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Application. Multi-locus analyses of allozymes indicate significant geographic variation in

widespread forest trees. Under these conditions, allozymes in tandem with other traits, are

useful in the development of breeding zones.

Abstract. Early studies of allozyme variation in plant populations suggested that allelic

frequencies in some loci vary by geography. Since then, the expectation that allozymes

might be useful in describing geographic patterns has generally not been borne out by single

locus analyses, except on the broadest scale. Multi-locus analyses reveal the converse:

canonical correlation analysis of individual, uniformly-spaced genotypes describe statisti

cally-significant, complex patterns with geography. Multi-locus scores in four major species,

Abies concolor, Pinus lambertiana, P. ponderosa, and Pseudotsuga menziesii, of the mixed

conifer forest in the Sierra Nevada correlate 0.40 or greater with the first canonical vector

of a geographical trend surface equation. The different species follow similar patterns by

latitude and elevation. In contrast with patterns in the Sierra Nevada, large-scale differentia

tion is weak (R2 < 0.20) among populations of Pseudotsuga menziesii in the Coast Ranges

and Siskyou Mountains of northern California and southern Oregon, where differentiation

may be local For the purpose of forming zones, we subdivided scores of the first two to

four canonical vectors into groups and plotted them as multidimensional contour intervals.

Reclassification by discriminant analysis serves as an approximate guide to transfer risks

within and among these groups.

Introduction

Early studies of the variation in allozyme markers in plant populations

suggested strong associations with geography (Allard and others 1972).

Similar results in tree species (Bergmann 1975; Tigerstedt 1973) led some

forest geneticists to speculate that allozymes might contribute towards the
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development of breeding zones (Conkle 1974; Feret and Bergmann

1976). But subsequent results of studies have so diminished such expecta

tions that the present conventional wisdom asserts that allozymes offer

little potential usefulness, except in the broadest sense (Adams and

Campbell 1981; Falkenhagen 1985; Muona 1990). While mean genetic

diversity in many forest tree species is usually high, little of this variation is

distributed among populations. Mean heterozygosity in polymorphic loci

for both gymnosperms and perennial woody plants is 0.30, while the

proportion of electrophoretic variation among populations (Gst) is about

0.07 (Hamrick and Godt 1990). Moreover, disequilibria between pairs of

loci often do not deviate significantly from zero (Brown 1984; W. T.

Adams, pers. comm.). Although patterns have been found by latitude

(Bergmann 1975), elevation (Lundkvist 1979), aspect (Mitton and others

1977), and climatic measures (Guries and Ledig 1981), most studies fail

to detect ordered geographic differentiation (Moran and Adams 1989;

Neale and Adams 1985).

Smouse and others (1982) recognized that the cumulative effects of

small differences among allelic frequencies, when summed across loci, can

increase differentiation among populations so that individuals can be

reliably allocated to biological groups on the basis of their multilocus

genotypes. Later, Conkle and Westfall (1984), Guries (1984), and Yeh

and others (1985) showed that geographic patterns in trees could be

detected with a variety of multivariate statistical techniques. Moreover,

individual genotypes in classes formed by multidimensional contour inter

vals could be reclassified by discriminant analysis into their original

groups in higher frequencies than than those randomly expected (Conkle

and Westfall 1984). Thus multivariate descriptions of allozyme patterns

can contribute to developing and monitoring breeding zones.

The discussion that follows will be limited to allozyme variation.

Allozymes, compared with biochemical markers, have found the greatest

use in forest population genetics, because of their ease of analysis and

their Mendelian basis. Monoterpenes, of the other markers, also have

found extensive application to population studies in forest trees (Hanover

1992, this issue, pp. 159—178), but have not been widely applied to the

development of breeding zones. Monoterpenes can contribute to zone

design, but their greatest use might be in gene conservation (Millar and

Westfall 1992, this issue, pp. 347—371).

In the sections that follow, we compare the relative utility of allozyme

versus metric traits for describing geographic patterns. Next we will

outline the procedural steps used in describing geographic variation and

applying the results to the formation of breeding zones. Because the ability

to detect pattern is fundamentally a matter of the analytical methods used,

we focus on multivariate techniques. We include a summary of our results
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in four conifer species in California, present a case example of the con

tribution of allozyme patterns to developing zones for one of these species

in the Sierra Nevada Mountains, review unresolved issues, and point to

further developments.

Our intention in this review is to demonstrate that significant, regular

geographic patterns exist in allozyme loci in forest tree species. Depending

on the objectives of the breeder, information on allozyme patterns can

therefore augment that of other traits in constructing breeding zones.

The utility ofallozymes in developing breeding zones

Zone designations for breeding programs are made on the basis of two

perspectives: the source populations and the distribution of planting sites

(Namkoong and Kang 1990). When local populations are confirmed or

assumed to be optimal (Rehfeldt 1990a), then source populations, which

define the seed zone, and the breeding zone, defined by the planting

environments, occupy the same zone. But when non-local sources are

optimal (Namkoong 1969), planting site zones and the commercially

important traits determine the appropriate zones in the source populations

(Namkoong and others 1988: 52—53). Once a breeding program ad

vances beyond the establishment of a base population, zones lose their

utility. Even in later generations, zones have relevance for defining varia

tion in potential commercial traits and managing gene conservation pro

grams.

Zone designation under the local-is-best assumption has been based on

geoclimatic and ecological data (Buck and others 1970) or descriptions of

metric traits from short-term tests (Campbell 1984; Rehfeldt 1986). But

under the non-local assumption, zones are based on long-term tests

(Dorman 1976). Performance of metric traits can be attributed to ecologi

cal factors and, if commercially important traits are measured, optimum

germplasm source locations for these traits can be determined. But at least

3 years are needed to gather data after the dissemination of propagules,

low heritabilities reduce the precision of estimating geographic patterns,

and genotype-environment (G x E) interactions complicate the develop

ment of seed transfer guidelines. In contrast, allozyme data can be

amassed within a few months after collection and processing plant

material. Also, multilocus genotypes can be inferred directly and are not

subject toGx£ interactions.

The utility of geographic patterns in allozymes depends on the objec

tives of a breeding program and the underlying assumptions. If non-local

sources are optimal, only differences among source populations in the

economically important traits are relevant (Namkoong 1969). Although

breeding for single, broadly-adapted varieties in an attractive goal for
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breeding programs, multiple local breeding populations may be more

stable and allow for greater flexibility over the long run (Namkoong and

others 1988: 51—52, 112—115). Also, current forest practices are shifting

to those that minimally alter the genetic structure in natural populations:

practices that conserve temporal and spatial heterogeneity (Namkoong

1985; Namkoong 1990) and minimize gene flow from plantations to

native stands (Ledig 1988). Allozymes, along with other genetic markers,

are applicable under this conservative management philosophy by provid

ing data on natural population genetic structures and measuring gene flow

(Loveless; Epperson; Mitton; Adams; and Ellstrand 1992, this issue),

although consistent associations between allozyme genotypes and ecologi

cal factors have not been established for forest tree species (Hamrick and

Godt 1990; Hamrick and others 1992, this issue, pp. 95—124). More

over, the precision of methods for detecting geographic trends in single

loci is low and patterns in allozymes have not consistently correlated with

those in morphological traits (Hamrick and Godt 1990). Yet, patterns in

some morphological and physiological traits are not necessarily correlated

among one another (Dickinson and others 1988; Rehfeldt 1986), and it is

these independent patterns in sets of traits that contribute to zonation

(Campbell 1986). Nevertheless, metric traits are more highly weighted

than isozymes in defining source populations for breeding zones.

Methodological considerations

Single-locus methods

In forest genetics, the method of choice for inferring geographic patterns

from distance measures computed from single loci is cluster analysis.

Almost without exception, the average linkage (UPGMA) clustering

algorithm (Dunn and Everitt 1982) has been applied to matrices of Nei's

distance (Nei 1978). However, the little-used Cavalli-Sforza and Edwards

arc and chord distances (Cavalli-Sforza and Edwards 1967), which weight

differences in allelic frequencies by their sampling errors, are better suited

for determining the existence of geographic pattern. Additionally, the

average linkage algorithm assumes equal rates of divergence. However, the

distance-Wagner procedure is more appropriate for visualizing clines (e.g.,

Millar and others 1988), as it is not constrained by the assumption of

equal rates of divergence (Swofford 1981).

A serious drawback with clustering algorithms is that they are sensitive

to error variation, diminishing their ability to detect population differences

(Archie and others 1989; Dunn and Everitt 1982). When population
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samples encompass relatively large areas and contain large numbers of

individuals per population (greater than 50), means estimated from these

populations will reduce sampling errors and clines will be more easily

detected than with means from smaller sample sizes (Millar and others

1988). However, clines may be highly nonlinear and therefore not readily

detectable in the cluster analysis.

Multi-locus methods

Multivariate analyses are preferable to univariate because single loci are

not apt to reveal patterns well, even when patterns are significant (Thorpe

1985). Secondly, multivariate analyses are more efficient: only one analy

sis is needed for all loci simultaneously. If a pattern exists for a single

locus that is independent of all others, it will be clearly shown in any

multivariate analysis.

Below we discuss techniques for the multilocus analysis of allozyme

data starting with a scoring procedure that transforms these data to a form

that is suitable for multivariate analytical methods. Then we discuss four

methods that, with the exception of principal components analysis, are

special cases of the multivariate general linear model.

Transforming genotypic data. Because multivariate statistical methods

require that linear combinations of traits must be normally distributed,

haploid or diploid genotypes must be transformed. An appropriate and

elegant transformation for diploid genotypes is outlined by Smouse and

Williams (1982). For each allele at a locus minus one, assign a value of 0.5

when the allele is present and 0.0 when the allele is absent. Scores for an

allele in a homozygote would be 0.5 + 0.5 = 1.0, for a heterozygote

would be 0.5 + 0.0 = 0.5, and for homozygotes and heterozygotes of

other alleles would be 0.0. A similar scoring method for haploid genotypes

is given in Weir (1990: 143). Diploid scores for a locus with three alleles

are as follows:

Allele 1

Allele 2

11

1.0

0.0

12

0.5

0.5

13

0.5

0.0

Genotype

22

0.0

1.0

23

0.0

0.5

33

0.0

0.0

Other additive scoring systems, such as that in Spielman and Smouse

(1976), are equivalent to the above, except that the Smouse and Williams'
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(1982) score represents the frequency of an allele at a given level of

sampling. For a diploid individual, the score is the frequency of that allele

in the individual and for a population, the score is the frequency for the

population. According to the expectations of quantitative genetic theory

(Kempthorne 1969: 18—19), linear combinations of such allelic scores

over ten or more loci are normally distributed (Smouse and others 1982).

Such expectations are confirmed by our analyses: residuals in canonical

models fit the normal distribution. Although scores for codominant alleles

are additive, the infrequent presence of null alleles will generate some

small proportion of dominance variance.

Principal components analysis (PCA). PCA is a method used to

describe patterns among populations in multidimensional space whereby

principal axes in this space are aligned sequentially in the direction of

greatest variance and covariance among traits (Morrison 1990). When all

traits are uncorrelated, there will be as many principal components as

there are traits. But if all traits are highly correlated with one another,

their variation will collapse onto one or two principal components. PCA is

sensitive to error variation resulting from sampling and genetic recombina

tion (Dunn and Everitt 1982; Gittins 1985; Wartenberg 1985). Hence,

analyses are based on population means, which will increase linkage

disequilibrium among loci and reduce the number of significant principal

components. Used for the analysis of geographic patterns among popula

tions, PCA is hypothesis-free; no a priori hypotheses are imposed. Instead,

the intent of PCA is to generate hypotheses about population structure

(Guries 1984). Although PCA is poorly suited to describing complex

clines, principal component scores of populations can be regressed against

measures of their geographic location (cf Campbell 1986).

Canonical variate analysis (CVA). CVA, also known as canonical

discriminant analysis, is the multivariate equivalent of a one-way analysis

of variance (Gittins 1985). Allelic scores are weighted by their ratios of

between-to-within group variation, thus reducing error variances. Conse

quently, CVA is usually better suited than PCA for describing stepped

clines or ecotypic patterns (Gittins 1985). Because Mahalanobis distances

from CVA (Morrison 1990) have properties similar to the Cavalli-Sforza

and Edwards arc distances, they can also be applied to hierarchical cluster

analyses (cf Merkle and others 1988). CVA is also hypothesis free when

based on samples stratified by populations and individuals or subpopula-

tions and when prior hypotheses about associations have not been

imposed on the groups of populations (Kinloch and others 1986; Knowles

1985; Yeh and others 1985). CVA is also sensitive to sampling effects: the

first few canonical vectors will focus on alleles that are uniquely repre

sented in one or a few populations. As with PCA, CVA is limited in its
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ability to detect nonlinear patterns, although canonical scores can be

regressed against geographic measures (cf Merkle and others 1988).

Discriminant analysis. Discriminant analysis is related to CVA except

that it functions in classification, whereby individuals are assigned into one

of several groups (Morrison 1990: 269—287). The method was the first

multilocus procedure to be applied to allozymes by Smouse and others

(1982), who used the method to allocate Amarindians to populations. The

utility of discriminant analysis in describing geographic differences is not

so much in classification per se, but in the comparative classification

errors among candidate groups. Relative percentages of classified and

misclassified individuals indicate similarities among groups in comparison

with their geographic distances. For reliable results, sample sizes must be

very large or the classification must be validated by an independent

dataset. The quadratic function (Morrison 1990: 275—278), used when

the within-group variances and covariances are heterogeneous, has limited

use in allozyme data because some loci are fixed in one or more groups

and not in others, resulting in unequal numbers of variables among

groups.

Canonical correlation analysis (CCA). CCA is the multivariate equiva

lent of multiple regression, but with more than one dependent variable,

and the procedure is related to CVA in the same way that regression is

related to ANOVA. CCA partitions the coefficient of multiple determina

tion (R2) of the multiple regression of single variables into separate,

independent models, which are shared among dependent variables in the

analysis. Although CCA has been applied to ecological studies (Gittins

1985), it's use in population genetics has been only recent (Wartenberg

1985). With the exception of sensitivity to outliers, CCA is less sensitive

to errors than PCA and CVA, and errors that occur usually reside in the

residual variation. CCA is also superior to PCA for detecting irregular

geographic structure (Wartenberg 1985).

Multi-locus geographic patterns and the development of breeding zones

Zone delineation depends on the assumptions behind the choice of

optimal source populations. These assumptions in turn determine proce

dures that are appropriate for sampling, data analysis, and subdivision of

source populations and planting sites into zones. Because premises that

underly using data from allozyme loci or other genetic markers are similar

to those associated with short-term test data, methods that have been used

with short-term tests also can be applied to those from allozyme allelic

scores (Campbell 1986;Rehfeldt 1990b).



286

Sample sizes

Multivariate techniques require large sample sizes and complete sets of

data. As to the latter issue, each observation with an unresolved locus is

deleted from the analysis, thus effectively reducing sample size. With the

exception of PCA, all analytical methods require that the sample size to be

larger than the number of parameters. A general rule developed from

simulation studies of CVA, is that the sample size per group, A/,, should be

at least equal to the number of dependent variables, p, in the model

(Williams and Titus 1988). In allozyme data, the number of dependent

variables is equal to the number of allelic variables. Thus, the minimum

sample size is p times the number of groups, k, in CVA, or the number of

independent variables in CCA. This rule appears to be quite conservative:

Williams and Titus (1988) showed that because errors stabilize more

rapidly with increasing sample sizes as the number of dependent variables

increase, Nt can be less than p for p > 30. Our experience with oppor

tunistically jacknifing data having more than ten loci indicates that samples

with three times the total number of variables (p + k) are sufficient for

stable estimates of the first vector. Thus El-Kassaby (1990) errs in stating

that the sample size in any group cannot be smaller than the number of

dependent variables. The parameters in canonical analyses or the discrimi

nant function can be estimated as long as N — p — k is greater than zero

(preferably much greater), where N is the total sample size.

To meet the requirement for multivariate normality, our experience

suggests that data from ten polymorphic loci are sufficient. When each

locus averages three alleles, or two allelic variables, p equals 20. With nine

independent variables in the model, the minimum sample would be 180.

Sampling methods

If irregular or stepped-cline patterns exist, then CVA is applicable and

a hierarchical sampling structure can be used, as in Merkle and others

(1988). But when patterns are clinal, sampling should be systematically

made as in a factorial design, on a regular grid or set of transects (Box and

others 1978; cf Campbell 1986; Campbell and others 1989). Pairs of trees

should be sampled at about two thirds of the intersections to provide

samples for estimating the variance within locations and to test lack-of-fit

in the model (Box and Draper 1987).

In practice, rigid grids are not feasible because species' ranges are not

arrayed on a regular grid. Alternatively, a uniform distribution of samples

over the range of interest would be suitable. Or when precise estimates of

genetic diversity statistics are desired, 20 to 50 trees could be sampled at
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strategically-spaced locations, and single and paired samples collected at

the remaining grid intersections within practical limits of the study.

Analyticalprocedures

Initially, an exploratory analysis might be desired and for this, PCA and

CVA are appropriate. Even when geographic patterns are not obvious

from the exploratory analysis, the existence of higher-order patterns and

their statistical signifiance should be tested by regression, either by re

gressing measures of location on principal or canonical scores (Campbell

1984), or on allelic scores by CCA. Because principal and canonical

vectors might not be maximally alligned with geography in multi-locus

space, CCA is the preferred method. The simplest models should be

tested first, beginning with the trend-surface analysis of principal or

canonical scores (Gittins 1968) or on allelic variables with its multivariate

extension, canonical trend-surface analysis (CTSA) (Lee 1969; Warten-

berg 1985). The model used in trend-surface analysis is a second-order

polymomial of the measures of geographic location and can be applied by

such statistical procedures as SAS' PROC GLM in the univariate condi

tion and PROC CANCORR in the multivariate (SAS Institute Inc. 1985).

The importance of additional measures of geography or of higher order

terms can be tested by their "extra sums of squares" (Box and Draper

1987), using the Type I sums of squares of canonical scores in PROC

GLM, for example (SAS Institute Inc. 1985). To reduce the number of

allelic variables in the model, we drop alleles that are near zero for both

the standardized canonical weights (< 0.4 approx.) and structure-correla

tions between the canonical score and the trend surface equation (approx.

< 0.05).

For describing pattern, the important statistical data from CCA are the

R\ the unbiased R2s, and the statistical significance of the canonical

vectors (PROC CANCORR, SAS Institute Inc. 1985). Also useful are

the structure correlations between the dependent variables and the scores

of the canonical vectors formed by the independent variables. Such

structure correlations are the multivariate equivalent of the correlation

between the dependent variable and the model described by the inde

pendent variables in multiple regression. The square of this structure

correlation is the proportion of variance in the dependent variable

described by the canonical model, and when summed over k canonical

vectors, is the total proportion of variance described by the vectors, also

called the redundancies (Gittins 1985).

Final choice of a model depends in part on its adequacy. In addition,

we rely on various descriptions of the fitted surface to subdivide that
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surface into zones. We test lack-of-fit in the model and the relative

importance of linear and quadratic terms of the trend-surface model, using

a program such as PROC RSREG (SAS Institute Inc. 1985). Using this

same SAS procedure, we also describe the shape of the surface of canonical

scores from CTSA by canonical analysis (Box and Draper 1987). To aid

in the visual description of the patterns, we compute predicted canonical

scores and their residuals using the same model from CANCORR in

GLM. Contour plots of the predicted scores show the pattern in geogra

phic space (e.g., by latitude and longitude), whereas contour plots of the

residuals will suggest discontinuities in the pattern. The latter plots, along

with a plot of the residuals against the canonical scores can show biases in

the model and suggest additional terms or transformations of the data.

(Draper and Smith 1966). To evaluate the normality of the residuals we

use both the direct statistical test and the normal probability plot in PROC

UNIVARIATE (SAS Institute Inc. 1985). In our experience with allozyme

allelic score data in various tree species, residuals do not significantly

deviate from normality, or when they do, normal probability plots indicate

no important deviations.

Subdivision into zones

Zone formation is a matter of balancing operational needs for a minimal

number of units with the biological necessity to minimize risk of transfer

within each unit. To apply allozyme data to this process, we determine the

pattern and amount of multi-locus geographic variation and integrate this

information with data from other traits and with the objectives of a breed

ing program.

Contour plots of predicted canonical scores indicate regions of simi

larity in multilocus frequencies in geographic space. Canonical analysis

(Box and Draper 1987; PROC RSREG, SAS Institute Inc. 1985) also

estimates rates of change in canonical scores in directions within geogra

phic space and provides an indicator of number of subdivisions in these

directions. To aid in visualizing patterns in more than one canonical

vector, we partition the scores of each vector into contour intervals, assign

a letter to each combined interval, and map the multi-vector groups by

latitude and longitude. Mapping these interval groups over topographic

maps helps to visualize associations with elevation, aspect, watersheds,

and other physiographic features.

Differentiation between and within interval groups can be evaluated by

discriminant analysis and transfer risk, respectively. Reallocation of indi

viduals into interval groups by discriminant analysis not only indicates

similarities by geographic distance, but also suggests pattern unrelated to
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distance. Such patterns then can be used to develop alternative divisions

of the data. Groups having a large proportion of individuals classified into

neighboring groups suggest that these groups might be consolidated into a

single one. Alternative groups can be evaluated by omitting individuals in

the test alternatives from the analysis, recomputing the discriminant

functions, and classifying the test individuals into the remaining groups

(SAS Institute Inc. 1985: 321—322). For example, this procedure can be

used to test subdivisions or consolidations of geographically distant

individuals that are grouped into the same contour interval.

The latter method, transfer risk, estimates the proportion of genotypes

at one location that does not match those at another location (Campbell

and Sugano 1987; Westfall 1991). In metric traits, the number of subdivi

sions is based on a predetermined minimum risk within groups or zones

(Campbell and Sugano 1987). An application of minimum transfer risk in

multi-locus allozyme genotypes to the location of gene reserves is illu

strated in Millar and Westfall (1992, this issue, pp. 347—371).

Multi-locus patterns in four species of the mixed conifer zone in the Sierra

Nevada

With support from many individuals in the Pacific Southwest Region Tree

Improvement Program, we have analyzed geographic patterns in allozyme

data from four species of the mixed conifer zone in California's Sierra

Nevada: White fir {Abies concolor Lindl.) (Conkle and Westfall 1988),

sugar pine (Pinus lambertiana Dougl), ponderosa pine {Pinus ponderosa

Laws.), and Douglas-fir (Pseudotsuga menziesii Franco). We will also

summarize results from analyses of Douglas-fir from the northern Coast

Range in California (Conkle and Westfall 1987). The seed parents

genotyped to provide diploid data were superior trees that were well

distributed throughout the commercial range of each species.

The latitudinal range for the white fir sample is from south of Mt.

Lassen to south of Yosemite National Park (Fig. la). The ponderosa pine

sample has the widest range, from Mt. Shasta in the north to the Greenhorn

Mountains in the south (Fig. lc). Northernmost samples for Douglas-fir

and sugar pine are near Mt. Lassen (Figs, lb and d). The southermost

samples of Douglas-fir are near the southern limits of the species' distribu

tion in the Sierra Nevada (Griffin and Critchfield 1972; Fig. Id).

Individual trees were genotyped using megagametophytes. Diploid

genotypes were transformed to allelic scores and analyzed by CTSA and

discriminant analysis. Seed parent origins were identified by latitude and

longitude (nearest minute), and elevation (nearest 30 m). These three
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(a)
White fir

(Abies concolor)

Elevation

1,000 meters and below

1,000 - 2,000 meters

2,000 - 3,000 meters

3,000 meters and above

Fig. la
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(b)
Sugar pine

(Pinus lambertiana)

Elevation

1,000 meters and below

1,000 - 2,000 meters

2,000 - 3,000 meters

3,000 meters and above

36° ~

35°-

Fig.lb
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(C)
Ponderosa pine

(Pinus ponderosa)

Elevation

1,000 meters and below

)0 - 2,000 meters

I 2,000 - 3,000 meters

I 3,000 meters and above

50 100 150 200 Kilometers

Fig. lc
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(d)
Douglas-fir

(Pseudotsuga menziesii)

Elevation

1,000 meters and below

1,000 - 2,000 meters

2,000 - 3,000 meters

3,000 meters and above

36°~

35°-

Fig. Id

Fig. 1. Multi-locus contour plots of the first vector from canonical trend-surface models in

four conifer species of the mixed conifer zone in the Sierra Nevada Mountains: a) white fir;

b) sugar pine; c) ponderosa pine; and d) Douglas-fir. Contour intervals are in 0.50 standard

deviation units.
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measures of location formed the basis for the second-order trend-surface

equations.

Geographic patterning was strongest for Douglas-fir and weakest for

white-fir, both on the basis of the amount of variation described by the

model in the first vector (43% vs. 14%) and the amount of variation

described by the first three vectors (63% vs. 28%) (Table 1). In spite of the

weak patterning in white fir, a multivariate test for departures from

equilibrium (Morrison 1990: 292) was highly significant even though a

multiple locus test of linkage disequilibrium (Brown 1984) was not. There

is striking similarity in pattern for the first vectors among all four species

(Fig. la—d). Canonical analyses of the trend-surface equations indicated

that all are saddle-shaped surfaces (Box and Draper 1987: 346—350),

Table 1. Single- and multi-locus characteristics of variation in four conifer species in

California.

Region/species

Sierra Nevada

Abies concolor

Pinus lambertiana

Pinus ponderosa

Pseudotsuga menziesii

North coast

Pseudotsuga menziesii

Pseudotsuga menziesii1

N

373

167

516

158

315

374

Nr

loci

10

12

32

11

27

11

HT

0.20

0.42

0.19

0.37

0.21

0.34

Diff.

lat.

2.8

4.8

6.1

3.5

3.8

2.0

0.14

0.31

0.25

0.43

0.17

0.14

Signif.

vectors

2

2

4

2

0

2

0.28

0.44

0.40

0.63

0.35

0.24

% Correct

classif.

0.34

0.53

0.50

0.53

0.52

0.37

Shown are the total sample size (N), number of loci in the analysis, expected total hetero-

zygosities (HT) of the loci in the analysis, latitudinal differences between the northern- and

southern-most samples (in degrees), the proportion of variation in a linear combination of

alleles described the the trend-surface model in the first canonical vector R2, the total

amount of variation described the first three canonical vectors R\, the number of statisti

cally significant vectors, and the percent of individuals correctly classified to multi-vector

contour intervals by discriminant analysis.

R\ = the proportion of variation described by the trend-surface model in the first canonical

vector. These are the adjusted (unbiased) estimates (SAS Institute Inc. 1985) and are

presented so that the data of varying sample sizes and number of parameters in the models

can be compared directly.

R\ = 2£,/(l + 2£,), where £, is the fth eigenvalue and £, = R2/(l - Rj) and Rj = the

unbiased R2 for fth vector. Eigenvalues are the multivariate equivalent of the sums of

squares attributed to the model and the error sums of squares. These are summed over the

first three vectors, assuming that the error terms are the same.

1 Klamath National Forest samples (also includes samples from the Mendocino and Six

Rivers NF).

2 Mendocino, Trinity, and Shasta NF samples.
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with the long axis of the saddle oriented in a northwest/southeast direc

tion. In all species, the greatest rate of change in multi-locus frequencies in

the first vector is along the northeast/southwest axis and the next largest

on the northwest/southeast axis (cf Fig. la—d), whereas directions of

greatest change in the second or third vectors usually include elevation.

Such saddle-shaped forms of the allozyme patterns were also shared with

those of growth traits from progeny tests in California (Kitzmiller 1990)

whereby growth decreases along the Sierras to the northwest (increasing

latitude and longitude) from the location of the growth maximum at a site,

but increases to the southwest (decreasing latitude, increasing longitude,

and decreasing elevation).

Multi-vector contour interval groups were constructed by dividing each

the first three vectors into intervals above and below the mean score,

which forms eight contour intervals in six-dimensional space (three

geographic and three multi-locus dimensions). These groups, mapped over

the sample ranges, show similarity in form among the four species (Fig.

2a—d). The proportions of correctly classified individuals into the eight

groups by discriminant analysis are high relative to the random expecta

tion of the percentage correctly classified, or 1/g, where g is the number of

groups (Table 1). Because seven or eight groups are designated in each

analysis, the random classification rate is thus 0.14 or less and the

observed rates are substantially above this level. Although these propor

tions are biased upwards because the size of each group is small compared

to the number of allelic variables, they do represent the degree of multi-

locus distinctiveness in each group and do not necessarily follow trends in

clinal differentiation among groups.

Patterns are also similar in all species near Mt. Lassen and southward

to Lake Almanor (approx. 100 km NW of Lake Tahoe, Fig. 2a—d). The

Sierra crest is more diffuse around 40 °N latitude, and the region is in a

transition zone between the marine climatic influences of the Sierra

Nevada west slope and the continental climate of the Great Basin;

allozyme patterns tend to parallel that transition.

In contrast to the Sierra Nevada populations, multi-locus geographic

variation in Coast Range Douglas-fir was weak, even though the sample

spanned the Kalamath and Mendocino National Forests, ranging from the

Oregon border to Clear Lake (which is approximately 130 km north of

San Francisco) (Conkle and Westfall 1987; Kitzmiller 1990). The R2 for

the first vector was 0.43 in the Sierra Nevada populations and was 0.17

for populations in the Coast Range; /?2's for the first three vectors were

0.63 and 0.35, respectively (Table 1). Moreover, none of the vectors in

the North Coast sample were statistically significant. These results parallel

those of Merkle and others (1988) who described statistically significant,
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(a)
White fir

(Abies concolor)

Elevation

1,000 meters and below

OH 1,000 - 2,000 meters

2,000 - 3,000 meters

3,000 meters and above

Fig. 2a
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(b)
Sugar pine

(Pinus lambertiana)

Elevation

1,000 meters and below

1,000 - 2,000 meters

2,000 - 3,000 meters

3,000 meters and above

38°-

37°-

36°-

35°-

Fig.2b
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(c)
Ponderosa pine

(Pinus ponderosa)

Fig. 2c

Fig. 2. Multi-locus contour class intervals of the first three vectors from canonical trend-

surface models in four conifer species of the mixed conifer zone in the Sierra Nevada

Mountains: a) white fir; b) sugar pine; c) ponderosa pine; and d) Douglas-fir. Contour

intervals for each vector are above and below the mean. Class A contains those individuals
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(d)
Douglas-fir

(Pseudotsuga menziesii)

Elevation

I I 1,000 meters and below

CZ23 1,000 - 2,000 meters

H3K3 2,000 - 3,000 meters

BBi 3,000 meters and above

Fig.2d

below the mean for all three vectors, class B individuals below the mean for the first two

vectors and above the mean in the third, and so on to class H, which contains individuals

above the mean in all three vectors.
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but weak patterning in populations from Southern Oregon. The strongest

pattern in multi-locus frequencies in the California North Coast data was

east/west with some elevational differentiation, which follow existing

breeding zone subdivisions for Douglas-fir in the region (Kitzmiller 1976;

Kitzmiller 1990). We also analyzed patterns in Douglas-fir bud tissue

allozymes of parent trees from the Trinity and Mendocino National

Forests, plus those of the Shasta NF to the east. Levels of differentiation

were similar to those in the Klamath data: the R2 for the first vector was

0.14 and for the first three combined, 0.24. Moreover, geographic patterns

in the area of overlap between the two datasets were nearly identical.

In these allozyme data, the correlation between an allele and the

canonical model only occasionally exceeds 0.25. So, although very small

proportions of the variability in any one allele is associated with geogra

phy, the aggregate pattern is much stronger (Table 1). Therefore, these

loci and their alleles behave much in the way as that expected for quantita

tive trait loci.

Because large numbers of the resolved loci are not common to all of

the analyses, we cannot easily test frequencies of associations and make

generalizations regarding loci that pattern among all four species and

regions. However, some of the enzymes associated with glycolysis and the

Krebs cycle (ACO, IDH, MDH, 6PGDH, and PGM), and LAP2 and

GOT pattern in most of the samples.

Geographic patterns in allozymes approximate those patterns for mor

phological traits, but matched comparisons are difficult to make. Even

though progenies from the trees subjected to allozyme analyses are

planted in tests, they are split into subsets and planting sites, and geno

type-by-environment interactions and the allocation of families among sets

make comparisons difficult. In spite of these encumbrances, current

progeny test results in Klamath Mountains sites suggest that geographic

differentiation in most family sets is on the same order as that suggested

by the allozyme data (Kitzmiller 1990).

We have also compared allozyme and morphological patterns in

ponderosa pine, where parent trees in the allozyme analysis described

above were assessed in a three-year nursery test. Open-pollinated family

means of 19 morphological and growth traits were analyzed by the same

procedures used in the allozyme study. The trend-surface model in the

first vector described 26% of the additive genetic variance in a linear

combination of nursery traits, and the first three vectors described 36% of

the variation, which are very similar in magnitude to proportions found in

the allozyme data (Table 1). Three statistically-significant, saddle-shaped

vectors in the nursery data described 44% of the variation in the four

allozyme vectors, whereas four allozyme vectors accounted for 62% of the
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variation in the nursery vectors. Contour intervals, classification percent

ages from discriminant analysis, and transfer risks were similar in both

data sets and together suggest that California Seed Zones in the central

Sierra (Buck and others 1970) are conservative for ponderosa pine and

could be consolidated.

An example: breeding zone designation in Sierra Nevada Douglas-fir

Results from the analyses of the Sierra Nevada Douglas-fir sample

described above contributed to the development of breeding zones, which

embrace much of the commercial range of the species in this region of

California (Kitzmiller 1976). Allozyme variation in these data is among

the greatest of the four Sierran species: total heterozygosity is 0.37, and

i?2's for the first and the first three canonical vectors are 0.37 and 0.63,

respectively. The rate of change in multi-locus frequencies with geographic

distance is largest in the northeast/southwest direction and, at right angles

to this direction, is much lower (Fig. Id). The direction of maximum

change in the second vector is similar to that in the first, but the second

largest rate of change is by elevation.

The initial step in applying these results to the formation of zones was

to subdivide the first two statistically significant vectors each into theoreti

cal thirds: 0.5 standard deviations (SD) below, ± 0.5 SD around, and 0.5

SD above the mean. This subdivision resulted in nine classes or joint

contour intervals in five-dimensional space (Table 2 and Fig 3; group G

contained no trees within its interval). Maximum differences in multi-locus

genotypes were predicted to be between groups A and I.

Subdivisions among the groups are largely by latitude and elevation.

Because of the saddle-shaped structure of the data, groups A and B are at

both the northern and southern extremes of the sample (Figs. Id and 3).

However, these two groups are below 1470 m in the north and above that

elevation in the south. Rates of change in pattern are most rapid between

the mid elevations on the west slope of the northern Sierras (Group I) to

the southern Cascades (A—C; Fig. 3). Groups D through F subdivided by

elevation: D and E divides into contour intervals at 1070 m, and E and F

at 1470 m. Groups H and I are located in the elevation band described by

E. A heterogeneous assemblage of groups are found in seed zone 523,

again suggesting a transition between the northern Sierra to the west and

the Cascades to the northwest. Discriminant analysis shows similarity

between groups D and E, E and F, and E and H (Table 2).

Breeding zones were developed from these allozyme patterns, ecologi

cal and geoclimatic information, and seed production needs. The major

demand for seed is anticipated in California Seed Zones 524, 525, and
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Table 2. Classification percentages for eight multi-locus allozyme groups in Sierra Nevada

Douglas-fir

From

class

A

B

C

D

E

F

H

I

Total

A

43

8

4

B

14

62

4

8

Percent correctly classified

Percent classified into class

C

29

12

62

7

3

8

D

12

8

56

14

11

E

14

12

15

11

52

17

30

F

9

33

17

H

8

15

21

8

52

17

I

3

4

2

25

7

67

Total

number

7

8

13

27

58

14

27

6

158

Table 3. Classification percentages for five candidate seed zones in Sierra Nevada Douglas-

fir

From

class

522

523

524/526L

524/526M

524/526H

Total

522

53

10

3

10

523

13

63

14

15

10

Percent correctly classified

Percent classified into class

524/526L

3

52

10

524/526M

13

26

19

69

30

524/526H

17

11

5

3

50

Total

number

30

19

21

71

10

151

62

Classes 522 and 523 refer to the respective California Seed Zones. Classes 524/526L, M,

and H refer to the low (< 1070 m), middle (> 1070 < 1470 m), and high (> 14870 m) ele

vation subdivisions of the pooled California Seed Zones 524, 525, and 526.

526 (Fig. 3; Buck and others 1970), which compose most of an existing

breeding zone (Kitzmiller 1976). The allozyme results support that group

ing, but also suggest three subdivisions by elevation: below 1070 m,

between 1070 and 1470 m, and above 1470 m. A fourth zone was set to

encompass Seed Zone 523, with no current subdivisions.
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124° 122° 120° 119° 116°

Douglas-fir

(Pseudotsuga menziesii)

35'

Fig. 3. Multi-locus classes in Sierra Nevada Douglas-fir, developed from intervals of the first

two canonical vectors. Groups A-C, D-F, and G-I represent contour intervals in the first

vector and the three subdivisions in each (e.g., A, B, and C) represent subdivisions in the

second (see the text).



304

Discriminant allocation results for these zones plus that for Seed Zone

522 are shown in Table 3. The proposed zones formed moderately

cohesive classes in comparison to the groups formed by contour intervals

(Tables 2 and 3). For the proposed central Sierra zone (Zones 524—526),

misclassifications were highest among adjacent elevational groups. More

over, individuals from the northermost zone, 522, tended to classify into

the middle to high elevation classes in the central Sierra group and in the

eastern zone, 523.

Future prospects

Statistical stability ofthe analyses

An important issue to resolve is the minimum number of loci necessary to

represent patterns. A procedure similar to that used by Thorpe (1985,

1987) could be applied to establishing minimum numbers. Thorpe deter

mined optimum numbers of traits by bootstrap selection of varying

numbers of traits (Efron 1979) and then correlating patterns at the

differing trait numbers with the pattern generated from all the traits. In

this work, using independent metric traits that were significantly corre

lated with geography, he found that about 10 randomly selected traits

were sufficient for simple clines and 20 were needed to describe complex

patterns.

An additional issue is the stability of the patterns, which again can be

addressed by adapting procedures used in Thorpe (1987). A measure of

stability can be assessed by repetitively resampling the data by bootstrapp

ing, approximately 100 times. Then, for each sample, we compute pre

dicted scores of the canonical trend-surface model and the correlation

between predicted scores for the original model and those of the boot

strapped sample. From these bootstrapped samples, we compute a mean

correlation with the pattern in the original dataset and 95% confidence

interval. Limitations on the widespread use of this method are the daunt

ing demands on time and computing resources.

Further analytical approaches

Spatial autocorrelation methods have received limited attention in forest

genetics (Epperson 1990; Epperson 1992, this issue, pp. 257—278). A

potentially useful approach is the Mantel test (Manly 1986) of the correla

tion between genetic and geographic distance matrices, using the residuals
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from trend surfaces (Bocquet-Appel and Sokal 1989). Significant correla

tions would suggest localized population structure, perhaps related to

factors not considered in the original trend surface models.

DNA polymorphisms

Recent surveys of restriction fragment length polymorphisms (RFLPs) of

nuclear and plastid DNA suggest that a greater number of polymorphic

loci can be obtained than with allozymes (Neale 1992, this issue, pp.

391—407). If so, then additional loci, some representing different parts of

the genome than allozyme loci, would be available for studies of population

structure. However, if such polymorphisms only result from mutations

in the third codon position or from non-coded regions, their utility in

describing geographic patterns will be limited.

Conclusions

In contrast to single locus results, multi-locus analyses reveal statistically

significant geographic patterns among tree populations. These multi-locus

surfaces tend to follow major geoclimatic patterns in California and also

parallel patterns in metric traits. Consequently, these allozyme data can

contribute useful information to the formation of breeding zones.

Perhaps the most important questions raised by our results and those

from CVA pertain to the causes of the patterns. The geographic patterns

may result from chance and historical events. But if they result from

selection or selection and drift, can we make global statements about

genetic variation in populations within a specific geographic region? If so,

can mechanistic models be constructed to explain the patterns, rather than

the empirically based trend-surface models?
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