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a  b  s  t  r  a  c  t

Mean  sensitivity  (�)  continues  to be  used  in  dendrochronology  despite  a  literature  that  shows  it to  be  of
questionable  value  in  describing  the  properties  of a  time  series.  We  simulate  first-order  autoregressive
models  with  known  parameters  and  show  that  �  is a  function  of  variance  and  autocorrelation  of  a time
series. We  then  use  500  random  tree-ring  data  sets  with  unknown  parameters  and  show  that  �  is  at
best equivalent  to the  standard  deviation  of  a  time  series  in cases  without  high  autocorrelation  and  is  an
inefficient  estimator  of  the  coefficient  of  variation.  It is  hard  to  justify  the  use  of �  as a  useful,  descriptive
statistic  in  dendrochronology  on theoretical  or empirical  grounds.  It is  better  to make  a  thorough  evalua-
tion  of  the  time  series  properties  of a  data  set  and  we  suggest  various  avenues  for  doing  so  including  some
that  are  maybe  unfamiliar  to most  dendrochronologists  including  generalized  autoregressive  conditional
heteroscedasticity  (GARCH)  models.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

Mean sensitivity has a long use in dendrochronology going back
to the foundation of the discipline in work by Douglass (1920) and
built on by other noted pioneers in the field such as Schulman
(1956) and Fritts (2001). Mean sensitivity was conceived as a statis-
tic that would indicate if a series was useful for crossdating or
responsive to climate. But mean sensitivity as a useful statistic is
suspect. Strackee and Jansma (1992) provided a thorough investi-
gation of the statistical properties of mean sensitivity and conclude
that the statistic is ambiguous in describing tree-ring time series.
Biondi and Qeadan (2008) voiced similar concerns that mean sen-
sitivity includes only interannual variation and proposed using the
Gini coefficient to integrate all possible lags in a mean-sensitivity
function. Those authors also discuss the evolution of the formulas
for � from Douglass (1920) onward. Despite the well-established
problems with mean sensitivity, it is still being used in the lit-
erature. Searching the archives of Dendrochronologia turns up 24
papers with the phrase “mean sensitivity” from Volume 28, Issue
1 in 2010 through Volume 30, Issue 2 in 2012 (e.g., Dittmar et al.,
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2012; O’Donnell et al., 2010; Panyushkina et al., 2010) with some
relying on mean sensitivity as an important parameter in the anal-
yses.

We  define mean sensitivity as �:

� = 2
n − 1

n∑
t=2

|yt − yt−1|
yt + yt−1

(1)

where y is a measure of growth (e.g., ring-width or maximum
latewood density), n is length, t = 1 . . . n. The bounds of � are theo-
retically from 0 to 2 but values above 0.6 are rare in the literature.
We  note that there are other formulations of � some of which are
equivalent and some of which differ slightly mathematically. How-
ever, we found that all variations of the mean sensitivity statistic
suffer from the problems discussed by Strackee and Jansma (1992)
and that we  further illustrate below.

The primary theoretical concern with mean sensitivity is that
of variance. This main point is that �, which expresses the year-
to-year variability of the values in a time series, is dependent on
the variance of the specific variable measured (e.g., ring width or
cell-wall thickness). In living matter the magnitude of the vari-
ance is typically related to the nature of the variable itself. With
tree growth, a series representing cell-wall thickness for example
shows lower variance than a series of ring widths whether or not
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standardization is performed. Similarly the variance of ring-width
series of evergreen tree species is higher than the variance of series
from deciduous species, since the minimum ring-width value of
evergreen species is zero whereas the minimum value of decid-
uous species such as oak (Quercus spp.) and ash (Fraxinus spp.) is
equal to the width of their spring vessels (ca. 0.1 mm). This depend-
ency on variance often remains implicit when the values of � for
different tree-ring variables and/or tree species are compared.

Our first objective in this paper is to demonstrate that � can be
decomposed by knowing the standard deviation (�) and first-order
autocorrelation (�) structure of a time series. Our second objective
is to show that in many cases where the actual parameters of a
tree-ring time series are unknown � is effectively proportional to
� except in cases with strong autocorrelation.

2. Tree-ring data simulation

We  explore � by simulating data similar to standard tree-ring
chronologies (i.e., mean-value chronologies from detrended ring
widths). We  parametrized our simulations using publicly-available
data as described below. The advantage of these simulations is that
the statistical properties can be specified and we can explore � in a
systematic way. We  have also performed similar analyses on raw
ring widths and seen similar results. All analysis was  done in the
R programming environment (R Development Core Team, 2012)
using the dplR library (Bunn, 2008; Bunn et al., 2012).

2.1. Simulation of first-order autoregressive data

Tree growth is typically autocorrelated in some manner. Many
tree-ring data sets can be approximated using a first-order autore-
gressive process where a year’s growth is partially a function of
growth from the prior year. The simplest of these processes is:

yt = �yt−1 + �t (2)

where y and t are as in Eq. (1), � is a coefficient ranging from
−1 to 1, and � is some other growth process (e.g., plant physiol-
ogy, canopy dynamics, climate, etc.). This AR(1) model is familiar to
most dendrochronologists as is an extended model as AR(p) where
p indicates the order of an autoregressive model and other terms
are as in Eq. (2):

yt =
p∑

i=1

�iyt−i + �t (3)

We  randomly selected 500 data sets with at least 20 series and
spanning at least 100 years from the International Tree-Ring Data
Bank and the Digital Collaboratory for Cultural Dendrochronol-
ogy (Jansma et al., 2012) and built a mean-value chronology using
Tukey’s biweight robust mean after detrending each series with
a smoothing spline with frequency response of 0.50 at a wave-
length of 0.67 of the series length (Cook and Peters, 1981; Cook
and Kairiukstis, 1990). We  fit each of these 500 chronologies with
an autoregressive time-series model. The order (p ≤ 4) was  chosen
using the Akaike Information Criterion. Over half of these chronolo-
gies (270) followed an AR process with p = 1 or p = 2 with the
most-common model being a first-order process. Our character-
ization of these random tree-ring data sets is similar to the finding
of Monserud (1986) who analyzed the time-series properties of 33
data sets in terms of p, �, and � in a classic paper on the time-series
characteristics of tree-ring data. We  found that these parameters
were insensitive to change on repeated random grabs of the 500
data sets which indicated that species, time period, and other vari-
ables are largely irrelevant for values of p, �, and �. For this work, we

Fig. 1. Two  examples of simulated tree-ring index data spanning 500 years using
AR(1) models with relatively low autocorrelation and variance (A) and relatively
high autocorrelation and variance (B). Note the similarity in � for A and B.

simulated AR(1) time series similar to these 500 tree-ring chronolo-
gies but with known statistical processes (Fig. 1). See Appendix A
for further details on the simulations.

2.2. � as a function of � and �

We  show that � varies with � and � by simulating AR(1) time
series (each 500 years long) with � ranging from −0.9 to 0.9 and
� ranging from 0.05 to 0.5. Each series had a mean of one (� = 1).
That parameter space was uniformly filled with 106 simulated time
series. Fig. 2 shows that � varies linearly with � and non-linearly
with �. Indeed, the highest values of � are found when � is nega-
tive and � is high. There are few, if any, biological mechanisms that
can consistently create a tree-ring chronology with strong nega-
tive autocorrelation in an AR(1) process. As an aside, while this is
true for AR(1) processes, it may  not be for AR(2+) processes. For
example, pines (Pinus spp.) can produce mast seed crops causing
resource depletion and subsequent negative values of � although
those growth processes would no longer fit an AR(1) model (see
Kelly and Sork, 2002 for a review of masting).

3. �, �, and � using 500 data sets

We  then used the 500 data sets described above and calculated
�, �, and � for each. Many of these followed an AR(1) process as
simulated above but others did not. Some showed no substan-
tial autocorrelation structure while others followed more complex
models including autoregressive moving-average models (ARMA).
See the section below for further discussion. We  also found that the
data taken as a whole support the primary finding by Strackee and
Jansma (1992) and shown above in Fig. 2: � varies mostly linearly
with � but has a compressed range and is therefore difficult to inter-
pret (Fig. 3A). The first-order autocorrelation is not a good way of
interpreting � (Fig. 3B), unless the two variables � and � are taken
together (Fig. 4). When � and � are used in conjunction to interpret
� in the 500 random chronologies (only some of which follow an
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Fig. 2. The gray shades show � as a function of � and � from simulated AR(1) models.
Note that the color scale is by 10% quantiles.

AR(1) process) a pattern emerges consistent with the simulations
shown in Fig. 2: the range of � becomes compressed relative to
� with high autocorrelation. Also, unlike the simulations in Fig. 2,
none of the 500 random chronologies showed strongly negative
values of �. Finally, we note for higher values of � (ca. >0.4), the
slope of the relationship between � and � is greater than one while
for low values of � (ca. <0.2) the slope is less than one (Fig. 4). In
other words, when � is high, � increases slightly more rapidly with
increasing � than it does when � is low.

4. Implications and refinements

We  have shown that mean sensitivity is a function of the
standard deviation and autocorrelation of a series. Despite a theo-
retical range of zero to two, the practical range of � is much smaller
only reaching values near one in series with very high variance and
strong negative first-order correlation. This is not a situation that
occurs often (if ever) in nature and the realized range of � is greatly
reduced (Strackee and Jansma, 1992).

We  have also shown that mean sensitivity is nearly proportional
to the standard deviation of a time series using random data sets
from the ITRDB and DCCD. The exceptions are when � is compressed
in cases of strong autocorrelation. Given that parameters like �
and � are standard descriptive statistics whose behavior is easily
understood it seems that using � in their place is not advisable
under many circumstances. We  note that this is true even when the
actual time-series properties of a tree-ring time series are unknown
in the case of our 500 real-world examples.

Given that Figs. 3 and 4 show that � is a relatively well-behaved
statistic in terms of � and � it is worth taking a deeper look at
Eq. (1) algebraically. By doing so we can show that � is an inefficient
estimator of the coefficient of variation (CV = �/�) and express an
estimation of � from � and �. Rearranging Eq. (1):

� = 1
n − 1

n∑
t=2

√
(yt − yt−1)2

(yt + yt−1)/2
(4)

Fig. 3. � is plotted against � (A) and � (B) for 500 random tree-ring data sets. The
marginal boxplots show the shape of the distributions for each variable.

= 1
n − 1

n∑
t=2

√
2 × s(yt, yt−1)
(yt + yt−1)/2

(5)

where
√

2(s) in the numerator of Eq. (5) can be calculated as
the standard deviation of yt and yt−1 because for two values the
estimator of the variance of n numbers is:

s2 =
∑n

i=1(xi − x)2

n − 1
(6)

=

(
yt−1 − (yt+yt−1)

2

)
+
(

yt − (yt+yt−1)
2

)
2 − 1

(7)

= (yt − yt−1)2

2
(8)
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Fig. 4. � is plotted against � and � for the 500 random chronologies plotted in Fig.
3.  Each panel shows a 1:1 line.

so that:

s = |y1 − y2|√
2

→ |yt − yt−1| = s
√

2 (9)

and giving a final expression of � as a function of the mean
coefficient of variation:

� =
√

2

(
n∑

t=2

s(yt, yt−1)
�(yt, yt−1)

)
(n − 1)−1 (10)

where �(yt, yt−1) is (yt + yt−1)/2.
Thus, � is an estimator of the mean coefficient of variation for a

time series y as the right side of Eqs. (4) and (5) gives us the mean
pairwise CV for t and t-1 multiplied by

√
2, where the numerator,

s, is defined by Eqs. (6) to (9). Interpreting � as a function of the
coefficient of variation is helpful because it allows us to recast the
statistic in a more general framework in terms of the variance of a
time series. However, we have argued that a powerful and intuitive
way to understand tree-ring data is by thinking in the terms of their
autocorrelation structure and Figs. 3 and 4 graph the relationship
between �, �, and �. We  can further extend our understanding of
� as an estimator of mean CV by casting it in terms of an AR(1)
process. If y is autocorrelated and stationary, which is the case for
some but not all tree-ring data, � can be expected to be proportional
to the following function of �, �, and �:

�̂ ≈
√

2
�
√

1 − �

�
(11)

where terms are as above. In fact, we find a correlation coef-
ficient of r = 0.99 between �̂ and � when using the 500 random
chronologies from Fig. 4, only some of which follow an AR(1) pro-
cess and some of which are potentially non-stationary. So far, we
have shown that mean sensitivity as a statistic is essentially a func-
tion of variance unless autocorrelation is very strong (note the
inverse relationship between � and

√
1 − �). Our simulations (e.g.,

Fig. 2) and estimate of � (Eq. (11)) all arrive at that same conclusion.
One further refinement of �̂ is that we found, via simulation, that

the fit between �̂ and � improved slightly by using the constant 1.14
in place of

√
2:

�̂ ≈ 1.14
�
√

1 − �

�
(12)

The reasons why
√

2 was  a good starting point for a multiplicative
constant in Eq. (11) but inferior to using a final estimation for �̂ as
in Eq. (12) are given in Appendix B.

4.1. Prospectus

We  suggest that the important part about trying to understand
sensitivity, writ large, in tree-ring data is to understand its vari-
ance and autocorrelation structure and do so explicitly. There are
a number of tools and approaches to do so. The simplest concep-
tual way to model variance and autocorrelation in a stationary time
series is to do AR(p) modeling as a standard part of the description
and analysis of tree-ring data. AR modeling is a regular part of stan-
dardization software such as ARSTAN (Cook and Peters, 1981) and
dplR (Bunn, 2008). AR models are perhaps the simplest models to
understand the behavior of a tree-ring series but might not fully
capture the dynamics of growth especially if the external controls
on growth are not normally-distributed white noise. For instance,
if the error term (�t) is autocorrelated the way growth (yt) is in the
AR(p) model we  refer to this as an autoregressive-moving-average
(ARMA) model that takes the form:

yt =
p∑

i=1

�iyt−i +
q∑

i=1

�i�t−i + �t (13)

where � is a coefficient ranging from -1 to 1, q indicates the order
of the moving average, and other terms are as in Eq. (3). These
ARMA(p,q) models are outstanding for characterizing regular past
events that might affect current year’s ring widths. ARMA model-
ing is used by dendrochronologists but probably not as much as it
could be given that the technique is powerful for unmixing differ-
ent growth mechanisms and as such helping to answer important
biological questions about tree growth. For instance, Millar et al.
(2012) found two-year lags in negative correlations of water-year
precipitation and climatic water deficit with ring widths in white-
bark pine. Consequently, the ring width data best fit a ARMA(1,2)
process.

In stationary processes (e.g., when the mean and variance do
not change over time) a combination of AR(p) and ARMA(p,q)  are
good tools for understanding the sensitivity of tree-ring data. And
heretofore, we have assumed variance (�2) to be constant over
time. If not, variances are considered to be heteroscedastic. A fur-
ther refinement in modeling tree-growth for assessing sensitivity is
to account for potential heteroscedasticity using the ARCH (autore-
gressive conditional heteroscedasticity) test, often done under the
Lagrange multiplier criterion (see Chatfield, 2003). If the variance
is not stable over time, then serial changes in variance should be
modeled according to the order of the ARCH test. In the basic ARCH
model, variances are short-memory, dependent on recent squared
deviations. But if the ARCH tests are significantly high-order, a gen-
eralized ARCH (GARCH) model (p>0) is indicated, where variances
are long-memory or dependent on past variances (Chatfield, 2003).
These are potentially powerful models for understanding growth
and can provide good inference to the physical system but are not
widely used in dendrochronology. One of the few examples is Millar
et al. (2007) who  modeled inter-annual variability in limber-pine
ring widths using a GARCH(1,1) model. They found tree growth
(and mortality) was an interaction with temperature and precipi-
tation that affected the mean but also the variance of the growth
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signal. E.g., the tree-ring data indicated an increase in variance fol-
lowing a low ring-width event, followed by a slow decrease in
variance, suggesting persistence in effect (see Figs. 4 and 5 in Millar
et al., 2007).

A principal goal of dendrochronology is to better understand
tree growth. For many in the field this means understanding how a
tree responds to internal (e.g., stored carbohydrates) and external
(e.g., climate) forcings. It is tempting and logical to try to simplify
the sensitivity of growth with a simple metric - hence the common
use of �. This inclination should be avoided for at least two reasons.
First, we have shown here that � is a confusing and ambiguous
statistic for describing the variations in tree growth. Second, values
for � are often interpreted as reflecting the influence of growth-
limiting phenomena, which ignores the dependency of � upon the
variance of the biological variable that is studied. In addition, the
exact nature of these growth-limiting factors (whose impacts may
vary during a tree’s life) cannot be deduced from the value of �.
If one is seeking the simplest possible way to describe sensitivity
in growth we recommend that � and � be used instead as better
capturing “sensitivity” as it is usually conceptualized. However, we
do not ultimately recommend any simple statistic for capturing the
variations in growth that are seen in so many records but rather
use the increasingly available suite of tools (ARMA, GARCH, etc.) to
come to a more nuanced understanding of tree-ring data.
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Appendix A.

The simulations used followed an AR(1) process as shown in
Eq. (2) of the body of the paper. Generating normally-distributed
noise for the error term and keeping the correlation of yt and yt−1
equal to � required a slightly different approach than simply setting
�t in Eq. (2) to N(0, �). Thus for the simulations, we produced time
series y as yt = �(yt−1 − �) + �t

√
1 − �2 + � where � is normally

distributed: N(0, �2) and y1 = �1. The other terms are as defined in
the paper (e.g., � = 1).

Appendix B.

In calculating �̂, Eq. (11) in the body of the paper uses
√

2
as a starting point as a multiplicative constant based on Eq. (5)
which is merely a rearrangement of Eq. (1). However the use of

√
2 is not strictly theoretical. We do have E{(yt − yt−1)2} = 2�2

but E{
√

(yt − yt−1)2} /=
√

2�. Also, we have for the denomina-
tor E{(yt + yt−1)/2} = � but E{ 1

(yt+yt−1)/2 } /= 1
� . Put more simply, the

expectation of the square root is not the same as the square root
of the expectation and the expectation of the reciprocal is not
the same as the reciprocal of the expectation. However, using
the expectations in the “wrong” manner can give us a very good
approximation to a better expression of �̂. Thus we used simula-
tions (see Appendix A) to determine the best approximation for �
using � and �. We  found that a value of 1.14 slightly outperforms√

2 as an accurate multiplicative constant that better accounts for
the lack of the exact functional form for the expectation of �.
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