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Lowering Stand Density Enhances Resiliency 
of Ponderosa Pine Forests to Disturbances and 
Climate Change
Jianwei Zhang, Kaelyn A. Finley, Nels G. Johnson,  and Martin W. Ritchie

Stand density affects not only structure and growth, but also the health of forests and, subsequently, the functions of forest ecosystems. Here, we integrated dendrochronology 
and repeated inventories for ponderosa pine research plots to determine whether long-term growth and mortality responded to climate trends and how varying stand density 
influenced the responses. The plots were established prior to 1975 on existing stands throughout northern California. Although annual temperature increased consistently for 
the last 65 years, ring-width indices produced by eliminating age and thinning effects failed to detect radial trend regardless of site quality. However, interannual variation for 
the indices was substantial, reflecting a strong influence of climate on tree growth. Plot-level basal area increments were significantly affected by tree mortality. Stand density 
index explained most variation of mortality. Lowering stand density enhanced remaining tree growth, reduced mortality, and increased stand resiliency to disturbances and 
climate change. Besides higher climate moisture indices or lower vapor pressure deficits, any treatments that improve tree vigor and reduce stress will have a similar effect 
to reducing stand density. Although neither biotic disturbances nor abiotic conditions can be controlled, forest managers can manage stand density appropriately to enhance 
resilience to climate change and disturbances.
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Driven by economic and population growth, increases in 
wildfire frequency and intensity, insect and disease out-
breaks, and the loss and addition of species, the world’s for-

est ecosystems have been greatly changed in structure and functions 
(Vitousek et al. 1997, Lugo 2015, Trumbore et al. 2015). Climate 
has played a prominent role in driving these changes by altering 
disturbance regimes and forest growth (Westerling et al. 2006, Seidl 
et al. 2017). Although climate constantly changes, the planet is 
warmer today than it has been for thousands of years (IPCC 2014). 
An increase in atmospheric carbon dioxide has contributed to the 
warming trend. Long-lived forest trees have recorded these changes 
over their life spans. Because the majority of tree mass is made from 
carbon dioxide assimilated from the atmosphere through photosyn-
thesis, the climate signatures and any other disturbances recorded 
in their annual tree-rings provide us with an opportunity to explore 

how trees respond to climate (Fritts and Swetnam 1989). In return, 
forests also influence climate by adjusting atmospheric CO2, water 
cycling, and solar radiation (Bonan 2008). Therefore, dendrochro-
nological data not only relate to contemporary climate, but also 
quantitatively provide tree growth or carbon accumulation.

A forest consists of many individual trees and other associated 
organisms that interact with one another. Using tree rings to study 
forest growth and carbon sequestration faces some shortcomings 
because collecting tree cores from all trees in a stand is a challenge. 
Although we can potentially collect them all in a forest stand, this 
has rarely been done, and we miss trees that died in the past, par-
ticularly in areas with fast decomposition rates. Although dendro-
chronology has been reliably used to identify periods of mortality 
indicated by a release in surviving tree radial growth, it will not 
provide an accurate number for tree mortality. Without estimates 
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of tree mortality over time, stand growth dynamics are impossible 
to quantify accurately.

Permanent forest research plots with repeated measurements 
can overcome this pitfall. Long-term data collected from these 
plots quantify stand dynamics recorded over time because each 
individual tree has observations on its health, growth, and survival. 
No other method is capable of precisely quantifying biomass lost 
to mortality. However, the effect of climate on stand growth and 
health is difficult to construct from these datasets because (1) trees 
in the permanent plots were not annually measured, so the average 
climatic data over the measuring period may wash out extreme and/
or isolated weather events, and (2) growth is confounded with tree 
age and other disturbances. Both limitations can be solved with 
dendrochronological analysis. Therefore, a study combining den-
drochronological data and long-term measurements from perma-
nent plots can explore the stand-level responses to climate change 
and other disturbances including stand density management by 
thinning, a standard forest practice to increase growth of residual 
trees. In recent years, this practice, sometimes in conjunction with 
prescribed fire, has been found to be an effective tool in promoting 
resilient ponderosa pine forests. For example, thinning has been 
widely recommended to mitigate climate change impacts on growth 
by increasing water availability and water-use efficiency (McDowell 
et al. 2003, 2006). Trees grown in lower-density plots are less vul-
nerable to drought events and more resistant to bark beetle attacks 
(Zhang et al. 2013b, c). Thus, thinning a stand reallocates water 
and other resources to residual trees and may provide a drought-
adaptation tool that could potentially reduce adverse ecological and 
socioeconomic impacts of climate change (Sohn et al. 2013, 2016a, 
b). Furthermore, thinning is a key tool for fuel reduction, as man-
agers are often reluctant to prescribe fire in a dense stand without 
first thinning. From the National Fire and Fire-Surrogate Study 
findings, Stephens et al. (2012) concluded that both prescribed fire 
and thinning successfully met the short-term fuel-reduction objec-
tives such that the treated stands would be more resilient to high-
intensity wildfire.

Over the past 100 years, scientists of the USDA Forest Service 
have established and measured research plots and other temporary 
plots across a range of densities. From temporary plot data, Reineke 
(1933) developed SDI, which is a measure of the stocking of a 
stand of trees based on the number of trees per unit area and qua-
dratic mean diameter. Since then, many long-term research plots 
were established to examine the effect of stand density on growth 
and development for many tree species across United States. Here, 
we use long-term ponderosa pine (Pinus ponderosa Lawson & C. 
Lawson var. ponderosa) research plots in northern California, estab-
lished and/or maintained by the Pacific Southwest Research Station 
in Redding, CA during the last 60 years to bridge long-term growth 
and health of forest stands with the effect of climate change during 
these study periods.

The specific objectives of this study are:

a) to address if tree growth responds to observed climatic vari-
ables such as temperature (maximum, minimum, and average),
precipitation, and other derived metrics (potential evapotrans-
piration (PET), Climatic Moisture Index [CMI], etc.), by
factoring out age-related radial growth decline and other dis-
turbance effects including density manipulation through thin-
ning or bark beetle outbreaks;

b) to determine stand-level annual basal area response to den-
sity by filling in annual radial growth for all trees in the
plots that have been measured every 5 years since plot
installations;

c) to evaluate the mortality relation with stand density and cli-
mate change;

d) to describe the trend differences across a range of site qual-
ity and possible interactions with thinning density or climate
variables on stand growth and tree mortality.

Materials and Methods
Plot Selection

We selected 42 permanent research plots of ponderosa pine estab-
lished between 1958 and 1972 at six sites with varying site quality 
in northern California (Table 1, Figure 1). Diameter at breast height 
(dbh) (1.37 m or 4.5 ft), mortality, and condition of trees in all 
plots have been measured multiple times since plot establishment. 
Measurements also included total height and height to base of live 
crown, either for all of or for a 20 percent sample of trees in the plot. 
Inventories typically occurred every 5 years after plot establishment. 
The plots were established in either natural, even-aged pure stands or 
mono-species plantations of ponderosa pine. The site index of these 
plots ranges from 21 m (70 ft) to 49 m (160 ft) (Meyer 1938) at 100 
years (Table 1), based on the 75th percentile of plot height and total 
tree age (Ritchie et al. 2012). We selected sites where multiple plots 
were installed with a range of densities.

On our earliest study installation at Sugar Hill, the plantation 
was thinned to either 3D+4 foot or 2D+4 foot spacing, where D is 
the quadratic mean diameter in inches. For example, if D was 15.2 
cm (6 in.), the stand was thinned to 6.7 m (22 ft) spacing between 
trees for the 3D+4 density treatment and 4.9 m (16 ft) spacing for 
the 2D+4 treatment. In both the Edson Creek and Show Plantation 
studies, density treatments were achieved by thinning stands to 40 

Management and Policy Implications

Density management can improve forest growth and health by controlling 
growing stock, through initial spacing or subsequent thinning, which makes 
the limited soil water and nutrients available to the remaining trees. This long-
standing forestry practice can also be integrated to achieve other manage-
ment objectives such as more water production, better wildlife habitats, and 
reduced fuel loads. Results from this study suggest that lowering stand density 
for ponderosa pine stands enhanced remaining tree growth, reduced mor-
tality, and increased stand resiliency to bark beetle disturbance and, to some 
extent, climate warming and drought. Although a density threshold varies 
with site quality, stand age when thinning applies, and rotation age, stands 
with a Stand Density Index (SDI) of more than 600 trees ha–1 (240 trees ac–1) 
will exhibit reduced individual tree growth and a high probability of suffering 
from mortality in northern California. If resources permit, repeated density 
management is desirable, which not only produces maximum high-quality 
timber, but also has chance to manipulate stand structure and maximize their 
functions. Although neither climate nor disturbances can be easily controlled, 
forest managers can manage stand density based on stand age and environ-
mental conditions to mitigate the threats from climate change and potential 
disturbances.
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percent, 55 percent, and 70 percent of the maximum basal area at 
full occupancy based on Meyer’s yield table (1938). The densities 
at Trough Springs were originally established with planting at four 
square spacings of 2.1, 2.4, 3.0, and 4.3 m (7, 8, 10, and 14 ft) and an 
unthinned control, with three plots per spacing (Zhang et al. 2006). 
Each plot was split into three subplots with a complete understory 
vegetation removal (V0), half removal (V0.5), and no removal (V1). 
Later, similarities between the control and 2.1 m (7 ft) spacing led 
to the decision to combine these treatments, and subsequently both 
were considered the control spacing. In this paper, we only include the 
lowest density (4.3 m or 14 ft spacing) and control plots, both with 
the three understory vegetation removal treatments. The Elliot Ranch 
plots were installed with growing stock levels of 9, 16, 23, 30, and 37 
m2 ha–1 (40, 70, 100, 130, and 160 ft2 ac–1, respectively) (Zhang et al. 

2013b). At Prattville, plots were installed in the existing stands with 
or without precommercial thinning with three plots being 250, 960, 
and 1,070 trees ha–1 (100, 390, and 430 trees ac–1). Here, we kept 
the original terms of treatment for all study locations to only reflect 
the contemporary forest practice, which will not affect our analysis 
because we use SDI as the independent variable for the sake of site 
comparisons.

Increment Core Collection
Within each permanent plot or subplot, at least four live trees 

per diameter class were randomly selected from three diameter size 
classes, and an increment core was collected from breast height  
(4.5 ft or 1.37 m) (Table 1). An additional increment core was 

Table 1. Permanent research plot information and site characteristics for ponderosa pine from higher to lower latitudes in northern 
California, USA.

Location No. of plots Plot size (ha) SIa 
(m)

Elevation 
(m)

Standb history Age span ΔT65
c (°C) 

(Tmax/Tmin)
No. of tree cores Density regimes

Sugar Hill 3 0.40 25–31 1,646 P 27–85 –0.5/1.4 29 3
Edson Creek 3 0.40 39–43 1,190 N 87–131 1.4/0.7 26 3
Show Plantation 3 0.40 40–45 1,189 P 53–97 1.4/0.9 27 3
Prattville 3 0.20 34–37 1,433 P 15–60 0.5/3.5 47 3
Trough Springs 18 0.03 21–24 1,280 P 11–57 0.9/1.8 121 2
Elliot Ranch 15 0.20 44–49 1,183 P 20–65 1.2/1.8 60 5

Note: aSI, site index at 100 years; bN, natural stand, P, plantation; cΔT65, temperature change estimated from temperature–year regression lines (Figure S1) during the last 
65 years (1950–2015).

Figure 1. Site locations and Walter’s climate diagram for each sites of ponderosa pine long-term permanent plots across northern 
California.
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collected from stump height (12 in. or 30 cm) from a subset of the 
sample trees. A total of 318 tree cores were collected, and 310 of 
them were included for the analysis.

Tree-Core Processing Procedure
In the lab, the increment cores were dried, mounted, sanded, and 

cross-dated using standard dendrochronological methods (Stokes 
and Smiley 1996, Speer 2010). Twisted cores were straightened 
using the steam method (Speer 2010). Cores were visually cross-
dated using the list method by comparing within the individual 
density treatments at each study location (Yamaguchi 1991). Ring 
widths were then measured to 0.001 mm accuracy using either a 
scanned image (1,200 dpi) in CooRecorder or a stage micrometer 
using the Velmex measuring system (Velmex, Bloomfield, NY). The 
program COFECHA was used to statistically assess the quality of 
the visual cross-dating (Grissino-Mayer 2001). Cores with dating 
issues identified by COFECHA were re-examined, and any dis-
tinguishable errors were corrected. Eight cores that could not be 
reliably assigned calendar dates were not included in further analy-
sis, leaving 310 cores. In order to remove undesirable disturbance 
and age-related trends in the series, chronologies were developed 
for each treatment/site using the program ARSTAN to convert raw 
ring-width measurements into a dimensionless ring-width index. 
Each location/treatment was standardized separately using a cubic 
smoothing spline two-thirds (67 percent) the series length with a 50 
percent frequency cutoff. Tree-ring indices were calculated as ratios, 
and series were averaged together using robust (biweight) means 
(Cook 1985, Cook and Holmes 1999). ARSTAN produces three 
mean chronologies of the detrended series: the standard (STD) 
chronology, in which the detrended series are averaged together and 
autocorrelation is retained; the residual (RES) chronology, where 
autoregressive modeling is used to remove autocorrelation; and the 

ARSTAN (ARS) chronology, which reincorporates the autoregres-
sion patterns common to a majority of the individual series back 
into the final chronology (Cook and Holmes 1999, Baker et al. 
2008). The RES chronology produced by ARSTAN was used for 
further analysis.

Several descriptive statistics commonly used in dendrochro-
nology were used to compare the residual treatment chronologies 
produced in ARSTAN at each site for the time periods specified in 
Table 2. These included the standard deviation (SD), which esti-
mates the variability of measurements for the whole series; mean 
RBAR, which is a measure of the common variance between the 
single series in a chronology and series intercorrelation, which is a 
measure of the strength of the signal (typically the climate signal) 
common to all sampled trees at the site; first-order autocorrela-
tion (AC [1]) to detect persistence retained after the autoregressive 
model; and the expressed population signal (EPS).

EPS is a statistic introduced original by Wigley et al. (1984) that 
approximates how well a subsample represents an infinite popula-
tion (Buras, 2017). EPS values depend on sample size and indicate 
whether chronologies are dominated by individual tree signals or 
stand-level (population) signals (Schwab et al. 2018). It is impor-
tant to note that whereas many previous papers have used an EPS 
value of 0.85 or higher as an indicator of suitability for climate 
reconstructions, this threshold was arbitrarily chosen and does not 
necessarily reflect the strength of the climatic signal (Buras 2017).

Climate Data
Weather data were obtained from the PRISM climate group at 

Oregon State University, which triangulates data from multiple 
weather stations and accounts for geographical and topographi-
cal variations in order to give site-specific weather records dat-
ing back to 1895 (Daly et al. 2008). These weather data include 

Table 2. Descriptive statistics of tree-ring chronologies within the optimum time span and regression equations with detrended residual 
chronologies as dependent variable and derived climate variables as the independent variables and adjusted r2 for ponderosa pine 
grown at various locations in northern California.

Site Time span Treatment rbar SD AC(1) EPS Regression equation Adj-r2

Sugar Hill 1946–2015 3D+4 0.49 0.10 0.09 0.85 0.80 + 0.30 CMI* 0.13
2D+4 0.53 0.10 0.05 0.90 0.71 + 0.43 CMI* 0.21
Control 0.45 0.11 –0.08 0.88 0.56 + 0.65 CMI* 0.37

Edson Creek 1917–2015 40%BA 0.37 0.11 0.05 0.78 1.52 – 0.02 VPD* 0.09
55%BA 0.34 0.10 –0.07 0.80 1.49 – 0.02 VPD* 0.08
70%BA 0.39 0.10 0.01 0.85 1.48 – 0.02 VPD* 0.07

Show Plantation 1944–2015 40%BA 0.39 0.12 0.22 0.82 1.36 – 0.01 VPD 0.02
55%BA 0.20 0.14 0.17 0.72 1.33 – 0.01 VPD 0.05
70%BA 0.32 0.12 0.25 0.81 1.56 – 0.02 VPD* 0.08

Prattville 1970–2016 LD 0.38 0.11 0.03 0.87 0.92 + 0.08 CMI* 0.08
HD1 0.47 0.14 0.16 0.92 0.75 + 0.24 CMI* 0.37
HD2 0.40 0.14 0.17 0.92 0.87 + 0.12 CMI* 0.10

Trough Springs 1969–2015 LD_V1 0.38 0.13 –0.06 0.92 0.76 + 0.21 CMI* 0.23
LD_V0.5 0.43 0.14 0.11 0.92 0.78 + 0.19 CMI* 0.19
LD_V0 0.47 0.13 0.07 0.88 0.87 + 0.10 CMI 0.05
HD_V1 0.37 0.17 0.15 0.92 0.81 + 0.17 CMI* 0.10
HD_V0.5 0.40 0.17 0.13 0.90 0.83 + 0.15 CMI* 0.13
HD_V0 0.33 0.19 0.25 0.86 0.87 + 0.11 CMI* 0.09

Elliot Ranch 1966–2016 GSL40 0.41 0.12 0.07 0.86 0.51 + 0.09 CMI* + 0.08 GDD 0.10
GSL70 0.42 0.12 0.08 0.89 0.30 + 0.14 CMI* + 0.11 GDD 0.23
GSL100 0.39 0.13 0.00 0.89 0.13 + 0.12 CMI* + 0.15 GDD* 0.17
GSL130 0.36 0.11 0.02 0.85 0.26 + 0.15 CMI* + 0.11 GDD* 0.25
GSL160 0.38 0.13 0.02 0.88 0.16 + 0.12 CMI* + 0.15 GDD* 0.18

Note: AC(1), first-order autocorrelation; CMI, Climatic Moisture Index; EPS, expressed population signal; GDD, growing degree day; rbar, all series intercorrelation; SD, 
standard deviation for all cores; VPD, vapor pressure deficit. *P < .05 for testing βi = 0.
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precipitation (mm), average, minimum, and maximum temper-
ature (°C) on a monthly scale. Derived variables also from the 
website are maximum and minimum vapor pressure deficit (VPD, 
hPa). All the weather variables used in this study will hereafter 
be referred to as climate variables because all analysis was done 
over decades, looking at long-term responses. Using these data, 
we calculated annual precipitation (PPT) from October of the 
previous year to the end of September in the current year, which 
presumably supports the current year growth. Similarly, we cal-
culated annual potential evapotranspiration (PET, mm). A modi-
fied CMI from Willmott and Feddema (1992) was calculated as 
a ratio between PPT and PET during the same period time. We 
only averaged maximum VPD, minimum VPD, and minimum 
temperature from April to September as growing season VPD and 
Tmin. Growing degree day above zero (GDD) was calculated by 
summing the mean temperature multiplied by the number of days 
in that month if the minimum temperature was greater than zero. 
The typical Mediterranean climatic patterns are shown for these 
sites in Figure 1.

Annual Basal Area and Mortality
Since the establishment of each study, all trees in a permanent 

plot were measured multiple times, usually every 5 years. We used 
the measured tree-ring radial growth averaged for each plot to inter-
polate annual dbh increment for all remaining trees during a par-
ticular period. Thus, we calculated the basal area for each tree per 
year, starting from the plot establishment year to the last time mea-
sured. All trees were measured in 2016 except for at Elliot Ranch, 
which was measured in 2014. Because a tree could have died any 
year during a measuring period, we estimated the year of mortality 
by interpolating the dbh from increment core trees compared with 
the live trees in the plot. For example, if the dbh of a dead tree was 
17.5 cm (6.9 in.) in 1999 and was 16.7 cm (6.6 in.) in 1994, we 
calculated that the dbh increment was 0.8 cm (0.3 in.). In the mean 
time, if we found that an increment of mean dbh was 2.5 cm (1.0 
in.) for all live trees in the plot during 1994–99 period, we would 
estimate that this tree died in 1996. For dead trees without a final 
dbh measurement, we used the tree-ring measurements from the 
trees from the same plot to estimate the year of mortality for that 
particular tree based on assumption that the dead tree would no 
longer be competing with its neighbor trees, so the neighbor trees 
would have grown proportionally more than the plot average. There 
might be some errors associated with the estimate for mortality in 
a particular year. Yet, this might be the best way to obtain annual 
mortality that would be better than an average over 5 years.

Data Analysis

1. After the tree-core data were detrended with a standardized
method along the time series, an ordinary least-squares
regression model was established for each density treatment at 
each site with the unitless detrended signal as the dependent
variable (ydd) and climate variables as the independent
variables (xi).

ydd = βixi + ε  (1)

The results address the first objective, determining if tree growth 
responded to climate variables. In particular, we want to see if 

climate change caused tree growth decline for the last 50 years, 
which is regarded as a period of dramatic change (IPCC 2014).

2. Using the annual dbh increment estimated for all trees since
plots were established, we calculated the plot-level annual in-
crement of basal area (BA, m2 ha–1 year–1) and quadratic mean
diameter (QMD, cm), trees per hectare (TPH), mortality (M,
TPH), and SDI, Reineke 1933) with b being 1.77 (Oliver and
Powers 1978).

SDIi = TPHi

Å
QMDi

25.4

ãb
 (2)

3. A Bayesian approach is adopted (Gelman et al. 2013) for model-
ing tree mortality. The plots at Trough Springs were excluded
because a sudden fire caused heavy mortality in 2012. We 
used the brm function in the brms package (Bürkner 2017) 
in R version 3.4.3 (R Core Team 2017) to fit a zero-inflated 
binomial generalized linear model with logit link function for 
both the binomial part and zero-inflated part (Hall 2000). 
The binomial model was chosen because in each year there is 
a fixed known number of trees that could die in each plot. If 
tree death is independent within year within plot, this model 
would be exactly binomially distributed. The zero-inflated 
model was chosen because 86 percent of observations experi-
enced no tree mortality, which is substantially more than we 
would expect given a binomial model with the amount of mor-
tality observed.

We considered three model scenarios of linear covariates for the 
binomial part of each model: SDI only, CMI only, and SDI and 
CMI together. Based on some preliminary graphical diagnostics, 
it was determined that the zero-inflated part of all models should 
contain only an intercept, as the presence of zeros did not appear 
to depend strongly on SDI, CMI, or plot ID. The full (scenario 3) 
zero-inflated model takes on the following form:

yi ∼
®

0, with probability φ
Binonial (Ni, pi), with probability 1− φ

 (3)

log
φ

1− φ
= βz  (4)

log
pi

1− pi
= β0 + SDIiβsdi + CMIiβcmi  (5)

where yi is the number of dead trees in observation i, Ni is the 
number of live trees in i, φ is the zero-inflation probability defined 
in terms of log odds βz, pi is the probability of mortality of a single 
tree in i, β0 is the associated intercept, βsdi is the effect of SDI, and 
βcmi  is the effect of CMI.

Models were compared using the Leave One Out Information
Criterion (Vehtari et al. 2016a, b), denoted LOO, using the LOO 
function in the brms package. The model with the lowest LOO is 
selected as the best model.

All prior distributions for the Bayesian analysis were set to the 
defaults provided by the brms package. The brm function calls 
Stan programming language (Stan Development Team 2017) 
to implement the Hamiltonian Monte Carlo algorithm (Duane 
et al. 1987, Hoffman and Gelman 2014) used to implement the 
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Bayesian analysis. For each scenario, we ran two 1,000 iteration 
chains each with a burn-in of 500. The adapt_delta parameter (see 
the brm function documentation for details) was set to 0.9999, and 
the maximum tree depth was set to 30 for all scenarios. All model 
parameters converged according to the Rhat diagnostic provided by 
the brm function.

When computing LOO, some observations had pareto_k (see 
LOO function documentation for details) values greater than 0.7 
(five, three, and four observations for models 1, 2, and 3, respec-
tively) and, as suggested by the software in this scenario, had to 
have their expected log predictive density recomputed without the 
assumption that these observations are negligible. This involved 
refitting the models for each problematic observation to compute 
the expected log predictive densities for the problematic observa-
tions directly.

Results
Climate Trends and Tree Ring Index

From 1950 to 2015, mean annual temperatures have increased 
at all sites (Figure S1), in which the minimum temperature (1.4 to 
3.5°C) increased more than the maximum temperature (–0.5 to 
1.2°C) at four sites (Table 1), whereas at Edson Creek and Show 
at the foothill of Mt. Shasta, the opposite trend was true. At Sugar 
Hill, a decreasing trend occurred for maximum temperature.

Among the three chronologies from the program ARSTAN, 
the RES was chosen for exploring climate signal in the tree rings. 
Despite interannual variation at each site, neither an increase nor 
a decrease in overall tree-ring width index was found, suggesting 
a lack of temperature related trend on radial growth for the time 
span (Figure 2A1–F1). An interannual variation was smaller on the 

Figure 2. Ring-width indices (A1–F1) and increment (A2–F2) at six permanent plot sites. Arrows refer to the year when plots were installed.
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lower-density plots than on the higher-density plots based on the 
SD of chronologies at each site (Table 2).

Comparing with other individual climate variables, the CMI, 
although r2 ≤ .37, explained the most variation of tree-ring width 
indices at all sites except at Edson Creek and Show Plantation, 
where the maximum VPD explained the most variation (Table 2). 
The slopes were always positive for CMI and negative for VPD. At 
Elliot Ranch, including the GDD0 in the model provided a better 
fit and prediction.

None of the individual or derived climate variables from com-
binations of individual ones, i.e., maximum, minimum, mean air 
temperature, precipitation, or VPD could explain more variability 
of tree-ring width index than the CMI. Because of different time 
spans between sites, variation among sites, among densities, and 
among years, no common trends could be generalized when we use 
the seasonal variation of climatic variables.

Lower density stands showed an increased diameter growth of 
remaining trees after treatment implementation (Figure 2A2–F2). 
The heavier the thinning intensity, the longer the thinning effect 
lasted. Since thinning was conducted at an older age, the thinning 
effect was not obvious in the natural stand at Edson Creek (Figure 
2B2).

Plot-Level Growth
Although stand diameter (QMD) responded to thinning sig-

nificantly (Figure 3A2–F2), the responses of plot-level net annual 
BA increment (MAI) to density were not obvious within sites with 
the exception of abrupt reductions of annual increment caused 
by mortality, usually occurring in the higher-density plots (Figure 
3A1–F1). Mortality in some years was so heavy that it caused the 
significant differences in the overall MAI and net BA among densi-
ties within some sites (Table 3). In addition, not only did initial 
BA vary among sites because of the different thinning intensities, 
but also the site effect was significant for net BA, BA mortality, 
and MAI BA. Within each site, all BA-related variables except for 
MAI differed among densities or treatments. Both the higher initial 
BA and plots with a higher competition intensity showed less net 
BA accumulation, although this depended on stand developmental 
stages. For example, all plots with >19 m2 ha–1 (83 ft2 ac–1) in in-
itial BA at Edson Creek and Show revealed low net BA and high 
mortality, whereas at Trough Springs, all treatment plots with <2 
m2 ha–1 (9 ft2 ac–1) initial BA had a low net BA, although the per-
centage increase was high because of the age of the plots at the time 
of treatment (Table 3).

Mortality
Since plot establishment, mortality from a combination of abi-

otic stresses (such as water, nutrients, and light) and biotic dis-
turbances (such as bark beetle outbreaks) has occurred mainly in 
higher-density plots at each site (Table 3). The zero-inflated bi-
nomial models showed that the model with SDI only is the best-
performing model with LOO of 2311.73 (Table 4). The effect of 
SDI on the log odds of tree mortality is 0.009. This means that if 
SDI increases, the probability of mortality increases. The effect of 
CMI in the second best and third best model is negative and close 
to zero, implying that the probability of mortality decreases as CMI 
increases. However, the effect is small with a large credible interval 
and so probably close to zero provided that CMI is the climatic 

variable that influenced tree growth at most sites (Table 2). The log 
odds of zero-inflation is about 1.75 for all models, corresponding 
to a zero-inflated probability of 0.85 that no mortality will occur. 
This is in line with the 86 percent of observations experiencing no 
mortality. This 1 percent absolute difference in tree mortality could 
be attributed to misclassification of dead trees, although it is within 
the margin of error.

Figure 4 contains a scatterplot of the proportion of tree mor-
tality by SDI. We can see the increasing trend in mortality over SDI 
from the binomial part of the model. Note that if the fits were cor-
rected for the zero-inflation probability, the model would fit very 
close to zero for all SDI values. This is due to the very high amount 
of zero-inflation prevalent in this dataset.

Although attributing CMI to mortality was overwhelmed 
by SDI in the model, the climate effect on mortality cannot be 
ignored because a major mortality event was often parallel to or 
following a dry spell from multiple drought years. The phenomena 
were demonstrated at Elliot Ranch representing the best site quality 
(Figure S3) and at Sugar Hill as a lower site quality (Figures S4). 
Nonetheless, very few or no trees died in the lower-density plots 
during these dry spells.

Discussion
The detailed tracking records for these long-term ponderosa pine 

research plots demonstrated that lowering stand density enhanced 
remaining tree growth (Table 3; Figure 2), reduced mortality (Table 
3; Figures 3 and 4), and increased stand resiliency to disturbance 
(Figure 3A2–F2) and climate change (Table 2; Figure 2A1–F1) re-
flected by the lower variability within the lower-density plots than 
in the higher-density plots. The results have been consistent with 
the results in previous studies, although very few have simultane-
ously examined these effects. Obviously, lowering density may not 
be a sole practice to improve forest health and resiliency. Any treat-
ment that reduces tree stress will have a positive effect on stand-
level health (i.e., less mortality) and individual tree-level growth. 
An example of an additional treatment demonstrated in this paper 
was the removal of competing understory shrubs at Trough Springs 
(Figure 2E1–E2). Favorable climate conditions such as higher CMI 
or lower VPD can reduce tree stress as well and improve resilience 
(Table 2). These results should not be surprising because an onset 
of self-thinning of ponderosa pine stands occurs at relatively lower 
SDI than of other sympatric species (Zhang et al. 2013a). In ad-
dition, growth rate could have been rapid under high-quality site 
conditions such as at Elliot Ranch. Therefore, intertree competition 
begins early for water, nutrients, and light, which makes trees grow 
under greater stress (Zhang et al. 2006). Furthermore, these crowded 
stands are more vulnerable to wildfires and outbreaks of pests and 
pathogens (Agee and Skinner 2005, Fettig et al. 2007). To mitigate 
these threats, one should consider stand density management and 
prescribed fire in both young and old stands (Stephens et al. 2012).

Climate Change and Forest Growth
Over the last 65 years, although climatic warming occurred at 

these study sites (Figure S1), a corresponding long-term trend of 
ponderosa pine growth was not detected (Figure 2A1–F1). The 
results differed from the findings recently reported that forest 
growth tracked a long-term climate trend by either increased or 
decreased growth. Studying the oldest research plots for Norway 
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spruce (Picea abies [L.] Karst.) and European beech (Fagus syl-
vatica L.) in Central Europe, Pretzsch et al. (2014) found sig-
nificantly faster tree growth today than in 1960, mainly because 
of increasing temperature and extended growing seasons. The 
growth acceleration was more obvious on fertile sites. Bristlecone 
pine (Pinus longaeva D.K. Bailey) showed the similar growth surge 

within 150 m of the upper tree line in the Great Basin, which 
was related to increased temperature in the second half of the 
20th century (Salzer et al. 2009). Silva et al. (2016) reported that 
a synergistic effect of warming climate and the rise of CO2 not 
only increased growth of Abies faxoniana Rehder & E.H.Wilson, 
but also accelerated the expansion of alpine forests in the Tibetan 

Figure 3. Annual basal area increment since research plots were installed and dbh distribution on the latest measurements for ponderosa 
pine grown in the northern California.
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Plateau. Using a dataset of tree biomass from 55 temperate forest 
plots, McMahon et al. (2010) reported a recent increase in forest 
growth that was hypothesized to relate to increased temperature, 

growing season, and/or CO2, nutrient fertilization, commu-
nity composition, and demographic stochasticity. In ponderosa 
pine, the long-term negative or no growth trends were found in 
Northern Arizona from 1920 to 1990, which was consistent with 
the lack of trends for climatic variables (Biondi 1999). The lack of 
growth trends (neither negative nor positive) following tempera-
ture increases in these ponderosa pine stands might be related to 
tree adaptation to Mediterranean climate. We have found that the 
duration of the growing season was controlled by both tempera-
ture and soil water availability (unpublished data). Temperature 
determines a beginning of growing season, whereas it is soil water 
that determines growth duration and rate of tree growth unless 
there is abundant water in the soils. At Edson Creek and Show 
Plantation, soils are characterized as the Sadie, deep-Germany 
families association (150 cm or 59 in. depth) with high water-
holding capacity. In addition, water from Mt. Shasta glaciers also 
provides soil water over the dry seasons during certain extremely 
hot years (personal observations). Therefore, it is no surprise that 
radial growth was more related to VPD than CMI as at other 
sites (Table 2). Other possible reasons for the difference in radial 
growth relation to climate at these locations are that they are the 
oldest trees in our study grown either in plantation at Show or 
in natural stand at Edson, where the EPS values were the lowest 
for all sites. Finally, to truly compare radial growth relations with 
climate between the different study locations, we would have to 
look at the same time spans for all studies.

Table 3. Study duration, initial TPH and BA after density treatments were established, net BA growth including further thinned trees, mor-
tality, and MAI since these research plots were installed for ponderosa pine grown at various treatments in northern California.

Site Study duration (years) Treatment Initial TPH Initial BA (m2 ha–1) Net BA (m2 ha–1) Mortality (m2 ha–1) MAI (m2 ha–1 year–1)

Sugar Hill 62 3D+4 105 2.95 27.51  0.00 0.48
2D+4 200 5.68 32.92  0.05 0.57
Control 1,127 17.17 29.00 26.34 0.51

Edson Creek 44 40%BA 163 27.32 12.95 14.60 0.30
55%BA 166 29.27  8.47 19.61 0.18
70%BA 198 37.70  2.07 32.74 0.05

Show Plantation 44 40%BA 175 19.49 13.57 24.91 0.30
55%BA 148 23.72 11.04 14.95 0.25
70%BA 385 34.90 13.45 28.36 0.30

Prattville 45 LD 100 9.84 37.24  0.21 0.80
HD1 1,070 13.79 12.81 49.48 0.28
HD2 949 18.59 41.17 37.65 0.90

Trough Springs 46 LD_V1 556 0.76  7.14  0.48 0.16
LD_V0.5 536 0.55  9.53  0.14 0.21
LD_V0 576 0.51 22.64  0.90 0.48
HD_V1 2,135 1.52 10.42 13.87 0.23
HD_V0.5 2,135 1.79 13.68 17.29 0.30
HD_V0 1,984 1.77 15.96 23.51 0.34

Elliot Ranch 45 GSL40 190 8.77 36.30  0.94 0.80
GSL70 393 14.79 50.17  2.36 1.13
GSL100 610 20.83 40.98 11.73 0.92
GSL130 855 26.95 28.70 29.43 0.64
GSL160 1,253 33.20 16.69 42.57 0.37

Note: BA, basal area; MAI, mean annual increment; TPH, trees per hectare

Table 4. Estimates of the binomial model intercept, zero-inflated model intercept, the effect of CMI and SDI, the respective 95 percent CIs, 
and the estimated LOO.

Model β0 β0 CI βz βz CI βcmi βcmi CI βsdi βsdi CI LOO

SDI –5.13 (–5.31, –4.94) 1.73 (1.52, 1.94) a a 0.009 (0.008, 0.009) 2,311.73
CMI –3.20 (–3.33, –3.06) 1.77 (1.6, 1.96) –0.03 (–0.15, 0.09) a a 3,120.04
SDI, CMI –5.02 (–5.21, –4.82) 1.70 (1.52, 1.89) –0.12 (–0.24, –0.01) 0.009 (0.008, 0.009) 2,316.47

Note: aTerm not included in a model. CI, credible interval; CMI, Climatic Moisture Index; LOO, Leave One Out Information Criterion; SDI, Stand Density Index

Figure 4. Scatterplot of proportion of annual tree mortality by SDI. 
The solid line is the posterior mean fit of the expected proportion 
of tree mortality from binomial part of model 1. Dashed lines are a 
95 percent credible interval for the fit.
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Although there was no long-term growth trend for these stands 
across these years, radial growth responded to annual climate sig-
nificantly, which has been indicated by interannual variations 
(Figure 2A1–F1). The effects of age and/or density manipulation 
were clearly demonstrated with tree-ring increment, i.e., age-related 
decline and release after thinning (Figure 2A2–F2), suggesting that 
long-term climate tracking for stand or tree growth would not be 
possible without the detrended series of tree cores.

Stand Density Manipulation and Forest Growth
The effect of stand density on tree growth has confirmed a 

widely observed principle that stands managed at lower densities 
grow larger-diameter trees (Figures 2A2–F2; 3A2–F2). This result 
is consistent with many previous studies regardless of tree species. 
The magnitude of growth response to stand density varied with site 
quality, stand origin, and stand ages (Figure 2). Significantly higher-
diameter growth in lower-density stands indicates two benefits. 
First, large-diameter trees with a high proportion of carbon in the 
stem represent a more stable form of carbon storage than smaller-
diameter trees if understory vegetation is similar (Zhang et al. 2010, 
North and Hurteau 2011, Earles et al. 2014). Furthermore, we 
cannot account for a complete forest carbon pool without consid-
ering wildfires in fire-dominated ecosystems (Powers 2010, Zhang 
et al. 2010). Ponderosa pine grown under the Mediterranean cli-
mate is surely such a system where larger-diameter trees grown in 
lower densities are typically better able to survive a fire than smaller 
trees (Agee and Skinner 2005). For example, a recent wildfire in the 
spring of 2018 that burnt through one of the lower-density plots 
at Elliot Ranch did not kill a single tree. This personal observation 
suggests that this particular lower-density plot may provide a more 
secure condition for carbon storage than the high-density plots.

Second, if the management goal is to produce large trees char-
acteristic of late-seral forests, low-density stands are preferred. 
Management guidelines for late-seral forests on the east slope of 
the Cascade Range in Oregon and Washington included trees with 
a dbh of 53 cm (21 in.) (Youngblood et al. 2004), and in the Sierra 
Nevada trees with a dbh of 76 cm (30 in.) (cf. Zhang et al. 2013b). 
Many trees on our lower-density plots at high site quality have al-
ready grown to these size categories (Figure 3A2–F2).

At the stand level, the nonsignificant net annual growth for BA 
was surprising (Figure 3A1–F1). In general, we often found that 
high-density plots showed a higher annual BA growth (Daniel et 
al. 1979). Under a timber-management objective, the maximum 
site productivity is sustained by managing an optimal stand density 
that allows leaf area to reach its highest level (Pretzsch 2010). In 
this study, because mortality often occurred in those higher-density 
plots, net stand growth was either comparable or higher at lower-
density plots than higher plots.

Stand Density and Mortality
Because yearly estimates were obtained for each plot, one 

might be interested in determining if there is a site or plot effect. 
Unfortunately, some sites did not include replications, and the dis-
tribution of SDI and CMI is not uniform across sites and plots. 
Thus, the effect of SDI and CMI is confounded with site and plot. 
Including site and plot in the model, as would be expected be-
cause of the number of parameters entailed, swamps out the effects 

of SDI and CMI, so they were not investigated as a part of this 
analysis. Nonetheless, the relation between SDI and mortality has 
been demonstrated in many studies for different species including 
ponderosa pine (Long and Shaw 2005, Zhang et al. 2013a, c). In 
ponderosa pine stands throughout western North America, several 
Dendroctonus species are not only important ecosystem compo-
nents (Furniss and Carolin 1977), but also regarded as ubiquitous 
regulators of density in young, even-aged stands of ponderosa pine 
(Sartwell and Stevens 1975), although their periodic outbreaks with 
drought have the potential to cause widespread mortality of older 
trees in mature forests within large areas (Stephens et al. 2018). By 
analyzing 155 permanent plots in even-aged ponderosa pine stands 
in California, Oliver (1995) found that self-thinning started when 
SDI reached about 600 trees ha–1 (240 trees ac–1), and significant 
mortality occurred when SDI reached about 900 trees ha–1 (365 
trees ac–1). This value was considerably below the maximum SDI 
of 1,060–1,236 trees ha–1 (429–500 trees ac–1) used by foresters 
in the Western United States. However, Oliver (1995) argued that 
a limiting SDI of 900 trees ha–1 (365 trees ac–1) is the result of 
increased bark beetle activity. Our study here indicated an increas-
ing trend of mortality with SDI, which is shown by the fitted line 
from the rather large variation of mortality at a specific SDI (Figure 
4). For example, it reached about 5 percent mortality rate yearly 
when the SDI was 600 trees ha–1 (240 trees ac–1), although a max-
imum of 15 percent mortality rate could occur on some plots at 
certain sites. Similarly, a model prediction for mortality reached 12 
percent when the SDI was 900 trees ha–1 (365 trees ac–1), but we 
observed that a maximum rate of mortality could reach as high as 
40 percent when SDI was 700 trees ha–1 (283 trees ac–1). Therefore, 
for all disturbances considered, it appears that the original limiting 
SDI should have been lower in this region.

It may be possible to improve upon the choice of binomial in the 
zero-inflated binomial. This choice, while well motivated, was also 
partly influenced by what was available in software at the time of 
this analysis. It may be that a model that allows for overdispersion, 
such as the betabinomial model, would be appropriate for mod-
eling our uncertainty in tree mortality. This would also account for 
dependence in mortality among individual trees within year within 
plot. Indeed, a model that allows for more variability may fix the 
issues we experienced in computing LOO by broadening the range 
of negligible points.

Climate Change and Disturbances
Although the effect of climate change on a suite of disturbances 

is beyond the scope of this study, we did find that most mortality 
events, especially those heavy ones, were often parallel to or fol-
lowing a dry spell from multiple drought years (Figures S3–S4). 
The results are consistent with findings from many previous stud-
ies during recent years (e.g., Allen et al. 2010, Bradford and Bell 
2017). These studies and comprehensive reviews demonstrated that 
the massive mortality could have been caused by severe droughts or 
drought-related bark beetle outbreaks such as in the mixed conif-
erous forests in the Sierra Nevada of California (Stephens et al. 
2018), but also provided the mechanistic processes of tree mortal-
ity from droughts (Choat et al. 2018). Seidl et al. (2017) found that 
more than 70 percent of droughts were directly caused by climate 
change with increasing temperature and decreasing precipitation. 
In addition, climate change also affects many other disturbances 
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such as climate warming increasing wildfire frequency and severity 
(Westerling et al. 2006) and causing species extinctions worldwide 
(Thomas et al. 2004). Practically, forest managers cannot control 
both climate and disturbances, but what they can do is to manage 
stand density based on stand age and environmental conditions to 
mitigate the threats from climate change and potential disturbances.

Conclusions
Using a dendrochronological approach and frequent invento-

ries for permanent research plots, we found that regardless of site 
quality, reducing stand density increased the diameter growth of re-
sidual trees, reduced stand mortality, and enhanced stand resiliency 
to disturbance and climate change. Any treatments that released 
trees’ stress would have a positive effect on stand-level health (lower 
mortality rate) and individual tree-level growth, as would favor-
able climate conditions such as a higher climate moisture index or 
lower VPD. Although annual temperature has gradually increased 
at all sites for the last 65 years, tree-ring indices, which eliminate 
age and thinning effects, failed to reflect a long-term radial growth 
trend at any site. However, the high volatility in ring-width suggests 
a strong influence of climate on tree growth. Plot-level BA incre-
ments were significantly affected by tree mortality. SDI explained 
most variation of mortality because very few or no trees had died 
in the lower-density plots since plot establishment. Since neither 
biotic disturbances nor abiotic conditions can be controlled, forest 
managers can manage forest stands with an appropriate stand den-
sity to avoid abnormal consequences caused by climate change and 
the potential disturbances.
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