Marbled Murrelet Effectiveness Monitoring, Northwest Forest Plan

At-sea Monitoring - 2019 Summary Report

Northwest Forest Plan Interagency Regional Monitoring Program

Marbled murrelets at sea. Photo credit: Ryan Merrill.

February 2020

Marbled Murrelet Effectiveness Monitoring Team

Population Monitoring Team

William McIver, US Fish and Wildlife Service (lead) Deanna Lynch, US Fish and Wildlife Service Jim Baldwin (retired), US Forest Service, Pacific Southwest Research Station Nels Johnson, US Forest Service, Pacific Southwest Research Station Monique M. Lance, Washington Department of Fish and Wildlife Scott F. Pearson, Washington Department of Fish and Wildlife Martin G. Raphael (retired), US Forest Service, Pacific Northwest Research Station Craig Strong, Crescent Coastal Research Rich Young, US Fish and Wildlife Service

Nest Habitat Monitoring Team

William McIver, US Fish and Wildlife Service (lead) Deanna Lynch, US Fish and Wildlife Service Teresa Lorenz, Pacific Northwest Research Station Martin G. Raphael (retired), US Forest Service, Pacific Northwest Research Station S. Kim Nelson, Oregon State University Rich Young, US Fish and Wildlife Service

Adult marbled murrelet on nest. Photo credit: Nick Hatch, U.S. Forest Service

SUMMARY OF 2019 RESULTS

Here, we report the 2019 monitoring results from the Northwest Forest Plan Effectiveness Monitoring Program for the Marbled Murrelet (*Brachyramphus marmoratus*; hereafter, murrelet). The purpose of the murrelet program is to assess status and trends of at-sea abundance of murrelets during the nesting season in coastal waters adjacent to the Northwest Forest Plan (NWFP) area (Figure 1), and monitor change and quality of murrelet nesting habitat throughout the listed range of the species from the start of the NWFP to now. Here, we report the 2019 population monitoring results from at-sea surveys. Habitat monitoring work was not conducted in 2019, and therefore is not presented in this report. More in-depth evaluations of population and habitat monitoring (years 1993-2017) will be reported in our "25-year report," with an expected publication date in 2020. Please refer to the 20-year report and past publications for more details on the program and methods (Madsen *et al.* 1999; Huff *et al.* 2006; Raphael *et al.* 2007; Raphael *et al.* 2011; Miller *et al.* 2012; Falxa *et al.* 2014; Falxa and Raphael 2016).

The population monitoring strategy was designed to estimate at-sea abundance and trend during the breeding season in five of the six murrelet Conservation Zones established in the Marbled Murrelet recovery plan (USFWS 1997, see Figure 1). At-sea abundance monitoring was implemented in 2000 (Bentivoglio et al. 2002). Details of survey design, sampling protocol, and analytic methods are given in Raphael *et al.* (2007). We present detailed results through 2019 (where available) in the tables and figures below. We conducted annual surveys in Conservation Zones 1-4 in years 2000-2013 (see Figure 1 for locations of Conservation Zones). Beginning in 2014, due to budgetary restraints we implemented a reduced-sampling effort design, where Conservation Zones 1 and 3 are sampled in even years (e.g., 2014, 2016, etc.), Conservation Zones 2 and 4 are sampled in odd years, and Conservation Zone 5 is sampled every fourth year, in conjunction with Conservation Zone 4 (Table 1).

At-sea Abundance Estimates

Due to the reduced sampling effort, we are not able to provide a Plan-wide area ("All-Zones") abundance estimate for 2019. We are, however, able to provide an All-Zones estimate for 2018, which is approximately 22,500 murrelets (95% Confidence interval "Cl" = 17,500-27,600; all numbers rounded to nearest '100') (Table 2). In 2019, we sampled Conservation Zone 2 (Washington outer coast) and Conservation Zone 4 (Coos Bay, Oregon to the southern boundary of Humboldt County, California). At the Conservation Zone scale, the 2019 population estimates were approximately 1,700 murrelets (CI = 700-2,800; all numbers rounded to nearest '100') in Conservation Zone 2, and approximately 6,800 murrelets (CI = 5,600-11,100) in Conservation Zone 4 (Table 3). At the state scale, population estimates are available for 2018 for Washington and Oregon, and for 2019 for the Conservation Zone 4 portion of California (Table 4). At the state scale, the population estimates were: approximately 5,600 murrelets (CI = 2,800-8,300) in Washington; approximately 11,100 murrelets (CI = 7,600-14,500) in Oregon; and approximately 5,700 murrelets (CI = 3,900-7,600 in California (Table 4).

At-sea Abundance Trends

The All-Zones rate of change (or "trend") for years 2001 through 2018 indicated a 0.5% increase per year (95% CI: -0.6 to 1.6%). At the Conservation Zone scale, Conservation Zone 2 showed a - 2.2% decrease per year (95%CI: -5.8% to 1.5%) for years 2001 through 2019. Conservation Zone 4 showed significant evidence of a trend (3.5% increase per year; 95% CI: 1.6% to 5.5%) for years 2000 through 2019. These results are summarized in Table 5 and Figure 2. In this report, we do not provide trends through 2019 for Conservation Zones 1, 3 and 5 because they were not surveyed in 2019. At the state scale, all three states showed significant trends, as follows: Washington exhibited a significant declining trend between 2001 and 2018 (-3.9% per year; 95% CI: -5.6% to - 2.1%); Oregon exhibited a significant increasing trend between 2000 and 2018 (2.2% per year; 95%CI: 0.8% to 3.6%); and, California exhibited a significant increasing trend between 2000 and 2018 (4.6% per year; 95%CI: 2.7% to 6.5%) (Table 5).

Due to the nature of sampling a seabird that is sparsely and patchily distributed, and our level of survey effort, some of our abundance and trend estimates have wide confidence intervals. We repeat here information from the 20-year report (Falxa *et al.* 2016) on our criteria for evaluating for evidence of a trend:

"For the purposes of evaluating the evidence for a linear trend, we considered: (1) the magnitude of the annual trend estimate, particularly in relation to zero, where zero represents a stable population, and (2) the width and location of the 95 percent confidence intervals surrounding that trend estimate, also in relation to zero. The evidence for a population trend, versus a stable population, is stronger when the trend estimate and its 95 percent confidence interval do not overlap zero, and when the trend estimate is farther from zero. When the confidence interval of a trend estimate is tight around zero, then we would conclude that there is no evidence of a trend. Finally, when the confidence interval of a trend estimate is not close to zero, this indicates evidence that is not conclusive for or against a non-zero trend. Confidence intervals that are mainly above or below zero, but slightly overlap zero, can provide some evidence of a trend. "

Publications that include recent detailed population and habitat monitoring results include the three chapters in the 20-year murrelet report: 1) population (Falxa *et al.* 2016), 2) nesting habitat (Raphael *et al.* (2016a), and 3) an integrative chapter (Raphael *et al.*, 2016b). In addition, Raphael *et al.* (2015) examined the relative influence of terrestrial and marine factors on at-sea distribution and abundance.

All of these reports and others relevant to the Marbled Murrelet Effectiveness Monitoring Program can be found at http://www.fs.fed.us/r6/reo/monitoring/marbled-murrelet.php.

Additional Notes on 2019 surveys

<u>Conservation Zone 2</u>. A team from Washington Department of Fish and Wildlife conducted these surveys. There were no significant survey issues to report for 2019.

<u>Conservation Zone 4</u>. A team from Crescent Coastal Research conducted these surveys. There were no significant survey issues to report for 2019.

<u>Conservation Zones 1, 3 and 5</u>. These zones were not surveyed in 2019. Conservation Zones 1 and 3 will be surveyed in 2020. Conservation Zone 5 will be surveyed in 2021, in conjunction with Conservation Zone 4.

Reduced Effort Sampling Design and Adjustments to Analyses

Prior to implementing the reduced-effort sampling design, the program was able to generate population trend estimates annually for inference units (individual Conservation Zones, All-Zones, and states). Now, with Conservation Zones 1-4 sampled only every-other year, and Conservation Zone 5 sampled every fourth year, trend analyses must account for years without population estimates.

In 2015, the population monitoring team developed the following adjustments to the trend analyses method to take into account this new population data structure. These methods are reflected in the estimates provided in the Tables and Figures.

- 1. At the Conservation Zone scale, at-sea abundance trend estimates will be generated through the most recent year of surveys.
- At the All-Zones and state scales, trend estimates will be generated through the most recent year with either (a) population surveys and density estimates, or (b) an interpolated value, for the input density components from Conservation Zones 1 through 4. Extrapolations will not be used for components from these Zones. This means that All-Zones and state-scale annual population estimates will be one year "behind" (except for the California estimate; see below).
 - For example, the 2016 All-Zones estimate uses the actual 2016 density estimates for Conservation Zones 1 and 3 and interpolated 2016 values for Conservation Zones 2 and 4 (which were all surveyed in 2015 and 2017).
- 3. Interpolations will only be used to generate zone density estimates for the last year of a trend analysis period, and only for generating All-Zones and state-scale trend estimates, as described above.
- 4. For California, trend estimates will be generated only through the most recent year with population surveys and density estimates for Conservation Zone 4 (which provides the primary component to the California estimate).
- 5. For the Conservation Zone 5 component of the California and All-Zones trend estimates, we will use the density estimate from the most recent year with Conservation Zone 5 surveys. With Conservation Zone 5 scheduled to be surveyed only every fourth year, this extrapolation of Conservation Zone 5 data allows updating of the California and All-Zones trend estimates more frequently than every fourth year. Prior to 2017 (see Pearson *et al.* 2018), Conservation Zone 5 has typically contained few birds, and this extrapolation has a negligible effect on these trend and population estimates. In the "25-year report," we will evaluate the 2017 results from Conservation Zone 5 on trend and rate of change in California.

ACKNOWLEDGMENTS

We thank the many team members who have conducted the at-sea population surveys over the years, often under difficult conditions. For surveys conducted in 2019, we thank the excellent survey biologists Kelly Beach, Caanan Cowles, Chad Norris and Jessica Stocking in Conservation Zone 2; and Darrel Warnock and Danielle Devincezni in Conservation Zone 4, with some fill-in assistance by Teresa Bird (surveyor) and Jeff Jacobsen (boat operator). Funding and other support for this work in 2019 was provided by several offices and programs of the U.S. Fish and Wildlife Service, by the U.S. Forest Service Pacific Northwest Research Station, the U.S. Forest Service Pacific Southwest Forest Research Station, and the Washington Department of Fish and Wildlife.

CONTACT INFORMATION

For more information on the Marbled Murrelet Monitoring Program, contact:

William McIver, Ecologist U.S. Fish and Wildlife Service Arcata Fish and Wildlife Office phone: 707.825.5132 email: <u>bill mciver@fws.gov</u>

Web Site: Additional information, reports, publications, and program updates relevant to the Marbled Murrelet Effectiveness Monitoring Program (as well all other modules from the Interagency Regional Monitoring Program) can be found at <u>https://www.fs.fed.us/r6/reo/</u>.

RECOMMENDED CITATION:

McIver, W., J. Baldwin, M.M. Lance, S.F. Pearson, C. Strong, D. Lynch, M.G. Raphael, R. Young and N. Johnson. 2020. Marbled murrelet effectiveness monitoring, Northwest Forest Plan: At-sea Monitoring - 2019 summary report. 23 p.

TABLES AND FIGURES

Table 1. Survey years by conservation zone, under the reduced sampling design implemented in 2014, for years 2014-2025¹. See text in report for description of reduced sampling design.

Conservation Zone	Survey years ²
1 – Puget Sound (Strait of Juan de Fuca, San Islands and Puget Sound) ²	2014, 2015, 2016, 2018, 2020, 2022, 2024
2 – Western Washington Coast (Cape Flattery to Columbia River mouth) ²	2014, 2015, 2017, 2019, 2021, 2023, 2025
3 – Oregon Coast (Columbia River mouth to Coos Bay)	2014, 2015, 2016, 2018, 2020, 2022, 2024
4 – Siskiyou Coast (Coos Bay to southern boundary of Humboldt County, California)	2015, 2017, 2019, 2021, 2023, 2025
5 – Mendocino (northern boundary Mendocino County to San Francisco Bay)	2017, 2021, 2025

Footnotes -

¹ Survey years listed only to 2025 in this table, but surveys will continue after 2025, presumably under the current reduced sampling design.

² Surveys conducted in Conservation Zone 1 in 2015 and Conservation Zone 2 in 2014 due to availability of funds.

Table 2. Summary of 2001-2018 marbled murrelet density and abundance estimates (rounded to nearest 100 birds) for all Conservation Zones combined. Note that the most recent range-wide estimate is always one year behind the current sampling year because it takes two years to derive estimates when sampling units every other year.

Year	Density (birds/km²)	Bootstrap Standard Error (birds/km ²)	Coefficient of Variation of Density (%)	Birds	Birds Lower 95% CL	Birds Upper 95% CL
2001*	2.47	0.25	10.1	21,800	17,500	26,100
2002*	2.56	0.31	11.9	22,500	17,300	27,800
2003*	2.60	0.25	9.6	22,800	18,500	27,100
2004	2.46	0.26	10.5	21,600	17,100	26,000
2005	2.30	0.25	10.7	20,200	16,000	24,400
2006	2.09	0.17	8.2	18,300	15,400	21,300
2007	1.97	0.27	13.7	17,300	12,700	22,000
2008	2.06	0.18	8.9	18,100	15,000	21,300
2009	1.96	0.21	10.6	17,200	13,600	20,800
2010	1.89	0.21	11.1	16,600	13,000	20,200
2011	2.50	0.31	12.6	22,000	16,600	27,400
2012	2.40	0.27	11.3	21,100	16,400	25,800
2013	2.24	0.25	11.1	19,700	15,400	23,900
2014*	2.43	0.22	9.1	21,300	17,500	25,100
2015	2.75	0.26	9.5	24,100	19,700	28,600
2016	2.58	0.26	10.0	22,600	18,200	27,100
2017	2.62	0.26	10.1	23,000	18,500	27,600
2018	2.56	0.29	11.4	22,500	17,500	27,600

¹ Numbers in some years may differ slightly from those in previous summary reports (as indicated by an asterisk (*), as a result of additional data quality reviews performed in 2019 (see McIver *et al.* 2019 [2018 Annual Summary Report]).

Table 3. Marbled murrelet population estimates for Conservation Zones and sampling strata within Zones, 2000-2019, with parameter values (right 3 columns) used in the Distance Sampling method used to estimate population size. Based on at-sea surveys. The Zone 5 and "All Zone" estimates use interpolated values in years when Zone 5 was not surveyed. Numbers in some years may differ slightly from those in previous summary reports, as a result of additional data quality reviews performed in 2019 (see McIver *et al.* 2019 [2018 Annual Summary Report]). See text for details on use of interpolated or extrapolated values for estimates.

Year	Zone	Stratum	Density	CV (%)	Birds	Lower 95% Cl	Upper 95% Cl	Area	f(0)	E(s)	Truncation Distance (m)
2000	3	All	4.129	18.6	6,587	3,987	8,756	1,595	0.0165	1.623	100
2000	3	1	1.336	32.2	883	357	1,350	661			
2000	3	2	6.104	19.6	5,704	3,296	7,608	935			
2000	4	All	4.216	30.9	4,887	3,417	9,398	1,159	0.0097	1.730	180
2000	4	1	6.024	34.0	4,420	2,931	8,784	734			
2000	4	2	1.097	32.1	467	297	881	425			
2000	5	All	0.090	80.6	79	0	260	883			
2000	5	1	0.179	80.6	79	0	260	441			
2000	5	2	0.000	0.00	0	0	0	441			
2001	All	All	2.466	10.1	21,763	17,472	26,053	8,826			
2001	1	All	2.553	18.0	8,936	5,740	11,896	3501	0.0133	1.594	142
2001	1	1	4.506	23.1	3,809	2,432	5,689	845			
2001	1	2	1.764	21.4	2,111	948	2,816	1196			
2001	1	3	2.067	37.2	3,016	404	5,003	1459			
2001	2	All	0.899	41.9	1,518	524	2,942	1688	0.0125	1.444	80
2001	2	1	1.430	55.7	1,040	91	2,364	727			
2001	2	2	0.497	72.5	478	106	1,317	961			
2001	3	All	4.636	13.2	7,396	5,230	9,075	1595	0.0166	1.735	140
2001	3	1	1.724	23.0	1,140	657	1,700	661			
2001	3	2	6.695	14.1	6,257	4,241	7,814	935			
2001	4	All	3.284	24.0	3,807	2,983	6,425	1159	0.0101	1.749	170
2001	4	1	4.567	27.2	3,351	2,436	5,880	734			
2001	4	2	1.072	30.1	456	313	854	425			
2001	5	All	0.121	52.5	106	27	244	883			
2001	5	1	0.198	39.1	87	0	138	441			
2001	5	2	0.043	231.6	19	0	129	441			
2002	All	All	2.563	11.9	22,521	17,264	27,777	8,788			
2002	1	All	2.788	21.5	9,758	5,954	14,149	3,501	0.0103	1.761	194
2002	1	1	7.207	32.8	6,092	2,716	9,782	845			
2002	1	2	1.879	26.9	2,248	909	3,309	1,196			
2002	1	3	0.972	34.7	1,419	580	2,515	1,459			
2002	2	All	1.329	29.2	2,031	800	3,132	1,650	0.0195	1.400	70
2002	2	1	2.660	32.1	1,774	559	2,840	724			
2002	2	2	0.288	41.2	258	0	417	926			
2002	3	All	3.583	24.1	5,716	3,674	9,563	1,595	0.0118	1.892	150
2002	3	1	0.696	34.1	460	258	886	661			
2002	3	2	5.624	24.7	5,256	3,301	8,732	935			
2002	4	All	4.112	15.1	4,766	3,272	6,106	1,159	0.0108	1.724	175
2002	4	1	5.186	15.9	3,805	2,501	4,892	734			
2002	4	2	2.260	33.1	961	437	1,665	425			
2002	5	All	0.282	42.3	249	27	400	883			
2002	5	1	0.510	46.1	225	8	371	441			
2002	5	2	0.054	71.1	24	0	54	441			

Year	Zone	Stratum	Density	CV (%)	Birds	Lower 95% Cl	Upper 95% Cl	Area	f(0)	E(s)	Truncation Distance (m)
2003	All	All	2.596	9.6	22,808	18,525	27,091	8,786			
2003	1	All	2.428	16.6	8,495	5,795	11,211	3,498	0.0087	1.817	300
2003	1	1	6.644	22.1	5,617	3,372	7,795	845			
2003	1	2	1.441	32.9	1,721	911	2,794	1,195			
2003	1	3	0.793	32.8	1,156	252	1,912	1,458			
2003	2	All	2.407	28.8	3,972	2,384	6,589	1,650	0.0171	1.399	80
2003	2	1	2.639	26.0	1,912	1,132	3,048	724			
2003	2	2	2.225	48.4	2,061	1,019	4,229	926			
2003	3	All	3.686	16.1	5,881	3,992	7,542	1,595	0.0132	1.664	130
2003	3	1	1.192	23.8	788	499	1,212	661			
2003	3	2	5.450	17.8	5,093	3,244	6,680	935			
2003	4	All	3.806	17.3	4,412	3,488	6,495	1,159	0.0086	1.704	180
2003	4	1	4.960	19.7	3,640	2,622	5,392	734			
2003	4	2	1.816	27.2	773	557	1,424	425			
2003	5	All	0.055	61.1	48	0	85	883			
2003	5	1	0.109	61.1	48	0	85	441			
2003	5	2	0.000	0.0	0	0	0	441			
2004	All	All	2.455	10.5	21,572	17,144	26,000	8,786			
2004	1	All	1.562	22.0	5,465	2,921	7,527	3,498	0.0108	1.789	280
2004	1	1	3.833	30.0	3,241	1,365	4,845	845			
2004	1	2	1.513	25.4	1,807	1,042	2,777	1,195			
2004	1	3	0.286	60.0	417	0	727	1,458			
2004	2	All	1.823	27.0	3,009	1,669	4,634	1,650	0.0115	1.411	115
2004	2	1	3.373	33.4	2,444	1,217	4,093	724			
2004	2	2	0.611	25.0	565	314	841	926			
2004	3	All	5.051	13.7	8,058	5,369	9,819	1,595	0.0141	1.697	110
2004	3	1	1.721	20.7	1,137	707	1,732	661			
2004	3	2	7.405	15.1	6,921	4,278	8,564	935			
2004	4	All	4.272	26.9	4,952	3,791	9,021	1,159	0.0093	1.700	200
2004	4	1	5.331	32.2	3,911	2,729	7,732	734			
2004	4	2	2.447	43.5	1,041	608	2,421	425			
2004	5	All	0.099	60.5	88	18	214	883			
2004	5	1	0.091	64.5	40	0	104	441			
2004	5	2	0.107	93.6	47	0	137	441			
2005	All	All	2.300	10.7	20,209	15,976	24,442	8,/85	0.0456	4 75 0	150
2005	1	All	2.275	20.5	7,956	4,900	11,288	3,497	0.0156	1.758	150
2005	1	1	2.501	37.7	2,114	698	3,661	845			
2005	1	2	2.426	25.4	2,895	1,186	4,210	1,194			
2005	1	3	2.021	30.1	2,947	1,198	5,019	1,458	0.0426	4 44 0	120
2005	2	All	1.561	20.4	2,576	1,0/5	3,729	1,650	0.0136	1.418	130
2005	2	2	2.785	19.1	2,018	1,233	2,704	/24			
2005	2	2 A!!	0.003	50./ 16.0	558	2 5 90	1,401	920	0.0127	1 0 4 1	150
2005	3	All 1	3.009	22.9	5,854	3,580	7,447	1,595	0.0127	1.841	150
2005	2	2	5 602	32.2	5 3 2 0	209	902	025			
2005	 	<u>ک</u>	2 160	17.0	2,520	2 740	6,005	1 1 5 0	0.0109	1 5 1 0	170
2005	4 1	1	Δ Δ 87	25.0	3,075	2,740	5 562	72/	0.0108	1.310	1/0
2000		1 1		J.J	J,232	2,323	J,JUZ	/ / 34	1	1	1

Table 3. (continued)

Lower Upper Truncation CV (%) f(0) Year Zone Stratum Density Birds Area E(s) 95% CI 95% CI Distance (m) 2005 4 2 0.895 42.1 381 243 901 425 2005 5 All 0.169 31.8 149 69 251 883 2005 5 1 0.141 48.1 62 8 121 441 441 2005 5 2 0.197 39.7 87 36 156 2006 All All 2.087 8.2 18,335 15,395 21,275 8,785 2006 1 All 1.687 18.1 5,899 4,211 8,242 3,497 0.0138 1.765 139 2.760 3,182 2006 1 1 16.3 2,333 1,628 845 1.418 2006 2 24.9 1,693 777 2,551 1,194 1 2006 1 3 1.284 40.4 1,873 595 3,440 1,458 2006 2 All 1.443 18.0 2,381 1,702 3,433 1,650 0.0130 1.567 107 2 1 2006 2.261 19.9 1,638 1,038 2,372 724 2006 2 2 0.802 34.0 743 380 1,344 926 2006 3 All 3.731 12.7 5,953 4,546 7,617 1,595 0.0114 1.814 145 3 352 1,070 2006 1 1.034 29.6 684 661 2006 3 2 5.638 14.1 5,269 3,886 6,827 935 2006 4 All 3.410 14.9 3,953 5.525 1,159 0.0106 1.622 150 3.164 2006 4 1 4.821 15.5 3,538 2,698 4,894 734 425 2006 4 2 0.977 47.8 416 209 981 5 Not surveyed. Interpolated estimate used for All Zone calculation. 2006 21,980 2007 All All 1.971 13.7 17,317 12,654 8,785 2007 1 All 1.997 24.2 6,985 4,148 10,639 3,497 0.0117 1.642 378 1 2007 1 27.6 2,912 1,025 4,392 845 3.445 1,194 2007 708 1,993 1 1.218 21.9 1,453 2 2007 1 3 1.796 51.3 2,620 206 5,629 1,458 2007 2 All 1.536 26.7 2,535 1,318 3,867 1,650 0.0135 1.496 126 2 964 2007 1 2.851 32.0 2,065 3,336 724 2007 2 2 0.508 470 234 666 926 25.5 2007 3 All 2.518 4,018 2,730 5,782 1,595 0.0106 1.653 150 19.8 2007 3 0.526 58.5 26 744 661 1 348 3 2 20.4 3,670 2,525 5,378 935 2007 3.927 3,749 2007 4 All 3.234 34.8 2,659 7,400 1,159 0.0106 1.607 180 2007 4 1 4.730 37.5 3,470 2,329 7,025 734 2007 4 2 0.655 36.9 279 146 549 425 5 All 0 883 2007 0.033 37.7 30 49 2007 5 1 0.067 37.7 30 0 49 441 2007 5 2 0.000 0.0 0 0 0 441 All All 2.064 8.9 18,134 14,983 21,284 8,785 2008 All 2008 1 1.344 17.6 3,497 0.0109 1.739 206 4,699 3,000 6,314 2008 1 1 3.572 25.1 3,019 1,439 4,472 845 2008 0.899 27.6 1,073 580 1,640 1,194 1 2 1 0.416 30.8 607 288 970 1,458 2008 3 2008 2 All 1.169 22.1 1,929 1,164 2,868 1,650 0.0112 1.535 187 2 1,132 2008 1 2.584 22.4 1,872 2,801 724 2 2008 2 0.062 49.1 57 0 116 926 2008 All 14.7 6,153 4,485 8,066 1,595 0.0113 1.750 3 3.857 130 2008 3 1 0.337 28.4 223 107 353 661 2008 5,930 4,233 7,816 3 2 6.345 15.3 935 2008 4 All 4.560 17.9 5,285 3,809 7,503 1,159 0.0100 1.705 200 4 1 2008 6.386 19.5 4,685 3,167 6,687 734 2008 4 2 1.410 39.0 600 302 1,195 425 2008 5 All 0.076 48.1 67 9 132 883

Table 3 (continued)

Year	Zone	Stratum	Density	CV (%)	Birds	Lower 95% Cl	Upper 95% Cl	Area	f(0)	E(s)	Truncation Distance (m)
2008	5	1	0.065	60.1	29	0	81	441			
2008	5	2	0.087	70.3	38	0	68	441			
2009	All	All	1.962	10.6	17,237	13,647	20,827	8,785			
2009	1	All	1.608	21.2	5,623	3,786	8,497	3,497	0.0094	1.694	254
2009	1	1	3.811	27.7	3,221	1,777	5,107	845			
2009	1	2	0.689	26.3	822	489	1,302	1,194			
2009	1	3	1.083	42.9	1,580	410	3,299	1,458			
2009	2	All	0.765	21.9	1,263	776	1,874	1,650	0.0092	1.475	191
2009	2	1	1.609	23.3	1,166	693	1,766	724			
2009	2	2	0.105	61.0	97	0	209	926			
2009	3	All	3.696	17.7	5,896	3,898	7,794	1,595	0.0131	1.696	120
2009	3	1	0.650	42.5	430	187	893	661			
2009	3	2	5.849	19.0	5,467	3,339	7,250	935			
2009	4	All	3.786	19.9	4,388	3,599	6,952	1,159	0.0100	1.661	150
2009	4	1	5.304	20.9	3,892	3,031	6,170	734			
2009	4	2	1.167	67.3	497	244	1,390	425			
2009	5	Not survey	ved. Interpolo	ated estimate u	sed for All	Zone calculo	ntion.				
2010	All	All	1.889	11.1	16,595	12,969	20,220	8,785			
2010	1	All	1.256	20.0	4,393	2,719	6,207	3,497	0.0100	1.717	200
2010	1	1	2.004	26.8	1,694	957	2,712	845			
2010	1	2	1.783	23.6	2,128	1,021	3,052	1,194			
2010	1	3	0.391	43.1	571	62	1,142	1,458			
2010	2	All	0.779	25.5	1,286	688	1,961	1,650	0.0114	1.582	145
2010	2	1	1.336	23.8	968	552	1,439	724			
2010	2	2	0.343	71.9	318	0	784	926			
2010	3	All	4.503	16.7	7,184	4,453	9,425	1,595	0.0138	1.770	160
2010	3	1	1.071	50.1	708	239	1,354	661			
2010	3	2	6.930	17.7	6,476	3,691	8,468	935			
2010	4	All	3.162	28.5	3,665	2,248	6,309	1,159	0.0120	1.624	165
2010	4	1	3.774	34.3	2,769	1,463	5,087	734			
2010	4	2	2.106	36.3	896	431	1,700	425			
2010	5	Not survey	ved. Interpolo	ated estimate u	sed for All	Zone calculo	ation.				
2011	All	All	2.501	12.6	21,972	16,566	27,378	8,785			
2011	1	All	2.055	17.4	7,187	4,807	9,595	3,497	0.0089	1.666	289
2011	1	1	5.580	20.3	4,717	2,621	6,399	845			
2011	1	2	1.243	23.7	1,484	790	2,147	1,194			
2011	1	3	0.676	65.8	986	206	2,384	1,458			
2011	2	All	0.721	33.4	1,189	571	2,106	1,650	0.0110	1.496	161
2011	2	1	1.314	30.8	952	400	1,572	724			
2011	2	2	0.256	102.0	237	38	772	926			
2011	3	All	4.661	16.3	7,436	5,067	9,746	1,595	0.0126	1.678	120
2011	3	1	0.980	38.6	648	343	1,455	661			
2011	3	2	7.264	17.4	6,788	4,304	9,054	935			
2011	4	All	5.196	34.9	6,023	2,782	10,263	1,159	0.0122	1.644	145
2011	4	1	6.724	42.2	4,933	1,643	8,767	734			
2011	4	2	2.561	47.3	1,090	592	2,472	425			
2011	5	All	0.155	53.0	137	16	295	883			
2011	5	1	0.243	64.8	107	5	259	441			
2011	5	2	0.068	78.8	30	0	66	441			
2012	All	All	2.400	11.3	21,086	16,401	25,770	8,785			
2012	1	All	2.414	20.7	8,442	5,090	12,006	3,497	0.0109	1.847	164

Table 3 (continued)

Lower Upper Truncation CV (%) f(0) Year Zone Stratum Density Birds Area E(s) 95% CI 95% CI Distance (m) 2012 7.166 24.4 6.056 3.289 8.823 845 1 1 2012 1 2 1.507 30.4 1,799 812 2,892 1,194 2012 1 3 0.402 48.1 587 168 1,227 1,458 33.5 1,650 2012 2 All 0.719 1,186 564 2,360 0.0131 1.485 106 2012 2 1 1.178 29.2 853 325 1,289 724 2012 2 2 0.360 89.9 333 0 1,459 926 0.0112 All 3.986 6,359 4,136 8,058 1,595 1.765 186 2012 3 15.5 2012 3 1 0.895 34.9 591 227 1,042 661 2012 3 2 6.172 15.9 5,768 3,775 7,330 935 2012 4 All 4.279 24.9 4,960 3,414 8,011 1,159 0.0107 1.652 140 4 1 2012 6.050 27.6 4,439 2,916 7,497 734 425 2012 4 2 1.225 39.6 521 166 940 2012 5 Not surveyed. Interpolated estimate used for All Zone calculation. 23,927 All 19,662 15,398 8,785 2013 All 2.238 11.1 2013 All 1.257 27.9 4,395 2,298 6,954 3,497 0.0109 1.695 137 1 2013 1 1 2.379 2.010 861 3,253 845 31.4 2013 1 2 0.657 20.1 508 1,124 1,194 784 2013 1 3 1.097 64.4 1,600 381 3,717 1,458 2013 2 All 1,271 950 1,858 0.0117 132 0.770 18.5 1,650 1.569 2013 2 1 1.605 19.0 1,163 854 1,722 724 2013 2 2 0.117 59.3 108 0 274 926 3 2013 All 4.939 16.3 7,880 5,450 10,361 1,595 0.0112 1.637 160 2013 0.991 43.8 1,226 3 655 151 661 1 2013 3 2 7.731 17.8 7,225 4,707 9,667 935 2013 4 All 5.216 20.5 6,046 4,531 9,282 1,159 0.0128 1.607 146 4 2013 1 7.384 21.8 5,418 3,939 8,516 734 2013 4 2 1.477 279 1,184 425 36.7 629 2013 5 All 0.080 45.4 5 883 71 118 2013 5 0.160 45.4 71 5 118 441 1 5 2 0.000 0.0 0 0 0 441 2013 2014 All All 2.425 9.1 21.305 17,492 25,117 8,785 All 0.807 0.0102 2014 1 19.3 2,822 1,668 3,836 3,497 1.664 172 2014 1 1 1.258 26.7 1,063 580 1,631 845 570 2,176 1,194 2014 1 2 1.274 26.4 1,521 2014 1 3 0.163 69.6 238 0 533 1,458 2014 2 All 1.318 30.7 2,176 1,038 3,574 1,650 0.0131 1.508 122 2 925 2014 1 2.879 31.5 2,086 3,466 724 2 2 0 2014 0.098 90 214 926 65.6 2014 3 All 5.541 12.4 8,841 6,819 11,276 1,595 0.0108 1.720 140 2014 1.477 34.1 286 1,587 3 1 976 661 2014 3 8.415 13.1 7,864 10,240 935 2 6,156 2014 4 Not surveyed. Interpolated value used for All Zone calculation. 5 2014 Not surveyed. Extrapolated value used for All Zone calculation. 2015 All All 2.747 9.5 24,134 19,658 28,610 8,785 2,640 6,565 3,497 0.0111 1.786 191 2015 1 All 1.227 24.1 4,290 2015 1 1 2.218 35.8 1,875 829 3,383 845 2015 1.945 1,148 3,863 1,194 1 2 29.9 2,321 2015 1 3 0.064 92.6 94 0 267 1,458 2 All 0.0093 2015 1.941 30.4 3,204 1,883 5,609 1,650 1.866 175 2015 2 1 2.849 27.9 2,064 1,176 3,316 724

Table 3 (continued)

2015

2

2

1.231

71.2

1,140

144

3,290

926

Year	Zone	Stratum	Density	CV (%)	Birds	Lower 95% Cl	Upper 95% Cl	Area	f(0)	E(s)	Truncation Distance (m)
2015	3	Not survey	ved. Average	of 2014 and 20	016 estima	tes used for	All-Zones est	imate.			
2015	4	All	7.542	16.8	8,743	7,409	13,125	1,159	0.0118	1.701	159
2015	4	1	9.897	17.3	7,262	5,906	10,692	734			
2015	4	2	3.480	48.9	1,481	859	3,713	425			
2015	5	Not survey	ved. Extrapol	ated value used	d for All Zo	ne estimate.					
2016	All	All	2.575	10.0	22,624	18,173	27,075	8,785			
2016	1	All	1.319	30.0	4,614	2,298	7,571	3,497	0.0112	1.675	224
2016	1	1	2.693	36.6	2,276	969	4,062	845			
2016	1	2	1.655	51.7	1,975	617	4,075	1,194			
2016	1	3	0.249	37.7	362	106	621	1,458			
2016	2	Not survey	ved. Extrapol	ated value used	d for All-Zo	nes estimate	2.				
2016	3	All	4.271	13.8	6,813	5,389	8,821	1,595	0.0116	1.661	130
2016	3	1	0.862	27.9	570	346	944	661			
2016	3	2	6.681	14.8	6,244	4,760	8,195	935			
2016	4	Not survey	ved. Extrapol	ated value used	d for All-Zo	nes estimate	2.				
2016	5	Not survey	ved.		,						
2017	All	All	2.620	10.1	23,019	18,477	27,561	8,785			
2017	1	Not survey	ved.			,		,			
2017	2	All	1.065	23.2	1,758	1,041	2,623	1,650	0.0097	1.648	154
2017	2	1	2.127	25.8	1,541	820	2,353	724			
2017	2	2	0.235	36.5	218	56	363	926			
2017	3	Not survey	ved.								
2017	4	All	7.373	14.9	8.546	6.277	11.331	1.159	0.0118	1.660	170
2017	4	1	9.185	15.7	6.740	4.677	8.890	734			
2017	4	2	4.248	11.7	1.807	813	3.223	425			
2017	5	All	0.988	39.0	872	467	1,698	883			
2017	5	1	0.768	188.0	339	63	736	441			
2017	5	2	1.207	48.8	533	321	1,208	441			
2018	All	All	2.564	11.4	22,521	17,482	27,559	8,785			
2018	1	All	1.099	34.6	3,843	1,937	6,901	3,497	0.0080	1.744	242
2018	1	1	1.402	44.8	1,185	339	2,367	845			
2018	1	2	1.034	29.6	1,234	543	1,947	1,194			
2018	1	3	0.977	87.4	1,425	0	4,246	1,458			
2018	2	Not survey	ved.					· · · ·			•
2018	3	All	5.274	18.6	8,414	6,026	12,033	1,595	0.0123	1.640	120
2018	3	1	1.026	43.0	678	286	1,408	661			
2018	3	2	8.277	19.9	7,736	5,258	11,164	935			
2018	4	Not survey	ved.		. <i></i>	· · ·					•
2018	5	Not survey	ved.								
2019	All	All	2019 All-Zo	ones estimate v	vill be avai	lable in 2020) Summary R	eport.			
2019	1	Not survey	ved.				· · ·				
2019	2	All	1.004	30.7	1.657	745	2.752	1.650	0.0078	1.817	179
2019	2	1	2.276	30.8	1.649	738	2.741	724			
2019	2	2	0.009	102.2	9	0	28	926			
2019	3	Not survey	ved.				-				1
2019	4	All	5.885	21.9	6,822	5,576	11,063	1,159	0.0115	1.696	118
2019	4	1	8.091	22.8	5,936	4,588	9,921	734			
2019	4	2	2.081	47.1	885	481	2,076	425			
2019	5	Not survey	ved.								

Table 3 (continued)

Table 4. Summary of 2000 to 2019¹ marbled murrelet density and abundance estimates at the State scale. Numbers in some years may differ slightly from those in previous summary reports, as a result of additional data quality reviews performed in 2019 (see McIver *et al.* 2019). These data are represented in Figure 3 (see p. 21).

		Density		Murrelets	rrelets Murrelets	
Year	State	(murrelets	Murrelets	95% CL	95% CL	Area
		per km2)		Lower	Upper	(KMZ)
2001	WA	2.01	10,453	7,057	13,849	5,188
2002	WA	2.29	11,789	7,507	16,071	5,151
2003	WA	2.42	12,467	8,906	16,028	5,149
2004	WA	1.65	8,474	5,625	11,322	5,149
2005	WA	2.05	10,533	7,179	13,887	5,148
2006	WA	1.61	8,280	6,024	10,536	5,148
2007	WA	1.85	9,520	5,946	13,095	5,148
2008	WA	1.29	6,628	4,808	8,448	5,148
2009	WA	1.34	6,886	4,486	9,285	5,148
2010	WA	1.10	5,679	3,840	7,518	5,148
2011	WA	1.63	8,376	5,802	10,950	5,148
2012	WA	1.87	9,629	6,116	13,142	5,148
2013	WA	1.10	5,665	3,217	8,114	5,148
2014	WA	0.97	4,998	3,311	6,686	5,148
2015	WA	1.46	7,494	4,711	10,276	5,148
2016	WA	1.38	7,095	4,060	10,130	5,148
2017	WA	1.16	5,987	3,209	8,765	5,148
2018	WA	1.08	5,551	2,795	8,307	5,148
2000	OR	3.85	7,983	4,992	10,974	2,071
2001	OR	4.43	9,168	6,537	11,800	2,071
2002	OR	3.64	7,530	4,727	10,332	2,071
2003	OR	3.56	7,380	5,370	9,390	2,075
2004	OR	4.40	9,112	6,833	11,391	2,071
2005	OR	3.36	6,966	4,812	9,121	2,071
2006	OR	3.68	7,617	5,916	9,318	2,071
2007	OR	2.59	5,357	3,332	7,381	2,071
2008	OR	3.64	7,541	5,682	9,400	2,071
2009	OR	3.58	7,423	5,208	9,638	2,071
2010	OR	3.95	8,182	5,743	10,622	2,071
2011	OR	4.05	8,379	5,943	10,816	2,071
2012	OR	3.76	7,780	5,605	9,956	2,071
2013	OR	4.74	9,819	7,195	12,443	2,071
2014	OR	5.50	11,384	8,83 <mark>9</mark>	13,930	2,071
2015	OR	5.30	10,975	8,188	13,762	2,071
2016	OR	4.86	10,060	7,541	12,579	2,071
2017	OR	5.29	10,959	8,044	13,874	2,071
2018	OR	5.34	11,063	7,610	14,515	2,071

Year	State	Density (murrelets per km2)	Murrelets	Murrelets 95% CL Lower	Murrelets 95% CL Upper	Area (km2)
2000	CA	2.28	3,571	1,884	5,258	1,566
2001	CA	1.31	2,051	608	3,495	1,566
2002	CA	2.28	3,202	2,181	4,224	1,566
2003	CA	1.31	2,985	1,753	4,217	1,567
2004	CA	2.04	3,986	2,197	5,775	1,566
2005	CA	1.90	2,710	1,896	3,523	1,566
2006	CA	2.55	2,438	1,727	3,149	1,566
2007	CA	1.73	2,440	1,465	3,415	1,566
2008	CA	1.56	3,964	2,802	5,126	1,566
2009	CA	1.56	2,928	1,589	4,268	1,566
2010	CA	2.53	2,644	1,098	4,191	1,566
2011	CA	1.87	5,217	1,962	8,472	1,566
2012	CA	1.69	3,514	1,812	5,216	1,566
2013	CA	3.33	4,178	2,662	5,694	1,566
2014	CA	2.24	4,922	3,410	6,433	1,566
2015	CA	2.67	5,666	3,970	7,361	1,566
2016	CA	3.14	5,469	3,963	6,974	1,566
2017	CA	3.62	6,073	4,415	7,730	1,566
2018	CA	3.49	5,907	4,164	7,650	1,566
2019	CA	3.88	5,741	3,894	7,588	1,566

Table 4. (continued)

¹ Periods of analysis: 2001-2018 for Washington, 2000-2018 for Oregon and 2000-2019 for California.

Table 5. Estimates of average annual rate of marbled murrelet population change based on at-sea abundance surveys. Confidence limits are for the estimates of percent annual change. The *P*-value is based on a 2-tailed test for whether the annual rate of change is less than zero, significant values are shaded in gray. Based on updated population estimates reported in Tables 2 and 3. For guidance on interpretation of rates of change and confidence intervals, please refer to Falxa et al. (2016), and the excerpt from that report in the summary text above. Numbers in some years may differ slightly from those in previous summary reports, as a result of additional data quality reviews performed in 2019 (see McIver *et al.* 2019). Please note that the period of analysis extends to either 2017, 2018 or 2019, depending on which year sampling units were last surveyed. These data are represented in Figures 2 and 3 (see pp. 20-21).

			95%	Conf.		
Zone or		Appual Pata of	Limits		Adjusted	P -
State	Period of Analysis	Change (%)	Lower	Upper	R ²	value
Zone 1 ¹	2001-2018	-4.8	-7.3	-2.4	0.504	<0.001
Zone 2 ²	2001-2019	-2.2	-5.8	1.5	0.040	0.216
Zone 3 ¹	2000-2018	1.4	-0.4	3.3	0.104	0.111
Zone 4 ²	2000-2019	3.5	1.6	5.5	0.470	0.001
Zone 5 ³	2000-2017	7.2	-4.4	20.3	0.080	0.204
WA	2001-2018	-3.9	-5.6	-2.1	0.555	<0.001
OR	2000-2018	2.2	0.8	3.6	0.350	0.004
СА	2000-2019	4.6	2.7	6.5	0.583	<0.001
All-Zones	2001-2018	0.5	-0.6	1.6	0.000	0.377

¹ Last surveyed in 2018

² Surveyed in 2019

³ Last surveyed in 2017

Figure 1. The five at-sea marbled murrelet Conservation Zones adjacent to the Northwest Forest Plan area. Approximate inland breeding distribution is shaded (adapted from U.S. Fish and Wildlife Service 1997).

Figure 2. Percent annual change (95% Confidence interval) by Conservation Zone, "All"-Zones combined and by State. Trends are through 2017 for the black square, through 2018 for the blue triangles and through 2019 for the black circles. If the confidence intervals do not overlap zero, then there is support for either a positive (e.g., Zone 4) or a negative (e.g., Zone 1) trend. Statistics and periods of analysis for these results are provided in Table 5 (see p. 18).

Figure 3. Marbled murrelet density trend analyses for All-Zones, individual Conservation Zones, and State scales. Graphs show fitted regression lives through the annual density estimates for the period of analysis (through 2019 for Zones 2 and 4 only), with 95 percent confidence limits. Data are represented in Table 2 (see p. 9).

LITERATURE CITED

Program products are available at: http://www.fs.fed.us/r6/reo/monitoring/murrelet/

Bentivoglio, N.; J. Baldwin; P.G.R. Jodice; D. Evans-Mack; T. Max, T; S, Miller; S.K. Nelson; K. Ostrom;
C.J. Ralph; M. Raphael; C. Strong; C. Thompson; R. Wilk. 2002. Northwest Forest Plan Marbled
Murrelet effectiveness monitoring 2000 annual report. U.S. Dept. of the Interior, Fish and Wildlife
Service, Portland, OR. 72 p. Available at:

http://www.reo.gov/monitoring/reports/murrelet/MAMU_EM_00report.pdf

- Falxa, G.A.; and M.G. Raphael, tech. eds. 2016. Northwest Forest Plan—The first 20 years (1994–2013): status and trend of marbled murrelet populations and nesting habitat. Gen. Tech. Rep. PNW-GTR-933. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 148 p. Available at: https://www.fs.fed.us/pnw/pubs/pnw_gtr933.pdf
- Falxa, G.A.; M.G. Raphael; C. Strong; J. Baldwin; M. Lance; D. Lynch; S.F. Pearson; and R.D. Young. 2016. Status and Trend of Marbled Murrelet Populations in the Northwest Forest Plan Area. Chapter 1 in Falxa and Raphael (2016; full citation above).
- Falxa, G.; J. Baldwin; M. Lance; D. Lynch; S.K. Nelson; S.F. Pearson; M.G. Raphael; C. Strong; and R. Young. 2014. Marbled murrelet effectiveness monitoring, Northwest Forest Plan: 2013 summary report. 20 pp.
- Huff, M.H.; M.G. Raphael; S.L. Miller; S.K. Nelson; and J. Baldwin, tech coords. 2006. Northwest Forest Plan The first 10 years (1994-2003): status and trends of populations and nesting habitat for the marbled murrelet. Gen. Tech. Rep. PNW-GTR-650. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 149 p. Available at: http://www.fs.fed.us/pnw/pubs/pnw_gtr650.pdf
- Madsen, S.; D. Evans; T. Hamer; P. Henson; S. Miller; S.K. Nelson; D. Roby; and M. Stapanian. 1999.
 Marbled murrelet effectiveness monitoring plan for the Northwest Forest Plan. Gen. Tech. Rep.
 PNW-GTR-439. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station,
 Portland, OR. 51 p. Available at: https://www.fs.fed.us/pnw/pubs/pnw_gtr439.pdf
- McIver, W., J. Baldwin, M.M. Lance, S.F. Pearson, C. Strong, N. Johnson, D. Lynch, M.G. Raphael, R. Young, T. Lorenz and K. Nelson. 2019. Marbled murrelet effectiveness monitoring, Northwest Forest Plan: 2018 summary report. 22 p.
- Miller, S.L.; M.G. Raphael; G.A. Falxa; C. Strong; J. Baldwin; T. Bloxton; B.M. Galleher; M. Lance; D. Lynch; S.F. Pearson; C.J. Ralph; and R.D. Young. 2012. Recent population decline of the marbled murrelet in the Pacific Northwest. Condor 114:771-781.
- Raphael, M.G.; G.A. Falxa; D. Lynch; S.K. Nelson; S.F. Pearson; A.J. Shirk, R.D. Young. 2016a. Status and trend of nesting habitat for the Marbled Murrelet under the Northwest Forest Plan. Chapter 2 *in* Falxa and Raphael (2016; full citation above).
- Raphael, M.G.; A.J. Shirk; G.A. Falxa; D. Lynch; S.K. Nelson; S.F. Pearson; C. Strong; R.D. Young. 2016b. Factors Influencing Status and Trend of Marbled Murrelet Populations: An Integrated Perspective. Chapter 3 *in* Falxa and Raphael (2016; full citation above).
- Raphael, M.G.; J. Baldwin; G.A. Falxa; M.H. Huff; M. Lance; S.L. Miller; S.F. Pearson; C.J. Ralph; C. Strong; and C. Thompson. 2007. Regional population monitoring of the marbled murrelet: field and analytical methods. Gen. Tech. Rep. PNW-GTR-716. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 70 p. Available at: http://www.fs.fed.us/pnw/pubs/pnw_gtr716.pdf

- Raphael, M.G.; G.A. Falxa; K.M. Dugger; B.M. Galleher; D. Lynch; S.L. Miller; S.K. Nelson and R.D. Young.
 2011. Northwest Forest Plan—the first 15 years (1994-2008): Status and trend of nesting habitat for the Marbled Murrelet. Gen. Tech. Rep. PNW-GTR-848. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. Available at: https://www.fs.fed.us/pnw/pubs/pnw_gtr848.pdf
- Raphael, M.G., A. Shirk, G.A. Falxa, and S.F. Pearson. 2015. Habitat associations of marbled murrelets during the nesting season in nearshore waters along the Washington to California coast. Journal of Marine Systems 146:17-25.
- U.S. Fish and Wildlife Service. 1997. Recovery plan for the threatened marbled murrelet (*Brachyramphus marmoratus*) in Washington, Oregon, and California. Portland, OR. 203 p.