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Overview

The USDA Forest Service Pacific Southwest Research
Station and the California Department of Forestry and Fire
Protection have gauged streamflow, and suspended
sediment and precipitation continuously since 1962 in the
473 ha North Fork and the 424 ha South Fork of the 2167
ha Caspar Creek in the Jackson Demonstration State Forest
in northwestern California (Figure 1). Within the two
Caspar Creek Experimental Watersheds there are presently
26 gauged subcatchments (Figure 2).

The Experimental Watersheds generaly have a
southwest orientation and are located about 7 km from the
Pacific Ocean. Topographic development of the area is
youthful, with uplifted marine terraces deeply incised by
antecedent drainages. The hillslopes are steepest near the
stream channel with inner-gorge slope gradients of 50% or
more. A slope change typically occurs 100 m to 350 m
upslope, becoming more gentle near the broad and rounded
ridgetops. About 35% of the slopes are less than 17 degrees
and 7% are steeper than 35 degrees. The elevation ranges
from 37 to 320 m.

The soils of the basins are well-drained clay-loams, 1 to
2 m in depth, and are derived from Franciscan graywacke
sandstone and weathered, coarse-grained shale of
Cretaceous Age. They have high hydraulic conductivities
and subsurface stormflow is rapid, producing saturated
areas of only limited extent and duration.

A Mediterranean climate is typical of low-elevation
catchments on the central North American Pacific coast.
Temperatures are mild with muted annual extremes and
narrow diurnal fluctuations due to the moderating effect of
the Pacific Ocean. Coastal fog typically can extend 16 km
or more inland during the summer, often retreating to the
coast by midday. Average monthly air temperature in
December is 6.7 'C and in July is 15.6 'C. The frost-free
season ranges from 290 to 365 days. Mean annua
precipitation is 1190 mm, with a range from 305 to 2,007
mm. Ninety percent of the total annual precipitation falls
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between October and April. Snowfall israre.

The catchments were extensively clearcut and burned in
the late 1800s. Vegetation is now predominantly second-
growth stands of coast redwood (Sequoia sempervirens (D.
Don) Endl.) and Douglasfir (Pseudotsuga menziesii
(Mirb.) Franco) averaging 700 m*> ha’ of stem wood. The
principal objective of the 40 years of research in these
catchments is to evaluate the impacts and recovery from
road construction and selection and clearcut harvesting by
tractor and cable on streamflow, suspended sediment, and
bedload.
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Figure 1: Location of Caspar Creek on the west coast of the United
States (modified from shaded relief map, U.S. Geological Survey).
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Figure 2: Location of stream gauges on the North and South forks of Caspar Creek. Contour interval is 10 m.
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Table of catchment features

Caspar Creek

Country United States

Location 39°21'N, 123°44'W

Geology Coastal Belt of the Franciscan Complex. Well-consolidated marine sedimentary
sandstone with intergranular clay and silt (greywacke) and feldspathic
sandstone, with lesser amounts of siltstone, mudstone, and conglomerate.

Catchment size 900 ha (26 gauged catchments ranging from 10 hato 473 ha)

Channel length 4000 m (mainstem)

Average channd slope 1/50

Average runoff 0.092 m® sec*

Average annud rainfall

1190 mm, 90% of which falls between October and April

Vegetation

Coast redwood (Sequoia sempervirens (D. Don) Endl.), and Douglasfir
(Pseudotsuga menziesii (Mirb.) Franco)

Historical records of natural disasters

Holocene landslides greater than 1,000,000 m® dammed the creek resulting in
extensive deposits of alluvium. These ancient landdides are more than three
orders of magnitude greater than the largest contemporary landslide within
the catchments.

1860-1904 dl timber cut and logs transported by periodic artificia floods
produced by breaching of dams constructed in steep narrow reaches of
headwater channels.

Mean annual sediment yield since 1962 is about 2000 kg ha'yr™.

Numerous landdlides followed logging and road construction in the 1970s
due to inadequate design and construction. In contrast, the size and number
of landslides following logging designed in the 1990s was similar to that in
unlogged areas.
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Figure 3: From 1971 to 1975, 50% stem volume of the 90-year-old
second-growth redwood and Douglas-fir forest was selectively cut
and tractor-yarded to roads near the stream. This practice was
compliant with forest practice rules in use in Cdifornia in the early
1970s.
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Figure 4: From 1989 to 1991, 50% of the 100-year-old second-
growth redwood and Douglas-fir forest was clearcut and the trees
were cable-yarded to roads near the ridge. Buffer strips left along
perennial streams were selectively logged. This practice was
compliant with forest practice rulesin usein Californiain the early
1990s.

Figure 5: Upland intermittent stream channels are an important
source of sediment. Woody debris and roots are the primary control
of channel erosion. The plastic pipe was used to temporarily divert
streamflow during construction of the stream gauge.
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Figure 6: When intermittent channels are logged and burned, woody Figure 7: Improper road drainage and failure of saturated road fills
debrisis consumed, resulting in accelerated channel erosion. delivers sediment directly to stream channels.
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Figure 8: Over 80% of the annual sediment load at Caspar Creek is  Figure 10: Research at Caspar Creek is designed to understand
transported during stream discharges that occur about 1% of thetime.  interactions of hydrologic processes and routing in logged and
8 : Caspar Creek MAERIFE LB DS0%LL LD, 1 %D unlogged catchments, from rainfall inputs to streamflow and
B LD WIEROTHEAKIZ L » CEES NS, sediment outputs. Ladders provide access to an extensive network
of tensiometers and piezometers used to evaluate subsurface flow
on a hillslope from the ridge to the channel.
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Figure 9: About 5% of the annual sediment load at Caspar Creek is
bedload.
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Resear ch attainments

Research at Caspar Creek has resulted in improved
understanding of the effects of forest harvesting on
hydrologic processes in rain-dominated catchments having
conifer forests in the western United States.
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* Increases in peak flows from clearcutting are related to
the proportion of the area logged, catchment wetness,

time after logging, and storm size. Proportional
increases in peak flows resulting from both selective

and clearcut logging are greatest for smaller runoff

events (Figure 11). Increased peak flows become

progressively smaller as the catchment becomes
increasingly wetter. Increased peaks after logging

returned to the prelogging condition within about 12

years.
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Figure 11: Response of peak streamflow to logging in the 10 treated subcatchments in the North Fork Caspar Creek (Figure 2) using the mean of
untreated subcatchments HEN and IVE (HI) as a control. Post-logging regressions were fitted by locally weighted regression. (from Ziemer

1998)
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* When forests were selectively cut and tractor-yarded
to roads near the stream, following forest practice
rules in use in California in the early 1970s, tota
suspended sediment loads for the 7-year period after
logging increased by 212% above that predicted for
the undisturbed condition (Figure 12). In contrast,
when forests were clearcut and cable-yarded to roads
near the ridges, following forest practice rules in use
in California in the early 1990s, total suspended
sediment loads for the 7-year period after logging was
89% higher than that predicted for the undisturbed
condition.
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* For the individual subcatchments, the median increase
in storm sediment load was 107% in clearcuts and
64% in partly clearcut catchments (Figure 13). The

® .- median annual sediment load increase was 109% (58
kg ha'yr?) from clearcut catchments and 73% (46 kg

ha'yr®) from partly clearcut catchments. The most

. important explanatory variable was the increased
@ volume of streamflow during storms. The increased

flows, accompanied by soil disruption and intense
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Figure 12: The relation between annual excess suspended sediment bﬁ;j‘%if‘z’#g‘@)iﬁhﬂ% . e L ]’_’—C\‘ /&W?ﬁl‘é"ﬁf‘
load and annual streamflow, comparing the first seven years after NI BV TI07%, —EBHVER S Rz ifitiiic
selective logging and tractor yarding in the South Fork (1972-1978) BWT64%Tdh o7z (M13). EMFRELSREROH N
with clearcut logging and cable yarding in the North Fork (1990- S, hEiE LT, SRS iz B v

1996). Excess sediment is the departure from the pre-logging
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Figure 13: Response of storm suspended sediment loads to logging in the 10 treated subcatchments in the North Fork Caspar Creek (Figure 2)
using the mean of untreated subcatchments HEN, IVE, and MUN (HIM) as a control. Post-logging regressions were fitted by localy weighted
regression. (from Lewis 1998)
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NOTE: 138 papers related to research at Caspar Creek
are available on the Internet at:
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