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Abstract By conservation of mass, the mass of wildland fuel that is pyrolyzed and combusted must equal
the mass of smoke emissions, residual char, and ash. For a given set of conditions, these amounts are
fixed. This places a constraint on smoke emissions data that violates key assumptions for many of
the statistical methods ordinarily used to analyze these data such as linear regression, analysis of
variance, and t tests. These data are inherently multivariate, relative, and nonnegative parts of a whole
and are then characterized as so‐called compositional data. This paper introduces the field of
compositional data analysis to the biomass burning emissions community and provides examples of
statistical treatment of emissions data. Measures and tests of proportionality, unlike ordinary correlation,
allow one to coherently investigate associations between parts of the smoke composition. An alternative
method based on compositional linear trends was applied to estimate trace gas composition over a range of
combustion efficiency that reduced prediction error by 4% while avoiding use of modified combustion
efficiency as if it were an independent variable. Use of log‐ratio balances to create meaningful contrasts
between compositional parts definitively stressed differences in smoke emissions from fuel types
originating in the southeastern and southwestern United States. Application of compositional statistical
methods as an appropriate approach to account for the relative nature of data about the composition of
smoke emissions and the atmosphere is recommended.

1. Introduction

Wildland fire is a complex phenomenon of chemical and physical processes. Two of the chemical processes
which are key to wildland fire are pyrolysis and combustion (Shafizadeh, 1984; Ward, 2001). During pyro-
lysis, a solid wildland fuel is heated and breaks down into constituent parts consisting of gases, tars, and a
solid material called char (Di Blasi, 2008). During combustion, pyrolysis products react with oxygen releas-
ing energy and a large assortment of gaseous and solid chemical compounds (e.g., Akagi et al., 2011;
Andreae & Merlet, 2001; May et al., 2014). Oxidation reactions involving atmospheric gases such as nitro-
gen occur (Crutzen & Brauch, 2016; Lobert et al., 1990). By conservation of mass, the mass of the products
is equal to the sum of the masses of the reactants. For the moment we assume that all products can be mea-
sured with complete accuracy. The measured masses of the individual products cannot exceed the total
mass and are thus numerically related. Measuring a subset of the complete list of products simply makes
the total mass unknown but does not change the inherent numerical dependency. For example, a simplified
balanced global reaction describing combustion of wood containing water and no inorganic content, shows
1 kg dry wood (M = 0) produces 1.82 kg CO2 and 0.32 kg H2O for a total mass of products of 2.14 kg
(Byram, 1959)

4C6H9O4 þ 25O2 þ 0:322MH2Oþ 94N2½ �→
18H2Oþ 24CO2 þ 0:322MH2Oþ 94N2½ � þ energy:

(1)

Because of the chemical complexity of wood, Byram approximated the proportion of C, H, and O atoms in
wood by C6H9O4. Complete combustion with no dissociation is an idealized situation which explains the
maximum product mass possible. Incomplete combustion and thermal dissociation will yield additional
products and less CO2. The foliage of woody plants has a different chemical composition from the wood
component which can affect both combustion and combustion products (Hough, 1969; Jolly et al., 2016;
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Rogers et al., 1986). The addition of elements such as N and S, and a host of other elements (many
inorganic) to the wood, along with inclusion of (a) the oxidation of atmospheric N by fire (Paul et al.,
2008) and (b) incomplete combustion changes equation (1) but does not change conservation of mass.
The total mass of the products (T) can be partitioned to consist of CO, CO2, particulate matter (PM), other
gases, char, and ash

T ¼ COþ CO2 þ other gasesþ PMþ charþ ash: (2)

If the masses in equation (2) are transformed into mass ratios by dividing by the total of CO and CO2 as in

T
COþ CO2

¼ CO2 þ COþ other gasesþ PMþ charþ ash
COþ CO2

¼ CO2

COþ CO2
þ CO
COþ CO2

þ other gases
COþ CO2

þ PM
COþ CO2

þ char
COþ CO2

þ ash
COþ CO2

;

¼ MCE þ CO
COþ CO2

þ other gases
COþ CO2

þ PM
COþ CO2

þ char
COþ CO2

þ ash
COþ CO2

(3)

it can be easily seen that modified combustion efficiency (MCE) MCE = CO2/(CO+CO2) is part of the total
and numerically dependent on the other parts because T is fixed. The above example places the masses on a
relative basis to the amount of CO and CO2 produced by a fire, demonstrably two of the three primary
products (water being the third). Emissions data have been expressed as relative measures such as emission
ratios and emission factors, concentrations, mixing ratios, mole fractions, mass fractions, and volume
fractions for a very long time (e.g., Darley et al., 1966; Gerstle & Kemnitz, 1967). However, the statistical
properties of relative data have not typically been considered when these data have been analyzed.
Compositional data analysis (CoDA) is an approach that explicitly considers the statistical properties of rela-
tive data (Aitchison, 1986). Compositional data are contained in the positive orthant of multidimensional
real space (Barceló‐Vidal et al., 2001). (An orthant is the multidimensional analogue of a quadrant in the
more familiar two‐dimensional Cartesian space.) A recent paper presented analysis of emissions data using
positive matrix factorization, which recognized the nonnegative nature of emissions data (Sekimoto et al.,
2018). From a compositional point of view, stoichiometric equations such as (1) have characteristics that
discourage, for example, measuring association (correlation) between parts of the composition in the
ordinary way (Egozcue et al., 2014).

Individual gases produced during pyrolysis and combustion have long been associated with the different
phases or conditions (preignition, flaming, smoldering, and mixed phase) under which the pyrolysis and
combustion have occurred (Lobert & Warnatz, 1993; Tangren et al., 1976). Combustion efficiency (CE)
and MCE are indices developed to describe the completeness of the conversion of the carbon contained
in the fuel to CO2 (Ward et al., 1980; Ward & Hao, 1991; Yokelson et al., 1997). Theoretically, CE
includes all carbon produced; however, the challenge to account for all products and the predominance
of CO2 and CO in smoke emissions led to the development of MCE (Ward & Hao, 1991). It has become
common practice to correlate emission factors of products other than CO2 and CO with MCE
(e.g., Amaral et al., 2014; Burling et al., 2010; Ferek et al., 1998; Goode et al., 2000; Janhäll et al.,
2010; McMeeking et al., 2009; Shen et al., 2013; Urbanski, 2013; Ward & Hao, 1991; Yokelson et al.,
2013) using ordinary linear regression. While linking combustion products to CE and MCE is physically
sound, the approach to statistical analysis has to date often ignored the intrinsic multivariate and relative
nature of these data. As shown above by equation (3), MCE as an explanatory variable is automatically
correlated to every other wildland fire emission (response variable) by its formulation, not because of
physical causation.

Aitchison (2003) showed for illustration how two scientists examining the correlation between animal, vege-
table, mineral, and water proportions of a sample can arrive at very different correlations (and conclusions)
if one scientist dried the sample removing all water before calculating the correlations between the compo-
nents. We present a similar example (Table 1) using emission factors previously reported (Radke et al., 1988).
The original emission factors (g/kg) comprise a composition of D parts which were put on a consistent
relative scale by applying the closure operation
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C xð Þ ¼ x1; x2;…; xD½ �
∑D

i¼1xi
(4)

which divides the emission for each gas (xi) by the sum of emissions and express the data as fractions of a
fixed total, this being 1 by default to be expressed in proportions but in general any other total by simple
multiplication (e.g., C(x) � 102 for percentages or C(x) � 106 for parts per million). After closure, the CO2

emission factor of 1,664 g/kg becomes the proportion 0.948.

Regardless of the total, it is important to note that the resulting relativized data vector is equivalent to the
original emission factors and lives in what is known as a D part simplex and, hence, statistical analysis on
any equivalent representation of the data should provide the same results. In the example in Table 1, D =
8 for the full composition. The familiar Pearson correlation coefficient (r) was then calculated for all pairs
of gases. In the full composition, CO was negatively correlated with CO2 (r = −0.88), positively correlated
with C2H6 (0.69), and not correlated with C3H8 (0.06). The emission factor for CO2 was then removed from
the full composition as if it had not been measured and the closure operation was performed on the subcom-
position (subset), producing the second set of values, and correlation between the pairs was calculated.
Correlation coefficients which changed appreciably are highlighted. Note that CO is now negatively corre-
lated with C3H8 (−0.67) and not correlated with C2H6 (−0.10). Similarly, CH4 was negatively correlated with
C2H3 in the full composition (−0.53) and not correlated (0.01) when CO2 is not in the composition. The point
of this illustration is that this index (Pearson correlation coefficient) that is generally trusted as a measure of
pairwise association can produce different results depending on something that should not affect it. This is
an artifact not related to the actual relationship between the variables. Hence, it is not a reliable measure

Table 1
Example Illustrating How Ordinary Correlation of Relative Data Such as Emission Factors Produces Spurious Results

Emission factors (g/kg)

CO CO2 CH4 C3H6 C2H6 C3H8 C2H3 PM

74 1664 2.4 0.58 0.35 0.21 0.32 13.5
75 1650 3.6 0.46 0.55 0.32 0.21 23.0
106 1626 3.0 0.70 0.60 0.25 0.22 6.1
89 1637 2.6 0.08 0.56 0.42 0.19 20.2

Full composition (after closure C)
4.22E−2 9.48E−1 1.37E−3 3.30E−4 1.99E−4 1.20E−4 1.82E−4 7.69E−3
4.28E−2 9.41E−1 2.05E−3 2.62E−4 3.14E−4 1.83E−4 1.20E−4 1.31E−2
6.08E−2 9.33E−1 1.72E−3 4.02E−4 3.44E−4 1.43E−4 1.26E−4 3.50E−3
5.09E−2 9.35E−1 1.49E−3 4.57E−5 3.20E−4 2.40E−4 1.09E−4 1.15E−2

No CO2 subcomposition
8.10E−1 2.63E−2 6.35E−3 3.83E−3 2.30E−3 3.50E−3 1.48E−1
7.27E−1 3.49E−2 4.46E−3 5.33E−3 3.10E−3 2.04E−3 2.23E−1
9.07E−1 2.57E−2 5.99E−3 5.13E−3 2.14E−3 1.88E−3 5.22E−2
7.87E−1 2.30E−2 7.08E−4 4.95E−3 3.72E−3 1.68E−3 1.79E−1

Pearson correlation
CO2 Full (F) −0.25 0.18 −0.93 −0.49 0.82 0.25
CO F −0.88 −0.01 0.19 0.69 0.06 −0.44 −0.68

Sub (S) −0.59 0.40 −0.10 −0.67 −0.03 −1.00
CH4 F 0.19 0.58 0.12 −0.53 0.31

S 0.29 0.37 0.00 0.01 0.53
C3H6 F −0.17 −0.92 0.51 −0.71

S −0.36 −0.95 0.61 −0.47
C2H6 F 0.54 −0.93 −0.01

S 0.38 −0.92 0.09
C3H8 F −0.81 0.65

S −0.53 0.72
C2H3 F −0.34

S 0.01

Note. Data from Radke et al. (1988). Shading identifies the gases for which the correlation coefficient changed by 0.25 or
more between the full composition and the subcomposition.
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with this type of data, regardless of the magnitude of the difference in a particular case, which will be arbi-
trarily big or small. That the interpretation of these changing correlations could lead to spurious conclusions
is well known (Pearson, 1896). This simple example illustrates the problem using correlation with relative
data. Linear regression utilizes correlation so it is also affected by this constraint: measuring associations
in terms of proportionality is a coherent and meaningful alternative to ordinary correlation for composi-
tional data (Egozcue et al., 2014, 2018; Lovell et al., 2015).

The use of predictions resulting from correlations and linear regressions that do not account for the relative
nature of emissions data may produce misleading estimates in emissions inventories developed by various
regulatory agencies. This is true for operational tools such as the Fire Emissions Production Simulator
and its successors (Anderson et al., 2004) as well as the First Order Fire Effects Model and its successors.
It also represents just one of many sources of potential error in emissions calculations (Ottmar et al.,
2008; Surawski et al., 2016). In this paper we therefore propose a different approach to analyze emissions
data that reflects their compositional nature. A well‐principled methodological body to analyze composi-
tional data has been developed in the past 30 years, and this is an active area of statistical research so we have
chosen to apply it to fire emissions data, in particular gas‐phase emissions. Interestingly, it has been success-
fully applied in varied fields but appears to have seldom been applied to combustion or emissions data
(Bandeen‐Roche, 1994; Billheimer, 2001; Buccianti & Pawlowsky‐Glahn, 2006; Speranza et al., 2018).

The relative nature of emissions data defines emissions data as compositional data, which are coherently
analyzed using CoDA (Aitchison, 1986; Barceló‐Vidal et al., 2001; Lovell et al., 2015; Pawlowsky‐Glahn,
Egozcue, & Tolosana‐Delgado, 2015). CoDA methodology has three underlying principles. The first is scale
invariance—vectors with proportional positive components represent the same composition, and form what
is known as an equivalence class. This means changing the units should not change relative relationships
between the parts nor affect results and scientific conclusions. The second is that inferences about subcom-
positions, that is, smaller compositions formed from subsets of parts, must not contradict the inferences from
the full composition (as in the example in Table 1). The third principle states that the order of the parts of the
composition must not affect the inferences. While the initial work on CoDA explicitly assumed in the defini-
tion of a composition that the parts sum (are closed) to a constant total, theory has developed to show that
this is only a particular representation of the data in a simplex and equivalent nonclosed compositions carry
the same relative information (Barceló‐Vidal & Martín‐Fernández, 2016). So the “conservation of mass”
argument presented earlier is not necessary for emissions data to be considered compositional as shown
by Egozcue (2009). The structural relationship and interdependence between MCE and other emissions as
shown in (3) still holds.

Aitchison (1982) showed that a meaningful approach to compositional data is to analyze log ratios of
the parts, which carry the relative information. Aitchison (1986) defined the two basic operations of
perturbation (⊕, analogous to addition or translation with ordinary real‐valued data)

z ¼ x⊕p ¼ C x1�p1;…; xd�pd½ � (5)

and power transformation (⊗, analogous to multiplication by a scalar)

z ¼ λ⊗x ¼ C xλ1;…; x
λ
d

� �
(6)

where x is the initial composition, p is a perturbation vector, and λ is a constant. These operations are
foundational to CoDA.

In CoDA today, in order to use familiar statistical techniques such as exploratory data analysis, linear regres-
sion, multivariate analysis of variance, and other multivariate techniques, the mainstream approach is to
transform the parts from the simplex to real numbers using isometric log‐ratio (ilr) coordinates (Egozcue
& Pawlowsky‐Glahn, 2005; Mateu‐Figueras et al., 2011; Pawlowsky‐Glahn, Egozcue, & Tolosana‐Delgado,
2015; van den Boogaart & Tolosana‐Delgado, 2013). The linear algebra theory supporting these transforma-
tions also provides the underpinnings for “standard” or “classical” statistics routinely used in the sciences
(Graybill, 2002). Several texts describe the theory and methods of compositional data analysis (Aitchison,
1986; Filzmoser et al., 2018; Pawlowsky‐Glahn & Buccianti, 2011; Pawlowsky‐Glahn, Egozcue, &
Tolosana‐Delgado, 2015; van den Boogaart & Tolosana‐Delgado, 2013). Software to perform
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compositional data analysis is available, including the stand‐alone point‐and‐click CoDaPack
package (Thió‐Henestrosa & Comas, 2016) (http://www.compositionaldata.com/codapack.php) and com-
prehensive libraries on the open‐source R statistical computing system (R Core Team, 2018): compositions
(van den Boogaart & Tolosana‐Delgado, 2013), robCompositions (Templ et al., 2011), and zCompositions
(Palarea‐Albaladejo et al., 2014; Palarea‐Albaladejo & Martín‐Fernández, 2015).

The above considerations borne in mind, the objectives of this manuscript are to reanalyze the Burling
et al. (2010) emissions factors data to (1) determine if parts (individual gases) were proportional to each
other (in place of correlated in the usual way), (2) determine if a compositional linear trend can be used
to model the data as CE changes (in place of ordinary linear regression using MCE), and (3) determine if
the composition of the gases differed between fuel types using analysis of variance within a CoDA frame-
work. We hope to demonstrate that the CoDA approach can shed as much or more light on the relation-
ships in and between the emissions data by applying techniques consistent with the nature of the data
instead of using simple linear regression with MCE thus avoiding artifacts derived from the nature of
the data.

2. Statistical Methods

Burling et al. (2010) reported emission factors for 18 gases measured using an open‐path Fourier transform
infrared spectroscopy (FTIR) spectrometer and characteristics of the combustion (fuel moisture content, fuel
consumption, andMCE) for 65 laboratory fires (observations) in 15 different wildland fuel types. Each of the
65 observations comprised a vector xi= [x1…x18]iwhere parts x1…x18 were the measured emission factors for
CO2, CO, CH4, C2H2, C2H4, C3H6, CH3OH, HCOOH, CH3COOH, HCHO, C4H4O, NH3, NO, NO2, HONO,
HCN, HCl, and SO2, respectively. In actuality, these 18 gases were a subcomposition of a much larger com-
position of gaseous and solid emissions sampled from these experimental fires by a variety of methods and
instruments described elsewhere (Burling et al., 2010; Chang‐Graham et al., 2011; Gilman et al., 2015;
Hosseini et al., 2010, 2013; Roberts et al., 2010; Veres et al., 2010; Warneke et al., 2011; Weise et al., 2015;
Yokelson et al., 2013). The full composition for this experiment consisted of over 100 parts. The data set
resulted from a laboratory study at the United States Forest Service's Missoula Fire Sciences Lab. This Fire
Sciences Lab study characterized smoke emissions related to prescribed burning of 15 different shrub and
woodland fuel types from the southeastern and southwestern Unites States and described the composition
of gas and particulate matter in detail. In the present paper, 18 gases were reanalyzed, which had previously
been measured using an open‐path FTIR spectrometer (Burling et al., 2010) and then adjusted to field
values using MCE (Yokelson et al., 2013). While it is possible to measure H2O (gas) in smoke emissions
using FTIR and while it is a significant product of combustion that can influence flame processes
(Ferguson et al., 2013), emission factors for H2O are not typically reported. The gas‐phase data analyzed
here are originally available as supporting information to the Yokelson et al. (2013) paper. Furan
(C4H4O) and hydrochloric acid (HCl) had one and four (1.5% and 6%) instances of below detection limit
values, respectively. In order to facilitate statistical analysis, the log‐ratio EM algorithm included in the
zCompositions package was used to impute the below detection limit values with realistically small values
while accounting for their compositionality (Palarea‐Albaladejo & Martín‐Fernández, 2015). In the follow-
ing, we introduce the basic compositional analyses conducted using these data that are analogous to those
commonly conducted on emission data.

2.1. Summary Statistics and Proportionality Associations

The data were closed and compositional summary statistics consisting of the center (geometric mean) and
the variation array (Aitchison, 1986) were estimated. The center (g) is the closed vector of geometric means
for each part estimated as

bg ¼ C bg1;bg2;…;bgD½ � (7)

where bgj ¼ ∏n
i¼1xij

� �1=n
; j ¼ 1; 2;…;D . While there are different measures for the variability of composi-

tional data (van den Boogaart & Tolosana‐Delgado, 2013), a common summary is given by the variance
(τij) of the log‐ratio of parts i and j; the variation matrix V is a D x D symmetric matrix containing elements
estimated by
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bτij ¼ var ln
xi
xj

� �
(8)

where i and j range from 1 to D and var is the usual variance. The total (or metric) variance (Mvar) can be
obtained from them as (Egozcue & Pawlowsky‐Glahn, 2011; Pawlowsky‐Glahn & Egozcue, 2001):

Mvar xð Þ ¼ ∑
i
∑
j
bτij ¼ ∑

D

i¼1
var clri xð Þ½ � (9)

where the centered log‐transformation (clr) and its inverse are

clr xð Þ ¼ ln
x1

gm xð Þ; ln
x2

gm xð Þ;…; ln
xD

gm xð Þ
� 	

; gm xð Þ ¼ ∏
D

i¼1
xi

� �1=D

clr− 1 xð Þ ¼ C exp clr xð Þð Þ½ �
(10)

and the metric standard deviation (Mstd) is
ffiffiffiffiffiffiffiffi
Mvar
D− 1

q
. In general, the smaller the values ofbτij, the more propor-

tional are the parts involved.

For noncompositional data, relationships between variables are ordinarily explored by examining corre-
lation (parametric or nonparametric) between the variables. For compositional data, proportionality is
the preferred measure to examine relationships between parts of a composition in accordance with their
relative scale (Aitchison, 1986; Lovell et al., 2015). As stated in Lovell et al. (2015), “measures of
association produce results regardless of the data they are applied to‐it is up to the analyst to ensure that
the measures are appropriate to the data.” They further state that proportional relative abundances imply
that the absolute abundances are proportional. Balance association (or b‐association for short) was
developed as a consistent statistical concept of proportionality (Egozcue et al., 2018). A measure of
b‐association, ϕ, has been defined and used to formulate a statistical hypothesis test of equality to ±1
of the slope coefficient of a major or standardized major axis regression model (Warton et al., 2006)
relating one log contrast of parts to another log‐contrast. This is the so‐called unitary slope test, with
significance based on a standard F distribution (Egozcue et al., 2018; Lovell et al., 2015). Rejection of
the hypothesis suggests that the data are not compatible with b‐association (or proportionality) between
the parts; however, it does not distinguish whether the slope is positive or negative. Following Egozcue
et al. (2018), we rejected the hypothesis when the estimated slope was negative and reported the p value
as a minus sign (−).

2.2. Compositional Linear Trend Analysis

Since its introduction MCE has frequently been correlated to single emission factors (EF) by linear regres-
sion EF = β0+β1(MCE) (Ward & Hao, 1991), which assumed that the predictor variableMCE could be trea-
ted separately from the response variable EF. As shown above in equation (3), this is not the case, so an
alternative method to estimate emission factors developed for compositional data was applied instead.
Deriving principal components from multivariate data is a common practice. They were used in von
Eynatten et al. (2003) to develop the compositional linear trend method, which we apply to our data using
recently developed R code (Rockwell et al., 2014). The basic idea is that compositional data can be projected
onto the first principal component to produce a linear trend provided that the first principal component
explains a large proportion of the total variance. The projected (or fitted) composition can be transformed
back to the original units (Pawlowsky‐Glahn, Egozcue, Olea, & Pardo‐Igúzquiza, 2015). We chose to apply
this method because it has been well established that the composition of smoke changes as the CE changes
(Byram, 1957). If the linear trend method works, it could potentially be applied to other data sets to
predict composition.

When originally developed, the linear trend method was applied to geological data to model the composi-
tional changes in granitic rocks as they weathered from fresh parent material. The unweathered parent
material served as the starting point of the linear trend, which is formulated in the simplex as
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x ¼ a⊕ k⊗pð Þ ¼ C a1p
k
1;…; adp

k
d

� �
(11)

and estimated by

bx ¼ a⊕ k⊗clr− 1 v1½ �� �
(12)

where a is the starting composition, k is the latent trend, p is a perturbation vector estimated by clr−1(v1),
v1 is the first eigenvector derived by noncentral principal component analysis of the original n observa-
tions x1,…,xn after they were adjusted to the starting point a by clr(x1) − clr(a),…,clr(xn) − clr(a).
Noncentral principal component analysis indicates the variances were maximized relative to a instead
of to the mean (von Eynatten, 2004). The full mathematical development can be found elsewhere (von
Eynatten et al., 2003). The linear trend method describes changes within a compositional data set that
are not attributed to variables external to the composition. In the present study, we evaluated three com-
positions as the potential starting composition a: the highest (High) and lowest (Low) MCE compositions
and the center composition of the data set. Linear regressions were not fit for CO and CO2 since they
form MCE. In order to compare the performance of the linear trend to the ordinary linear regression,
common error measures were calculated using the observed and predicted emission factors for each gas
for each linear regression and linear trend. The estimated values were scaled to the original units
(Pawlowsky‐Glahn, Egozcue, Olea, & Pardo‐Igúzquiza, 2015). The normalized mean absolute error
(NMAE) and root‐mean‐square error (RMSE) of the observed and estimated values were calculated using
the modStats function in R (Carslaw, 2015; Carslaw & Ropkins, 2012). Since multivariate linear regression
is the extension of linear regression to data with correlated response variables (Fox & Weisberg, 2018,
2019), we performed a multivariate linear regression with all trace gases except CO and CO2 as the depen-
dent variables and MCE as the predictor variable. The fitted values from the multivariate linear regression
were identical to the individual linear regressions so the error measures were identical and are not pre-
sented. Multivariate linear regression, even though it takes into the account the correlation structure
between the parts of the composition, was still subject to the fact that the MCE ratio was not independent
of the other gases in the mixture. To examine the fits of the linear trend and multivariate linear regression

for the entire composition, a coefficient of determination (R2
CLT ) for the linear trend (Cayuela‐Sánchez

et al., 2019; van den Boogaart & Tolosana‐Delgado, 2013) and the squared multiple correlation coefficient

(R2
LR ) for the multivariate linear regression (Mardia et al., 1979) were estimated. The metric standard

deviation in the original emission factor units exp(Mstd) and the RMSE of the multivariate linear regres-
sion (calculated as the square root of the mean of the trace of the residual matrix) estimated RMSECLT
and RMSELR, respectively.

2.3. Multivariate Analysis of Variance

Analysis of variance was used to test for differences in the composition of the gases according to fuel type.
Note that because of experimental design deficiencies resulting in a singular design matrix, it was not
possible to consider fuel type and region simultaneously. Egozcue and Pawlowsky‐Glahn (2005) devised a
procedure to obtain sets of ilr coordinates by sequential binary partitioning that can be used to represent
comparisons between scientifically meaningful subsets of parts of a composition. These ilr coordinates
known as compositional balances ezk are defined as

ezk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rksk

rk þ sk

r
ln

xi1xi2…xirk

� �1=rk

xj1xj2…xjsk

� �1=sk
; k ¼ 1;…;D− 1 (13)

where the log‐ratio compares the geometric mean of rk parts in one subset with the geometric mean of
sk parts in another subset. Sequential binary partitioning of a composition containing D parts results in
D‐1 balances ezk, k = 1, … , D‐1. The emissions data were then transformed into balance coordinates that
partitioned the composition into various meaningful subsets of parts. The matrix used to define the sub-
sets contains 1, −1, or a blank to indicate that the part is in subset 1 (numerator), subset 2
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(denominator), or absent from the log ratio, respectively. Once the data were transformed into balance
coordinates, analysis of variance was used on them to test for differences in mean according to fuel
type. Given the large number of statistical tests performed in this analysis, we chose to adjust the p
values to control for false discovery rate (Benjamini & Hochberg, 1995). Statistical significance was
assessed at the usual 5% level.

3. Results and Discussion
3.1. Summary Statistics

MCE ranged from 0.91 for the lit fuel type to over 0.98 for the oas fuel type. The geometric mean of MCE
for the data set was 0.96. (Details of the fuel types and fuel consumption in the individual fires have been
presented in the original publications (Burling et al., 2010; Hosseini et al., 2010, 2013)). Numerical differ-
ences in the MCE values reported by Burling et al. (2010) and Yokelson et al. (2013) due to adjustment for
field measurements are described in the latter reference. Unsurprisingly, the chemical compositions
changed as CE decreased from high to low (Table 2). Examination of the compositional makeup of the
low MCE, geometric mean MCE, and high MCE revealed that relative abundance of all gases except
CO2, NO, and NO2 increased as the MCE decreased. By definition, CO2 increases and CO decreases as
the MCE increases. Previously reported gas species associated with flaming combustion (higher MCE)
included CO2, NO, NO2, HCl, SO2 and HONO; those usually associated with smoldering combustion
(lower MCE) include CO, CH4, NH3, HCN, C3H6, CH3OH, CH3COOH, and C4H4O (Burling et al.,
2010; Goode et al., 2000). Of the species we measured, the remaining ones have been associated with both
flaming and smoldering combustion.

Large variation in the emission factor for HCl for this data set was previously reported (Burling et al.,
2010). The large log‐ratio variance associated with HCl was also readily apparent in a biplot (Aitchison
& Greenacre, 2002) produced from the first two principal components of the data set (not shown). This
can be also seen with its clr‐variance (Table 2). The clr‐variance for HCl (1.50) was approximately 25%
of the total variance (6.09). The clr‐variances for the remaining 17 parts were similar in size, yet small
compared to HCl. While there were several low values of bτij that suggested proportionality, only a few
of the unitary slope tests were not statistically significant (Table 2) suggesting that some of the gases
might be pairwise proportional. Potential pairwise proportionality relationships include: (1) propene
(C3H6) with acetic acid (CH3COOH), formaldehyde (HCHO), furan (C4H4O), ammonia (NH3), and
HCN (hydrocyanic acid), all of which have been associated with smoldering combustion; and (2) acetic
acid with furan, nitrous acid (HONO) and HCN. The mean log ratios of the five gases potentially propor-
tional with propene ranged from −0.62 (HCN) to 1.61 (acetic acid) suggesting relatively less propene than
HCN consistently in the smoke samples and relatively more propene than acetic acid, consistently. While
the log‐ratio variances for these five gases with propene were similar in size (0.25 to 0.33), the probabil-
ities associated with the F tests ranged considerably (0.07 to 0.94); the higher probability levels provide
more support for the potential proportionality of propene with the other hydrocarbons and less support
for proportionality with the two N gases (NH3 and HCN). Note that while the log‐ratio variance of
CH3OH with propene was lower than the log‐ratio variances for CH3COOH, HCHO, furan, ammonia
and HCN, the slope test rejected potential pairwise proportionality. Other smoldering compounds for
which results were compatible with proportionality included (3) formaldehyde with methanol, acetic acid,
and furan; (4) ethene (C2H4) with methane and ammonia; and (5) HCN with methane and furan. Of the
gases associated with flaming combustion, CO2 was potentially proportional with NO2, C2H2, and HONO.
It was interesting to note that some gases normally associated with flaming show some level of proportion-
ality with smoldering gases: HONO with acetic acid, SO2 with CO and ammonia. Because of its large
variability, HCl exhibited the lowest proportionality to any other gas in the composition; all tests were
rejected since the slope values were negative (Egozcue et al., 2018). All log‐ratio means for HCl were negative
which indicated that the proportion of HCl in the compositions was relatively smaller than the proportions
of the other gases.

3.2. Compositional Linear Trend as an Alternative to MCE Linear Regression

For all gases except CO2, NO, and NO2, the proportions decreased from the Low MCE fire to the High MCE
fire (Tables 2 and 3), which is consistent with previously reported findings (Burling et al., 2010), suggesting
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the possibility of fitting a compositional linear trend (equation (11)). The three possible starting
compositions (a) for the linear trend and the estimated perturbation vector (p) for each are contained in
Table 3. The goodness of fit of the linear trend to the data (determined by the first eigenvalue λ1 as a
percentage of the total variation) was 72.9%, 77.5%, and 50.1% for the High, Low and GM starting points,
respectively. Of the three linear trends, using the Low MCE composition as the starting point produced
the smallest absolute errors, lowest RMSE, and highest correlation between the observed and predicted
values for 14 of the 18 gases (Table 4). While Low MCE produced the lowest mean bias (NMB) for eight of
the gases and GM for six gases, NMB was similar for several gases for all three linear trends. Using the
GM as the starting point provided a better fit for NO2, HONO, and HCl. There was no correlation
between observed and predicted values for C2H2 from any of the three linear trends. The observed and
predicted values for NO2 and HCl were negatively correlated for the Low MCE trend.

When compared to the fitted ordinary linear regressions for each gas, the LowMCE compositional trend had
smaller errors (NMAE) for 12 of the 18 gases, lower RMSE for 8 of the 18 and higher correlation (r) for 13 of
the 18 gases (Table 5). Overall, the geometric mean NMAE for the CLT (0.26) was less than LR (0.30) indi-
cating the linear trend estimates had less error than the linear regression estimates; however, the CLT was
negatively biased. Bias for linear regression was 0 in all cases because the residuals byi− yið Þ sum to 0 for every
linear regression with an intercept term (Draper & Smith, 1981). Mean RMSE for the CLT and LR were
equal. The correlations between observed and estimated values for most of the trace gases were similar
between the linear trend and the linear regression models. For the linear trend, correlation between
observed and predicted values was not significant for C2H2 and NO; for linear regression there was no sig-
nificant correlation between observed and predicted values for NO2 and HCl. In some cases (such as
HONO), the EF was fairly constant (Figure 1). For 9 of the 16 gases, correlation for the CLT was larger than

for the LR. For the overall measures, the coefficient of determination R2
CLT for the Low MCE linear trend

(0.283) was lower than the comparable measure R2
LR for the multivariate linear regression (0.933). It is inter-

esting to note that R2
CLT for the GM linear trend was 0.501. Because R2

CLT is a measure of the entire composi-
tion projected onto the first principal component, parts of the composition (gases) more strongly associated
with other principal components would contribute to the lack of fit of the linear trend. Preliminary analysis
of the data using a biplot (Aitchison & Greenacre, 2002) suggested that HCl was not strongly associated with

Table 3
Starting Point Compositions (a) in Original Units (g/kg) and Estimated Perturbation Vectors (p) for a Compositional Linear
Trend Fit to a Data Set of Smoke Emissions From Wildland Fuel

Gas

Starting point (a) Perturbation (p)

Low MCE (0.911) Center High MCE (0.984) Low MCE Center High MCE

CO2 1584.6780 1739.8798 1745.3486 0.0716 0.0572 0.0722
CO 153.7918 62.2174 27.5268 0.0552 0.0558 0.0569
CH4 5.2066 1.5030 0.5105 0.0500 0.0521 0.0525
C2H2 0.1473 0.1167 0.0358 0.0654 0.0583 0.0510
C2H4 0.9946 0.4395 0.1144 0.0553 0.0503 0.0491
C3H6 0.3993 0.1402 0.0299 0.0515 0.0472 0.0464
CH3OH 2.0335 0.3601 0.1060 0.0434 0.0472 0.0506
HCOOH 0.6595 0.0708 0.0317 0.0380 0.0442 0.0572
CH3COOH 3.4240 0.7000 0.3222 0.0448 0.0457 0.0574
HCHO 2.7553 0.3799 0.1128 0.0408 0.0471 0.0507
C4H4O 0.6071 0.0666 0.0282 0.0387 0.0465 0.0563
NH3 0.8104 0.5600 0.1948 0.0627 0.0539 0.0534
NO 1.7903 2.1428 2.8557 0.0736 0.0572 0.0785
NO2 0.3762 0.6791 0.5613 0.0795 0.0548 0.0680
HONO 0.2986 0.2439 0.1652 0.0651 0.0503 0.0651
HCN 0.6733 0.0754 0.0086 0.0386 0.0468 0.0389
HCl 0.0631 0.0497 0.0025 0.0689 0.1327 0.0273
SO2 1.6302 0.7546 0.6450 0.0569 0.0528 0.0686

Note. The starting points after closure are contained in Table 2.
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the first principal component (not shown), which decreased the amount of variability that the linear trend
would account for thus reducing its predictive ability. Recall that the clr‐variance for HCl was nearly 25%
of the total variance. The fitted values of HCL by both the linear trend and the linear regression were
relatively constant (Figure 1). The RMSECLT ranged from 0.426 to 0.511 for the three starting points
which was much smaller than RMSELR (2.658). It is important to note that because compositional data
are restricted to the positive upper orthant, predictions from the linear trend were always positive unlike
predictions from the linear regression. The predictions from the linear regression in Figure 1 are the fitted
values, not predictions made outside the range of the data. The fitted linear regressions for 6 of the 18
gases produced values below zero. Scatterplots for all 18 gases are available in the supporting information.
Generally, the CLT performed equal to or superior to the LR based on MCE. This coupled with the fact
that the compositional nature of emissions data were analyzed using techniques appropriate to the type of
data indicates the value of this analytical approach.

The data set used to demonstrate this technique was one that was readily available to the authors. There are
several compilations of emission factor data that could be used to explore if smoke composition changes lin-
early as efficiency of a fire changes (Akagi et al., 2011; Lincoln et al., 2014; Yokelson et al., 2013). If a linear
trend can be successfully fit for a larger data set producing better goodness of fit measures, such a linear
trend could be used to reliably estimate emissions of gases not typically measured if the log‐ratio variance
of the parts is relatively low.

Table 4
OrdinaryMeasures of Fit Based on Observed and Predicted Emission Factors for Compositional Linear Trends That Started at the High, Low, or Geometric Mean (GM)
Value of MCE for Gases Associated With Smoke From Wildland Fire

Gas NMB NMAEa RMSE r

High Low GM High Low GM High Low GM High Low GM

CO2 0.00 0.00 0.00 0.01 0.01 0.01 26.16 16.65 26.60 0.94 0.98 0.94

CO −0.07 0.04 −0.05 0.26 0.20 0.24 22.35 16.26 22.77 0.38 0.78 0.08N

CH4 −0.15 −0.04 −0.14 0.40 0.30 0.42 1.08 0.68 1.10 0.32 0.79 0.24

C2H2 −0.23 −0.24 −0.24 0.52 0.53 0.54 0.15 0.15 0.15 0.16N 0.12N −0.10N

C2H4 −0.21 −0.19 −0.18 0.50 0.37 0.47 0.49 0.42 0.47 0.17N 0.58 0.30

C3H6 −0.28 −0.26 −0.23 0.59 0.41 0.55 0.17 0.14 0.17 0.24 0.74 0.32

CH3OH −0.29 −0.12 −0.24 0.63 0.27 0.55 0.51 0.23 0.50 0.25 0.92 0.29

HCOOH −0.40 −0.11 −0.32 0.73 0.28 0.68 0.14 0.06 0.14 0.17N 0.92 0.27

CH3COOH −0.33 −0.21 −0.26 0.67 0.34 0.60 1.11 0.66 1.08 0.20N 0.87 0.28

HCHO −0.31 −0.07 −0.27 0.65 0.26 0.59 0.58 0.24 0.56 0.19N 0.91 0.32

C4H4O −0.33 0.02 −0.27 0.63 0.23 0.56 0.12 0.03 0.12 0.22N 0.96 0.27

NH3 −0.12 −0.12 −0.09 0.37 0.33 0.36 0.30 0.27 0.29 0.29 0.43 0.12N

NO 0.00 −0.01 −0.02 0.17 0.16 0.18 0.48 0.47 0.50 0.31 0.18N −0.21N

NO2 −0.08 −0.17 −0.07 0.32 0.37 0.32 0.32 0.39 0.31 0.18N −0.43 0.21N

HONO −0.16 −0.16 −0.09 0.41 0.35 0.35 0.16 0.14 0.14 −0.02N 0.58 0.41

HCN −0.38 −0.14 −0.37 0.73 0.36 0.68 0.17 0.08 0.17 0.27 0.92 0.28

HCl −0.17 −0.47 −0.02 0.42 0.77 0.35 0.08 0.14 0.06 0.85 −0.32 0.90

SO2 −0.05 −0.01 −0.05 0.27 0.20 0.28 0.31 0.20 0.30 −0.03N 0.75 0.25

Note. Highlighted values indicate the best value for each measure by gas.
aNMB is normalized mean bias, NMAE is normalized mean average error, RMSE is root‐mean‐square error, and r is Pearson correlation coefficient—N indicates
that r is not significantly different from 0 at 5% significance level based on t test.

NMB ¼ 1
n
∑
n

i¼1
byi− yið Þ=y NMAE ¼ 1

n
∑
n

i¼1
byi− yij j=y RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
byi− yið Þ2

s

where yi;byi; y are observed, predicted, and mean emission factor (g/kg); n is number of observations.
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3.3. Testing the Effects of Fuel Type on Compositional Data

In the original report (Burling et al., 2010), effects of fuel type on subsets of the emissions were inferred from
bar plots and error bars, but no formal hypothesis testing was presented. The fuel types were representative
of major local vegetation types in the southwestern and southeastern United States. The pine litter fuel type
was the sole type composed of only dead pine needles (Pinus spp.) and branches. All other fuel types
included live foliage and branches in addition to dead fuels. In the present study compositional Balances
1 to 7 were designed to test meaningful observations reported in Burling et al. (2010), whereas balances 8
and 17 were necessary to obtain the full projection of the compositions from the simplex into real‐valued
ilr coordinates but are not defined according to any particular scientific relevance (see supporting
information). The intercept term, which is the mean for the 1‐year rough fuel type due to ANOVA
parameterization, was statistically significant for 5 of the 7 balances of interest (Table 6). For the significant
intercepts, a positive value indicated that the numerator of the balance was on average relatively larger than
the denominator, while a negative value indicated it was relatively smaller.

For example, there was relatively less N compared to the other compounds (hydrocarbons, C oxides, etc.;
Balance 1) but relatively more NOx than other N compounds (Balance 2) for the 1‐year rough fuel type.
The estimated effect for a fuel type is the sum of the intercept and the fuel type value. Thus, the estimate
of Balance 1 for pine litter was −2.02 (−1.18 + −0.84); because the fuel type value was significant, the com-
position of the emissions for pine litter had relatively even less N compared to other compounds; similarly,
the oak savanna and woodland fuel types had relatively more N compared to other compounds since the
balance estimate was close to −0.2 for these fuels. For Balance 1, the relative amount of N versus the other
compounds for the other fuel types was not significantly different from the 1 year rough. In addition to the

Table 5
Measures of Goodness of Fita of Estimates for the LowMCECompositional Linear Trend (CLT) and Linear Regression (LR)
With Observed Smoke Emissions From Wildland Fire

NMAE NMB RMSE r

CLT LR CLT CLT LR CLT LR

CO2 0.01 0.00 16.65 0.98
CO 0.20 0.04 16.26 0.78
CH4 0.30 0.30 −0.04 0.68 0.66 0.79 0.80
C2H2 0.53 0.55 −0.24 0.15 0.14 0.12N 0.35
C2H4 0.37 0.34 −0.19 0.42 0.39 0.58 0.59
C3H6 0.41 0.45 −0.26 0.14 0.12 0.74 0.69
CH3OH 0.27 0.41 −0.12 0.23 0.26 0.92 0.86
HCOOH 0.28 0.55 −0.11 0.06 0.08 0.92 0.81
CH3COOH 0.34 0.50 −0.21 0.66 0.70 0.87 0.76
HCHO 0.26 0.42 −0.07 0.24 0.30 0.91 0.85
C4H4O 0.23 0.52 0.02 0.03 0.06 0.96 0.84
NH3 0.33 0.32 −0.12 0.27 0.25 0.43 0.47
NO 0.16 0.15 −0.01 0.47 0.45 0.18N 0.35
NO2 0.37 0.31 −0.17 0.39 0.31 −0.43 0.24N

HONO 0.35 0.41 −0.16 0.14 0.14 0.58 0.34
HCN 0.36 0.51 −0.14 0.08 0.09 0.92 0.83
HCl 0.77 0.82 −0.47 0.14 0.13 −0.32 0.04N

SO2 0.20 0.21 −0.01 0.20 0.21 0.75 0.73
Mean 0.26 0.30 −0.13 0.33 0.33

aNMB is normalized mean bias, NMAE is normalized mean average error, RMSE is root‐mean‐square error, and r is
Pearson correlation coefficient—N indicates that r is not significantly different from 0 at probability = 0.05 based on
Student's t test.

NMB ¼ 1
n
∑
n

i¼1
byi− yið Þ=y NMAE ¼ 1

n
∑
n

i¼1
byi− yij j=y RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
byi− yið Þ2

s
where yi;byi; y are observed, predicted, and mean emission factor (g/kg); n is number of observations. Mean value of
NMAE calculated as geometric mean, mean RMSE calculated square root of mean of squared RMSE.
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smoke containing relatively more NOx compared to the other N compounds (Balance 2 intercept), eight of
the southwestern fuel types had relatively more NOx compared to other N compounds than five of the six
southeastern fuel types. Not surprisingly, there were relatively more C oxides than organic C compounds
(Balance 5). We observed CH4 in relatively higher quantities compared to the nonmethane organic
compounds (balance 6). While overall NMHC and OVOC relative abundances were statistically
comparable for the 1‐year fuel type (Balance 7 is not significantly different from zero), a significant
negative difference with respect to this baseline was concluded for seven of the other fuel types,
suggesting that relatively more OVOC compared to NMHC was observed on average for those fuel types.
The relative amount of NH3 to NOx (Balance 3) did not differ significantly between all fuel types except

Figure 1. Comparison of observed emission factors (EF) for several wildland fire gases with fitted EF from a compositional linear trend (CLT) and a linear regres-
sion (LR) using modified combustion efficiency as the predictor variable.
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for the oak savanna fuel type. The overall amounts of HCl and SO2 observed were much smaller in compar-
ison to the quantities of C compounds (Balance 4); however, eight of the fuel types significantly reduced
this difference in relative amounts.

4. Conclusions

Smoke emissions data are inherently multivariate and relative in nature. While this has been recognized for
many years, the statistical techniques commonly used to analyze the data ignore these features. This applies
not only to the composition of the emissions but also to the different fuel types, which burn to produce the
emissions. Since emissions and fuel composition represent parts of a whole, the measured values of the indi-
vidual parts (elements, chemical species, fuel component, etc.) are intrinsically not independent from each
other. The measured values are relative and are only meaningful in relation to each other. Such constraints
violate many of the underlying assumptions of ordinary statistical methods. Alternatively, compositional
data analysis as a well‐developed body of statistical methodology provides models and methods equivalent
to traditional ones yet accounts for these special constraining features of relative data. The approach has
been used for decades to analyze analogous types of data in the geosciences (Buccianti et al., 2006) and, more
recently, in other disparate areas such as molecular biology to analyze sequencing data (Quinn et al., 2018)
or physical activity epidemiology for the analysis of daily time‐use patterns (Chastin et al., 2015; McGregor
et al., 2019). While the statistical theory may be unfamiliar and not typically taught in most statistics
courses, recent publications and software have made the use of these techniques both feasible
and accessible.

The expression of emissions data as ratio data has long been reported. Even in this early work, conversion
of the composition of emissions between different units by simple multiplication was presented, reinforcing
the idea that emissions data form an equivalence class. Transformation of data using the arc‐sine and
square root transformations for count data to enable use of the normal distribution or to stabilize variance
in linear regression and the log‐odds transformation used in logistic regression are familiar statistical
techniques routinely used in the atmospheric sciences and other fields. Linear transformation of data is
used to code data to simplify analysis for a variety of statistical calculations. The compositional data
approach based on log‐ratio coordinates essentially maps the data onto the ordinary real space so that famil-
iar statistical techniques can be appropriately applied. This approach matches analysis techniques to the
data type thus reducing the possibility of the reporting of spurious results that may or may not reflect the
underlying relationships.

The linear regression approach as it has been typically applied uses one portion of the composition
(expressed as MCE) to predict other parts of the composition, which ignores the intrinsic interplay between
smoke emissions and can produce predictions beyond the domain of their possible values, for example, nega-
tive values. The compositional data analysis approach recognizes the inherently positive‐valued nature of
the data thus eliminating the need for an analyst to ignore or discount when a fittedmodel produces negative
values. Robust methods have been developed to allow inclusion of parts of a composition that are known to
exist but fall below detection limits thus permitting a more complete analysis. We have illustrated how the
use of a compositional linear trend to describe changes in the composition of smoke emissions as CE chan-
ged yielded predicted emission factors with error (difference between observed and predicted) comparable to
and, in some cases, superior to predictions from linear regression models that used MCE as a predictor vari-
able. Moreover, the use of compositional balances to form log‐ratios contrasting subsets of parts of interest
enabled the use of analysis of variance and hypothesis testing to examine differences in meaningful
trade‐offs between smoke components with more formal rigor than was previously presented by respecting
the very relative nature of the data as derived from underlying natural laws like conservation of mass. We
have definitively shown that fuel type affected several different ratios of groups of emissions and are assured
that the results are not an artifact of the analysis which can then be used to make various inferences and
decisions. Near the end of the article by Burling et al. (2010), there is discussion and hypothesis formation
about the impacts of wildland fuel management activities and influence of ocean proximity on the composi-
tion of observed emissions. These impacts and hypotheses could be rigorously tested with the techniques
presented here. More complex analyses of log‐ratios of gas pairs or groupings as functions of external fire
behavior variables such fire intensity (heat release rate) and flame residence time are possible. More
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rigorous time series and spatial analysis to examine aging smoke composition within the smoke plume and
in response to atmospheric processes are possible with compositional data. It is our view and recommenda-
tion that future analysis of the composition of smoke emissions and other mixtures of atmospheric pollu-
tants as well as general atmospheric composition should consider the use of compositional data analysis
methods to provide more statistically rigorous and consistent results.
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