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Abstract. Environmental regulations often require wildlife surveys prior to habitat disturbance to avoid
impacts or as the basis for planning mitigation, yet project-level surveys may not provide the insights
needed to guide long-term management. Management of the red tree vole (Arborimus longicaudus) has lar-
gely been based on such surveys. As an alternative approach, we evaluated distribution patterns using fre-
quency of red tree vole occurrence and habitat suitability models to guide conservation planning. We
developed a suite of models based on subsets of covariates from two previously developed models and
evaluated the extent to which spatial covariates improved the models. We used presence–absence data that
were collected from 364 randomly selected 1-ha Current Vegetation Survey and Forest Inventory and Anal-
ysis plots to develop models and describe occurrence patterns. The best models included a spatial covari-
ate, maximum tree diameter, distance from suitable habitat, forest age class, and the interaction between
maximum tree diameter and forest age class. We compared performance of the previously published mod-
els, our best model, and an ensemble model that used predictions from all three models. Under the ensem-
ble model, correct classification rates were relatively high and considerably improved, suggesting that the
application of all three models provided greater accuracy than any individual model. We argue that habitat
models, coupled with spatial patterns of the frequency of occurrence, can provide useful tools for address-
ing species management and may provide more insight than project-level surveys. The use of habitat suit-
ability models can therefore be closely tied to red tree vole management decisions and conservation
strategies, as well as reducing survey costs that otherwise often make projects infeasible.

Key words: Arborimus longicaudus; California; ensemble model; habitat suitability; mitigation; Northwest Forest Plan;
Oregon; red tree vole; Survey and Manage; wildlife survey.

Received 9 April 2016; revised 23 September 2016; accepted 31 October 2016. Corresponding Editor: Robert R.
Parmenter.
Copyright: © 2016 Rosenberg et al. This is an open access article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
� E-mail: dan.rosenberg@oregonstate.edu

INTRODUCTION

Plant and animal surveys are often conducted
to estimate trends in abundance (McComb et al.

2010), to evaluate effects of management (Nichols
and Williams 2006), to develop habitat models
(Scott et al. 2002), and to document species pres-
ence to facilitate mitigation (USDA and USDI
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2001) and conservation design (Groves 2003).
Many federal and state agencies require field
surveys prior to habitat disturbance to identify
locations of plants or animals of conservation
concern to meet policy requirements. However,
in many of these cases, it is not clear how project-
level surveys can guide management decisions
because the data do not answer the questions
they are intended to address. In addition, even if
surveys can address the management issues, the
spatial scale of sampling is often inadequate
because of costs, especially for species that are
difficult to detect.

Habitat suitability models have the potential
to help guide the need for surveys that are
intended to document species presence to avoid
harm, aid in developing conservation plans, and
address mitigation by identifying potential habi-
tat that may be disturbed, protected, or restored
(Dunk et al. 2004, USFWS 2012). Habitat suitabil-
ity models should also be able to help managers
decide if and where surveys are most needed to
address management questions and provide a
broader perspective for species management
than surveys alone. The use of habitat suitability
models can therefore be closely tied to survey
requirements that are part of many mitigation
strategies.

Because suitable habitat is not always occu-
pied (Capen et al. 1986, Hanski 1999, Fielding
2002), predictions of habitat suitability from
models may be more useful than the recognition
of whether particular locations are occupied or
not at a single point in time. Identifying suitable
but unoccupied habitat is critical for conserva-
tion (Camaclang et al. 2015). If surveys fail to
detect the target species, the area may no longer
be considered of conservation value and habitat
modification may be allowed. This is especially
important for wide-ranging species that are unli-
kely to be present in a small portion (e.g., a small
sampling unit) of their home range, even in high-
quality habitat. Removing or modifying suitable
but unoccupied habitat eventually results in pop-
ulation declines. Such understanding is the
cornerstone of metapopulation dynamics but can
be operative even if populations are not struc-
tured as such (Hanski 1999:158). More effective
conservation strategies may be best served when
long-term occupancy or species persistence is
addressed rather than the short-term view

obtained by surveys conducted at a single point
in time (Camaclang et al. 2015).
Wildlife surveys are a key requirement of miti-

gation approaches in the Northwest Forest Plan
(NWFP). The NWFP provides one of the most
comprehensive strategies to protect plant and ani-
mal species in the world (USDA and USDI 1994a,
DellaSala and Williams 2006, Carroll et al. 2010a),
and was conceived as an ecosystem management
plan to protect species associated with old forests
on 9.8 million ha of lands managed by the Bureau
of Land Management and U.S. Forest Service in
northwestern California, western Oregon, and
western Washington (USDA and USDI 1994a).
The NWFP was a compromise between protect-

ing habitat for species associated with old forests
and timber production. New reserves created by
the NWFP brought the protected area of federal
land to approximately 80% of the total federal for-
est land within the planning area and included
approximately 86% of the remaining old forest
(USDA and USDI 2000a, Thomas et al. 2006). The
reserve strategy was thought to ensure the viabil-
ity of most old-forest-associated species, but for
some species, there was concern for their contin-
ued persistence (USDA and USDI 1994b, Molina
et al. 2006). The Forest Service and Bureau of Land
Management implemented an extensive program
of surveys in which they attempted to better docu-
ment the distribution and habitat associations of
over 400 species that were thought to be vulnera-
ble (Molina et al. 2006, Olson et al. 2007). These
surveys, collectively referred to as the Survey and
Manage Standards and Guidelines (USDA and
USDI 2001; hereafter SM Program), were intended
as a “fine filter” approach for managing specific
species to augment the “coarse filter” strategy of
reserve designation (USDA and USDI 1994b,
Edwards et al. 2004, Molina et al. 2006). For some
of the rarer species, the SM Program may have
achieved its mitigation goals: Known sites were
protected and conservation planning for these spe-
cies did not greatly affect timber harvest (Molina
et al. 2006). The greatest controversy arose over
species that were located frequently during sur-
veys in areas proposed for timber harvest (Molina
et al. 2006, Thomas et al. 2006).
The red tree vole (Arborimus longicaudus), a

small arboreal mammal endemic to coniferous
forests in western Oregon and northwest Califor-
nia, has been the most controversial species
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included in the SM Program and provides an
excellent case study in the use of habitat suitabil-
ity models in conservation planning. Federal
agencies are required to avoid harvest within
4 ha of occupied or recently occupied tree vole
nests in old forest (USDA and USDI 2001). In lieu
of this approach, federal agencies can conduct
site assessments to determine whether a site is
non-high priority to the species’ persistence, or
develop conservation strategies at a watershed
scale (Huff 2016). Surveys to find nests and
document occupancy by climbing trees are time-
consuming and expensive, detection rates are
extremely low (Marks-Fife 2016), and where the
species is frequently found, the no-harvest buf-
fers may conflict with timber harvest or forest
restoration goals. Because of high cost, surveys
conducted prior to management activities (here-
after, “pre-disturbance surveys”) occur only
within project areas (USDA and USDI 2000b)
and thus often cannot provide the broader land-
scape perspective that is desired for addressing
species persistence mandates. These characteris-
tics have made tree voles difficult to manage and
have led to lawsuits regarding tree vole manage-
ment in proposed federal timber sales.

Although surveys can address the management
goals of providing disturbance buffers surround-
ing occupied sites, and in part, preparation of
assessments as non-high-priority or high-priority
sites (Huff 2016), they are often neither effective
nor efficient. Because tree vole nests are extremely
difficult to detect, identification of areas in which
to place buffers is incomplete. Similarly, because
surveys underestimate the number of voles,
surveys fail to fully document areas where the
species is not in need of management focus.
More importantly, project-scale surveys may not
address patterns of long-term occupancy. Finally,
surveys alone may not provide sufficient informa-
tion because conservation planning for tree voles
is typically conducted at the fifth-field watershed
scale, a scale too cost prohibitive for surveys.
Rather than relying entirely on surveys, incorpo-
rating data on geographic patterns of occurrence
along with habitat suitability models provides a
scientifically credible approach for addressing tree
vole management and conservation of species on
managed landscapes more generally.

We developed and evaluated habitat suitabil-
ity models and identified patterns of geographic

occurrence to inform management of tree voles.
We discuss the efficacy of using these tools to
inform management to an extent that project-
level surveys by themselves do not. If models
perform sufficiently well, their use could provide
a cost-effective method of predicting potential
site occupancy by tree voles and informing con-
servation strategies. Similarly, patterns of occur-
rence and habitat models could inform managers
of the likelihood of tree voles being present at
areas proposed for disturbance. Nonetheless,
such ideas are not currently institutionalized and
implemented by land management agencies.
There have been three previous large-scale

models developed to estimate habitat suitability
or habitat associations for tree voles. One of these
used presence-only data (Forsman et al. 2016), the
second used logistic regression under a general-
ized additive modeling approach (Dunk and
Hawley 2009), and the third used a Bayesian
approach to add spatial patterning as a random
effect to the Dunk and Hawley model (Carroll
et al. 2010b). We did not explore Carroll et al.’s
(2010b) model because we modeled spatial pattern
as a fixed effect. We developed a suite of models
based on covariates from the first two models and
then evaluated the extent to which additional spa-
tial covariates improved models. Because of the
high spatial variation of red tree vole abundance
(Forsman et al. 2004, 2016), we hypothesized that
models with spatial covariates would be better
predictors of occurrence and that these covariates
would allow greater insight for management.
Our goals were to (1) evaluate the frequency of

tree vole occurrence among different spatial
scales and geographic locations to identify geo-
graphic patterns of occurrence that can be used
in conjunction with habitat models to inform
management and (2) develop models of tree vole
occurrence based on vegetative and spatial vari-
ables to reliably predict the presence or absence
of tree voles and potentially serve as a surrogate
to field surveys in developing conservation strate-
gies for tree voles.

METHODS

Study area
The 3.1 million-ha study area, generally depict-

ing the species range, included Oregon, primarily
west of the crest of the Cascade Range from the

 ❖ www.esajournals.org 3 December 2016 ❖ Volume 7(12) ❖ Article e01630

ROSENBERG ET AL.



Columbia River to the Klamath River in northern
California, with the exclusion of the Willamette
Valley (Fig. 1). The study area was dominated by
mountainous terrain and included a diversity of

forest types. In the northern and central portion,
coniferous forests of Douglas-fir (Pseudotsuga men-
ziesii) and western hemlock (Tsuga heterophylla)
dominated, whereas in the southern portion of

Fig. 1. Distribution of 1-ha plots where red tree vole surveys were conducted within the study area. Of the
1003 Current Vegetation Survey and Forest Inventory and Analysis plots within the study area, 364 were sam-
pled and included in our analyses.
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the study area, drier conditions favored mixed
conifer–hardwood forests (Franklin and Dryness
1973, Forsman et al. 2016). In the Coast Ranges,
dominant trees included Douglas-fir, western
hemlock, and western redcedar (Thuja plicata),
with Sitka spruce (Picea sitchensis) co-dominant
near the coast. Forests of coast redwood (Sequoia
sempervirens), Douglas-fir, and western hemlock
occurred along the coast in northwest California
and extreme southwest Oregon.

Red tree vole surveys
Our models, those from Dunk and Hawley

(2009) and, in part, Forsman et al. (2016), were fit
with data from a stratified random survey con-
ducted on federal lands in 2001–2004 (Ritten-
house et al. 2002). We used the same plots as
Dunk and Hawley (2009), except we omitted one
plot because geographic information systems
(GIS) data were unavailable for the appropriate
time frame. This resulted in 364 1-ha plots sub-
sampled from the grid of 1003 Current Vegeta-
tion Survey and Forest Inventory and Analysis
plots located in the study area on lands managed
by the Forest Service and Bureau of Land Man-
agement (Fig. 1; Rittenhouse et al. 2002). Plot
selection was stratified by forest age class and
land-use allocation. Age stratification was based
on two age classes: (1) old forest (>80 years) and
(2) young forest (≤80 years), the transition age
when old forest characteristics generally begin to
develop (Old-Growth Definition Task Group
1986, Thomas et al. 2006). Land-use allocation
strata were based on two groupings: (1) reserved
lands where management is focused on mainte-
nance and restoration of old forests (Reserve)
and (2) non-reserved lands where timber harvest
is emphasized (Matrix; USDA and USDI 1994a).
The sample was stratified as 60% reserve/old for-
est; 20% reserve/young forest; 10% matrix/old
forest; and 10% matrix/young forests, but was
slightly modified because some plots were
removed due to logistical and safety issues
(Dunk and Hawley 2009). Mean age of trees in
young-forest plots ranged from 0 (recent harvest)
to 80 years old, whereas trees in old-forest plots
ranged from 81 to 384 years old.

Tree vole surveys were conducted by at least
two observers who searched for potential nests
along four 100-m transects spaced 25 m apart

within a 1-ha square plot (Rittenhouse et al.
2002). All trees observed with potential nests
were climbed, and each nest was searched for
evidence of tree voles, consisting of conifer cut-
tings, resin ducts, fecal pellets, and debarked
twigs. If nests were not found during ground
surveys or in plots with complex canopies, tree
climbers searched for nests in five randomly cho-
sen Douglas-fir trees that were >61 cm diameter
at breast height (dbh), or the largest trees if none
met this size criterion (Rittenhouse et al. 2002).
Tree vole nests were classified as “active” if they
contained evidence of recent occupancy or “inac-
tive” if nest material was old (Rittenhouse et al.
2002).
We defined tree vole presence as a plot with ≥1

active or inactive nest observed, consistent with
Dunk and Hawley (2009) and Forsman et al.
(2016) because tree vole nests only persist for a
couple of years (Thompson and Diller 2002).
Using nests as a surrogate for tree voles probably
caused us to overestimate the proportion of plots
occupied by voles, whereas imperfect survey
detection resulted in an underestimate. Dunk
and Hawley (2009) estimated that 6% of the plots
had false negatives based on finding nests from
the random tree searches in plots in which nests
were not otherwise detected. Our analyses
assume absence of tree voles from plots where
they were not detected.

Model development
We extended models by Forsman et al. (2016)

and Dunk and Hawley (2009) by adding a suite
of spatially explicit predictor variables (Fig. 2).
We included spatial covariates related to geo-
graphic regions and to the distribution of suit-
able habitat. Suitable habitat was estimated from
the previously published models and this
required extrapolation of the Dunk and Hawley
(2009) model to the entire study area, whereas
the Forsman et al.’s (2016) developed estimated
suitability throughout the study area (Fig. 2).
Previously published models.—Dunk and Hawley

(2009) fit generalized additive models with the
random plot data. We included only their best
model, which we refer to as DH-GAM. Explana-
tory variables in DH-GAM included basal area of
trees 45–90 cm dbh, maximum dbh, standard
deviation of dbh for conifer trees >2.5 cm dbh,
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slope, and the Universal Transect Mercator
(UTM) coordinates of the center of the plot.

Forsman et al. (2016) created their models with
program MaxEnt (Phillips et al. 2006) using
presence-only data from random plots, pre-
disturbance surveys, and other location data.
Their model included forest structure and tree
species composition covariates from the Gradient
Nearest Neighbor (GNN) vegetation database
and models (Ohmann and Gregory 2002, Moeur
et al. 2011). GNN data linked ground-based data
with remote sensing data (Moeur et al. 2011) and
were based on the average 30 9 30 m pixel GNN
predictor variables resampled to 1 ha. Forest

structure and species composition covariates that
were most influential in their models included (1)
large trees per ha (≥75 cm dbh); (2) percentage of
hardwood cover; (3) diameter diversity index, a
measure of canopy structural diversity (Ohmann
et al. 2012); (4) percentage of conifer cover; (5)
percentage of total basal area of tree species
groups based on region; and (6) a tree vole food
source variable estimated as the percentage of
total basal area of Douglas-fir, western hemlock,
Sitka spruce, and grand fir (Abies grandis). The
most influential abiotic covariate was the fre-
quency of summer fog. Forsman et al. (2016) con-
structed separate models for each of the four

Fig. 2. Flow chart of the development and evaluation of habitat suitability models. We initiated the analyses
using two previously developed models, DH-GAM (Dunk and Hawley 2009) and DA-MAX (Forsman et al.
2016). We incorporated environmental and habitat suitability-related covariates from these models into our
generalized linear models (GLMs). After evaluation of the models with red tree vole survey data from the
random plot and the pre-disturbance survey areas, we developed the ensemble model that consisted of only con-
sistent predictions from the three models as suitable or non-suitable habitat.
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GNN modeling regions, which were delineated
based on physiographic province and ecoregions.
They spliced together their regional models to
provide a single model to estimate habitat suit-
ability for the entire study area. It is this model
that we refer to as DA-MAX and from which
comparisons were made to the other models.

GLMs.—We estimated the probability that tree
voles occurred within a random plot using logis-
tic regression with generalized linear models
(GLMs) in PROC GENMOD (SAS 2000) and
used Akaike’s information criterion (AIC,
Akaike 1973) to rank models (Burnham and
Anderson 2002). We developed a set of models
within 10 unique themes and a set of models
incorporating multiple themes (“hybrid models”;
Table 1; Appendices S1–S11). We included linear,
logistic, and quadratic relationships of the proba-
bility of tree vole occurrence based upon hypoth-
esized relationships with the covariates. We then
developed hybrid models that incorporated

covariates from the best models of one or more
themes. To the best hybrid models, we added for-
est age class and land-use allocation to account
for the stratified sampling design and included
the interaction term between maximum tree
diameter and forest age class. The interaction
term evaluated the hypothesis that in young for-
est large trees have a greater effect on tree vole
occurrence than in old forests (Thompson and
Diller 2002). We evaluated a total of 118 unique
models with AIC. To illustrate the estimated
effects from our best model, we created histo-
grams showing the number of plots with and
without tree voles in relation to the parameter
value (Smart et al. 2004).
1. Covariates from previous models—We used

environmental covariates from DH-GAM and
DA-MAX in constructing our GLMs. We did not
include UTM plot locations because we could not
replicate the DH-GAM approach of modeling plot
locations into our GLM (Yee and Mitchell 1991,

Table 1. Highest ranking logistic regression models of the probability of red tree vole occurrence in 1-ha random
plots within each set of related models (theme) and among all 118 models.

Theme† Model K Covariates‡ �L AIC Wt ΔAICall Wall

Hybrid BEST9 10 MAXDBH+DDI+CON+L_dist_GAM_050+
AGECLASS+MAXDBH9AGECLASS

138.5 297.6 0.58 0 0.58

Surrounding Hab BUFF7 2 L_buff_4ha_GAM 164.3 332.7 0.87 35.1 0.0
Dist to Hab DSUIT5 2 L_dist_GAM_050 168.8 341.7 0.52 44.1 0.0
Dunk and Hawley DH5 5 SLP+BA4590+SDCONdbh+MAXDBH 166.6 343.4 0.61 45.8 0.0
Patch Size SIZE4 2 L_size_GAM_025 180.5 365.1 1.00 67.5 0.0
Davis and Andrews DA3 6 L_LTPH+CONCOV+DDI+FOOD+FOG 179.3 370.8 0.59 73.2 0.0
Distance Metrics MC2 2 L_meancenter 186.8 377.7 0.95 80.2 0.0
Boundaries CON 5 CON 184.7 379.5 0.87 81.9 0.0
Watersheds Hab BASIN3 2 L_basinhab_GAM 187.1 378.2 0.77 80.6 0.0
Age AGE3 2 AGECLASS 199.8 403.6 0.85 106.0 0.0
Stratification STRAT3 2 AGECLASS 199.8 403.6 0.66 106.0 0.0

Notes: K is the number of parameters in the model, �L is the – log likelihood, AIC is Akaike’s Information Criterion, Wt is
the AIC weight for the model within its own theme, ΔAICall is the difference of the model’s AIC from the model with the lowest
AIC from the comparison using all models, and Wall is the associated AIC weight. Hybrid models were developed by combin-
ing models from more than one theme. Models are ranked from “best” to “worst” based on AIC.

† Sets of models were constructed for covariates related to suitability of areas surrounding 1-ha plots (Surrounding Hab), dis-
tance to suitable habitat (Dist to Hab), environmental covariates included in DH-GAM (Dunk and Hawley, Dunk and Hawley
2009), area of suitable habitat in which a plot was embedded (Patch Size), covariates included in DA-MAX (Davis and
Andrews, Forsman et al. 2016), distance of plots to the center or periphery of the study area, or high-density areas (Distance
Metrics), geographic boundaries (Boundaries), mean habitat suitability within fifth-field watersheds or sub-basins (Watersheds
Hab), forest age (AGE), covariates related to selection of plots (Stratification), and more than one theme (Hybrid).

‡Covariates in the models include age class of forest (AGECLASS), basal area of trees with a diameter between 45 and
90 cm (BA4590), density contours of tree vole occurrence (CON), canopy cover of dominant conifer trees (CONCOV), diameter
diversity index (DDI), frequency of summer fog (FOG), percentage of total basal area of conifer species fed upon by red tree
voles (FOOD), maximum tree diameter (MAXDBH), standard deviation of the diameter of conifer trees (SDCONdbh), slope
(SLP), and log-transformed values of mean habitat suitability estimated from DH-GAM at the scale of the sub-basin (L_basin-
hab_GAM), mean habitat suitability estimated from DH-GAM of 4 ha surrounding each plot (L_buff_4 ha_GAM), distance
from the center of the study area (L_meancenter), distance from suitable habitat estimated from DH-GAM with a threshold of
0.50 (L_dist_GAM_050), the number of trees >75 ch dbh per ha (L_LTPH), and the patch size of surrounding suitable habitat
estimated from DH-GAM (L_size_GAM_025).
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Guisan et al. 2002). We included forest age as a
continuous covariate and categorized as young or
old. Age was included in some of the Dunk and
Hawley (2009) models, but not their best model.
From DA-MAX, we considered all of the covari-
ates that were most influential in their model
(Appendix S2).

2. Spatial variation—We identified areas where
the density of plots with tree vole nests varied
the most using a fixed kernel density estimator to
delineate five contours (10, 20, 50, 80, and ≥95%)
of density (Worton 1989, Beyer 2012). These con-
tours were the smallest areas containing the sta-
ted level of the probability distribution. Each
inner contour (e.g., 10%) contained the highest
density of plots for the given area. We specified a
bandwidth smoothing parameter using smo-
othed cross-validation and a cell size of 1 km for
estimating the kernel density function, which we
estimated in Geospatial Modeling Environment
(Beyer 2012). The contours were included as a
categorical covariate in the models.

We also developed covariates using a variety
of geographic zones: (1) physiographic provinces
(Fig. 3a; USDA and USDI 1994a: A-3), (2) GNN
modeling regions from Forsman et al. (2016;
Fig. 3b), (3) geographic subregions in Forsman
et al. (2004, 2016), but the few plots east of the
Cascade Crest were included in the North Cas-
cades subregion (Fig. 3c), (4) survey zones which
Huff et al. (2012) delineated as priority zones for
conducting surveys to which we added a zone
outside of where surveys would be required
(Fig. 3d), (5) federal forest administrative units
(Fig. 4), (6) reserved or non-reserved land-use
allocations (USDA and USDI 1994a), (7) desig-
nated critical and non-critical habitat for north-
ern spotted owls (Strix occidentalis caurina;
USFWS 2012) under the hypothesis that spotted
owl critical habitat provides “umbrella” protec-
tion for tree voles, (8) delineation of the Coast
Ranges north of the Siuslaw River where a dis-
tinct population segment for the red tree vole
was identified (USFWS 2011), (9) sub-basins, and
(10) fifth-field watersheds.

We also evaluated hypotheses that habitat suit-
ability of a species decreases (1) toward the edge
of the range, (2) away from areas of high densi-
ties, (3) with increasing distance from the center
of the range (Brown 1995, Osborne and Su�arez-
Seoane 2002), and (4) with distance from suitable

habitat. For distance from the perimeter of the
range, we computed the distance from the edge
of each plot to the nearest non-coastal perimeter
of the study area. To evaluate proximity to an
area of high density, we computed the distance
to the center of the 10% contour defined by the
kernel density estimator. To evaluate the associa-
tion of tree vole occurrence with distance to the
center of the species’ range, we computed the
distance from the spatial center of the study area
(ArcGIS 10.0 [Environmental Systems Research
Institute, Redlands, California, USA]: Mean Cen-
ter tool).
For distance to suitable habitat, we developed

several covariates based on the suitability of
habitat as predicted from DH-GAM and DA-
MAX. For DH-GAM, we first had to extrapolate
the model algorithm onto GNN data for cover-
age of the entire study area (Appendix S12). The
covariates we explored were as follows: (1) DH-
GAM with suitability defined as predicted prob-
ability of occurrence ≥0.25; (2) DH-GAM with a
predicted probability ≥0.50; (3) DA-MAX with a
relative habitat suitability ≥0.34; and (4) the same
covariates as above but with 4 ha of suitable
habitat surrounding the plot, equivalent in size
to mitigation buffers (USDA and USDI 2001). We
used these threshold values that denoted habitat
as suitable based on their previous use in Dunk
and Hawley 2009), the often used midpoint, 0.50
(Hosmer and Lemeshow 1989), and the average
threshold among modeling regions for DA-MAX
(Forsman et al. 2016).
We examined a suite of covariates related to

the amount of continuous suitable habitat in
which the plot was embedded (patch size) and
the average suitability surrounding plots at mul-
tiple spatial scales (neighborhood effects). For
patch size, we defined three different criteria of
what constituted suitable habitat based on the
habitat model (DH-GAM or DA-MAX) and suit-
ability threshold (DH-GAM: 0.25, 0.50; DA-
MAX: 0.34). For neighborhood effects, we used
DH-GAM and DA-MAX to estimate mean habi-
tat suitability within circles of 4 ha and 40 ha
from the center of the plot, and within fifth-field
watersheds and sub-basins.

Extrapolation of model to the study area
We were interested in (1) estimating habitat

suitability covariates based on DH-GAM and
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DA-MAX in our GLMs, (2) evaluating models
with pre-disturbance survey data, and (3) pro-
viding a model to estimate habitat suitability
throughout the study area. Estimates of habitat
suitability from our GLMs and those from DH-
GAM were limited to the random plots because
one or more of the covariates were derived from
plot-based measurements. Therefore, we extrap-
olated our best model and DH-GAM onto
GNN data (http://lemma.forestry.oregonstate.
edu/data) for the entire study area. We used

Marine Geospatial Ecology Tools version 0.8a50
(MGET; http://mgel.env.duke.edu/mget; Roberts
et al. 2010) and ArcGIS 10.0 to estimate probabil-
ities of tree vole occurrence for each 30 9 30 m
pixel within the study area (Appendix S12). DA-
MAX modeled habitat suitability across the
entire range, so extrapolation was unnecessary.

Performance of models
We explored the performance of DH-GAM,

DA-MAX, and our best GLMs with correct

Fig. 3. Percentage of plots with red tree vole nests detected among (a) physiographic provinces, (b) modeling
regions described by Forsman et al. (2016), (c) subregions as depicted by Forsman et al. (2004, 2016), and (d) sur-
vey zones described by Huff et al. (2012). We allocated the southwestern-most plots in California to Klamath
Mountains Province (a) and the California plots to the South Coast or Interior Southwest subregions (c). We
pooled the five survey plots that were within the northwest corner of the East Cascades subregion (circled) with
the North Cascades subregion because of the similarity of vegetation at these plots (a and c). Plots with voles
detected (triangle) and not detected (circle) are shown.
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classification rates of both absence and presence.
For our GLMs, we used a threshold value of 0.25
because this threshold resulted in >70% correct
classification for plots with and without tree
voles. We used the same value for DH-GAM,
consistent with Dunk and Hawley (2009), and
0.34 for DA-MAX, the mean of the thresholds
from their four modeling regions. We interpreted
estimates of probability of occurrence (our GLMs
and DH-GAM) or relative habitat suitability
(DA-MAX) that were greater than or equal to
these thresholds as a prediction of “presence,”
whereas we interpreted estimates less than the
thresholds as “absence.” We then evaluated
models using Cohen’s kappa, a measure of the
proportional improvement over chance for cor-
rect classification. Cohen’s kappa ranges from 0
(agreement no better than random assignment)
to 1 (perfect agreement; Agresti 1990:366). In
addition, we evaluated the relationship, via lin-
ear regression, between the proportion of sites
with tree voles detected within each 0.05 bin of
predicted probabilities (20 bins) to estimates of
habitat suitability from DH-GAM, DA-MAX,
and our best GLM, with the expectation that

well-performing habitat models should have a
positive correlation.
We evaluated model performance using two

data sets. We used the random plot data that we
used to develop our GLMs, DH-GAM, and in
part, DA-MAX and an independent data set
(not used in developing the models) from pre-
disturbance surveys. Although using the same
data that were used to fit models can lead to pos-
itively biased estimates of correct classification
rates, the independent data from pre-disturbance
surveys were collected with less rigorous meth-
ods. Typically, these surveys covered larger areas
and trees were often not climbed (Biswell et al.
2000, 2002, Huff et al. 2012), leading to a larger
percentage of tree vole nests that are not detected
than in the random plots. Thus, we expected cor-
rect classification rates from the independent
data to be negatively biased. Using both data sets
provides what we view as reasonable bounds on
estimates of correct classification rates.
We used pre-disturbance surveys conducted in

1999–2013. Observers visually searched for signs
of tree voles along transects (Biswell et al. 2000,
2002, Huff et al. 2012). For survey areas with ≥ 1

Fig. 4. Percentage of survey plots with red tree vole nests detected within federal administrative units delin-
eated as National Forests and Bureau of Land Management Districts.
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tree vole detected (hereafter, “presence poly-
gon”), we used only the location of each tree vole
nest. Survey areas without tree vole detections
(hereafter, “absence polygon”) were searched
throughout the polygon, and thus, we assumed
tree voles were absent throughout, and there-
fore, we used randomly selected 1-ha cells, as
described below.

To compare performance among models from
the pre-disturbance surveys, we sampled from
the presence and absence polygons and estimated
habitat suitability among selected 1-ha cells. We
used ArcGIS to create a grid of 1-ha square cells
across the study area. We omitted cells that (1)
were modified by timber harvest or fire between
the time that surveys were conducted and the
date of the environmental data we used in the
models (LandTrendr, Kennedy et al. 2010), (2)
were previously used to develop models for DA-
MAX, (3) did not have their centroid or majority
area within survey polygons, and (4) where GNN
data were not available. For analysis of presence,
we used all cells with ≥ 1 tree vole nest detected
and that met the above criteria. For analyses of
absence, we used a random set of cells equal in
number to the sample of presence cells. For each
cell, we used the maximum estimate of the proba-
bility of occurrence from DH-GAM and our best
GLM for the 30 9 30 m map pixels within the 1-
ha cell. DA-MAX estimates were based on 1-ha
resolution, and therefore, we used the relative
habitat suitability of that cell. There were a total
of 1014 survey polygons with tree voles (presence
polygons) and 2172 polygons where tree voles
were not detected (absence polygons) that met
our criteria for inclusion in the analyses. There
were 3667 and 18,887 cells within the presence
and absence polygons, respectively. We included
all 3667 cells with detections of tree voles from the
presence polygons, and a random selection of
3667 cells from absence polygons.

We also evaluated classification rates for predic-
tions that were consistent among all three models
(hereafter, ensemble model) using both random
plots and pre-disturbance survey data. This model
can be considered a special case of a consensus
ensemble model where more than a single model
is used for prediction (Ara�ujo and New 2007). To
compute classification rates, we used only ran-
dom plots or cells from survey polygons with con-
sistent predictions from the three models as either

present or absent. For pre-disturbance surveys,
we used all of the cells with consistent predictions
from presence polygons, but selected a new set of
random cells from absence polygons equal to the
number of cells from presence polygons.

RESULTS

Geographic boundaries
The 364 random plots were distributed across

most of the study area with the exception that
only a few plots were sampled in the northern
Coast Ranges (Fig. 1), where federal lands were
uncommon. Tree vole nests were located in 95
(26.1%) of the plots, but their frequency of occur-
rence varied tremendously across the study area.
The location of a plot within the study area was

one of the most predictive elements of the models
we evaluated. Of those based on physiographic
provinces, the Forsman et al. (2004) geographic
subregions had the greatest number of different
strata and the lowest AIC (Fig. 3c; Appendix S8).
The South Coast and Interior Southwest subre-
gions had the highest (44%) and lowest (7%)
occurrence rate, respectively (Fig. 3c). The North
Cascades and North Coast subregions had con-
siderably lower rates of occurrence relative to the
central portions of the range (Fig. 3c). These gen-
eral patterns were evident with the other delin-
eations of physiographic provinces (Fig. 3).
Survey zones, which were delineated based on
broad physiographic provinces and tree vole dis-
tribution patterns (Huff et al. 2012), had the most
distinct differences of occurrence rates (Fig. 3d).
Tree voles were detected in <5% of plots outside
of all survey zones, 37% of plots within the mesic
zone, 28% within the north mesic zone, and 13%
in the xeric zone (Fig. 3d).
Density contours was the best-performing

covariate of those in the geographic theme, and
carried through to hybrid models (Table 1). The
20% contour had the highest occurrence rate
(60%), followed by the 10% contour (47%; Fig. 5).
There was strong support for differences
between each contour compared to the ≥95%
contour, and there was weaker support for differ-
ences among the other contours (Table 2). The
predictive ability of contours was greatest when
combined with other variables and was an
important covariate in models in which it was
included (Table 1; Appendix S11).
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Fig. 5. Percentage of plots with red tree vole nests detected among five contours that best described patterns
of density of red tree vole occurrence based on kernel density estimators. Because of the lack of plots with tree
vole nests detected in the outermost contour, we pooled data within the 95% and 100% contours in the habitat
suitability models.

Table 2. Parameter estimates for the logistic regression model BEST9 predicting the probability of red tree vole
occurrence in 1-ha random plots.

Parameters Estimate SE P 95% CL Odds ratio

Intercept �3.80 0.969 �5.70 �1.90
MAXDBH 0.016 0.005 <0.01 0.0056 0.0255 1.016
DDI 0.001 0.0007 0.17 �0.0004 0.0025 1.001
CONTOURS (0.10) 1.75 0.65 0.01 0.47 3.03 5.75
CONTOURS (0.20) 2.53 0.72 <0.01 1.12 3.94 12.52
CONTOURS (0.50) 1.29 0.58 0.03 0.15 2.42 3.62
CONTOURS (0.80) 1.37 0.57 0.02 0.26 2.48 3.93
L_dist_GAM_050 �0.281 0.071 <0.01 �0.420 �0.143 0.755
AGECLASS �21.34 13.85 0.12 �48.48 5.80 5.4�10

MAXDBH 9 AGECLASS 0.15 0.096 0.13 �0.042 0.337 1.159

Notes: Density contours (CONTOURS) were estimated from a fixed kernel density estimator; estimates for each probability
distribution are relative to the ≥0.95 contour. MAXDBH is the maximum tree size (cm), DDI is the diameter diversity index,
L_dist_dunk050 is the log of the distance (m) to suitable habitat as defined by model DH-GAM with a 0.50 threshold, AGE-
CLASS is the forest age class comparing young (≤80 years) relative to old (>80 years) forests, and MAXDBH 9 AGECLASS is
the interaction.
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Results of other geographic covariates further
described the high spatial variation of tree vole
occurrence. Variation among administrative
units was high, ranked second in geographic
models, and had frequencies of occurrence rang-
ing from 3% to 88% of plots (Fig. 4). Although
watersheds described spatial variation in tree
vole occurrence well, the large numbers of water-
sheds led to low precision and were poor predic-
tors of tree vole occurrence (Appendix S8).
Distinct population segment, spotted owl critical
habitat, and land-use allocations were all very
poor predictors (Appendix S8).

Environmental covariates from previous models
Of the DH-GAM covariates, maximum tree

diameter was the single best predictor of tree
vole occurrence (Appendix S1) and was on aver-
age 41 cm greater in plots with tree voles (Fig. 6),

with an even greater difference in young forest
(Table 3). The ground-based measurement of
maximum tree diameter preformed much better
than that derived from GNN (ΔAIC = 14.7). The
standard deviation of the diameter of conifer
trees was on average 48% higher in plots with
tree voles than those without (Fig. 6) and was
the second best predictor of the DH-GAM covari-
ates (Appendix S1). None of the other vegetation
covariates in DH-GAM explained much of the
variation between plots with and without tree
voles (Appendix S1). We found that linear forms
of vegetation covariates ranked higher than non-
linear relationships in our GLMs (Appendix S1).
Slope had low predictive ability (Appendix S1)
and little difference between plots with and with-
out tree voles (Fig. 6).
In our GLMs, the environmental variables

in DA-MAX were less predictive than those in

Fig. 6. Comparison of the distribution of selected covariates in model DH-GAM (Dunk and Hawley 2009).
Values in the box represent the middle 50% of the measurements, the uppermost and lowermost boundaries of
the box represent the upper and lower quartiles of the measurements, and the tails represent the 90th and 10th
percentiles. Filled circles outside the tails represent extreme values. The solid line through the box represents the
median, and the dotted line the mean.
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DH-GAM (Table 1; Appendix S2). Diameter
diversity index and the number of large trees per
ha had the greatest difference in mean values
between plots with and without tree voles, but
there was high overlap in their distributions for
these and the other DA-MAX covariates (Fig. 7).
Diameter diversity index and the logarithmic
relationship of large trees per ha were essentially
equal as best DA-MAX covariates in our GLMs,
followed by fog index, food source as a logarith-
mic response, and as the least predictive covari-
ate, conifer cover (Appendix S2).

Tree vole occurrence was strongly associated
with forest age. Occurrence rates were over three
times higher in plots in old forest (30.9%) than in
young forest (8.9%). Although there was a posi-
tive relationship with the probability of occur-
rence of tree voles and forest age for old-forest
plots (b = 0.0045 � 0.0020), age class was a bet-
ter predictor of tree vole occurrence than forest
age as a continuous variable (Appendix S9).

Distance-based covariates
Of all of the distance factors we modeled, only

distance to suitable habitat performed reason-
ably well. The logarithmic relationship of dis-
tance to suitable habitat, derived from DH-GAM
with a 0.50 threshold, had the greatest predictive
ability (Table 1; Appendix S6). There were rela-
tively large differences in the distribution of dis-
tances from suitable habitat between plots with
and without tree voles (Fig. 8). However, the
large differences existed in part because plots
that were within suitable habitat (i.e., dis-
tance = 0) were more likely occupied (Fig. 8).
Furthermore, areas considered suitable habitat
were sufficiently common that a majority (55.2%)
of plots were within 100 m and almost all
(92.3%) were within 1 km of suitable habitat.
Distance from areas defined as suitable habitat
based on DH-GAM with a threshold value of
0.25 had reasonable predictive ability. The other

models, which included those derived from DA-
MAX and those that included distance to larger
patches of suitable habitat, ranked much lower
(Appendix S6).
Of covariates related to plot location relative to

the study area boundaries, the logarithmic rela-
tionship of distance from the center of the study
area performed best (Appendix S7). Plots with
tree voles tended to be closer to the center of the
study area (96.6 � 6.2 km) than those without
tree voles detected (140.7 � 3.7 km). Distance to
the perimeter of the study area was least predic-
tive of all the distance-based covariates
(Appendix S7). However, none of these models
were competitive with the other best-of-theme
models (Table 1).

Patch size and neighborhood effects
The best patch size model was the logarithmic

relationship of patch size as estimated with DH-
GAM, with a threshold ≥0.25 (Table 1; Appe-
ndix S5). The effect of patch size was largely due
to the estimate of suitability at the scale of the
1-ha plot. Patch size was similar for plots with
(1985 � 633 ha) and without (1574 � 722 ha) tree
voles when only plots defined as suitable habitat
were compared. Thus, the effect of patch size was
largely a function of the existence of suitable habi-
tat and not the extent of such habitat.
However, we detected an association of the

suitability of areas surrounding plots with tree
vole occurrence. Mean suitability of habitat within
4- and 40-ha areas surrounding plots differed in
plots with and without tree voles, whereas there
was little difference at the scale of the fifth-field
watershed and sub-basin. The logarithmic rela-
tionship of suitable habitat within 4 ha estimated
with DH-GAM had the lowest AIC (Table 1;
Appendix S3). The linear form of this model was
competitive, whereas models estimated with DA-
MAX had much lower predictive ability for both
spatial scales (Appendix S3). Plots with tree voles

Table 3. Maximum tree diameter (cm) within 1-ha random plots in relation to forest age class and whether or not
a plot had red tree vole nests detected.

Forest age

Plots without tree voles Plots with tree voles

n Range �x SE n Range �x SE

Young (≤80 years) 72 0.0–152 82.1 4.6 7 137–185 150.2 6.0
Old (>80 years) 197 10–193 116.8 2.6 88 30–251 148.5 4.1
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had greater average suitability, particularly at the
4-ha scale (0.35 � 0.02 vs. 0.15 � 0.01) than at the
40-ha scale (0.29 � 0.01 vs. 0.16 � 0.01). Mean
habitat suitability at both of the watershed scales
had poor predictive ability relative to models in
the other themes (Table 1).

Hybrid models
Our best GLMs resulted from combining top-

ranking models from various themes. The best-
performing model was BEST9, which included
covariates from DH-GAM (maximum tree diame-
ter) and DA-MAX (diameter diversity index), in

Fig. 7. Comparison of the distribution of selected covariates in model DA-MAX (Forsman et al. 2016). Values
in the box represent the middle 50% of the measurements, the uppermost and lowermost boundaries of the box
represent the upper and lower quartiles of the measurements, and the tails represent the 90th and 10th per-
centiles. Filled circles outside the tails represent extreme values. The solid line through the box represents the
median, and the dotted line the mean.
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addition to density contours, distance from suit-
able habitat, forest age class, and the interaction
between maximum tree diameter and forest age
class (Table 1, Fig. 9). The second best GLM
(BEST10) included the same covariates as the
best-performing model, including the interaction
term, but included all of the non-geographic
covariates from DH-GAM and DA-MAX. The
third ranking GLM had the same covariates as
BEST9, but included administrative units rather
than contours (Appendix S11). These three GLMs
accounted for 90% of the relative model weights.
All of these models included a spatial covariate
(contours or administrative units), tree diameter,
and the interaction between maximum tree diam-
eter and forest age class (Appendix S11). Identical
models without spatial covariates were not nearly

Fig. 9. Effects of covariates from the logistic regres-
sion model BEST9. For each covariate examined, we
held the other continuous covariates at their mean val-
ues and explored changes in the probability of red tree
vole occurrence as the covariate increased in value and
as different levels of the categorical variables were
examined. The histograms represent the number of
plots for the given continuous covariate for plots
where tree vole nests were detected (top) or not
detected (bottom histogram).

Fig. 8. Comparison of distance (m, log-transformed)
from suitable habitat between plots with and without
detections of red tree vole nests for all plots and for
only those plots that did not contain suitable habitat
(i.e., >0 distance). Suitable habitat for this covariate
was estimated by model DH-GAM with a probability
threshold of 0.50 that delineates suitable from unsuit-
able habitat. Values (ln distance) in the box represent
the middle 50% of the measurements, the uppermost
and lowermost boundaries of the box represent the
upper and lower quartiles of the measurements, and
the tails represent the 90th and 10th percentiles. Filled
circles outside the tails represent extreme values. The
solid line through the box represents the median, and
the dotted line the mean.

 ❖ www.esajournals.org 16 December 2016 ❖ Volume 7(12) ❖ Article e01630

ROSENBERG ET AL.



as competitive, and those without the interaction
between age and diameter had much lower AIC
weights, but were among the top six models
(Appendix S11). Mean maximum tree diameter
was similar between young- and old-forest plots
with tree voles, but was almost 50% lower in
young-forest plots without tree voles (Table 3).
This strong association explains the inclusion of
the interaction term in the top three models.

Performance of models
Although the distribution of predicted probabili-

ties of tree vole occurrence from the top GLMs, DA-
MAX, and DH-GAM overlapped between plots
with and without tree voles, mean probabilities
were greater in plots with tree voles than in those
without voles. DA-MAX had the least difference in
mean predicted habitat suitability values between
plots with (0.43) and without (0.26) tree voles,
whereas the top three GLMs and DH-GAM had an
approximately threefold difference in mean pre-
dicted probabilities. DA-MAX resulted in predicted
probabilities that were most dissimilar to the results
from the other models we evaluated (r ≤ 0.56),
whereas estimates for DH-GAM were similar to
BEST9 (r = 0.86) and were similar to all of the other
models that included maximum tree diameter
either as a GNN variable (r = 0.75) or as a ground-
based measurement (r ≥ 0.85). Overall correct clas-
sification rates (~80%) and Cohen’s kappa (0.52)
were highest for DH-GAM and BEST9 (Table 4).

When models were applied to pre-disturbance
survey data, correct classification rates and
Cohen’s kappa were generally high for cells where
tree voles were detected (~75%) for DH-GAM
and BEST9, but low for DA-MAX (Table 4). Cor-
rect classification rates from absence polygons
were low and almost identical for the three mod-
els (Table 4). The frequency of tree vole occur-
rence was positively related to the predicted
probability (Fig. 10). Although this relationship
was similar among the three models, DA-MAX
had much greater precision than DH-GAM and
BEST9 (Fig. 10). At the threshold value where
predictions were classified as suitable habitat,
~46% of the 1-ha cells were predicted to have tree
voles, and this was consistent among the three
models (Fig. 10).
The ensemble model improved classification

rates considerably (Table 4). Of the 364 random
plots, 228 (62.6%) of the plots had consistent out-
comes (predicted as tree voles present or absent)
among the three models. Of these, 94.6% and
80.2% were classified correctly for plots with and
without tree voles detected, respectively, result-
ing in a 63% improvement over chance (Table 4).
Of the 7334 cells in the pre-disturbance survey
data that we evaluated, 4078 (55.6%) had consis-
tent outcomes, with 87.2% and 67.2% correctly
classified for cells with and without tree voles
detected, respectively, a 50% improvement over
chance (Table 4).

Table 4. Correct classification rates (%) of red tree vole habitat suitability models applied to (A) 1-ha plots from
random plot surveys and (B) 1-ha cells from pre-disturbance surveys.

Classification type DH-GAM DA-MAX BEST9 ENSEMBLE

A. Random plot surveys
Absence 76.6 64.7 73.2 80.2
Presence 84.2 68.4 89.5 94.6
Overall correct classification 78.6 65.7 77.5 83.8
Cohen’s kappa 0.52 0.27 0.52 0.63

B. Pre-disturbance surveys
Absence 59.2 60.9 59.8 67.2
Presence 74.7 61.7 75.9 82.7
Overall correct classification 66.9 61.3 67.9 74.9
Cohen’s kappa 0.34 0.22 0.36 0.50

Notes: Tree vole presence was predicted where the probability of tree vole occurrence was ≥0.25 (models DH-GAM and
BEST9) or estimates of relative habitat suitability were ≥0.34 (DA-MAX); absence was predicted when values were less than
these. The ensemble model includes only plots and cells that had consistent predictions of presence and absence among the
three models. We defined absence (specificity) as plots or cells where tree voles were neither detected nor predicted, and pres-
ence (sensitivity) as areas where they were both detected and predicted to occur. Cohen’s kappa is a measure of the proportional
improvement over chance, ranging from 0 to 1.
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DISCUSSION

Public agencies use wildlife surveys as a pri-
mary tool to address regulatory requirements for
species of conservation concern. For most spe-
cies, especially those that either live in difficult
terrain to survey or are hard to detect, surveys
are a major expense and may fail to address
management questions. Management of the red
tree vole provides an excellent case study of how
project-level surveys have been required as a
way to inform management, while other tools
such as habitat models and patterns of occur-
rence have rarely been implemented. Our devel-
opment and evaluation of these tools provides
compelling support for their use in meeting miti-
gation requirements and reducing the need for
project-level surveys of tree voles. By using pre-
dictions from three models developed with
different statistical approaches and different
environmental and spatial covariates and ass-
umptions, the ensemble model provides a tool to
predict tree vole occurrence with relatively high
accuracy, and may have greater application than
surveys conducted at project-level scales.
Our analysis of frequency of occurrence and

our top habitat suitability models point to only a
few important covariates associated with predict-
ing tree vole presence. Geographic covariates
were in all of the top models reflecting the high
spatial variation in the occurrence of tree voles,
consistent with earlier studies. Forsman et al.
(2016) concluded that tree voles were widely dis-
tributed in western Oregon, but that abundance
of the species was highly variable, ranging from
rare or uncommon in the northern Coast Ranges
and northern Cascades to fairly common in old
forests in the southern Coast Ranges and central
Cascades. Our findings, using randomly collected
samples, were consistent with their results, but
the level of spatial variation that we estimated
was much greater, occurring at finer spatial scales
than the subregions used by Forsman et al. (2016).
Although we were able to capture spatial varia-
tion by using geographic covariates, we were not
able to elucidate the mechanisms, be they environ-
mental, biogeographic history (Miller et al. 2006),
or patterns of timber harvest and wildfire (Price
et al. 2015) or other human uses. The spatial varia-
tion of tree vole occurrence throughout their range
likely represents many of these factors.

Fig. 10. Relationship between the frequency of occur-
rence of red tree vole nests and the predicted probabili-
ties of relative habitat suitability of (A) DA-MAX, and
occurrence from (B) DH-GAM and (C) BEST9 within
0.05 suitability bins. Occurrence rates are the proportion
of 1-ha cells from the pre-disturbance surveys (n = 7552
cells) in which red tree vole nests were detected. Linear
regression (solid line) was based on the midpoints of
each probability/relative suitability bin. Dashed line rep-
resents the threshold probability we used to delineate
predicted absence or presence of tree vole nests for each
model.
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In addition to spatial covariates, the only envi-
ronmental covariates included in the top models
were based on forest age, as reflected by both fre-
quency of occurrence and that tree size and forest
age class were important covariates in all of the
top models. Red tree voles occur in Douglas-fir
forests as young as 22 years (Swingle and Fors-
man 2009), but have a higher frequency of occur-
rence and greater abundance in old, but not
necessarily old-growth forests (Corn and Bury
1986, 1991, Gillesberg and Carey 1991, Dunk and
Hawley 2009, Forsman et al. 2016). Furthermore,
relative abundance of tree voles was likely biased
low in old stands because of the difficulty of
detecting nests in large trees (Swingle and Fors-
man 2009, Marks-Fife 2016). Our finding that the
occurrence of tree voles was associated with an
interaction between maximum tree diameter and
forest age class supports the consistent findings of
an association of tree voles with the largest trees
(Gillesberg and Carey 1991), particularly within
young forests (Thompson and Diller 2002, Fors-
man et al. 2016). The arboreal nature of tree voles
also adds a third dimension in understanding
abundance patterns: We would expect greater
numbers of voles in older forests simply because
there is a larger volume of habitat to occupy than
in stands with younger trees, but this is insuffi-
cient to explain the very large differences in occur-
rence and abundance. Tree voles may have higher
densities in larger trees in part because there may
be more suitable foundations upon which they
can build their nests (Gillesberg and Carey 1991,
Meiselman and Doyle 1996, Thompson and Diller
2002).

Our finding of a negative relationship of the
probability of tree vole occurrence with dis-
tance to suitable habitat is consistent with the
hypothesis that for species with limited dispersal,
proximity to occupied habitat affects occupancy.
Although there are only two studies that reported
on distance to neighboring nest trees as a factor
affecting the distribution of tree vole nests (Vrieze
1980, Meiselman and Doyle 1996, but see Thomp-
son and Diller 2002), the challenge in obtaining
reliable data to test this makes such evaluations
difficult. The random plot data do not allow a
direct test because of the limited 1-ha extent of
each plot and the large distances between nearest
plots. Although we were unable to evaluate dis-
tance to habitat that was known to be occupied,

our top models all included distance to areas esti-
mated to be suitable habitat. A more direct
approach would be to use distance to large trees
rather than model-based estimates of suitable
habitat. Light detecting and ranging (LiDAR) data
may allow reasonably accurate estimates of dis-
tances to large trees and may improve the perfor-
mance of models (Johnston and Moskal, in press)
and provide greater biological insight by using
covariates directly related to the factors believed
responsible for tree vole occurrence.

Performance of models
Overall correct classification rates of our best

GLMs and DH-GAM were high with the random
plot data and performed reasonably well with the
independent data. We predicted that accuracy of
the habitat models would be lower using the
independent data set, comprising pre-disturbance
surveys, than data from the random plots. Our
prediction was based on four points: (1) Test per-
formance is almost always better when using data
that were used to fit the model (Johnson 2001,
Boone and Krohn 2002, Boyce et al. 2002, Fielding
2002); (2) pre-disturbance survey data were not
collected with the same rigor as the random plot
data, thus increasing the likelihood of false
absences; (3) for DH-GAM and BEST9, remotely
sensed GNN data were used rather than actual
field measurements; and (4) pre-disturbance sur-
veys were conducted only in areas considered
potential habitat for tree voles, thus reducing the
breadth of environmental conditions that facili-
tates distinguishing between presence and
absence sites (Osborne and Su�arez-Seoane 2002,
Dunk et al. 2004). As expected, performance was
lower with the pre-disturbance survey data than
with the random plot data. However, all three
models (DH-GAM, DA-MAX, and BEST9) indi-
cated that the proportion of sites with voles
detected increased as estimates of habitat suitabil-
ity increased. This is a measure of model calibra-
tion and is expected with habitat suitability
models that perform well (Boyce et al. 2002).
Using all three models in an ensemble model

improved classification rates substantially. Pre-
dictions from our ensemble model are more
likely to result in reliable predictions when the
model is applied to novel areas than any of the
singular models, consistent with the findings
from Latif et al. (2013). The ensemble model
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could only be applied to the portion of the study
area (~63%) that had consistent predictions of
tree vole presence and absence among the three
models. Predictions from the ensemble model
may be sufficiently accurate to guide manage-
ment, and areas where predictions from the three
models were not consistent may warrant further
evaluation or data collection (Latif et al. 2013). In
these cases, it may be best to use one of the sin-
gular models, such as BEST9, or to rely on data
on the primary drivers of all models and field
studies: older forest, large trees, and geographic
location. Furthermore, when feasible, using
ground-based vegetation data rather than remo-
tely sensed data should improve estimates, as
our comparison of models incorporating GNN
and ground-based measurements of maximum
dbh demonstrated. Collecting ground-based for-
est structure data would be much more practical
in terms of cost and time than surveying for red
tree voles with sufficient effort to obtain a high
detection probablity. LiDAR also offers potential
for greater accuracy in assessing tree vole habitat
(Johnston and Moskal, in press).

What is “good enough?”
Although there are many approaches for eval-

uating predictive models (Fielding and Bell
1997), there has been little guidance in assessing
how good is good enough for use as a manage-
ment tool. The nature of natural resource models
requires the manager to identify how well a
model should perform for its intended use (Dunk
et al. 2004). One cannot “validate” such a model
because there is no gold standard upon which to
make a definitive conclusion (Johnson 2001,
McDonald and Manly 2001). Some models have
been so regularly applied that their use is almost
unquestioned (e.g., timber growth and yield
models). We suggest that predictive models of a
species’ presence could be used in the same way:
to make informed decisions about potential
actions, or to inform the choice among a series of
alternatives.

Hurley (1986) warned that models that may be
valuable management tools are not used because
the criteria for acceptance are too restrictive.
These are the challenging questions that man-
agers must decide. Our perspective is that the
results of our evaluation, using a suite of man-
agement-oriented models and several extensive

data sources, resulted in habitat models and an
understanding of the patterns of occurrence that
can be applied as tools for management of tree
voles in a manner that surveys cannot. Predic-
tions of habitat suitability from these models
may be more useful than the simple recognition
of whether a particular location might be occu-
pied or not at the time of a single survey.

Management implications
The SM Program uses two approaches to miti-

gate against potential harm to tree voles. The first
is to protect occupied areas by placing 4-ha no-
disturbance buffers centered on nest trees (USDA
and USDI 2000b, Huff et al. 2012). The second is
to conduct site assessments to determine whether
an area is a “non-high-priority site” or to develop
a high-priority site conservation strategy at the
scale of a fifth-field watershed to avoid habitat
disturbance in those areas (Huff 2016). The crite-
ria for site assessments consist of the quantity
and distribution of occupied sites or suitable
habitat, and the measures that are in place to
ensure persistence of the species (USDA and
USDI 2012, Huff 2016). Surveys have been the
primary tool to address these requirements. Our
best-performing habitat models, particularly the
ensemble model, should be able to help man-
agers decide if and where surveys are most
needed to address species management ques-
tions. Dunk et al. (2004) proposed using habitat
suitability models to help guide the need for pre-
disturbance surveys of terrestrial mollusks. They
suggested that surveys could be avoided in areas
where well-performing habitat models predicted
very low or very high suitability by assuming the
area was either not occupied or occupied, respec-
tively. While well-performing habitat models can
potentially be used to fulfill the objectives of field
surveys, some initial survey, such as the red tree
vole random plot surveys, is needed to develop
and test the validity of those models. Developing
broader conservation plans for a species, assess-
ing the need for a species to remain on the
Survey and Manage list, and developing site
assessments all require modeling approaches
that can predict species occurrence patterns
accurately enough to satisfy policy requirements,
guide management to provide for population
persistence, and avoid litigation. As with any
model, conditions beyond those initially sampled
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need to be considered prior to application of the
model (Johnson 2001).

Habitat suitability modeling has grown into a
relatively mature and robust ecological discipline
(Elith and Leathwick 2009, Franklin 2009). The
advent of better (e.g., high spatial accuracy) field
data, remotely sensed data, and increased com-
puting power has all added to this. However,
researchers’ development and use of these mod-
eling approaches has not translated to their use
by land managers. Responsibility lies on both
sides. Researchers need to ensure that their
applied research projects are really that, and able
to be applied. Managers need to be open to the
use of new approaches, and to ask critical ques-
tions about their utility. Collaboration at the
beginning of projects between researchers and
managers is most likely to lead to appropriate
development and subsequent use of models to
address management-related questions.
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