  Habitat models can help guide inventory so that surveys are better 
targeted and more efficient than expert opinion surveys for many species.  In some cases this can 
be accomplished with remarkably few known sites.  Jackson and Robertson (2011) used Maxent 
successfully with only four locations of an endangered mole (Neamblysomus julianae) to 
discover two more know sites which allowed further refinement of their model.  Buechling and 
Tobalske (2011) found that Random forest-based algorithms outperformed Maxent for some 
species but found both successfully modeled habitat for four rare plant species of NW Oregon 
resulting in the discovery of 22 new occurrences.  
 
In some cases, SDM have guided inventory beyond the previously known range of species 
resulting in range extensions.  Rebolo and Jones (2010) found Maxent outperformed ENFA in 
producing a habitat model for a rare bat, Barbastella barbastellus. Subsequent survey based on 
the modeled habitat resulted in 15 new occurrences being discovered and extending the range of 
the species c. 100 km to the south in Portugal.  Here in the Pacific Northwest, a SDM generated 
using Maxent for the Forest Service sensitive species, Sisyrinchium sarmentosum resulted in 
discovery of four new sites on the Gifford Pinchot NF and two new sites on the Willamette NF 
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ca. 14 km to the south of any previously known occurrences (Helliwell, unpublished data 2012).   
Conversely, a habitat model for a rare moss, Tetraphis geniculata, indicated that it was unlikely 
to be found south of the McKenzie Highway in Oregon suggesting that it should be removed as a 
suspected species from the Forest Service and BLM sensitive species lists for units south of this 
area (Helliwell and Benz 2011).   
 
Project Effects Analysis 
Forest Service and BLM biologists are faced with evaluating the potential effects of proposed 
projects on a wide range of plant, animal and fungi species.  For some species, a habitat model 
can provide for a quantitative assessment of the probability of species occurrence within the 
project.  This would allow for concentrating surveys in the most appropriate areas, potentially 
saving time and money.  Furthermore a habitat model allows a means of evaluating how 
important the loss or alteration of habitat is relative to the rest of the potential habitat in the 
vicinity.  For example if the bulk of the best predicted habitat for a species thought to be 
associated with late-successional/old-growth stand condition lies outside the affected project 
boundaries in a late-successional reserve (LSR) or other reserved land allocations, then the loss 
of a small amount of low quality habitat may not have much effect on species viability.  The 
concept of reserve identification can be utilized during project planning if the scale of the model 
is applicable to the planning area. Larger patches of higher quality habitat may be identified as 
areas where treatments should be skipped if treatments would reduce the suitability of the 
habitat, or areas of lower habitat quality could be proposed if treatments to improve habitat 
characteristics important to the species of interest are possible.  The possible role of the 
potentially affected habitat on landscape functions such as connectivity or dispersal may also 
need to be evaluated but the SDM would provide a spatial means of assessing this as well.      
 
Northern spotted owl habitat models depicting suitable nesting, roosting and foraging (NRF) 
habitat are often used in Section 7 Endangered Species Act consultations. Level one teams utilize 
NRF habitat models as an initial step for identifying habitat within a project’s action area. After 
the team has verified the accuracy of the model on the ground it may be edited to refine the 
model to a suitable level of accuracy. The edited model then serves as the basis for the GIS 
analysis of impacts to NRF habitat for owl sites various scales which are used to quantify effects 
to habitat as a result of the project.  Spotted owl habitat models have also been used to as the 
baseline for developing critical habitat proposals by the USFWS. 
 
 
Concluding Remarks 
 
In entitling this final section we pay homage to G. Evelyn Hutchinson whose principles of niche 
theory were introduced as “concluding remarks” at the Cold Harbour symposium on quantitative 
biology in 1957.  The Hutchinsonian concept of niche has been central to the development of the 
numerous algorithms for mapping species distributions.  This concept is equally central to 
understanding the resultant models and their application in a land management context.  The 
brightly colored habitat maps that Maxent and other SDMs produce are only spatial 
representations based on the inputs and algorithms employed.  They have no reality beyond the 
context of the organisms and environment that they deem to characterize.  Whether the model 
represents real relationships or hollow presumption requires both the modeler and those 
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employing the model to understand its underlying assumptions as they apply to the organism in 
question.   
 
One particular aspect that is worth noting is the question of scale.  Our experience has been that 
there is a tendency for users to misapply habitat models too literally at the scale of the individual 
pixel without regard to the actual niche requirements of the species or the scale of the 
environmental variables that form the basis of the habitat model.  For example, if the principle 
contributing factors to the model are global climatic variables at a 1 km2 scale then that is, more 
or less, the scale at which the model should be applied.  So a model that is projecting shifts in 
habitat suitably due to global climate change must be applied at a regional scale rather than at the 
scale of a timber stand even if the arrangement of pixels seems to distinguish adjacent stands.  
Finer grain data such as vegetation, slope, aspect or soil data may refine climatic data such that 
model outputs can distinguish habitat at a 100 m2 or less scale but only if those data are both 
accurate at that scale and contributing significantly to the model.  The scale at which the species 
utilizes its habitat also needs to be considered.  In some situations, it may be possible only to 
accurately predict the geographic distribution of a species with narrow microsite requirements 
but not the specific microhabitat in which it occurs.  If the intent of such a model is to target 
areas for inventory then it may be appropriate to filter the distribution map with local knowledge 
of the area.   
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