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Abstract. Tree type and species information are critical parameters for urban
forest management, benefit cost analysis and urban planning. However,
traditionally, these parameters have been derived based on limited field samples
in urban forest management practice. In this study we used high-resolution
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data and multiple-
spectral masking techniques to identify and map urban forest trees. Trees were
identified based on their spectral character difference in AVIRIS data. The use
of multiple-masking techniques shift the focus to the target land cover types
only, thus reducing confounding noise during spectral analysis. The results were
checked against ground reference data and by comparison to tree information in
an existing geographical information system (GIS) database. At the tree type
level, mapping was accomplished with 94% accuracy. At the tree species level,
the average accuracy was 70% but this varied with both tree type and species. Of
the four evergreen tree species, the average accuracy was 69%. For the 12
deciduous tree species, the average accuracy was 70%. The relatively low
accuracy for several deciduous species was due to small tree size and overlapping
among tree crowns at the 3.5 m spatial resolution of AVIRIS data. This urban
forest tree species mapping method has the potential to increase data update
intervals and accuracy while reducing costs compared to field sampling or other
traditional methods.

1. Introduction

Over 70% of the population within developed countries lives in cities.

Worldwide, the average proportion of the urban population is 42% (World

Population Reference 1993). Urbanization creates significant changes in land use

and land cover, affecting the structure, pattern and function of the ecosystem

(Douglas 1983). The public is increasingly concerned about how these changes

influence daily life and affect the sustainability of ‘quality of life’ for future
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generations (World Resources Institute 1996). The structure and function of urban

ecosystems can be studied using the same methods as the study of natural

environments (Rowntree 1984).

Vegetation canopy is an important land cover type that affects the development
of the urban ecosystem (McBride and Jacobs 1986). Trees planted in urban settings

are described as an urban forest, and they are an important part of the urban

ecosystem. Urban trees play important roles in improving landscape aesthetics,

reducing pollution and moderating the urban energy budget, water use, reducing

storm runoff, and providing other amenities (Dwyer et al. 1992, Xiao and

McPherson 2003). The increase in the proportion of pavement area during the

process of urbanization strongly influences energy exchange, hydrology and micro-

climate (Arnold and Gibbons 1996). Many problems facing management of the
urban ecosystem are related to these factors. For example, urban heat island effects

and increased storm runoff are related to vegetation cover (USDA 1975, Gallo and

Tarpley 1996). Air quality and water use are related to crown density and tree

density because the total leaf surface area and leaf surface area per unit of land area

controls both air pollutant removal and evapotranspiration rates (Peper and

McPherson 2003). Understanding impacts on air quality, energy partitioning and

hydrologic processes in the urban ecosystem depend on knowledge of tree species,

leaf and stem surface areas, tree dimensions, and percentage of pavement cover,
among other things. To understand how urban forests function and to estimate the

value of their environmental services we must first recognize properties related to

urban forest structure and composition (McPherson et al. 1997). Also, a good

understanding of the structure of the urban forest provides other information useful

to urban managers, such as for planning tree pruning, removal, and insect or

disease control activities.

Basic information required to describe urban forest structure includes tree

numbers, spatial distributions, species composition, dimensions and growing
conditions. Traditionally, this information is collected in field surveys. However,

such surveys are expensive and time consuming, and require periodic updates to

remain valid. Aerial photograph interpretation has been used successfully but it is

slow and expensive to conduct the mapping at large scale. Vegetation has unique

spectral reflectance characteristics with strong absorption in red wavelengths and

strong reflectance in near-infrared wavelengths, which allow separation of plants

from other ground surface covers. Differences in the allocation of foliage, stems

and varied architecture among tree species may provide sufficient information to
uniquely identify them with Airborne Visible Infrared Imaging Spectrometer

(AVIRIS) data, an airborne hyperspectral imaging instrument that can collect data

at 3–4 m pixels. Differences in canopy architecture such as leaf area density, leaf

and branch zenith angles, leaf shape, internal anatomy, and leaf and branch surface

roughness cause different tree species to have different reflectance spectra. The

NDVI (Normalized Difference Vegetation Index), red-edge, and other band ratio

methods have been used for separating different amounts of vegetation. However,

these simple methods cannot be used to identify tree species because they do not
capture the unique features of the specific spectral characteristics of specific tree

species. While the texture analysis method works well in natural forest mapping

(Franklin et al. 2001) it does not work well in the urban forest because species

composition and tree density are heterogeneous at high spatial resolutions. The

spectral reflectance characteristics of different tree species differ with the relative

proportion of biochemicals (e.g. photosynthetic pigments, cell wall materials, water
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concentrations) and the scattering properties affected by the internal leaf structures.

Retrieval of canopy biochemistry has been demonstrated several times as has the

use of these techniques in mapping individual species (Underwood et al. 2003). At

the canopy scale, the three dimensional structure and distribution of stems and
leaves of the trees influence reflectance. New high spatial and spectral resolution

remote sensing technology brings us an opportunity to abstract spatially explicit

urban forest information from remote sensing data. Also, it provides a mechanism

for tracking and monitoring tree health and canopy cover changes through repeated

data acquisition. With several new hyperspatial and hyperspectral digital imaging

systems available on aircraft and in space, e.g. Quickbird and Hyperion,

respectively, we can investigate the use of high-resolution spectral data for

characterizing and monitoring urban trees.
In principle, images recorded by airborne or satellite-based sensors can be

obtained at reasonably frequent intervals, at desired spatial and spectral resolutions

and at lower cost per unit land area compared with traditional field survey methods

(Martin et al. 1988, Ehlers 1990). Remotely sensed data have been used for

identifying and mapping vegetation, land use and land cover in many regional or

sub-regional assessments (Morgan et al. 1993, Huang et al. 1995, Nowak et al.

1996, Huang and Ridd 2002, Price et al. 2002, Arthur-Hartranft et al. 2003,

Clapham 2003, Huang and Townshend 2003, Weber and Puissant 2003). Strong
correlations between Landsat Thematic Mapper (TM) data and crown closure have

been found in rural forests where the trees species were known (Franklin et al. 2003,

Xu et al. 2003). However, accuracy estimates in urban settings become a problem

due to the complex spatial assemblages of disparate patches of land cover types.

Urban areas are a mosaic of many tree types (e.g. species and dimensions), land

uses, and man-made structures, each of which has different spectral reflectance

characteristics (Gong and Howarth 1990). Unlike trees in rural forests, which tend

to form continuous canopies, trees in urban settings are often single trees or
isolated groups. The influence of background, such as soil and shadow, makes the

problem of characterizing trees by remote sensing even more difficult. In such cases,

high spatial resolution of remotely sensed data is important for mapping individual

trees (Avery and Berlin 1992).

In boreal forests, Ustin and Xiao (2001) showed that even at the same spatial

resolution vegetation mapping accuracy is significantly improved using the

hyperspectral 20 m AVIRIS data compared to three-band 20 m Satellite pour

l’Observation de la Terre (SPOT) data, especially for estimating dominant tree
species. However, mapping species in an urban landscape presents many challenges

not found in natural forest environments.

NASA’s (National Aeronautics and Space Administration) AVIRIS instrument

is a hyperspectral imaging system that delivers calibrated images of the upwelling

spectral radiance in 224 contiguous spectral channels with wavelengths from 400 nm

to 2500 nm (Green et al. 1998). Low altitude AVIRIS data were acquired at 3.5 m

spatial resolution, giving us an opportunity to study urban forest at the single tree

level. These enriched spatial and spectral data reduce the resolution problems
associated with broad-band low-spatial resolution sensors.

Coupling geographical information systems (GIS) to the analysis of remote

sensing data improved the accuracy of the results. Incorporation of spatial location

has become a standard method for registering images to base maps, as shown in

recent reports (e.g. Grimmond and Souch 1994, Blackburn and Milton 1997,

Ambrosia et al. 1998, Lakshmi et al. 1998, Li 1998, Shao et al. 1998). Our ability to
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accurately locate individual trees using the GIS database makes abstraction of the

spectral reflectance characteristics from AVIRIS data relatively easy. In this study,

we demonstrate an important application of urban forest characterization by

combining remote sensing and GIS techniques.

2. Objectives

There were three objectives for this study. The first objective was to identify

urban tree species by physiognomic type based on their spectral character as

detected by the AVIRIS sensor, that is, whether they are broadleaf deciduous,

broadleaf evergreen or conifer types. The second objective was to identify urban

trees by species based on their canopy reflectance characteristics. The third

objective was to map these urban trees. Each of these levels is useful for providing

tree canopy information to urban planning and projects related to analysis of

regional urban energy budgets, air pollution and hydrology.

3. Methodology

3.1. Study site

We selected the City of Modesto, California, USA (latitude: 37‡ 38’10@N,

longitude: 121‡ 11’10@W) as our study site (figure 1). The city is located in the

Central Valley of California and has a population of 186 000 with more than 70%

of the population living in family households. City development began in the mid-

1800s. Like many valley cities near the Sierra Nevada Mountains, it is undergoing a

period of rapid population growth and expansion. Trees in Modesto are diverse in

both species type and dimension. There are minimal topographic gradients in the

study area or in the surrounding region. The study area elevation range was

approximately 11 m.

3.2. Datasets

To investigate the use of imaging spectrometry for monitoring urban forests,

three types of datasets were collected from the study area: a GIS-based street tree

database (field survey of all street trees), high-resolution AVIRIS data, and GIS

layers for locations such as streets and parcels.

The GIS database includes layers of base maps, parcels, street trees, soils, and

Figure 1. Study site. The shaded area is the Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) flight area.
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land use. These data were provided by the Engineering and Transportation

Department of the City of Modesto, California. The citywide street tree database

contains 184 tree species and 75 629 individual trees. Most of these trees are

broadleaf deciduous (87%) and the broadleaf evergreen and conifer tree types only

account for 7% and 6%, respectively. Information for each tree includes: species

code, scientific name and common name, tree ID number, year tree planted, and the

access address (e.g. street address, city area, corner street and corner address). The

tree layer in GIS was generated from tree survey spreadsheet and the trees street

address and street GIS layer based on the address matching method (ArcView,

Environmental Systems Research Institute Inc. 1997).
During the summer of 1998, 648 trees were measured in the city. The random

sample consisted of approximately 30 trees from each of the 22 most common

species (table 1). Trees belonging to these 22 species accounted for over 90% of the

entire street tree population. Street address was used to locate tree samples. Field

measurements included both tree dimension and maintenance information such as:

DBH (diameter at breast height, or the diameter of the bole at roughly 1.5 m

height), tree crown height, bole height at the bottom of the crown, crown diameter,

total tree leaf surface area, geometric crown shape, site index, health/condition

and tree pruning rating (Peper et al. 2001). Based on these field measurements, a

Table 1. Tree species of the Modesto study site and number of trees included within the
AVIRIS data with tree crowns greater than one pixel.

Species

Total
sample

Crown
diameterw1

Scientific
name

Common
name Type Code

Acer saccharinum Silver Maple BD ACSA 8 6
Betula pendulata Birch BD BEPE 6 1
Celtis sinensis Chinese Hackberry BD CESI 3 3
Cinnamomum camphora Camphor BE CICA 9 7
Fraxinus excelsior ‘Hessii’ Hess Ash BD FREX 2 2
Fraxinus6Moraine Moraine Ash BD FRMO 5 5
Fraxinus oxycarpa
‘Raywood’

Raywood Ash BD FROX 3 3

Fraxinus pennsylvanica
‘Marshall’

Marshal Ash BD FRPE 11 10

Fraxinus velutina ‘Modesto’ Modesto Ash BD FRVE 5 5
Gingko biloba Gingko BD GIBI 19 13
Gleditsia triacanthos Honey Locust BD GLTR 4 4
Koelreutaria paniculata Goldenrain Tree BD KOPA 8 6
Lagerstroemia indica Crape Myrtle BD LAIN 5 0
Liquidambar stryaciflua Sweetgum BD LIST 5 4
Southern Magnolia Magnolia Grandiflora BE MASP 5 5
Pistacia chinensis Chinese Pistachio BD PICH 3 2
Pinus thunbergii Japanese Black Pine C PITH 9 8
Plantanus6acerifolia London Plane BD PLAC 9 9
Prunus cerasifera Flowering Plum BD PRCE 9 6
Pyrus calleryana ‘Bradford’ Callery Pear BD PYCA 10 9
Quercus ilex Holly Oak BE QUIL 6 6
Zelkova serrata Zelkova BD ZESE 5 4

Total 149 118

BD, broadleaf deciduous; BE, broadleaf evergreen; C, conifer.
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field-sampled tree database was created containing 640 trees for these 22 species (18

broadleaf deciduous and 4 evergreen species). All field data were added to the tree

GIS database.

High-resolution AVIRIS data were acquired at 11:40 PST (Pacific Standard

Time) on 10 October 1998. This low altitude AVIRIS imagery was obtained by a

National Oceanic and Atmospheric Administration (NOAA) Twin Otter aircraft

flying at an altitude of 3810 m above sea level. At this altitude, AVIRIS pixels have

a spatial resolution of about 3.5 m. The high-resolution flight navigation and

engineering data (such as GPS and inertial data) recorded during the AVIRIS

overflight were used during post-processing to correct for aircraft motion by the Jet

Propulsion Laboratory, NASA (Boardman 1998). This AVIRIS dataset covered the

central core of the city. Three hundred and forty of the 648 field measured trees in

summer 1998 were covered within the AVIRIS flight pass.

Tree species, size and tree type distributions are shown in figure 2. Broadleaf

deciduous (BD) trees represent 81% of the sample population in the AVIRIS flight

paths. Broadleaf evergreen (BE) and conifer (C) trees represent 14% and 5%,

respectively. Due to the loss of on-board global positioning system (GPS) data

during the AVIRIS data collection for scenes 5 and 6, our final analysis was focused

on the first four scenes of data, thus only 149 field-sampled trees were covered in

these four scenes. Table 1 lists tree sample information (species botanical and

common names, species code, total and usable samples (crown diameter greater

than one pixel) for this study. Tree samples were eliminated if the crown diameter

was less than the pixel size.

3.3. AVIRIS data and spectral analysis

Because of the relatively small study area and absence of topography, we did

not retrieve surface reflectance by correcting the atmospheric scattering and

Figure 2. Species distribution of field measured trees. Trees are subdivided into different
crown diameter ranges (m) as shown in the figure legend. The tree type is indicated
by BD (broadleaf deciduous), BE (broadleaf evergreen) and C (conifer).
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absorption. Instead, we assumed that all spectral differences between pixels were

due to the surface properties. Radiance data were used for selecting endmembers

and for the analyses. Three bands of AVIRIS data (550 nm, 650 nm and 850 nm)

were geo-registered to and overlaid with the street layer in the GIS. By overlaying

the tree layer in the GIS database with this AVIRIS data, the location of different

tree species were identified in the AVIRIS data. Not all field measured trees were

selected for extracting spectral information to create the spectral library. We

identified a set of criteria that must be satisfied before we used the information. For

the site criteria, we focused on the tree crown dimensions and growing

environment. The tree crown diameter must be wide enough to cover at least

one pixel. We used only isolated trees to avoid possible spectral mixing from other

species. Twenty-two species from the field-sampled GIS database were selected.

Using their locations we were able to extract spectral reflectance for different tree

species and for different surface cover properties. Environment for Visualizing

Images, Research Systems Inc., Lafayette, CO, 1997 (ENVI) was used to create the

spectral library, masks and to perform the spectral analysis. After we obtained the

spectral library for tree species and other ground surface cover properties, we used

linear spectral mixture analysis (SMA) to create the layered information for each

tree type and species. SMA is based on the assumption that remotely sensed

spectral reflectance is a linear summation of the different spectral components and

that a specific location or a single pixel can be presented as fractions of endmember

types. The endmember fractions of each pixel were used for both tree type and

species mapping.

Because mapping accuracy relies on SMA, the selection of endmember for each

tree species is important. For each tree species, we identified a set of pixels that

expressed the variation in spectral information for that species. We selected the

endmember spectra from this set based on the spectrum that was closest to

the mean value for each species. We ceased using the set of spectra that expressed

the ‘within-species’ spectral characteristics. The mean and the offset from the mean

were calculated for each wavelength. The root mean square (RMS) was calculated

for each tree sample. The tree with the smallest RMS value was selected as the

endmember for each tree species. For example, there were a total of 19 Gingko

trees in the study area for which we had direct field measurements, but six had

crown diameters less than one pixel. They were eliminated as potential

endmembers. The remaining 13 Gingko (Gingko biloba) tree spectra were extracted

from the AVIRIS data. The standard deviation from the mean was 171 and the

RMS ranged from 73 to 257. The tree with the RMS of 73 was selected as the

endmember for the Gingko species.

3.4. Spectral reflectance characteristic of trees

Figure 3 shows spectral radiance for the 22 tree species in the spectral library.

An offset of 1 mWcm22 nm21 sr21 is used among species for clarity. The spectral

difference among species is clearly illustrated in the figure. More detailed spectral

radiance is presented in figure 4.

Figure 4(a) shows the spectral radiance for three different tree species that

represent three different physiognomic types from this AVIRIS data. Japanese

black pine (Pinus thunbergii), a conifer, has lowest reflected radiance at all

wavelengths due to the small intercellular air space inside the leaf and its needle

shape. Raywood ash (Fraxinus oxycarpa ‘Raywood’), a broadleaf deciduous species
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has the highest reflected radiance, and Camphor (Cinnamomum camphora), a

broadleaf evergreen species is in the middle range. The spectral library, showed as

expected, that broadleaf deciduous tree species have higher spectral radiance than

broadleaf evergreen trees. Figure 4(b) shows the spectral radiance of Modesto ash

(Fraxinus velutina ‘Modesto’), Bradford pear (Pyrus calleryana ‘Bradford’), Gingko

(Ginkgo biloba), Zelkova (Zelkova serrata), Moraine ash (Fraxinus holotricha

‘Moraine’), and Goldenrain (Koelreuteria paniculata) trees. We only show six

species but a similar pattern was observed for the other 12 deciduous species as

shown in figure 3. Spectral radiance of these species not only varies in magnitude

but also in shape. Among these species, Modesto ash and Bradford pear have

higher radiance in the infrared wavelength region. Modesto ash has the highest

radiance in the near-infrared region. But in the visible region, it has less radiance

than Gingko and Bradford pear; Bradford pear has the highest radiance in the

visible region; Gingko and Zelkova have next higher radiance in the near infrared

(780 nm) and middle infrared (1000 nm) range. The radiance of Moraine ash trees is

higher than Gingko at 950–1100 nm range but reversed at the 800–900nm range. At

most wavelengths, the Goldenrain tree has lowest radiance, but at 1300 nm region

its radiance was higher than the Gingko.

A common problem faced with this type of data is treating the mixed pixels that

are common in an analysis of isolated trees. SMA was used to identify the ground

surface properties related to certain land cover types. In practice, the problem of

Figure 3. Spectral radiance (mW cm22 nm21 sr21) of 22 tree species. The tree species from
bottom to top are ACSA, BEPE, CESI, CICA, FREX, FROM, FROX, FRPE,
FRVG, GIBI, GLTR, KOPA, LAIN, LIST, MASP, PICH, PITH, PLAC, PRCE,
PYCA, QUIL, and ZESE. The 1 mW cm22 nm21 sr21 was used as offset for clarity
(e.g. for each wavelength, 1 was added to BEPE, 2 was added to CESI, … , and 21
was added to ZESE).
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uncertainty or noise increases as the number of endmembers increases. In this

study, we focused on street trees, thus we restricted the possible combinations of

mixing that exist. It is possible to reduce the number of endmembers by masking

out areas of non-interest. A multiple-masking technique was used for identifying

tree species and for mapping. There are 224 bands in the AVIRIS dataset, but we

used only 131 bands. The remaining bands were identified as ‘bad bands’ (e.g. water

absorbing bands and bands with wavelengths greater than 1800 nm). This is due to

their low spectral information content for vegetation.
High correlation exists among endmembers of tree species due to the similarity

of plant biochemistry. However, the correlation analysis (using the method of least

squares) of the endmembers shows that the slope and intercept of the fit are

significantly different among each pair of tree species. Thus, SMA method can be

used to map and identify the spectral differences of these tree species.

(a)

(b)

Figure 4. (a) Radiance of three tree types. Japanese black pine (conifer) has the lowest
radiance. Raywood Ash (broadleaf deciduous) has the highest radiance in the
infrared region. Camphor (broadleaf evergreen) has a radiance between the other two
trees, but it has the highest radiance in visible wavelength region. (b) Radiance of
different broadleaf deciduous tree species. Modesto ash and Bradford pear have
higher radiance in the infrared wavelength region. But Bradford pear has the highest
radiance in the visible region. Goldenrain has the lowest radiance.
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3.5. Analysis procedures

Geo-referencing the AVIRIS data was done by using the street layer in the GIS

database as reference (Arc/Info, Environmental Systems Research Institute Inc.,

Redlands, CA, 1997) to locate coordinates and to allow overlaying of other GIS

data layers in the database over the low altitude AVIRIS data. Using the street tree

layer at GIS database to locate the trees’ location in AVIRIS data, a spectral

library was manually constructed for the field sampled 22 tree species and for

different ground surface cover properties (such as pavement types, buildings and

other land cover types). A set of masks was generated based on the SMA analysis

and NDVI. The first mask was created based on NDVI value (threshold

value~0.48), which was used for identifying vegetation and non-vegetation as

shown in the analysis scheme (figure 5). The flow chart illustrates the sequence of

analyses to obtain land cover type, tree type and species identifications. Three types

of vegetation were defined (e.g. tree, shrub and turf grass). Masks for these

vegetation types were further generated after non-vegetation was masked out. These

masks were created based on SMA and the endmember spectra were from the

spectral library. Because the SMA analysis yielded a fraction of endmembers in a

pixel, the type of tree species was determined by the majority fraction. The same

processes were followed until tree type and species were identified. Based on the

spectral library developed for the study site that included selected tree species and

other land use, different spectral analyses were performed to obtain other data

layers that characterized land cover types and tree types (i.e. broadleaf deciduous,

broadleaf evergreen and conifer) that contributed to characterizing different tree

species. The results were evaluated for accuracy by independent ground reference

surveys and by tree identification using the City of Modesto GIS database.

3.6. Accuracy check

One of the challenging tasks in remote sensing data processing is to assess

accuracy. We chose to use the standard producers, which uses the confusion matrix

as the basis for comparison. The accuracy of the classification models was assessed

on a tree basis. An error matrix was computed (Card 1982, Davis and Goetz 1990,

Congalton 1991), which takes into account the omission and commission errors.

We first evaluated the accuracy of all tree species covered by the AVIRIS data.

Trees in the GIS database were used as reference. A 363 (10.5 m610.5 m) average

Figure 5. Tree type and species identification flow chart.
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window was used to perform the accuracy check because the tree location in the

GIS layer was geo-referenced by street parcel address. Use of this window during

the accuracy evaluation would reduce the error induced by the initial tree GIS

mapping, which was based on street address. In addition to this point assessment,

an area assessment for evaluating mapping accuracy was used. We compared all of

the street trees in a large city block (2700 m62700 m). The results are presented in

an error matrix. The overall mapping accuracy was calculated from the number of

correctly mapped trees to the total number of trees.

4. Results

We successfully separated land surface cover into different types, such as bare

soil, pavement, building, water (not shown) and vegetation by using SMA and

multiple masks. The vegetation class was further divided into grass, shrub and tree.

The tree class was further identified by physiognomic type (e.g. broadleaf

deciduous, broadleaf evergreen and conifer) and by species. Spectral radiances of

these endmembers were used in SMA analysis. Because the area had little

topographic change (range of 11 m) and the area was so small, an assumption of

atmospheric homogeneity over the site was reasonable; we analysed the data in

radiance rather than reflectance. This reduced any errors or artefacts due to

miscalibration. In this study, we focused on tree characterization so the results are

presented in terms of tree types and tree species.

4.1. Tree type

Figure 6 shows the original four scenes AVIRIS false colour image (R~850 nm,

G~650 nm, B~550 nm) and tree type map. Both the tree and land use patterns are

clearly seen on this image (figure 6(a)). The conifer tree layer from SMA (figure 6(b))

shows where these types of tree were located. The same type of information was

obtained for the broadleaf evergreen (figure 6(c)) and for broadleaf deciduous trees

(a) (c) (d )(b)

Figure 6. Tree type spatial distribution of study area. (a) Colour-infrared Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) image (R~850 nm, G~650 nm,
B~550 nm). (b) Conifer classified pixels in red, (c) broadleaf evergreen tree pixels
in green, and (d ) broadleaf deciduous tree pixels in blue.
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(figure 6(d)). The tree identification accuracy average was 94% (table 2). Average

accuracy was 99% for broadleaf deciduous, 83% for broadleaf evergreen and 75%

for conifer. Most misidentified trees had small crown sizes with few branches

suggesting that subpixel identifications were problematic. In some cases, the average

crown diameter was large but irregular. For example, one Japanese black pine tree

had a crown diameter 12.6 m in one direction but only 2.4 m in the perpendicular

direction. Thus in AVIRIS pixels with this crown, much of the radiance is

contributed by the background cover rather than the tree itself. In addition to small

tree sizes, some young trees are partially planted under other larger trees. For

example, many flowering plum trees are located under larger deciduous trees, based

on our field observations. Man-made structures (such as parks, buildings, and

streets etc.) can be clearly seen in these figures because the dimensions of these

structures are larger than pixels.

4.2. Tree species

At the tree species level, our goal was to identify 22 tree species, but here we

only examined accuracy for 16 of the 22 species because only these species had

statistically valid field samples with tree crown sizes greater than one pixel (table 3).

Accuracies were higher for tree species that had relatively large crown sizes and

dense leaves, such as the Holly oak, Zelkova and Gingko. Both Modesto ash and

Flowering plum had relatively low identification accuracy (20% and 17%). The

Modesto ash trees had large crown sizes but fewer branches, resulting in low crown

densities which made the spectra of the tree covered pixels fully mixed with land

cover underneath the tree crown. Flowering plum trees generally had a relatively

small crown diameter and tree height. In addition to these two disadvantages, many

Flowering plum trees were planted under other larger tree crowns. Thus, the

spectral character of this tree species was strongly affected by adjacent trees when it

was measured from the airbone sensor. The spatial distribution of tree species for a

portion of the study area is shown in figure 7. In this small area, tree species

composition is relatively simple. Zelkova, Gingko, and Hackberry were the

dominant street trees. These three tree species accounted for 83% of the total street

trees in this area. The rest of the street trees were composed of conifer (5%),

broadleaf evergreen (5%) (Magnolia, Holly oak and Camphor), and other broadleaf

deciduous trees (7%). A colour infrared composite from AVIRIS data is shown in

Table 2. Tree physiognomic type classification error matrix (percentage of total samples
matched) of the study site. The rows show the distribution of each type from AVIRIS
and the columns show the distribution of the AVIRIS class in the GIS base map. The
overall accuracy for all types is 94%.

Tree
type

Total
trees

GIS base map

Conifer Broadleaf evergreen Broadleaf deciduous

Classified Trees (%) Classified Trees (%) Classified Trees (%)

C 8 6 75 0 0 2 25
BE 18 1 6 15 83 2 11
BD 81 1 1 0 0 80 99

Total 107 8 7 15 14 84 79

C, conifer; BE, broadleaf evergreen; BD, broadleaf deciduous.
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Table 3. Tree species classification error matrix shows errors for 16 tree species. The rows show the distribution of each type from AVIRIS and the
columns show the distribution of the AVIRIS class in the GIS base map. The overall accuracy for these 16 species is 70%. Species code is found in
table 1.

Species
Number
of trees

Species

ACSA CICA FRMO FRPE FRVE GIBI GLTR KOPA LIST MASP PITH PLAC PRCE PYCA QUIL ZESE Total

ACSA 6 5 1 6
CICA 7 3 1 1 1 1 7
FRMO 5 4 1 5
FRPE 10 6 1 2 1 10
FRVE 5 2 1 2 5
GIBI 13 13 13
GLTR 4 1 3 4
KOPA 6 2 2 2 6
LIST 4 4 4
MASP 5 1 3 1 5
PITH 8 1 1 6 8
PLAC 9 1 1 6 1 9
PRCE 6 1 1 1 2 1 6
PYCA 9 1 1 2 4 1 9
QUIL 6 6 6
ZESE 4 4 4

Total 107 11 4 5 7 1 15 4 4 6 7 18 7 1 4 9 4 107
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figure 7(a). The spatial distribution of tree species in the GIS layer is shown in

figure 7(b). The result of the classification of tree species from the AVIRIS analysis

is presented in figure 7(c). It is clear that figure 7(b) and (c) are in close agreement,

except that figure 7(c) includes tree information for non-street trees and includes

more precise information on spatial distribution. Figure 7(b) only includes the street

trees that were maintained by the city.

The AVIRIS data at 3.5 m pixels had a rather high spectral resolution, which

provided rich and unique spectral information for each tree species. However, the

spectral mixing that occurred from overlapping foliage and shadows from large

trees on smaller ones restricted the accuracy of tree identification. In contrast to

trees in a rural forest, urban forest trees are sparse and often open-grown. Species

can vary widely from tree to tree, thus high spatial resolution is also import for

urban tree species mapping. A high spatial resolution (0.5 m spatial resolution)

grey-scale aerial photograph and a colour-infrared image from three AVIRIS bands

are shown in figure 8. It is easy to identify tree locations and separate individual trees

in the aerial photograph. However, the limited spectral information of this grey-scale

photograph is not easily translated into a species map. The hyperspectral AVIRIS

dataset has a rich depth of spectral information but most tree pixels are mixed at the

(a)

(c)

(b)

Figure 7. Tree species spatial distribution of a selected area of Modesto. (a) Colour infrared
AVIRIS image, (b) tree species identification from the GIS database, and (c) tree
species identification derived from AVIRIS data.
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(a) (b)

Figure 8. Tree location on aerial photograph (a) and AVIRIS image (b). The high spatial resolution aerial photograph (0.5 m) allows for easy
interpretation of tree locations from address referencing.
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3.5 m pixel resolution. Increasing the spatial resolution of hyperspectral data would

improve the accuracy of urban tree mapping.

5. Conclusions and discussion

Our analyses demonstrate that isolated tree species can be identified and

separated with high accuracy by type using high spatial resolution AVIRIS data.

We used a GIS database to identify training sites and to validate the final maps. In

addition to tree characterization, these data can be used for characterizing land

cover. For example, we can separate the man-made structures by the materials that

are used, such as different types of buildings, houses, concrete pavement and

asphalt pavement. The potential value of these data for urban forest applications

includes estimating tree health (e.g. evidence for stress) and leaf area for different

tree species and site conditions. AVIRIS data acquired in spring or summer rather

than October might provide better separation of some species or additional

information about tree condition. For example, data acquired in both summer and

winter seasons could be used to easily identify locations of deciduous and evergreen

trees.

The multiple-masking techniques used in this study show an improvement in

tree identification accuracy compared to identification without using this technique

(Xiao et al. 1999). The mixing of land cover for street trees is relatively simple to

characterize. For example, pixels of most street trees in residential areas are mixed

with road and/or turf grass. Street trees were also mixed with bare soil and/or road

in median strips and in some commercial areas. This mixing reduces the number of

possible endmembers. This is the greatest reason that accuracy increased compared

to our earlier results. Using this method to identify trees in locations other than

along the street may not yield the same results due to the potential for more

complex mixing combinations.

The AVIRIS data had high spectral resolution (224 bands) and relatively high

spatial resolution (y3.5 m), which provided a rich and unique set of spectral

information for each tree species. However, spatial resolution is at least as

important as spectral resolution for urban tree species mapping, because most trees

were still within mixed pixels at this scale. Increasing spatial resolution of the

hyperspectral dataset could improve the accuracy of tree identification.
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