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Forest biomass estimation over regional scales using multisource data
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[1] A combination of statistical models and multisource
data were used to map above-ground forest biomass for
National Forest lands in California. To do this, data from the
Moderate Resolution Imaging Spectoradiometer were used
in combination with precipitation, temperature, and
elevation data. The results show that coarse resolution
remotely sensed data in combination with relevant
topographic and climate data can be used to map above-
ground biomass with good accuracy over large areas. For
the data sets considered, empirical models based on a
2 percent sample explained 73 percent of the variance in
biomass in the remaining 98 percent of the data with a
root mean square error of 44.4 tons/ha. These results
suggest that it should be feasible to improve estimates of
above-ground carbon stocks at regional to continental scales
in the near future. INDEX TERMS: 0933 Exploration
Geophysics: Remote sensing; 1640 Global Change: Remote
sensing; 1615 Global Change: Biogeochemical processes (4805).
Citation: Baccini, A., M. A. Friedl, C. E. Woodcock, and
R. Warbington (2004), Forest biomass estimation over regional
scales using multisource data, Geophys. Res. Lett., 31, L10501,
doi:10.1029/2004GL019782.

1. Introduction

[2] Incomplete information regarding the spatial distribu-
tion of carbon stored in biomass introduces substantial
uncertainty to current estimates of the global carbon budget
[Brown and Schroeder, 1999]. Much of this uncertainty is
attributable to poor knowledge of forest biomass [Schroeder
et al., 1997]. For example, differences in estimates of
biomass stored in Brazil’s Amazonian forest vary by a
factor of 2 (from 39 PgC to 93 PgC) [Houghton et al.,
2001], and estimates of carbon emissions caused by tropical
land use change in 1990 vary from 1.2 to 2.2 Pg C yr~'
[Houghton, 1992].

[3] In this paper, we describe research that uses a
combination of data sources to map above-ground forest
biomass for eighteen National Forests in California. Esti-
mation and mapping of biomass at this scale presents
considerable technical and logistical challenges using
field-based methodologies. Our results show that by using
a combination of remotely sensed data, topographic infor-
mation, and climate variables it is possible to map forest
biomass over regional scales with good accuracy.
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2. Background
2.1. Forest Inventories

[4] Collection of field data to estimate biomass generally
involves destructive sampling [Brown, 2002]. Such proce-
dures are time consuming and very expensive. As a result,
forest biomass data are relatively rare, and when available,
tend to be representative of small areas and local conditions
[Schroeder et al., 1997]. More commonly, forest biomass is
estimated using timber volume information collected
through forest inventories. Such inventories employ statis-
tical sampling using field plots, where forest parameters (i.e,
tree species, height, diameter at breast height) are measured
directly. Conversion of timber volume to above-ground
biomass is then accomplished by applying a biomass
expansion factor (BEF) to the timber volume data. In the
United States, the USDA Forest Service Forest Inventory
and Analysis (FIA) is the major source of timber volume
and is used in this work to calibrate and test empirical
models using remote sensing and other data sources to
predict forest biomass.

2.2. Remote Sensing

[5] Remotely sensed data have been used to map land
cover, land use change, and forest structural variables such
as forest density and tree height [Franklin et al., 2000; Puhr
and Donoghue, 2000]. Remotely sensed data do not esti-
mate the amount of biomass present in the forest directly,
but rather, measure other characteristics such as crown size
and forest density, which are correlated with biomass.

[6] In general, there has been very little success in
mapping biomass over large areas from remote sensing.
Most commonly, regression models have been used to relate
biophysical parameters such as forest volume derived from
field measurements with remotely sensed observations
obtained from optical and active microwave instruments
[Gemmell, 1995; Myneni et al., 2001]. While radar image
intensity shows good correlation with forest structure param-
eters in some situations, microwave reflectivity tends to
saturate at low biomass levels (=50—250 tons/ha, depending
on the frequency [Ranson et al., 1997]), which is a severe
limitation in areas such as California where the above-
ground biomass in forest stands ranges from about 50 to
400 tons/ha. In the future, LIDAR remote sensing will likely
provide the best means of forest biomass mapping [Lefsky et
al., 1999]. However, LIDAR remote sensing is in its infancy
and there is not a well-demonstrated way to scale from the
inherently fine resolution of LIDAR measurements with
limited geographic sampling to produce maps of large areas.

3. Data and Methods
3.1. Study Area and Data

[7] The study area encompasses eighteen National For-
ests in California. This area includes roughly 89,000 km?,
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with elevations ranging from sea level to more than 4000 m.
Total annual average precipitation varies from 16 cm on the
southeastern side of the Sierra Nevada Mountains to 275 cm
in northwestern coastal areas. The main life forms consist
of conifer forest/woodland, hardwood forest/woodland,
chaparral, soft chaparral, sagebrush scrub and herbaceous
formations [Franklin et al., 2000].

[8] The remote sensing data used in this study consist
of 1-km surface reflectances derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS). MODIS
possesses seven spectral bands designed for land applica-
tions with wavelengths from 459 to 2155 nm. Because
MODIS data are acquired with variable viewing geometry,
we used Nadir Bidirectional Reflectance Distribution Func-
tion (BRDF) adjusted reflectances (NBAR) for this work
[Schaaf et al., 2002]. Each NBAR image provides surface
reflectance data that have been normalized to a consistent
nadir view geometry, and that are atmospherically corrected,
cloud-cleared, and representative of 16 day periods. To
improve separation between background vegetation, broad-
leaf forests, and needleleaf forests we used MODIS imagery
acquired in both the summer (Aug. 16, 2001) and the winter
(Jan. 01, 2001).

[¢9] Biomass data were provided by the Remote Sens-
ing Laboratory for Region 5 of the United States
Department of Agriculture Forest Service (USFS), who
compiled a high resolution forest biomass map for
National Forests in California. This map was generated
by intersecting FIA-derived timber volume estimates with
a forest cover map depicting 190 strata with uniform
forest structure attributes including tree density, tree
size, and regional forest type [Woodcock et al., 1994;
Franklin et al., 2000]. The timber volume data were
converted to biomass values by applying an expansion
factor coefficient.

[10] For this work, we considered forested and shrub-
land areas. Unfortunately, biomass information was
reported only for forested land cover types in the USFS
data sets. To account for areas dominated by shrubs, we
used a value of 48.8 tons/ha derived from Riggan et al.
[1988] and Gray [1982]. The biomass for other land cover
types (barren, grassland, water) was set equal to zero. To
aggregate the Forest Service map to 1-km resolution, we
overlaid the MODIS 1-km grid on the study area and
computed the area weighted average biomass for each
1-km cell.

[11] To supplement the MODIS data, we also included
climate and topographic variables in the analysis. The
relationship between climate and terrestrial vegetation has
long been established [Holdridge, 1947; Box, 1981].
More recently, climate and topographic variables have
been used to predict vegetation composition at local to
regional scales [Franklin, 1995; Davis and Goetz, 1990].
Here we use these variables in combination with remotely
sensed information to improve the accuracy of predic-
tions regarding above-ground forest biomass. The climate
data set used for this work was developed by Thornton
et al. [1997] and is representative of the 18 year period
from 1980 to 1997. This data set provides mean
monthly temperature and precipitation data at a spatial
resolution of 1-km® The elevation data were extracted
from the GTOPO30 global digital elevation data set
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(http://edcdaac.usgs.gov/gtopo30/gtopo30.html) at 1-km?
resolution.

3.2. Analysis

[12] We first performed an exploratory analysis using
generalized additive models (GAMs) [Hastie and Tibshirani,
1990] to investigate relationships between forest biomass
and remotely sensed information, topography, and precip-
itation data. This approach is a more flexible extension of
generalized linear models and has been previously applied
with good success in ecological and vegetation modeling
[Franklin, 1998; Guisan et al., 2002; Frescino et al.,
2001]. Unfortunately, while GAMs represent a useful
exploratory tool, they generally provide relatively poor
predictive power on independent samples [Hastie and
Tibshirani, 1990; Frescino et al., 2001]. To provide
predictions for biomass, we therefore require an alternative
methodology.

[13] Tree-based models have been previously used in
many contexts to predict both categorical and continuous
variables. The basic theory behind this approach is reported
by Breiman et al. [1984]. Tree-based models perform
recursive partitioning of data sets, make no assumptions
regarding the distribution of the input data, are able to
capture non-linear relationships between the response and
predictor variables, and provide easily understandable out-
put. For the work reported here, we used a novel extension
to tree-based models called Random Forests [Breiman,
2001]. This algorithm estimates large number of trees, in
which different bootstrap samples of the data are used to
estimate each tree. At each node, splitting is performed
using a randomly selected sub-set of the predictor variables.
The resulting model is more accurate and less sensitive
to noise in input data relative to conventional tree-based
modeling algorithms. For complete details, see [Breiman,
20017.

[14] To assess the ability of Random Forests to produce
meaningful predictions, we performed a cross-validation
analysis in which subsets of the data set were randomly
held out and used as testing data. In each case, the test data
set was extracted using a random sample. In the results
discussed below, we used multiple training sets, composed
of 516, 1032, and 2581 1-km? cells, which correspond to 1,
2, and 5 percent of the area covered by the Forest Service
maps.

4. Results

[15] Exploratory analysis using GAMs revealed complex
relationships between several key predictors and above-
ground forest biomass [Gemmell, 1995] (Figure 1). For
example, above-ground forest biomass increased with ele-
vation from about 800 m up to 2500 m. Above this
elevation, biomass decreased with elevation. GAMs also
revealed a strong negative relationship between biomass
and MODIS shortwave infrared (Band 6) reflectance, but
only at low reflectance levels. For reflectance values larger
than 0.2, no discernible correlation was detected. Similarly,
the relationship between total annual precipitation and
biomass was positive up to about 1500 cm, above which
the relationship saturates.
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Figure 1. GAM results showing the relationship between
the fitted function scaled to zero on the y axis and elevation,
MODIS SWIR reflectance and total annual precipitation
(PTCI). The bottom of each plot shows the frequency
distribution of the observations.

[16] The Random Forest model estimated using MODIS,
precipitation, and elevation data proved effective for pre-
dicting forest biomass (Figure 2). Depending on the size of
the training data set, Random Forest estimated models with
root mean square errors that ranged from 46.4 tons/ha to
41.2 tons/ha, with R*’s that varied from 0.68 to 0.75. At
the same time, Random Forest tended to under-predict
biomass above 250 tons/ha and over-predict biomass below
45 tons/ha. Despite this bias, 78% of the predicted values
fell within £50 tons/ha.

5. Discussion

[17] Data from MODIS Band 6 proved to be particularly
important for this work. The physical basis behind this
result is unclear. However, a number of previous studies
have also identified the utility of SWIR data for estimating
forest canopy structural variables [Cohen and Spies, 1992;
Puhr and Donoghue, 2000; Gemmell, 1995]. These studies
suggest that because the amount of diffuse radiation in the
SWIR wavelength region is limited, shadows play an
important role in controlling reflectance values in this band.

[18] In this context, the age structure of forests stands
appears to be an important factor. The structure of young
forests is usually characterized by a single canopy layer,
high density, relatively few gaps, and trees of roughly the
same size. Older forests, on the other hand, are character-
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ized by a mix tree ages and sizes, and multiple canopy
layers [Cohen and Spies, 1992]. This type of structure
produces an increase in shadows, which decreases reflec-
tance in the SWIR bands and helps to explain the negative
relationship between above-ground biomass and data from
MODIS Band 6.

[19] While the MODIS data provided a key source of
information regarding above-ground biomass, climate and
topographic variables were also important. Indeed, for areas
such as California, which are characterized by a wide range
of elevation and climate zones, these variables exert impor-
tant control on the spatial distribution of above-ground
biomass. For example, average annual precipitation was
important for separating forests with large timber volume in
northern coastal areas from lower volume forests in the
Sierra Nevada. Similarly, precipitation proved to be useful
for discriminating among Mediterranean vegetation types
located in Southern California where oaks and shrubs
dominate. The presence of broadleaf trees mixed with
conifers created particular difficulties, and the model tended
to underestimate biomass in areas characterized by broad-
leaf and conifer mixtures. In this context, the use of 1 km?
spatial resolution was a key challenge for this work because
virtually all grid cells included multiple forest stands and
mixtures of forest and shrubs. Future efforts using some-
what finer (e.g., 500 m) resolution data should help to
resolve this problem.

[20] While the cross-validated results from Random
Forest were good, there remains room for improvement.
Specifically, Random Forest tended to underestimate pre-
dictions for areas with high biomass and overestimate
predictions for regions with low biomass. In the latter case,
this effect is partly explained by the fact that a single value
of biomass was used for the shrub class. Therefore, arcas
dominated by shrubs show little variance in biomass, which
creates difficulties for empirical models such as Random
Forest.

[21] At high levels of biomass (i.e., dense forests),
uniformly low MODIS Band 6 reflectance explains part of
the bias in model results. More generally, however, model
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Figure 2. Predicted above-ground biomass vs Forest
Service high resolution biomass data.
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errors at low and high values of biomass values reflect a key
weakness of tree-based models, which tend to penalize
regions in the frequency distribution of the response vari-
able (biomass) that are data sparse. In this case, the result is
that values of biomass at the tails of the distribution (i.e.,
high and low biomass) tend to be poorly predicted. This
problem can be mitigated by resampling the training data
such that the distribution of biomass is more uniform across
its entire range. However, this will tend to increase errors in
biomass estimates that are closer to the median of the data.
Thus, resolving this problem depends in part on the project
objectives and priorities. Other methods of dealing with this
problem have also been identified [Cohen et al., 2003].

6. Conclusions

[22] Despite extensive research over the last decade on
topics related to the global carbon cycle, knowledge regard-
ing the stocks of carbon in standing biomass is limited. In
this paper, we consider methods to estimate above-ground
forest biomass over large areas using a relatively small
training data set. Remotely sensed data, climate, and topo-
graphic variables all provided useful information in this
regard. The methodology provides a simple, flexible, and
powerful tool to combine and extract information from
multivariate data in an environment characterized by com-
plex non-linear relationships between forest biomass and
remotely sensed, climate, and topographic variables.

[23] Using a sample of only 2 percent of the data,
Random Forest was able to predict forest biomass for a
wide range of vegetation formations with an RMSE of
44.4 tons/ha. However, limitations in the availability of
data for shrub formations, in combination with the behavior
of tree-based models, resulted in over-estimation (under-
estimation) for low values (high values) of biomass. Despite
these limitations, the results from this work suggest that
there is good basis for pursuing biomass mapping at
regional to continental scales using the current generation
of remote sensing technology.

[24] Acknowledgments. This work was partially supported by
NASA contract NAS5-31369.
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