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The ability to estimate and monitor standing dead trees (snags) has been difficult due to their irregular and sparse 
distribution, often requiring intensive sampling methods to obtain statistically significant estimates. This study 
presents a new method for estimating and monitoring snags using neighborhood attribute filtered airborne 
discrete-return lidar data. The method first develops and then applies an automated filtering algorithm that 
utilizes three dimensional neighborhood lidar point-based intensity and density statistics to remove lidar points 
associated with live trees and retain lidar points associated with snags. A traditional airborne lidar individual-tree 
detection procedure is then applied to the snag-filtered lidar point cloud, resulting in stem map of identified 
snags with height estimates. The filtering algorithm was developed using training datasets comprised of four 
different forest types in wide range of stand conditions, and then applied to independent data to determine suc
cessful snag detection rates. Detection rates ranged from 43 to 100%, increasing as the size of snags increased. The 
overall detection rate for snags with DBH ≥ 25 cm was 56% (±2.9%) with low commission error rates. The method 
provides the ability to estimate snag density and stem map a large proportion of snags across the landscape. The 
resulting information can be used to analyze the spatial distribution of snags, provide a better understanding of 
wildlife snag use dynamics, assess achievement of stocking standard requirements, and bring more clarity to 
snag stocking standards. 

Published by Elsevier Inc. 
1. Introduction 

In recent years, recognition of the essential roles standing dead trees 
(snags) play in forest ecosystems has increased. For wildlife, snags 
provide critical nest, roost, and den habitat for a myriad of vertebrate 
species while also providing excellent foraging resources (Bate, 1995; 
Harmon, 2002; Laudenslayer, 2002; Mellen et al., 2006; Rose et al., 
2001). For these reasons snags have been classified as key habitat compo
nents for many threatened and forest health indicator species (Harmon, 
2002). Snags are also important for nutrient cycling, long-term carbon 
storage, and many fungal and invertebrate life cycles are dependent on 
snags (Boddy, Frankland, & van West, 2008; Harmon, 2002; Jonsson, 
Kruys, & Ranius, 2005). Due to all these attributes, snags are often consid
ered to be key indicators of biodiversity and forest health. 

As the recognition of the importance of snags has become more 
apparent, numerous certification programs and forest management reg
ulatory bodies have developed minimum snag stocking requirements to 
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help ensure that biodiversity is maintained or restored (Pasher & King, 
2009). These most often require a certain density or volume of snags to 
be maintained over time in order to provide continuous habitat support 
and ecosystem sustainability (Franklin, Berg, Thornburgh, & Tappeiner, 
1997; Holloway, Caspersen, Vanderwel, & Naylor, 2007). The standards 
and regulations are often based on results from snag sampling studies, 
which estimate the size and quantity of snags from field sampling 
methods. One limitation associated with this method is that the distribu
tion of snags across forest stands is often highly variable, even within 
stands that are similar in many other respects (Fan, Shifley, Thompson, 
& Larsen, 2004). Most standard sampling designs are not efficient for 
rare events, such as snags (Yoccoz, Nichols, & Boulinier, 2001). Thus, 
the ability to estimate and monitor snags has proven to be inherently 
difficult; requiring complex, intensive, and often expensive sampling 
procedures to produce estimates of sufficient precision (Bate, Garton, & 
Wisdom, 1999; Bull, Holthausen, & Marx, 1990; Ducey, Jordan, Gove, & 
Valentine, 2002; Gray, 2003; Harmon & Sexton, 1996; Kenning, Ducey, 
Brisette, & Gove, 2005; Krebs, 1989; Lämas & Stahl, 1998; Rose et al., 
2001). This has led to the exploration of utilizing remote sensing technol
ogies to better estimate snag densities and distributions across the land
scape (Bater, Coops, Gergel, LeMay, & Collins, 2009; Bütler & Schlaepfer, 
2004; Croft, Heller, & Hamilton, 1982; Martinuzzi et al., 2009). 
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Using remote sensing techniques to estimate the density and distribu
tion of snags can provide a more practical, cost-effective, and reliable 
method (Bater et al., 2009). However, there have been few studies testing 
the capabilities of remote sensing to estimate snags. While some have 
used Landsat (Frescino, Edwards, & Moisen, 2001), most have utilized air
borne multispectral imagery and have focused on stand-level disturbance 
events, such as insect outbreaks, disease or windfall (Guo, Kelly, Gong, & 
Liu, 2007; Hamilton, Megown, Ellenwood, Lachowski, & Maus, 2010; 
Kelly, Shaari, Guo, & Liu, 2004). Others have focused on the assessment 
of individual snags in a variety of forest types and conditions (Bütler & 
Schlaepfer, 2004; Croft et al., 1982; Haara & Nevalainen, 2002; Leckie, 
Jays, Gougeon, Sturrock, & Paradine, 2004; Pasher & King, 2009). Bütler 
and Schlaepfer (2004) achieved good results by developing a manual 
four-step individual-snag detection method that coupled airborne CIR 
photos (1:10,000) with a geographic information system (GIS). Their 
method produced an overall detection rate of 67% for snags ≥25 cm di
ameter at breast height (DBH), but also had many noted limitations; 
1) most smaller snags were not detected, 2) high-levels of technolo
gy were required, including special software, and 3) accuracies were 
affected by factors such as aspect, surface slope, weather, and hour of 
flight. Their manual method, like most methods utilizing aerial imag
ery, also suffers from time and cost issues and is prone to operator in
terpretation bias and subjectivity errors (Bater et al., 2009). As a 
result, there has been an increased interest in augmenting techniques 
to estimate and detect snags using newer remote sensing technologies, 
such as airborne light detection and ranging (lidar), that have 
displayed potential in the identification of individual trees and the 
ability to predict live- and dead-tree attributes (Kim et al., 2009; 
Martinuzzi et al., 2009). 

Airborne lidar is an active remote sensing technology employing an 
aircraft mounted laser capable of simultaneously mapping terrain and 
vegetation heights with sub-meter accuracy across large spatial extents 
(Lefsky, Cohen, Harding, & Parker, 2002). It has proven to be a very 
promising remote-sensing technology for increasing the accuracy and 
efficiency of large-scale forest inventories for a myriad of important 
forest inventory and wildlife habitat attributes (Maltamo, Malinen, 
Packalén, Suvanto, & Kangas, 2006; Martinuzzi et al., 2009; Næsset, 
2002). Lidar data produce three-dimensional characterizations of 
objects in the form of point clouds that are defined by precise x, y and 
z coordinates. They also help characterize the reflectance and surface 
properties of intersected objects by providing intensity values, which 
are a measure of return-signal strength for each point. These attributes 
are useful for forest inventory and characterization because, in theory 
every object in a forest can be detected if adequate lidar point densities 
are collected within all vertical layers (e.g., understory & overstory) 
(Pesonen, Maltamo, Eerikäinen, & Packalén, 2008). 

The use of airborne lidar in the estimation of snag attributes has 
received more attention recently. The methods for estimating snag 
attributes using airborne lidar can be separated into two assessment 
categories: plot-based and individual-tree (Reutebuch, Andersen, & 
McGaughey, 2005). Plot-based assessments seek to estimate plot-level 
attributes such as snag volume, biomass or abundance (Bater et al., 
2009; Kim et al., 2009; Martinuzzi et al., 2009; Pesonen et al., 2008), 
while individual-tree based assessments seek to extract and measure 
individual trees using some type of segmentation method (Kaartinen 
& Hyyppä, 2008; Vauhkonen et al., 2011). Estimation of snag attributes 
using plot-based assessment methods have achieved mixed results. 
Pesonen et al. (2008) achieved relatively poor results predicting snag 
volume using plot-based canopy derived lidar-metrics (RMSE 79%), 
while Kim et al. (2009) achieved better results estimating snag biomass 
using similar plot-based metrics that were stratified based on intensity 
values. These studies both highlight the need for more research on the 
subject. 

Individual-tree based snag assessment using airborne lidar has 
received less attention. All studies to date using individual-tree based 
assessment methods have focused on extracting both live and dead 
trees, with most attention on the former (Kaartinen & Hyyppä, 2008; 
Maltamo, Eerikäinen, Pitkänen, Hyyppä, & Vehmas, 2004; Mehtätalo, 
2006; Morsdorf et al., 2010; Reitberger, Schörr, Krzystek, & Stilla, 
2009; Vauhkonen et al., 2011; Wang, Weinacker, Koch, & Sterenczak, 
2008). To the authors' knowledge, there have been no studies to date 
that have predominantly focused on identification of individual snags 
using an airborne lidar individual-tree assessment method. This study 
attempts to identify individual snags using airborne lidar data by applying 
an individual-tree assessment method to neighborhood attribute filtered 
lidar data focused on removing lidar points associated with live trees from 
the overstory (snag-filtered lidar data). 

Neighborhood attribute point cloud filtering is a new airborne lidar 
analysis technique being introduced in this study. Its primary objective 
is to create an automated routine that accurately assigns the proper 
forest attribute to each lidar point. This information can then be used 
to filter the points and obtain a point cloud containing only points asso
ciated with the forest attribute(s) of interest, or to assign individual 
forest attribute probabilities or weights to each lidar point. In theory, 
this should provide an enhanced airborne lidar analysis framework for 
both plot-based and individual forest attribute assessments since lidar 
points not associated with the forest attribute(s) of interest are either 
removed from the analysis or have less influence on prediction models. 
Filtering is accomplished by using two inherent lidar point attributes: 
location and intensity. Each lidar point's attributes as well as its neigh
boring lidar points' attributes are used to create neighborhood statistics 
that are then used in a conditional framework to identify the forest attri
bute most likely to be associated with each lidar point. The location of 
each lidar point can be used to determine if a point intersected a forest 
attribute in the understory or overstory, and then neighborhood inten
sity and point density statistics can be used to help determine the 
unique forest attribute associated with each point. In this study, location 
and three dimensional (3D) neighborhood statistics are used in an 
attempt to identify individual lidar points associated with snags and 
live trees. Intensity is the primary lidar attribute used for the neighbor
hood point cloud filtering, therefore understanding the attribute's 
nuances are fundamental to successfully filtering the data. 

Intensity values are an often underexploited feature of lidar data, 
due to variability and difficulty associated with acquisition settings 
and calibration (Wing et al., 2012). Intensity is a unitless measure of a 
laser pulse's discrete return energy stored as an integer value with a 
defined range (e.g., 0–255). Intensity data are primarily a measure of 
surface reflectance and are a function of the wavelength of the source 
energy, path distance, and the composition and orientation of the surface 
or object the laser pulse intersects (Boyd & Hill, 2007). Variability of the 
intensity data across similar targets is dependent upon adjustable lidar 
acquisition parameters. Laser beam divergence, type of source energy, 
path lengths and variable gain control settings all affect the variability 
of intensity. These acquisition parameters influence intensity at different 
rates and magnitudes, with path lengths and the variable gain control 
setting having the most influence. These attributes have limited the use 
of intensity data, due to variability associated with intensity values within 
and from different acquisitions. Even with these limitations intensity has 
already been used successfully in many forestry applications to differen
tiate between tree species, estimate live and dead biomass, and predict 
basal area (Donoghue, Watt, Cox, & Wilson, 2007; Holmgren & Persson, 
2004; Hudak et al., 2006; Kim et al., 2009; Lim, Treitz, Baldwin, 
Morrison, & Green, 2003; Wing et al., 2012). Kim et al. (2009) used inten
sity value threshold stratification to estimate live and dead standing tree 
biomass. They stratified plot point clouds based on intensity values and 
found metrics created with the lower intensity plot point cloud better 
estimated standing dead biomass. More recently, Wing et al. (2012) uti
lized intensity information to help filter points in the understory 
(e.g., vegetation, stumps, coarse woody debris, tree boles). These studies 
point toward the potential of using intensity to help characterize many 
forest attributes. With the advent of post-calibration or normalization 
routines to reduce intensity variability and the standardization of 
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acquisition techniques the usefulness of intensity information is likely to 
increase (Wing et al., 2012). 

In theory, lidar points associated with snags should have different 
reflectance and surface properties (intensity values) compared to 
live trees since they contain no photosynthetic material and often 
lack foliage and fine branches. If true, it might be possible to exploit 
this relationship to determine if an individual lidar point is associat
ed with a live tree or snag. This study tests this theory by attempting 
to create an automated snag-filtering algorithm that classifies each 
overstory lidar point as a live tree or snag point. Lidar points classi
fied as snag points are retained in the overstory, while live tree 
points are removed. After the algorithm is applied, a traditional can
opy surface model individual-tree segmentation procedure is 
employed to identify individual snags, estimate their heights and 
generate a snag stem map. In summary, the objectives of this study 
are to 1) create a neighborhood attribute filtering algorithm that 
removes points associated with live trees from the overstory, 
2) apply an individual-snag detection method to the snag-filtered 
point cloud, and 3) test the detection and error rates in various forest 
types and structures to help determine applicability in different forest 
conditions. 
Fig. 1. Locations of Blacks Mountain Experimental Forest (BMEF) and the Sto
2. Materials and methods 

2.1. Study area 

The study was conducted at two sites: Blacks Mountain Experimental 
Forest (BMEF) and the Storrie Fire restoration area (SF). Both are located 
in northeastern California (Fig. 1). BMEF is managed by the USDA Forest 
Service Pacific Southwest Research Station and is located approximately 
35 km northeast of Lassen Volcanic National Park and ranges between 
1700 and 2100 m elevation (Fig. 1). Classified as an interior ponderosa 
pine forest type (Forest Cover Type 237) (Eyre, 1980), the 4358 ha forest 
has a wide range of stand conditions as a result of past research and man
agement activities, as well as disturbance events (Ritchie, Skinner, & 
Hamilton, 2007). 

As part of a large-scale, long-term interdisciplinary experimental 
design at BMEF initiated in 1991, two contrasting stand structures 
were created: low structural diversity (LoD) and high structural diversity 
(HiD) (Oliver, 2000). LoD stands were thinned to maintain a single 
canopy layer of intermediate trees, with the goal of simplifying forest 
tree structure. In contrast, the HiD units retained all canopy layers, 
which resulted in stands that feature multiple age classes and varying 
rrie Fire (SF) study areas with the layout of the strata and plot locations. 

Image of Fig. 1
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crown structures (Oliver, 2000). Six research units each were randomly 
assigned from both the LoD and HiD treatments ranging in size from 
77 to 144 ha. Each unit was then split in half with one randomly assigned 
half receiving prescribed fire treatments (Fig. 1). Also included at BMEF, 
are four research natural areas (RNA) each approximately 40 ha in size. 
The RNAs were set aside to serve as unmanaged, qualitative controls 
representative of the interior ponderosa pine forest type. They have 
never received mechanical treatment, but fire exclusion has greatly 
increased their understory tree densities. Two of the four RNAs also re
ceived one application of prescribed fire in the late 1990's. 

As part of the experimental design all 16 research units at BMEF have 
permanent grid markers located within them utilizing a 100 × 100 m 
lattice pattern. The permanent grid markers serve as the center points 
for the plot level research being conducted on the forest. Each grid 
was located by conventional survey methods and placed within 15 cm 
of their predetermined UTM coordinates using the High Precision 
Geodetic Network along with survey grade GPS (Oliver, 2000). 

The Storrie Fire restoration area, managed by the USDA Forest Service 
Lassen and Plumas National Forests (NF), is located approximately 45 km 
south of Lassen Volcanic National Park and ranges between 900 and 
2100 m elevation (Fig. 1). The area was subject to a wildfire in late August 
of 2000. The fire was characterized by high spatial complexity with 
varying levels of fire severity on the predominantly forested landscape, 
burning approximately 23,000 ha (Crotteau, Varner, & Ritchie, 2012). 
This study only focused on the Lassen NF portion of the fire, which 
encompassed 48% of the area (11,260 ha). It has three dominant 
vegetation cover types: High Elevation Fir (HF), Low Fir (LF), and Sierra 
Nevada Mixed Conifer (MC) (Forest Cover Types 207, 211, and 243 re
spectively) (Eyre, 1980). 

Variable fire severity created a mosaic of different forest conditions 
within each of the three forest vegetation cover types. The area was 
stratified into twelve total classes: four levels of fire-severity (high 
(HS), medium (MS), low (LS), and unchanged (U)) across three levels 
of forest type (HF, LF, and MC) (Fig. 1). Fire severity was determined 
by using the Relative differenced Normalized Burn Ratio (RdNBR; see 
Miller et al., 2008) to approximate the Composite Burn Index (CBI) pro
duced from the two Landsat Thematic Mapper post-Storrie Fire images 
yielding the four nominal categories. The high-severity stratum can be 
generally characterized as having no surviving live-tree component 
with numerous snags at similar decay stages, which were often broken 
at the time of the study. The medium-severity stratum has very few live 
trees and numerous snags at various stages of decay. The low-severity 
stratum has a higher proportion of live trees with some snags at various 
stages of decay. The unchanged stratum generally has little or no fire-
induced mortality in the overstory. Any snags within the unchanged 
stratum were unlikely to have been killed by the Storrie Fire. 

For this study, the two study areas were grouped into three logical 
strata for analysis. All plots at BMEF were combined to create one stra
tum that represents the broad diversity of stand structures commonly 
Table 1 
Standing live tree (DBH ≥ 9 cm) and snag (DBH ≥ 11.5 cm; heights ≥ 3 m) stand attributes from
deviation). 

Strata nt DBH (cm) 

Range Mean SD 

BMEF — live trees 3819 (9.0–135.1) 25.6 15.4 
Storrie (ULS) — live trees 675 (9.1–160.3) 37.0 24.4 
Storrie (MSHS) — live trees 92 (13.2–105.7) 50.0 22.4 
BMEF — snags (overall) 261 (11.5–122.2) 30.8 21.8 
BMEF — snags (training) 94 (11.5–94.2) 29.3 21.4 
BMEF — snags (independent) 167 (11.5–122.2) 32.1 22.2 
Storrie (ULS) — snags (overall) 169 (11.5–137.4) 44.4 27.5 
Storrie (ULS) — snags (training) 51 (11.5–137.4) 56.6 33.7 
Storrie (ULS) — snags (independent) 118 (11.9–128.0) 39.5 22.9 
Storrie (MSHS) — snags (overall) 258 (11.7–110.0) 39.4 19.0 
Storrie (MSHS) — snags (training) 91 (11.7–110.0) 40.4 21.2 
Storrie (MSHS) — snags (independent) 167 (12.2–87.6) 38.9 17.7 
found in the interior ponderosa pine forest type (Fig. 1). At SF, due to 
lower plot densities, the twelve stratified classes were grouped into two 
new strata by first combining all three forest types and then grouping 
the four fire severity classes into two categories. The first stratum is 
comprised of all U and LS plots (SF-ULS) and the second is comprised 
of all MS and HS plots (SF-MSHS) (Fig. 1). 

2.2. Field data 

At BMEF, five of the LoD units, six of the HiD units and 2 randomly 
selected RNAs were sampled in July 2009. Standing live (DBH ≥ 9 cm)  
and dead tree (DBH ≥ 12 cm) stand attributes for BMEF at the time of 
the study are summarized in Table 1. Using the BMEF permanent grid 
system, plot locations were systematically located with a random start 
within each unit on every other grid point in all intercardinal directions 
(282 m spacing). At each selected grid point, an 805 m2 circular plot was 
established. All trees (live: DBH ≥ 9 cm; dead: DBH ≥ 12 cm) were stem 
mapped from plot center and measured for height, DBH, crown width, 
and height to live and dead crown. Trees were also assigned codes 
for various tree conditions (i.e., broken, dead or forked top, sweep 
or lean, mistletoe presence, epicormic branching, etc.). Trees having 
DBH ≥ 50 cm were also assigned vigor condition class risk ratings 
using the systems developed by Ferrell (1989) for non-pine species 
(e.g. white & red fir and incense cedar) and Salman and Bongberg 
(1942) for pine species. The classification systems resulted in indi
vidual tree vigor risk ratings ranging from 1 to 3 for the non-pine spe
cies and 1 to 4 for pine species, with higher risk ratings associated with 
declining tree vigor. All snags were given a decay condition class rating 
using the system developed by Thomas, Anderson, Maser, and Bull 
(1979). 

At SF, two plot clusters were randomly located within each of the 
twelve original strata. Each plot cluster was comprised of three evenly 
spaced (50 m) circular plots (16 m-radius, 805 m2). Plot clusters were 
located by first selecting a location within each stratum for the initial 
plot's establishment. Next, a randomly selected azimuth was used 
to determine the location of the two adjacent plots. All standing 
trees were measured in August 2009 using the same sampling protocol 
utilized at BMEF. Access to the SF area is limited and due to time 
constraints six strata only received one cluster. Plots were located and 
permanently established using high-grade GPS in the field. Standing 
live and dead tree attributes for SF at the time of the study are summa
rized in Table 1. 

2.3. Lidar data 

Discrete return airborne lidar data were acquired by Watershed 
Sciences Inc. (current name: Quantum Spatial Inc.) in late July 2009 
using a Leica ALS50 Phase II laser system (near-infrared) mounted on 
a fixed wing aircraft. The aircraft was flown at 900 m above ground 
 plot data for the three strata (nt = number of snags; np = number of plots; SD = standard 

Height (m) np Trees ha−1 

Range Mean SD Range Mean SD 

(1.8–41.4) 12.4 6.3 154 (24.7–1469.7) 306.3 238.6 
(3.1–55.2) 17.8 10.9 30 (37.1–667.0) 260.4 153.9 
(4.0–44.2) 24.1 9.5 22 (0.0–94.7) 51.7 48.4 
(3.0–42.7) 11.6 6.7 154 (0.0–197.6) 21.9 34.4 
(3.0–42.7) 12.3 7.5 36 (0.0–197.6) 46.1 48.5 
(3.0–35) 11.0 6.0 118 (0.0–123.5) 15.8 24.2 
(3.0–49.7) 13.6 10.0 30 (0.0–308.8) 79.9 75.6 
(3.0–49.7) 16.0 11.3 10 (37.1–172.9) 71.4 43.1 
(3.1–47.6) 12.6 9.2 20 (0.0–308.8) 76.5 73.6 
(3.1–42.7) 10.7 7.0 22 (24.7–333.5) 149.7 93.3 
(3.0–34.7) 10.5 7.6 7 (61.75–284.1) 162.3 77.9 
(3.1–42.7) 10.9 6.7 15 (24.7–333.5) 140.0 92.9 
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Fig. 2. Overall data analysis workflow with summarized explanations for the study. 
level following topography. Data were acquired using an opposing 
flight line side-lap of ≥50% and a sensor scan angle ±14° from nadir. 
On-ground laser beam diameter was approximately 25 cm (narrow 
beam divergence setting), which resulted in a very low percentage 
of multiple returns (BMEF: 9.2%; SF: 10.1%) and a very high percent
age of single returns (BMEF: 81.4% & SF: 78.2%). At BMEF, an average 
of 6.9 points m−2 was obtained for the entire study area, with a stan
dard deviation of 5.6 points m−2. At SF, an average of 6.7 points m−2 

was obtained for the entire study area, with a standard deviation of 
5.9 points m−2. 

The vendor post-processed lidar data using automated methods in 
proprietary software (TerraScan) coupled with manual methods to 
identify ground points for development of the digital terrain model 
(DTM). Vertical DTM accuracy for both study locations was approximate
ly 15 cm at a 95% confidence level. The vendor used an automatic variable 
gain setting during acquisition and did not calibrate the intensity values 
post-acquisition. 

2.4. Data analysis 

Data analysis is presented in four sections: 1) lidar data pre
processing, 2) snag-filtering algorithm, 3) individual-snag detection, 
and 4) snag detection and error rates. The study's overall data analysis 
workflow is summarized in Fig. 2 for reference. 

2.4.1. Lidar data pre-processing 
Inaccurate plot locations are one of largest sources of model error 

found in many types of airborne lidar analysis (Anderson, Clarkin, 
Winterberger, & Strunk, 2009; Hawbaker et al., 2009). To reduce plot 
location errors, all plot locations were manually corrected using the 
field-derived standing tree stem map and corresponding lidar data for 
each 809 m2 circular plot at both BMEF and SF. Due to BMEF's highly ac
curate permanent grid system no plot locations needed correction; 
while at SF most plots needed location correction. All plot locations 
were found to be highly accurate after this process was completed 
(±1 m). Next, the lidar point cloud elevation values were normalized 
into height values using the lidar-derived DTM. Height normalized 
point clouds corresponding to the 805 m2 circular plots with a 5 m 
buffer were extracted for further analysis. The 5 m plot buffer was 
added to each plot to eliminate edge effect issues associated with the 
snag-filtering algorithm, the canopy surface model creation method, 
and the individual-tree segmentation procedure. In the final step, the 
overstory minimum height thresholds were determined from field 
data for both study locations (BMEF: lidar height ≥ 1.5 m; SF: lidar 
height ≥ 2 m). After these pre-processing steps were completed the 
neighborhood snag-filtering algorithm was applied to the height nor
malized plot point clouds. 

2.4.2. Snag-filtering algorithm 
The goal of the automated snag-filtering algorithm is to accurately 

classify each overstory lidar point as live tree or snag using individual 
point location attributes and neighborhood intensity and point density 
statistics. To properly use the intensity information for this purpose, 
the dynamics of intensity data quality and in relation to live trees and 
snags must first be understood. As previously discussed, the quality of 
intensity information is dependent upon acquisition and calibration 
methods. Morsdorf et al. (2010) showed that the first and single returns 
provided more accurate intensity information. Therefore, only the 
first and single returns were used in this study. The lidar acquisition 
method used for both study areas resulted in first and single return 
intensity values ranging from 0 to 255 i (i will act as the intensity value 
index). 

Individual tree point clouds from 40 randomly selected snags and 
100 randomly selected live trees were extracted and analyzed for trends 
from both study locations to aid with understanding the intensity 
dynamics in relation to live trees and snags (Fig. 3).  For the  lidar datasets  
used in this study the following intensity trends were identified: 

For snags: 

1) Snags were comprised of a high proportion (~85%) of lower valued 
intensity points (0–60 i). These points are most likely associated 
with solid woody material (i.e., branches or boles). 

2) Some snags contained a relatively small percentage (~10%) of points 
with very high intensity values (N 160 i). These points are thought to 
be associated with bare wood that has seasoned, thus creating a 
light-colored, somewhat smooth reflective surface. 

3) Some snags had a low percentage (~10%) of points with mid-range 
intensity values (60–160 i). The reason for these is uncertain, but 
they tended to be associated with snags that contained one or more 
of the following; 1) witches broom (usually formed from mistletoe), 
2) sparse dead needles or leaves, or 3) recently dead trees still 
displaying fine branches. They might also be associated with lichen, 
although this was not sampled. 

Image of Fig. 2
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Fig. 3. Individual live tree and snag intensity histograms summarizing the intensity 
dynamics in relation to live trees and snags. 
For live trees: 

1) Live tree intensity values were typically a mix of low (0–60 i) and 
mid-range values (60–160 i). The low intensity values were likely 
associated with the tree bole and woody branches as they were 
most often located in the interior portion and outer crown edges of 
individual tree point clouds. The mid-range intensity values were 
most likely associated with foliage or fine branches. 

2) A small percentage of points associatedwith live trees (~5%) displayed 
high intensity values (N160 i). The reason for these is uncertain, but 
Fig. 4. Depiction of the three 3D neighborhood variables utilized in the s
they tended to be associated with tree tops and possibly new leader 
growth. 

The identified live tree and snag intensity trends provided the foun
dation for the creation of the lidar point filtering algorithm. The filtering 
algorithm was developed using training datasets from all three strata 
(i.e., BMEF, SF-ULS, and SF-MSHS) with the intention of capitalizing on 
the aforementioned intensity characteristics. At BMEF, the training 
dataset consisted of a stratified random sample of 36 plots (3 plots 
from each HiD and LoD research unit with 2 of them containing at 
least one snag; and 3 plots from the two RNA research units with two 
of them containing at least one snag). At SF, the training dataset 
consisted of one randomly selected plot from each of the plot clusters 
(i.e., SF-ULS: 10 plots; SF-MSHS: 7 plots). The training datasets were 
combined to develop the snag-filtering algorithm. The remaining 
153 plots (BMEF: 118; SF: 35) served as an independent dataset to 
test the methods performance. 

There are four basic stages in the algorithm. In the first stage, plot-
level lidar variables are calculated which are used to train the sensitivity 
of the algorithm. In the second stage, individual point neighborhood in
tensity and point density statistics are calculated for three separate 3D 
neighborhood variables (Fig. 4). These variables are then used in the 
third stage, where they are tested in a conditional assessment framework 
to determine whether an individual point is associated with a live tree or 
snag. In the fourth and final stage, all overstory points located within a 
1 m radius cylinder of the snag classified points are classified as snag 
points. Then all points not receiving a snag classification are classified 
as live tree points and are eliminated by replacing their height values 
with a zero value to create the final snag-filtered point cloud. 

2.4.2.1. Stage one — calculate plot-level lidar variables. Five plot-level lidar 
variables were used to train and determine the sensitivity of the 
algorithm's ability to identify individual snag points (Fig. 5). Each plot's 
nag-filtering algorithm. Lidar points are colored by intensity values. 

Image of Fig. 3
Image of Fig. 4
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Fig. 5. Box distribution plots for the five variables used to determine the snag-filtering 
algorithm's sensitivity level. Box plots are given for both the training and independent 
datasets. 
entire first and single return point cloud was used to calculate the plot's 
point density, maximum intensity (MaxInt), and canopy cover (i.e., total 
number of overstory points / total number of points); while only the 
overstory first and single returns were used to calculate the plot's 
mean canopy height (i.e., sum of overstory point heights / total number 
of overstory points), and the branch and bole (BB) versus foliage 
(F) intensity ratio (BBvFr). 

BBvFr is a new overstory lidar variable that is used in two separate 
instances within the algorithm to help normalize local intensity varia
tions caused by acquisition settings (e.g., gain setting variability) and 
local tree attributes (e.g., local tree health and vigor variability), and reg
ulate the algorithm's sensitivity in the identification of snag points. It is 
the simple ratio calculated using the following formula: 

Total Overstory Points with Intensity Values ≤50i or ≥170i 
BBvFr ¼ :

Total Overstory Points with Intensity ValuesN 50 i andb 170 i 
ð1Þ 

The lower and upper intensity thresholds of 50 i and 170 i were found 
to be safe and consistent values for differentiating between BB and F in
tensity valued points based on inspection of the 40 randomly selected 
snag and 100 randomly selected live tree point clouds (Fig. 3). 

2.4.2.2. Stage two — define BB and F intensity filtering thresholds. BBvFr 
was first used along with the maximum intensity value to automatically 
adjust the BB and F lower and upper intensity threshold values (LIntt 
and UIntt) for each plot point cloud being analyzed. Through a manual 
process using the training datasets, the following linear equations and 
conditions were established to define the lower and upper BB and F 
intensity threshold values for each plot point cloud at both study loca
tions: 

LIntt ¼ 20 BBvFrð  Þ  þ  0:075 MaxIntð  Þ  þ  26:5 ð2Þ 

UIntt ¼ 20 BBvFrð  Þ  þ  0:1875 MaxIntð  Þ  þ  100:25 ð3Þ 

If LIntt b 50; LIntt ¼ 50i If LIntt N 70; LIntt ¼ 70i 
If UIntt b 150; UIntt ¼ 150 i If UIntt N 170; UIntt ¼ 170i 
If Located in SF Area; LIntt ¼ LIntt þ 5i If  SF; UIntt ¼ UIntt−5i: 

Of the two variables BBvFr has more influence on the threshold 
values, while maximum intensity provides minor adjustments. As 
BBvFr decreases the LIntt increases and UIntt decreases making the algo
rithm more sensitive to identifying snag points by allowing more points 
to be classified as BB and not F. Plots located in SF received a lower and 
upper intensity threshold correction of ±5 i after all other conditions 
were applied. This correction helped reduce local intensity differences 
between the acquisitions (Fig. 5). The lower BB and F threshold values 
ranged from 50 i to 70 i at BMEF and 55 i to 75 i at SF, while the upper 
BB and F threshold values ranged from 150 i to 170 i at BMEF and 145 i 
to 165 i at SF. 

2.4.2.3. Stage three — calculate neighborhood variable statistics. Once the 
BB and F intensity thresholds were calculated for each plot point 
cloud, they were used to calculate three neighborhood variable statistics 
for each point in the overstory. These statistics were then used in the 
conditional assessment stage to determine whether the individual 
lidar points were associated with a live tree or snag. 

In theory, if a lidar point is associated with a live tree or snag then its 
neighboring points (i.e., points located within its local-area or neighbor
hood) are most likely to be associated with the same live tree or snag. 
Extending this theory, since snags are predominately comprised of BB 
intensity valued points, a point associated with a snag should have a 
higher concentration of BB intensity valued points located within its 
neighborhood compared to a point associated with a live tree. By ana
lyzing the neighborhood BB concentration traits for each point, trends 
were identified and used to filter and classify each point as a live tree 
or snag point. Three neighborhood variables for each point were identi
fied to be a robust combination for classifying the points: a sphere, a 
small cylinder and a large cylinder (Fig. 4). 

All three neighborhood variables are created by forming a local-area 
centered on each point (Fig. 4). The sphere, created by forming a 1.5 m 
radius sphere around each point, provides information on a point's 
immediate vicinity. This variable is useful for identifying unique local 
attributes within tree crowns. The small cylinder, created by forming a 
1 m radius cylinder around each point and projected only upward, 
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Fig. 6. Depiction of the three step process used to calculate the neighborhood average BBPR for each lidar point's three neighborhood variables (BBP = branch and bole intensity valued 
lidar point; BBPR = branch and bole lidar point ratio). 
provides information about the vicinity located above and near each 
point. This variable is useful for identifying snag crowns protruding 
above live tree crowns. The large cylinder, created by forming a 2 m radius 
cylinder around each point and projected upward and downward, 
provides information about the general vicinity around each point. By 
providing more generalized 2D information, it is useful for determining 
the likelihood of a snag being located in the localized area. 

Neighborhood average BB point ratios (BBPR) were calculated for 
each point's three neighborhood variables following the steps outlined 
in Fig. 6. Only overstory points were used in the calculations. The result 
was an average BBPR value ranging from 0 to 1 for each of the overstory 
point's three neighborhood variables. The closer the neighborhood 
average BBPR value is to 1, the higher the concentration of BB points 
in the point's neighborhood and the more likely it is to be associated 
with a snag. By using the neighborhood average BBPR value the local 
area of influence for each point is extended outside the individual 
point's neighborhood (Fig. 6 — step 2). This helps the algorithm gravi
tate to and identify the individual points most likely to be associated 
with a snag even within an individual snag's point cloud. 
2.4.2.4. Stage four — identify individual snag points. Identification of indi
vidual snag points was completed by assessing each overstory point 
against a series of conditional assessments. The conditional assessments 
were based on two statistics from each of the three neighborhood vari
ables: point density and average BBPR. In order for an individual point 
Table 2 
The four groups of conditional assessments with their required neighborhood point density and
ment). Values are associated with an algorithm sensitivity level of 4. 

Assessment group Sphere 

Point density (N=) Average BBPR (N=) Poi

General PDR 0.99 
PDR 0.95 
PDR 0.90 
PDR 0.85 
PDR 0.80 

Small snag 

Live crown edge 

High canopy cover (only CC N= 55%) 

2 and (b=) PDR 
2 and (b=) PDR 
2 and (b=) PDR 

PDR 
PDR 
PDR 
PDR 
PDR 

0.95 
0.90 
0.85 
0.80 
0.85 
0.90 
0.95 
0.95 

2 
2 
2 

… 
PDR 
PDR 

… 
0.95 
0.90 

… 
PDR 

… 
0.90 

PDR: Point density requirement based on plot-level point density (PLPD) defined classes.
 
(If PLPD b= 3, PDR =  3;  if 3  b PLPD b= 6, PDR  =  4;  if  6  b PLPD b= 12, PDR = 5; if PLPD N 12
to be identified as a snag point it had to meet all the requirements 
for at least one conditional assessment. Four groups of conditional 
assessments were identified that accurately and robustly classified 
the overstory points in the diversity of natural conditions found at 
both study locations: 1) general, 2) small snag, 3) live crown edge, 
and 4) high canopy cover (Table 2). Each group targets a unique 
snag location scenario with some overlap between them. The ‘general’ 
group was the most robust group at identifying snag points in a broad 
range of situations. The ‘small snag’ group was created to find snag 
points associated with isolated snags that had lower point densities. 
The ‘live crown edge’ group was focused on finding snag points associ
ated with snags located directly adjacent to and intermixing with live 
tree crowns. The ‘high canopy cover’ group was only used when the 
plot-level canopy cover was ≥55% to identify snag points associated 
with snags protruding above live canopy conditions. 

Sensitivity of the conditional assessments is adjusted by shifting the 
neighborhood average BBPR value requirements. The magnitude of the 
shift (i.e., sensitivity level) is determined automatically using a decision 
tree based on BBvFr, canopy cover, and mean canopy height (Fig. 7). The 
objective of the decision tree is to adjust the sensitivity of the algorithm 
to match the intensity and stand conditions present in the area being 
assessed (i.e., windowed approach). The combination of these three 
variables provided the ability to classify local intensity and stand condi
tion variation into logical groups. Sensitivity levels range from 0 to 5; a 
higher value is commensurate with more relaxed conditional assess
ment requirements. Fig. 8 provides an example of how the sensitivity 
 average BBPR values (BBPR = branch and bole point ratio; PDR = point density require

Small cylinder Large cylinder 

nt density (N=) Average BBPR (N=) Point density (N=) Average BBPR (N=) 

– 0.99 – 0.70 
– 0.95 – 0.725 
– 0.90 – 0.75 
– 0.85 – 0.775 
– 0.80 – 0.80 

and (b=) PDR 
and (b=) PDR 
and (b=) PDR 

PDR 
PDR 
PDR 
PDR 
PDR 

0.95 
0.90 
0.85 
0.95 
0.90 
0.85 
0.80 
0.95 

2 and (b=) PDR 
2 and (b=) PDR 
2 and (b=) PDR 

PDR*7 
PDR ∗ 7 
PDR ∗ 7 
PDR ∗ 7 
PDR ∗ 8 

0.60 
0.65 
0.75 
0.70 
0.75 
0.80 
0.85 
0.75 

… 
PDR 
PDR 

… 
0.95 
0.90 

… 
PDR ∗ 15 
PDR ∗ 8 

0.55 
0.85 

… 
PDR 

… 
0.90 

… 
PDR ∗ 15 

… 
0.65 

, PDR = 8).
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Fig. 7. Snag-filtering algorithm sensitivity decision tree used to determine the algorithm's 
conditional assessment values (MCH = mean canopy height). 
value was used to adjust the general group conditional assessment 
requirements. 

The neighborhood point density requirements used in the condi
tional assessments are automatically classified into four groups based 
on the plot-level point density (Table 2). They are used in two ways: 
1) to insure there are enough neighborhood points within the sphere 
neighborhood variable to make the average BBPR value significant, 
and 2) to adjust the average large cylinder neighborhood BBPR value 
requirements (i.e., the higher the large cylinder neighborhood point 
density, the lower the requirement for large cylinder average BBPR). 
The point density requirements were not utilized in all conditional 
assessments. 

2.4.2.5. Stage five — eliminate live tree points. After the individual snag 
point identification process was completed, all overstory points located 
within a 1 m radius cylinder of snag classified points were classified as 
snag points. Overstory points not receiving a snag classification were 
classified as live tree points and then eliminated from the overstory by 
replacing their height values with a zero value. The final result is a 
plot point cloud containing only snag classified points in the overstory 
and live tree points on the ground (i.e., zero height). The final step 
was to remove all understory points greater than 0.2 m in height. This 
Fig. 8. Example of how the algorithm sensitivity value is used to adjust the ‘General’ con
ditional assessment group value requirements. Overstory lidar points with a large cylinder 
neighborhood average BBPR value above the appropriate line are classified as snag points 
(BBPR = branch and bole point ratio). 
retains all points on or near the ground surface in the final point cloud, 
which is necessary to create an accurate canopy surface model in the 
next step. 

The final individual snag-filtered plot point clouds from the training 
dataset were analyzed for accuracy and algorithm parameters were ad
justed using a manual sequential process to develop the final algorithm 
definitions and parameters. Once the training of the snag-filtering algo
rithm was completed using the training dataset, it was applied to the in
dependent plots (n = 153) to generate the final snag-filtered plot point 
clouds for analysis. These point clouds were then exported for use in the 
individual-tree segmentation procedure. 

2.4.3. Individual-snag detection 
Individual-snag detection was completed using a traditional airborne 

lidar individual-tree segmentation procedure (Kaartinen & Hyyppä, 
2008; Vauhkonen et al., 2011). A canopy surface model was first created 
using the snag-filtered point cloud, and then individual-snags were 
located using an automated local-maxima detection algorithm to 
produce an individual-snag data file containing an ID, location 
(i.e., x- and y-UTM coordinates), and height value for each detected 
snag. 

Canopy surface models can have various forms depending on how 
the surface is interpolated and smoothed, which all affect the ability to 
accurately identify individual trees. When the primary use for a canopy 
surface model is to detect individual-trees or snags, it is crucial the canopy 
surface model accurately represents individual trees or snags by pro
viding a single height maxima for each tree while following crown pro
files. In this study, the canopy surface models were created using the 
‘CanopyModel’ command line utility processing program in the Fusion 
lidar software package (McGaughey, 2012). The following parameters 
and filters were used to create a canopy surface model that adequately 
characterized individual snags using the snag-filtered plot point clouds; 
a surface grid cell size of 0.85 m2, application of both median and mean 
smoothing filters (5 × 5 grid cell windows), and preservation of local 
maxima using the ‘peaks’ switch within CanopyModel to force the sur
face to adhere to the tops of trees. 

Individual snags were located from the canopy surface model by 
using the automated command line utility processing program 
‘CanopyMaxima’ in the Fusion lidar software package (McGaughey, 
2012). The program's default settings were used to locate individual-
snags and export a tree list for each plot containing the x- and y-UTM co
ordinates and height values for each tree identified. The individual plot 
tree list files were combined and imported into ArcGIS for comparison 
and analysis. Trees located within the 5 m plot buffer areas were removed, 
resulting in the final lidar-derived plot-level snag stem map. The lidar
derived plot stem map was then compared to the field-derived plot 
stem map to determine snag detection and error rates. 

2.4.4. Snag detection and error rates 
Snag detection and error rates were generated by comparing the 

lidar- and field-derived stem maps in ArcGIS using the independent 
dataset. To determine if an individual snag was correctly detected, ac
ceptable location distance errors had to be defined. Taking into account 
the positional accuracy of plot locations and the field methods used to 
locate individual trees, individual snag location errors were expected 
to be within ±1.5 m. This error only refers to the position at the base 
of the tree, without considering the potential deviations of a tree top rel
ative to its base. Given the accuracy of the lidar acquisition (±15 cm) 
and the fact that the taller a snag is the more likely it is to have a greater 
deviation between its base and top locations, the thresholds for accept
able location distance errors were set as 3 m for snags b9 m in total 
height and 4.5 m for trees with total heights ≥9 m. If a lidar detected 
snag location was within the acceptable distance of a field measured 
snag, it was classified as detected. Only one field measured snag could 
be associated with each lidar detected snag location. Lidar detected 
snags not within the acceptable distance of any field measured snags 
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were classified as commission errors (i.e., a live tree or a portion of a live 
tree that was incorrectly classified as a snag). If a field measured snag 
was not detected using the lidar method it was classified as an omission 
error. 

Snag detection rates are summarized for the three strata (i.e., BMEF, 
SF-ULS, and SF-MSHS) using various DBH and height criteria to help 
assess the method's accuracy and applicability in different forest types 
and stand conditions. Snag detection rate trends for lidar point density 
and canopy cover are presented to provide a better understanding of 
how these variables interact with the method. Lidar-derived and field-
measured snag heights are compared using an ordinary least squares 
(OLS) regression analysis to determine if the method produced accurate 
height estimates. 

Commission and omission errors are summarized categorically to 
provide insight on error causes and rates. Commission errors occurred 
when the lidar snag detection method falsely identified a live tree or a 
portion of a live tree as a snag. Individual commission errors were 
inspected and classified into one of the following seven categories: 
1) dead top, 2) dead branches, 3) highest tree vigor risk rating, 
4) high tree vigor risk rating with abnormal growth, 5) extreme snow 
bend, 6) multiple forks and crooks, and 7) stump sprouting black oak. 
Omission errors occurred when snags were not detected using the 
lidar snag detection method. The reasons for these errors were explored 
and classified into the following six categories: 1) sharing space with 
live trees, 2) low point density, 3) too many foliage valued intensity 
points, 4) dead foliage still attached, 5) canopy surface model, and 
6) stump sprouting black oak. 

3. Results 

3.1. Snag detection rates 

Snag DBH distributions and detection rates for the three strata using 
various DBH and height criteria scenarios are summarized in Fig. 9. The  
Fig. 9. Snag diameter distribution and detection rate summaries for the three strata under variou
greater than or equal to the DBH listed (i.e., ≥25 DBH class = detection rate for all trees with 
three strata produced similar snag detection rates that increased as 
the size of the snags increased. The strata combined detection rate 
for snags in smaller DBH classes (12–50 cm) was 42.5% (± 2.7%) 
using the ≥ 3 m minimum height criteria; and 61.3% (± 4.7%) for 
larger DBH classes (50–90+ cm). Detection rates were also calculated 
for different ≥DBH scenarios (i.e., number of snags over a specified 
DBH). The strata combined detection rate for snags with a minimum 
height of 3 m and DBHs ≥ 25 cm was 56.0% (±2.9%), increasing to 
75.0% (±12.5%) for DBHs ≥ 90 cm. On average, detection rates increased 
by 0.4% for every 1 cm DBH increase and 1.9% for every 1 m increase in 
height. The overall detection rates for the various DBH scenarios increased 
by an average of 5.9% for every 3 m increase in the height criteria, with the 
largest average increases occurring between the ≥3 and 6 m height 
criteria (6.3%). 

For BMEF, the majority of snags were smaller with DBHs b 37 cm 
(Fig. 9). The overall detection rate for these snags was 40.0% (±4.4%) 
using the 3 m minimum height criteria; while the detection rate for 
snags with DBH ≥ 37 cm was much higher at 56.1% (±7.8%). Detection 
rates for the ≥DBH class scenarios followed a similar pattern for all 
three height criteria, steadily increasing to the ≥50 cm DBH class and 
then leveling off for the higher ≥DBH classes. The detection rates for 
the various DBH scenarios increased by an average of 7.6% for every 
3 m increase in the minimum height criteria. 

For SF-ULS, the snag DBH distribution was similar to BMEF, with a 
majority of snags having DBHs b 37 cm (59%). The detection rate for 
snags with DBHs b 37 cm using the 3 m minimum height criteria was 
37.7% (±5.8%), and 51% (±7.1%) for snags with DBHs ≥ 37 cm. Overall, 
the detection rates were the lowest compared to the other two strata 
and remained relatively stable for the various DBH scenarios (Fig. 9). 
For the three minimum height criteria scenarios (i.e., 3, 6, and 9 m), the 
detection rate increased at the lowest average rate (1.1%) as ≥DBH 
class criteria increased. The detection rates for the various DBH scenarios 
did however display the highest average increase for every 3 m increase 
in the minimum height criteria at 10.6%. 
s DBH and height scenarios. ≥DBH class detection rates are defined as all snags with DBHs 
DBHs ≥ 25 cm). 
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Fig. 10. Lidar point density and canopy cover detection rate trends for two different ≥DBH class scenarios (DBH ≥ 25 cm and 50 cm). Black and gray bars represent the proportion of 
detected and undetected snags respectively for the individual point density and canopy cover classes. 
For SF-MSHS, the snag DBH distribution was relatively uniform for 
snags b62 cm DBH and decreased significantly for snags ≥62 cm DBH. 
The overall detection rates were the highest for this stratum, with a ma
jority of the rates between 60 and 80%. Detection rates for the ≥DBH 
class scenarios followed a similar pattern for all three height criteria, 
slowly increasing to the ≥ 62 cm DBH class and then increasing to 
100% for the higher ≥DBH classes. The 100% detection rates for snags 
with DBHs ≥ 75 cm were based on low snag sample sizes (n ≤ 4) and 
should be viewed with caution. The stratum also had the lowest average 
rate of increase (2.5%) between the three minimum height criteria 
scenarios. 

3.2. Snag detection rate trends 

Lidar point density and canopy cover both exhibited trends that 
affected the method detection performance (Fig. 10). Detection rates 
tended to increase as point densities increased and decrease as canopy 
cover increased. Both trends remained stable as snag size increased. 
The point density trend was not as significant as the canopy cover 
trend, with an average trend slope of 0.026 for point density versus an 
average trend slope of −0.043 for canopy cover. 

3.3. Snag heights 

Overall the lidar-derived heights displayed a good relationship with 
the field-measured heights, explaining a large amount of the variation 
associated with field-measured heights from the linear regression 
model (R2 = 0.87). The lidar-derived snag heights exhibited a small 
negative bias that became less prevalent as the height increased 
(Fig. 11). The height bias was −0.89 m for snags with field-measured 
heights ≤25 m, and −0.22 m for snags with heights N25 m. The residual 
Fig. 11. Lidar-derived snag heights versus field-measured snag heights. 
standard error for the OLS model was ±3.14 m, with a median error 
of − 0.66 m. 

3.4. Commission errors 

Commission error rates varied for the three strata (Table 3). BMEF 
had the lowest commission rate (0.96 ha−1), followed by SF-ULS 
(3.20 ha− 1) and SF-MSHS (6.42 ha− 1). Commission errors were 
most often associated with smaller trees, with 56% of them having 
DBHs ≤ 25 cm and 81% of them having DBHs ≤ 50 cm. SF-MSHS had 
12 commission errors that were associated with 6 stump sprouting 
black oak trees. If these errors are removed from the commission 
error assessment, the SF-MSHS stratum had the lowest commission 
error rate (0.49 ha−1). 

The causes of the commission errors varied, but were most often 
associated with stump sprouting black oak trees that maintained dead 
crowns (38%) and live trees containing a high percentage (≥90%) of 
dead crown on at least one side of the tree crown (25%) (Table 4). 
All commission errors associated with trees with DBHs ≥ 50 cm 
(n = 6) were associated with having either a large dead top that 
comprised ≥25% of the tree crown, a tree vigor risk rating at the highest 
level (i.e., death imminent), or a high tree vigor risk rating with an ab
normal growth pattern (e.g., witches broom, severe crooks or sweeps). 
Two commission errors were caused by smaller trees (DBH ≤ 25 cm) 
exhibiting extreme snow bend (≥ 45°), and one error was caused 
by a tree exhibiting abnormal growth patterns with multiple forks and 
crooks. 

3.5. Omission errors 

The proportion of undetected snags for each of the six error causa
tion categories is presented in Table 5. Over half of the omission errors 
(56.3%) were caused by snags that shared space with at least one live 
tree. These situations made it difficult to identify the individual snag 
Table 3 
Summary of commission error rates for the three strata by DBH class (BMEF = Blacks Mtn. 
Exp. Forest; SF-ULS = Storrie Fire unchanged and low fire severity; SF-MSHS = Storrie 
Fire medium and high fire severity). 

DBH class (cm) BMEF Storrie Storrie Total Storrie Fire 
Fire (ULS) Fire (MSHS) (DBH class) (MSHS w/out 

black oak) 

12–25 34 2 12 18 – 
25–37 2 3 – 5 – 
37–50 2 – 1 3 1 
50–62 1 – – 1 – 
62–75 1 – – 1 – 
75–88 2 1 – 3 – 
N=88  – 1 – 1 – 
Total (strata) 12 7 13 32 1 
Commission error 0.96 3.20 6.42 1.92 0.49 
rate (ha−1) 
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Table 4 
Summary of commission error causes by DBH class. 

DBH Dead top Dead branches (one side Highest risk High risk rating treeb Extreme snow Multiple forks Stump sprouting black 
class (N=25% of (N=25%) of canopy dead) rating treea (w/ abnormal growth characteristic) bend or lean and crooks oak (w/ dead canopy) 
(cm) canopy) 

12–25 – 3 – 1 2 – 12 
25–37 – 3 1 – – 1 – 
37–50 – 2 1 – – – – 
50–62 1 – – – – – – 
62–75 – – – 1 – – – 
75–88 1 – 1 1 – – – 
N=88  – – 1 – – – – 
Total (32) 2 8 4 3 2 1 12 

Abnormal growth characteristics include witches broom, crooks and sweeps. 
a The highest risk rating trees display signs of imminent death; such as sparse crowns with necrotic foliage, multiple dead branches and no new growth. 
b High risk rating trees display unhealthy crowns and indications of low vigor, thinning crowns with dead branches and limited growth. 
points because the neighborhood average BBPR statistics associated 
with the snag points received more influence from the neighboring 
live tree points with intensity values in the foliage range. The next 
highest omission error cause was associated with low point densities 
(17.2%). Snags with low point densities were typically smaller and 
were often not identified using the method because they did not meet 
the required point density threshold conditions used in the snag-
filtering algorithm. Snags containing too many foliage valued intensity 
points caused 11.4% of the omission errors. Snags with dead foliage 
still attached caused 4.6% of the errors. Dead attached foliage returned 
intensity values in the foliage intensity range, therefore this category 
could also be grouped with the ‘higher percentage of foliage valued 
intensity points’ category. The canopy surface model creation method 
caused 8.6% of the omission errors by smoothing neighboring snag 
canopy surfaces together into one canopy surface with one local
maxima. Black oak trees with complex crowns caused the lowest per
centage of omission errors (2.0%). 

4. Discussion 

4.1. Snag detection 

The method presented in this study was able to accurately detect 
and locate a large proportion of snags in all strata with low commission 
error rates. Snag detection rates increased as the size of snags increased 
(i.e., DBH and height). Most forest management snag stocking guide
lines and standards are focused on larger snags, as they provide more 
wildlife habitat potential. For the areas in this study, a common snag 
size threshold used in stocking guidelines is DBH ≥ 37 cm. The method 
presented in this paper provided an overall combined detection rate of 
58.5% (±3.7%) for snags meeting this size threshold based on the inde
pendent dataset. 

The three strata provided an opportunity to explore the method's 
performance in various forest types and stand conditions. The BMEF 
and SF-ULS strata demonstrated how the method performs in more 
natural forest stand conditions for these forest types. Both strata had 
similar overall detection rates (BMEF: 43.7%; SF: 43.2%), but the detection 
rates at BMEF increased at a much higher rate as snag DBH increased. This 
is most likely associated with the more dense and complex stand struc
tures found in the SF forest types (i.e., MC, LF and HF) compared to the 
BMEF forest type (i.e., interior ponderosa pine). There was a larger 
sample size at BMEF in a broader range of natural stand conditions. 
Thus, more weight should be given to the results at BMEF. In natural 
Table 5 
Proportion of undetected snags by causation categories. 

Sharing space with Low lidar point Too man
live tree(s) density intensity

Proportion of undetected snags (%) 56.3 (2.5) 17.2 (1.9) 11.4 (
stand conditions for the forest types analyzed in this study, detec
tion rates will likely be between 40 and 60% for smaller snags 
(DBH b 37 cm, heights ≥ 3 m),  and  55–80% for larger snags 
(DBH ≥ 37 cm, heights ≥ 3 m).  

As expected, most of the snags at SF were located in the SF-MSHS 
stratum (60% with 27% less area sampled). This stratum had very low 
canopy covers (0–25%) and live tree densities (0–20%), which resulted 
in higher detection rates than would be expected in natural forest con
ditions. The SF-MSHS stratum detection rates were consistently higher 
than 65% for DBHs ≥ 37 cm snags, which demonstrates the ability of 
the method to successfully detect individual snags post-wildfire 
(~9 years) in medium and high fire severity areas. This suggests that 
this method could provide utility for live versus dead tree assessments 
following wildfire and other disturbance events. 

4.2. Factors affecting snag detection 

Snag detection rates using this method were affected by a number of 
uncontrollable and controllable factors. Uncontrollable factors were 
associated with forest stand and individual snag characteristics, while 
controllable factors were associated with the quality of the lidar data 
and the individual-snag detection methods. 

4.2.1. Uncontrollable factors 
Uncontrollable factors associated with forest stand characteristics 

included canopy cover and snag location with respect to live trees. 
Canopy cover is an uncontrollable factor that significantly affected the 
methods' ability to detect snags (Fig. 10). As canopy cover increases 
the likelihood of snags intermixing with live tree crowns also increases, 
making snag points more difficult to identify with the snag-detection 
algorithm. 

Six uncontrollable individual snag characteristics were identified 
that adversely affected individual snag detection. First, snags with 
dead foliage attached often had a large proportion of their lidar points 
classified as having foliage intensity values, which caused them to be 
classified as live tree points during the snag-filtering algorithm. Over
coming this problem will be difficult using discrete-return lidar data, 
even with better intensity calibration. This also highlights a temporal 
component associated with snag detection using this method; as time 
since death passes, snag detection will increase as the amount of dead 
foliage and fine branches decrease. In the example of a large-scale dis
turbance, such as wildfire or insect outbreak, acquisition of lidar data 
for snag detection using this or similar methods should be timed in 
y foliage Dead foliage Canopy surface Black oak complex Total 
 points still attached model crown undetected (n) 

1.6) 4.6 (1.1) 8.6 (1.4) 2.0 (0.7) 396 
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consideration of needle- or leaf-cast. In this same context, in areas with 
coniferous and deciduous trees intermixing, snag detection will likely 
be improved if the lidar data acquisition is completed in leaf-on condi
tions as it was in this study. 

The second individual tree characteristic found to affect detection 
rates was associated with black oak, a deciduous tree species found in
frequently the MC forest type. All black oak snags sampled in this 
study were located on four plots in the SF-MSHS stratum. The growth 
characteristics associated with these trees produced a unique situation 
which affected omission errors when they were a snag (i.e., no live 
stump sprouting present) and commission errors when they exhibited 
live foliage in the form of stump sprouting. In all cases, these trees were 
associated with multiple stems generating from one unique base. Due 
to the sampling protocol each unique stem with a DBH ≥ 11.5 cm was 
treated as a separate snag. Making matters even more troublesome was 
the fact that they do not follow a simple vertical growth pattern. They 
typically grow with spread out dome-shaped crowns. This either caused 
the canopy surface model associated with these trees to generate too 
many or not enough local maxima, which in turn caused the commission 
and omission errors respectively. If black oak trees were removed from 
the analysis, the overall detection and error rates would improve. 

The next three individual tree characteristics that affected the ability 
to detect individual snags were associated with trees declining in vigor, 
having abnormal growth patterns (e.g. crooks, sweeps, crotches), or 
having dead tops. Many of the commission errors were caused by live 
trees exhibiting one of these conditions. Even though these trees often 
caused commission errors, they also highlight the ability of the method 
to identify live trees displaying unique characteristics often related to 
tree health or vigor. Trees with these characteristics often provide valu
able wildlife habitat (Bull, Parks, & Torgersen, 1997), so there may be an 
opportunity to use lidar for identifying these habitat features as well. 

The last individual tree characteristic found to affect detection 
rates was associated with snow bent trees (i.e., trees with snow bend 
angle ≥45°). These trees have boles that are more exposed to airborne 
lidar scanning which resulted in a higher density of BB intensity valued 
points within the neighborhood variables. On two occasions these trees 
were classified as snags. There were a total of 12 snow bent trees 
(bending ≥ 45°) located on the sampled plots, so the error rate was rel
atively low (16.7%). 

4.2.2. Controllable factors 
Controllable factors affecting the ability of the method to detect 

snags can be partitioned into three categories: 1) lidar acquisition and 
intensity calibration, 2) snag-filtering algorithm, and 3) individual-
snag detection methods. Adjustments to these can either improve or 
deteriorate the snag detection rates. 

Lidar acquisition parameters and intensity variability play a significant 
role in the usefulness of lidar data. Both lidar acquisitions in this study 
were collected by the same vendor, which reduced the variability be
tween the lidar datasets. The vendor also used the automatic variable 
gain setting during acquisition in both study areas. In forested environ
ments, the automatic variable gain setting remains relatively stable due 
to the homogenous nature of these environments (i.e., low variability in 
the target population surface reflectance and composition). This aids 
with the usefulness of the intensity information by reducing the variable 
gain settings' influence on intensity variability. In environments where 
target populations have more surface reflectance and composition vari
ability (e.g., urban areas) the usefulness of the un-calibrated intensity in
formation will likely be reduced. Post-acquisition intensity calibration 
was not completed for the lidar data in this study. At the time of this 
study, post-acquisition intensity calibration techniques are being devel
oped and are becoming more available. Most calibration routines are 
based on the assessment of the acquisition parameters against reference 
settings that are then used to normalize intensity values. These normal
ized intensity values should provide more useful information for lidar 
filtering and analysis. 
Sufficient lidar point densities are required for the filtering algorithm 
to successfully identify individual snag points. Based on the lidar point 
density trends found in this study (Fig. 10), a point density of ≥4 first 
and single return points m−2 should provide an adequate amount of 
data to successfully detect a majority of large snags. Higher point densi
ties should improve results. Identifying the optimal lidar point density 
for snag detection will vary depending on the quality of the intensity 
information, forest stand characteristics (e.g., forest type, tree density, 
and crown structure), and snag-filtering algorithm parameters. 

The snag-filtering algorithm displayed encouraging potential in its 
ability to identify individual snag points. The average BBPR value for 
each of the three neighborhood variables can be thought of as the prob
ability of each point being associated with either BB or F. In this context, 
the higher the sum of the three neighborhood average BBPR values is for 
each point (maximum of 3), the more likely that point is associated with 
a snag. Expanding on this application, the neighborhood average BBPR 
values could have additional uses for assessing tree vigor or health indi
ces, since trees with lower vigor typically have lower proportions of 
foliage compared to trees with higher vigor. The neighborhood average 
BBPR values might also be useful for species identification, especially 
when differentiating between deciduous and coniferous species. It's 
also important to note that the snag-filtering algorithm used in this 
application was created and then tested on independent datasets that 
came from the same lidar acquisitions. While modifications made to 
the snag-filtering algorithm between the two lidar acquisition datasets 
were relatively minor, more testing of the filtering algorithm with addi
tional lidar datasets is necessary to understand the variation and sensi
tivity associated with the method. 

Neighborhood attribute point cloud filtering displayed promising 
utility as a new lidar analysis technique for accurately classifying over-
story lidar points to either a live tree or snag. The primary objective of 
neighborhood attribute point based filtering is to create an automated 
method to identify and accurately assign the proper forest attribute to 
each lidar point, or to assign individual forest attribute probabilities or 
weights to each lidar point. This additional analysis step should provide 
an enhanced lidar analysis framework for both plot-based and individual 
forest attribute assessments since lidar points not associated with the 
forest attribute(s) of interest can either be removed or given less influ
ence. As an example in the context of a live-tree variable plot-based 
lidar assessment (e.g., basal area and volume), the combined local-
variable BBPR values could be used to assign live tree vs. dead tree 
weights to each overstory point. These weights could then be used to 
create lidar point cloud explanatory variables that more accurately 
represent the live-tree variable of interest (i.e., dead tree points are either 
removed or provide less influence). There a vast array of filtering tech
niques and methods that can be explored for assigning lidar points to for
est attributes of interest using the inherent information provided by 
lidar. This was the first attempt at using neighborhood attribute point 
cloud filtering to differentiate between live and dead tree lidar points, 
thus it is likely there are ways to improve the filtering methods in this 
study. New airborne remote sensing systems that integrate multiple sen
sors in various spectrums onto one platform with lidar data (e.g., G-LiHT 
(Cook et al., 2013)) would likely increase our ability to filter and classify 
lidar data. 

The individual-snag detection procedure was able to correctly 
identify and locate a majority of snags in all strata. Having live tree 
points removed from the point clouds used to create the canopy surface 
model made it easier to identify individual snag canopies. Even with the 
respectable results, the canopy surface model creation method still had 
two downfalls. First, snags located directly adjacent to each other were 
sometimes reduced to one snag canopy during canopy surface model 
creation. This could be overcome by using a smaller grid cell size during 
creation of the canopy surface model; however this would likely result 
in higher commission error rates. Second, in areas where deciduous 
trees intermix with coniferous species the canopy surface model will 
likely have problems characterizing one or the other. A method that 
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treats them separately might help, but this would be more difficult to 
implement. 

The individual-tree segmentation method provided relatively accu
rate height estimates with a small negative bias. Negative biases have 
been found in many lidar studies for tree heights, although they are typ
ically larger than the one found in this study (Gatziolis, Fried, & Monleon, 
2010; Stereńczak & Zasada, 2011). It is hypothesized that the snag-
filtering algorithm, particularly the last snag point identification step 
where neighboring points located within a 1 m cylinder of the classified 
snag points were also classified as snag points, caused the negative bias 
to be smaller than expected by occasionally including neighboring tree 
points that were located above the snag which resulted in the heights 
being overestimated. These height overestimation errors offset a portion 
of the negative bias; therefore if they were removed the negative bias 
would be higher. The negative bias was likely a function of the physical 
characteristics associated with snags (e.g., smaller target surface area at 
the top for decayed snags). Higher point densities would likely help re
duce the height bias, or a bias correction factor could be applied. 

4.3. Applications 

The application of the method to different airborne lidar datasets, 
forest types and stand structures warrants further investigation to better 
understand the variation and sensitivity of the method. The snag-filtering 
algorithm parameters will likely need to be tuned for each lidar dataset 
and forest type (e.g., neighborhood sizes, BB and F intensity thresholds, 
and point density and BBPR condition requirements), which can be 
accomplished using a training dataset. Training datasets should be com
prised of as many plots as possible, while maintaining a sufficient inde
pendent dataset. This study randomly selected ~25% of the plots to use 
as the training dataset. In the future as more datasets are analyzed, it 
could become possible to standardize  the  filtering algorithm parameters 
for various lidar acquisitions and forest type attributes. 

Applications of the method could help overcome a number of the 
problems associated with the ability to estimate and monitor snags. 
The method provides the ability to estimate snag densities for various 
size classes, while also providing the spatial distribution of individual 
snags. Both the applications should help increase our understanding of 
snag dynamics in forest ecosystems, and enhance our ability to develop 
and assess snag stocking standards. Proper determination of individual 
snag detection rates and snag density estimates currently requires accu
rate field-derived stem map data. However, if average detection rates 
along with commission and omission errors are known for various 
Fig. 12. Depiction of the iterative area segmentation procedure used to apply the 
snag-filtering algorithm to lidar datasets. The individual areas without their 5 m buffers 
are aggregated back together after the filtering algorithm is applied. 
forest types and lidar parameters, it could become possible to estimate 
snag densities using only airborne lidar data in the future. 

Application of the snag-filtering algorithm across entire lidar 
datasets can be accomplished using a sequential procedure, where the 
filtering algorithm is applied to individually segmented areas ranging 
from 0.01 to 0.2 ha in size that are aggregated back together after the 
filtering algorithm is applied (Fig. 12). Since the snag-filtering algorithm 
requires multiple loops through the lidar points being analyzed, the size 
of the grid cells, the point density, and the forest overstory characteristics 
within each grid cell will determine the efficiency of the algorithm. 
For this study the plot size was ~0.081 ha with a 5 m buffer, the snag-
filtering algorithm's run time averaged 2.24 s with a range from 0.68 
to 11.06 s. Expanding the average value to a 100 ha area, the filtering 
algorithm would be completed in ~46 min with similar lidar point den
sities and forest overstory characteristics. 

5. Conclusions 

This study presented a new method for identifying and locating in
dividual snags across forested landscapes using airborne lidar data. 
The method introduced a new lidar analysis technique; neighborhood 
attribute point-based filtering focused on accurately assigning the prop
er forest attribute to each lidar point. The neighborhood attribute point-
based filtering technique in this study used the location along with the 
intensity and density attributes associated with the individual points to 
identify whether overstory lidar points were associated with live or 
dead trees. The snag-filtered point clouds were then used to identify in
dividual snags. This was the first attempt to filter lidar data with this 
purpose, so it is expected that improvements to the filtering methods 
are available. Even without improvement, the method presented was 
able to identify a large proportion snags and a majority of the larger 
snags in natural stand conditions with very low commission error 
rates. Stands with high mortality (i.e., post-disturbance — medium 
and high wildfire severity) produced even better results. The method 
is automated and efficient once the filtering algorithm is trained and 
provides the ability to obtain snag density estimates and an accurate 
snag stem map for the majority of larger snags. Additional benefits are 
produced by the snag-filtered lidar data that should provide and 
enhanced lidar analysis framework for modeling live and dead tree var
iables. Given the difficulties associated with the estimation of snags 
across the landscape, the method presented could provide a more ro
bust and accurate alternative where airborne lidar data are available. 
The method warrants further investigation with additional lidar 
datasets in various forest types and conditions to better understand 
the sensitivity and variability associated with the method. 
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