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Abstract. Fire behaviour data from 240 laboratory fires in high-density live chaparral fuel beds were compared with 
model predictions. Logistic regression was used to develop a model to predict fire spread success in the fuel beds and linear 
regression was used to predict rate of spread. Predictions from the Rothermel equation and three proposed changes as well 
as two physically based models were compared with observed spread rates of spread. Flame length–fireline intensity 
relationships were compared with flame length data. Wind was the most important variable related to spread success. Air 
temperature, live fuel moisture content, slope angle and fuel bed bulk density were significantly related to spread rate. 
A flame length–fireline intensity model for Galician shrub fuels was similar to the chaparral data. The Rothermel model 
failed to predict fire spread in nearly all of the fires that spread using default values. Increasing the moisture of extinction 
marginally improved its performance. Modifications proposed by Cohen, Wilson and Catchpole also improved 
predictions. The models successfully predicted fire spread 49 to 69% of the time. Only the physical model predictions 
fell within a factor of two of actual rates. Mean bias of most models was close to zero. Physically based models generally 
performed better than empirical models and are recommended for further study. 
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Introduction 

Fire burns in living fuels such as chaparral in California, sage
brush and pinyon–juniper woodlands in the interior West, 
palmetto–gallberry in the south-eastern coastal plain, and 
coniferous forests in the USA annually and in similar fuel beds 
in both boreal and Mediterranean areas of the world. These fires 
can be significant events and our ability to predict when fire will 
spread in these fuels is limited by two factors: (1) current fire 
spread models were not designed primarily for live fuels, and (2) 
a limited set of experimental data to develop and test models 
exists. Empirical models for fire spread in various live fuels 
from other Mediterranean regions (Marsden-Smedley et al. 
2001; Fernandes 2001; Bilgili and Saglam 2003; De Luis et al. 

* Retired. 

2004; Saglam et al. 2008; Cheney et al. 2012; Cruz et al. 2013) 
exist and Anderson et al. (2015) recently developed a model 
using fire spread data from many of these studies. The final 
variables in the model were wind velocity, shrub height and 
moisture content for the dead and live components of the fuel 
complex. The model assumed continuous fire spread and did not 
predict the threshold conditions under which a fire would tran
sition from no spread to spread (e.g. Weise et al. 2005). The 
Rothermel model (Rothermel 1972) provides the basis for many 
fire management tools in the USA (Wells 2008). Owing to 
flexibility of the fuel model concept (Keane 2013), the 
Rothermel model has been applied to a variety of vegetative fuel 
beds around the world with varying success (Sylvester and Wein 
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1981; Van Wilgen 1984; Van Wilgen et al. 1985; Malanson and 
Trabaud 1988; Marsden-Smedley and Catchpole 1995; Black-
more and Vitousek 2000; Dimitrakopoulos 2002; Stocks et al. 
2004; Streeks et al. 2005; Fernandes and Rigolot 2007; Cruz and 
Fernandes 2008; Cheyette et al. 2008; Bacciu 2009; Wu et al. 
2011). Recognising that fuel models are idealised simplifica

tions of natural fuel beds and do not include many components, 
Sandberg et al. (2007) reformulated the Rothermel model to 
allow the direct use of inventoried fuel properties in the Fuel 
Characteristic Classification System (Ottmar et al. 2007). 

The formulation of the Rothermel model (Frandsen 1971; 
Rothermel 1972; Albini 1976a) assumed that a fire would spread 
in the absence of wind and slope and required the presence of 
dead, fine fuels to propagate the fire; however, fire spread in fuel 
beds of only live material has been reported (Cohen and 
Bradshaw 1986; Martin and Sapsis 1987). The model does not 
predict a non-zero rate if wind or slope is required for successful 
spread (Weise and Biging 1997). The model accuracy was 
described as ‘a factor of two’ (Albini 1976b). Since its operational 
deployment, experiments and modelling of the effects of fuel 
moisture (Wilson 1982, 1985, 1990) and wind (Catchpole et al. 
1998b) have not been implemented. Limited modelling and 
validation of fire spread in live shrub fuels in the USA has 
occurred (Albini 1967; Lindenmuth and Davis 1973; Rothermel 
and Philpot 1973; Hough and Albini 1978; Albini and Anderson 
1982; Brown 1982; Frandsen 1983; Cohen 1986a), again with 
varying success. Although many of these models included factors 
related to the chemical composition of the fuel, its role on ignition 
and fire spread is still an open question (Finney et al. 2013). 

In the Rothermel model, heat transfer mechanisms were not 
explicitly described; a ‘lumped capacity’ approach was used. 
Recent experiments and modelling focussed on ignition of fuels, 
particularly live fuels, have demonstrated the importance of 
convection and flame contact to flame propagation (Weise et al. 
2005; Zhou et al. 2005b; Fletcher et al. 2007; Anderson 
et al. 2010; McAllister et al. 2012; Cohen 2015; Yashwanth 
et al. 2015, 2016; Finney et al. 2015). 

Pagni and Peterson (1973) developed a physical model from 
the conservation of energy equation that requires flame length as 
an input. The model explicitly contained several heat-transfer 
terms and showed good agreement between observed and 
predicted spread rates in grass and chaparral (Peterson 1972). 
Koo et al. (2005) subsequently modified the original model to 
account for a finite-width fuel bed. 

Balbi and coworkers developed a 3-D simplified physical 
model based on mass, energy and momentum balances. The 
original formulation simplified gas-phase equations to produce 
faster calculations (Balbi et al. 2007, 2009). Heat transfer by 
flame and ember radiation was the dominant mechanism. The 
model contained a flame height–heat release correlation that 
was confirmed for chaparral fuels (Sun et al. 2006). The original 
and refined models have been successfully validated and evalu
ated using data from Portuguese shrub–heathlands and pine 
needle–palmetto frond fuel beds (Nelson and Adkins 1986; 
Fernandes 2001). 

Although there are several different models and modelling 
systems that have been reviewed (Catchpole and de Mestre 
1986; Weber 1991; Pastor et al. 2003; Sullivan 2009a, 2009b, 
2009c; Cruz and Alexander 2013; Cruz et al. 2015), we chose to 

focus on Rothermel model variants (Rothermel, Rothermel2, 
Wilson, Cohen, Catchpole) because the original model is the 
basis for US fire management systems. Because there is a need 
to produce a more physically based fire model for operational 
use, two fast physical models (Pagni/Koo and Balbi) were 
included. The Lindenmuth and Davis (1973) and Anderson 
et al. (2015) models were not included because our data fell 
outside the parameters under which the models were fitted or 
required data were not available. The present paper reports the 
results of a comparison between observed and predicted fire 
behaviour in live chaparral fuel beds burned in a laboratory. 

Methods 

Experimental data 

The effects of wind velocity (U), fuel moisture content (LFM), 
fuel bed depth (d) and slope (tan (y)), where y is slope angle, on 
flame propagation in live fuels were investigated in a series of 
240 experimental fires in single-species fuel beds composed 
of one of four chaparral shrub species: chamise (Adenostoma 
fasciculatum Hook. & Arn.), hoaryleaf ceanothus (Ceanothus 
crassifolius Torr.), Eastwood’s manzanita (Arctostaphylos 
glandulosa Eastw.) and scrub oak (Quercus berberidifolia 
Liebm.) (Natural Resources Conservation Service 2016). Note 
that Eastwood’s manzanita was incorrectly identified as Arctos
taphylos parryana Lemmon in earlier publications (Engstrom 
et al. 2004; Weise et al. 2005; Zhou et al. 2005c). The objective of 
the experiment was to identify marginal fire spread conditions for 
live fuels with moisture content exceeding Wilson’s experiments 
(Wilson 1985). The dataset consists of several different sets of 
experiments, all of which used the same experimental techniques. 
The sets consisted of spread under no wind and no slope condi
tions, spread on slopes (Zhou et al. 2007) and spread with wind. 
A formal exploratory experimental design such as response 
surface methodology (Khuri and Cornell 1996) was not used, but 
wind velocity–slope percentage–fuel bed depth combinations that 
would not likely produce successful spread (based on results of 
previous experiments in the series) were not attempted. As a 
result, the matrix representing a full factorial experiment is 
sparse (see Appendix 1). The only seasonal variable, live 
moisture content, was treated as a covariate; effects of seasonal 
changes in non-structural carbohydrates and other compounds, 
although hypothesised as significant (Philpot 1969; Lindenmuth 
and Davis 1973; Susott 1982a, 1982b), were viewed as minor 
factors and not considered experimentally. The importance of 
the chemical composition is still an open question (Finney et al. 
2013; Gallacher 2016). Owing to experimental objective, fuels 
were typically not collected in the late fall when many wildfires 
occur in southern California. For chamise, 8 to 20 fires were 
burned monthly between January and October. Nearly half of 
the broadleaf fuel beds were burned in April and May when fuel 
moisture is typically highest owing to the presence of new 
growth; the remaining 75 fires were evenly distributed between 
July and November. 

Fuel beds (2 m long x 1 m wide x various depths) were 
constructed of live branch and foliage material collected from 
living chaparral growing nearby in the morning and burned 
within a few hours to minimise moisture loss. Flowers and fruits 
were removed to reduce variation in the fuel bed. Branches 
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,0.63 cm in diameter with foliage comprised the fuels. Although 
shrub fuel beds often contain a mixture of live and dead fuels, 
homogenous beds composed of only live material were the only 
feasible method to extend Wilson’s experiments because it is not 
possible to saturate woody fuels much above 40%. The fuel beds 
were raised by 40 cm to simulate a shrub canopy with an open gap 
underneath (e.g. Albini 1967). Air could be entrained from the 
fuel bed ends; metal sheeting prevented side entrainment. Mois
ture content of a 5-g sample was determined immediately before 
ignition using a Computrac1 moisture analyser. Each fire was 
ignited along the 1-m side with a 50-cm flame zone using 
excelsior and a small amount of isopropyl alcohol. 

Three 50.8-cm fans (Air King Model 9700) induced air flow 
to simulate wind. No attempt was made to ‘smooth’ out the fan-
induced vorticity or produce laminar flow; observed flame 
behaviour appeared natural, suggesting that the vorticity was 
not excessive. See Pitts (1991) for a discussion of laminar and 
turbulent flow and effects on laboratory fire experiments. 
Velocity profiles measured above the fuel bed without a fire 
indicated the formation of a boundary layer near the surface and 
an area with average velocity between 1.5 and 2 m s-1 above the 
fuel bed (Fig. 1). Above the fan height, the velocity dropped off 
rapidly. The flames were contained within and sometimes 
extended above this zone; direct measurement of velocity in 
the flame environment was not possible with available instru
mentation and the thermal particle image velocity (TPIV) (Zhou 
et al. 2003) algorithm was not used because of the experimental 
configuration. The original experiment was designed to determine 
if wind presence was important to fire spread success so lack of a 

logarithmic wind profile (Albini and Baughman 1979) was not 
considered a limiting factor. If a fire spread the length of the fuel 
bed, rate of spread (ROS) was calculated from thermocouples and 
video images. Mean flame length, angle (from horizontal) and 
depth were estimated for the 60 fires with video. 

Model evaluation 

Fire spread predictions were made for seven models: Rothermel, 
Rothermel2, Cohen, Wilson, Catchpole, Pagni/Koo and Balbi. 
Parameters describing two fuel bed types were used – the orig
inal static chaparral fuel model adjusted for depth and loading 
(Albini 1976b) and the dynamic chaparral models (Rothermel and 
Philpot 1973). Chamise and broadleaf surface area to volume 
ratios (s) for foliage and branches ,0.63 cm in diameter were 

-172, 58, 21 and 10.5 cm respectively (Countryman 1982; 
Cohen 1986b). The broadleaf values were obtained by averag
ing the values for Arctostaphylos patula Greene, Ceanothus 
velutinus Douglas ex Hook., and Castanopsis sempervirens 
(Kellogg) Hjelmqvist. 

Rothermel required moisture of extinction for live and dead 
fuels, which can be user-determined (Burgan 1987). Estimating 
live fuel extinction moisture based on fractional loading did not 
work for our purely live fuel beds (Fosberg and Schroeder 1971; 
Albini 1976a). Similarly to Sylvester and Wein (1981), we  set  
extinction moisture content at the maximum moisture content we 
observed spread under no-wind and no-slope conditions (Weise 
et al. 2015): 0.65 and 0.74 for chamise and broadleaf respectively. 
Live fuel extinction moisture of fuel model 4 (Rothermel) and the 
experimental values (Rothermel2) were used. Sampling deter
mined the foliage and branch mass proportions of 0.10/0.90 and 
0.27/0.73 for chamise and broadleaf respectively. 

Modelling of the amount of energy in the fuel beds differed 
between models. A low heat of combustion (18 608 kJ kg-1) was 
used for Rothermel and Rothermel2. Heat of combustion of 
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) pyrolysed gases was used for Wilson and Catchpole (Susott 
1982a): 12 960, 11 790 kJ kg-1 for chamise and broadleaf 

0.6 
respectively. For Cohen, the heat of combustion h was calculated 
dynamically (Eqn 1): 

0.4 
h ¼ 2:326ð9613 - D þ 0:1369D2 - 0:000365D3Þ foliage 

h ¼ 2:326ð9509 - 10:74D þ 0:1359D2 - 0:000405D3Þ branches 

FIRECAST redefinition of D 

if ðmontho 5 Þthen month ¼ 11 

D ¼ ðmonth x 30 þ day of monthÞ - 150 

if ðmonth49ÞD ¼ D - 60 ð1Þ2 

For fires without video, we estimated flame length using the 
average of flame length correlations using mass-loss rate 
(Byram 1959; Fons et al. 1963; Thomas 1963; Albini 1981), 
which was estimated as 0:67ROS(oven-dry loading). 

Statistical analysis 

Version 3.2.2 of the R statistical package (R Core Team 2015) 
was used for analyses and plotting. As only subsets of the data 

Wind velocity (m s-1) 

Fig. 1. Mean centre-line wind velocity profiles in laboratory above live 
chaparral high-density fuel beds. Mean calculated from 1-min duration 1-Hz 
point samples in vertical and horizontal transects above the fuel bed with an 
air flow mass velocity transducer (FMA-903). No variability estimated 
because original data not available. 

1The use of trade names and model numbers is for informational purposes only and does not constitute endorsement by the USDA. 
2The computer code (Cohen 1986b) is available in Weise et al. (2015) and contains the equations. 

http:0.27/0.73
http:0.10/0.90
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have been previously analysed (Weise et al. 2005; Zhou et al. 
2005c), the full dataset was analysed in two steps: fire spread 
success and rate of spread. Fire spread success was related to fuel 
and environmental variables using stepwise logistic regression 
(stepAIC, glm (Venables and Ripley 2002)) and a classification 
tree (Breiman et al. 1998). Only the logistic regression results will 
be presented because both methods generally agreed in variable 
selection. Deviance and odds ratios measured relative importance 
to spread success. Area under the receiver operating character
istics curve (auc (Robin et al. 2011)) measured the quality of the 
classification. Stepwise linear regression identified the variables 
affecting ROS including sbd and ðslÞ0:5 

where s; b; d; l are fuel 
particle surface area to volume ratio (cm -1), fuel bed packing 
ratio, fuel bed depth (cm) and porosity respectively: ðslÞ0:5 ¼ 
½ð1 - bÞ=b]0:5 

(Curry and Fons 1940; Anderson and Rothermel 
1965; Pagni and Peterson 1973). 

a1Non-linear least-squares (nls routine) fitted Lf ¼ a0IB and 
its inverse relationship IB ¼ a2Lf a3where Lf and IB are flame 
length and fireline intensity respectively and ax are the regres
sion coefficients (Byram 1959). Intensity was calculated using 
fixed and variable heat content and two models were fitted. The 
Akaike Information Criterion (AIC, Sakamoto et al. (1986)) 
determined the better model. Confidence bands were estimated 
using predictNLS (Spiess 2013) and our fitted models were 
visually compared with other shrub relationships. 

We compared censored empirical cumulative distribution 
functions (ecdf) of the non-zero actual and predicted ROS. 
Predicted values smaller than the minimum observed ROS were 
set to zero; zero values were removed from the empirical 
distributions. The Cramer–von Mises test compared ecdf using 
goftest (Darling 1957; Faraway et al. 2014). Agreement between 
predicted and observed spread success was analysed with a 2 x 2 
contingency table (Zar 1974) for all models except Pagni 
because it only used cases that spread. A significant Chi-square 
statistic (x 2) indicates a relationship between prediction and 
outcome. The stepAIC and glm routines were applied to the 
model predictions to identify important variables influencing 
success. Error metrics of mean absolute error (MAE), mean bias 
(MB), root mean squared error (RMSE), fraction of predictions 

within a factor of two (FAC2) and normalised mean absolute 
error NMAE ¼ MAE=yy where yy is mean ROS (Mayer and 
Butler 1993; Carslaw and Ropkins 2012; Cruz and Alexander 
2013; Carslaw 2015) were calculated with modStats. Mean 
absolute percentage error (MAPE) was not used because it is 
undefined when the observed ROS equals zero. Correlation 
coefficients between actual and predicted spread rates were 
calculated and tested for significance using rcorr. 

Results 

Experiments 

Data for the 240 fires (113 chamise, 127 broadleaf) are available 
(Weise et al. 2015); 123 fires spread (70 chamise, 53 broadleaf). 
We refer the interested reader to Weise et al. (2005) and Zhou et al. 
(2005a) for fuel, fuel bed, wind and slope configuration and flame 
images. ROS ranged from 0.06 to 1.77 m min -1, much slower than 
field spread rates of 3.5 m min -1 (Abell 1940; Chandler et al. 
1963). Live fuel moisture of the fresh fuels ranged from 0.54 to 
1.06 immediately before ignition with oven-dry fuel loadings of 
1.1–4.9 kg m -2 (Table 1). This moisture content range is typical of 
chaparral species in this region (Weise et al. 2005). Laboratory 
fuel beds had higher packing ratios than natural chaparral stands 
(Countryman and Philpot 1970; Rundel and Parsons 1979; 
Countryman 1982). Correlation between the fuel and environ
mental variables was generally low (Table 2), suggesting inde
pendence. Temperature and relative humidity were correlated, 
which was expected, and the two derived fuel bed properties 
ðsbd; slÞ were highly correlated with depth and bulk density. 

Flame data came from chamise fuel beds (59 of 60 fires). 
Flame length ranged from 0.54 to 2.80 m (mean coefficient of 
variation (CV) ¼ 11%) and flame depth ranged from 0.15 to 
0.73 m (mean CV ¼ 18%). Mean (circular variance) of flame 
angle (Jammalamadaka and Lund 2006) was 868 (0.006) and 728 
(0.008) for the 0 and 2-m s -1 wind respectively, indicating that 
the data were closely grouped. Complete consumption of the 
fuel beds was observed; fireline intensity ranged from 68 to 2297 
kW m -1. Mean intensity using a constant heat content was 104 
kW m -1 smaller than with variable heat content. 

Table 1. Summary of laboratory experimental fires 

TypeA Wind (m s -1) Slope (%) n Fuel mass (kg m -2) Moisture content Spread successB Spread rate (m min -1) 

B 0 ,0 13 1.77–3.92 0.58–0.74 0.31 0.10–0.18 
0 0 26 1.07–4.86 0.54–1.06 0.15 0.08–0.17 
0 1–30 17 1.92–3.78 0.54–0.74 0.35 0.14–0.60 
0 .30 48 1.65–4.90 0.54–1.04 0.48 0.10–1.36 
2 0 23 1.07–4.86 0.66–1.06 0.70 0.06–0.37 

C 0 ,0 19 1.78–3.53 0.49–0.60 0.79 0.08–0.21 
0 0 37 1.39–3.53 0.30–0.91 0.43 0.08–0.38 
0 1–30 11 1.28–3.16 0.09–0.66 0.18 0.47–0.64 
0 .30 23 1.39–3.21 0.55–0.80 0.65 0.13–1.77 
2 0 18 1.42–3.41 0.26–0.91 0.94 0.18–0.94 
2 1–30 4 1.28–3.41 0.26–0.64 1.00 0.55–0.88 
2 .30 1 1.44 0.80 1.00 1.45 

AB, Ceanothus crassifolius Torr., Quercus berberidifolia Liebm., or Arctostaphylos glandulosa Eastw.; C, Adenostoma fasciculatum Hook. & Arn. 
BProportion of fires that spread entire length of fuel bed. 
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Stepwise logistic regression chose all variables but relative 
humidity to predict spread success (Table 3). All coefficients 
were significant except the intercept and relative humidity. The 
AIC for the logistic model was 201. Wind velocity and sbd 
accounted for 79% of the deviance reduction. The odds ratio for 
wind (392) showed the dramatic effect that presence of wind had 
on fire spread success; fire in chamise was four times more likely 
to spread. The coefficients and odds ratios for sbd, air tempera
ture and slope indicate that the probability of spread increased as 
these variables increased and decreased as live fuel moisture 
content increased. Area under the curve for the logistic regres
sions was 0.93, 0.87 and 0.91, for chamise, broadleaf and both 
fuel types combined, suggesting that the chamise model per
formed better than the broadleaf model. 

Relative humidity, air temperature, fuel depth, wind velocity, 
TanðyÞ where y is slope angle, LFM, fuel heat content, bulk 

2 LFMdensity, fuel type, tan ðyÞ ; U2; sbd; and e were initially 
included in the regression equation for ROS. The residuals were 
heteroscedastic; log-transformation of ROS produced constant 
variance. The final fitted model (Eqn 2) accounted for 72% of 
the variation and was highly significant (F-statistic ¼ 50.59, 

Table 2. Correlation between fuel and environmental variables for 
chaparral laboratory fire experiment 

RH, relative humidity; T, air temperature; y, slope angle; LFM, live fuel 
moisture content; HC, heat content; s, surface area to volume ratio; b, 
packing ratio (solid fuel volume to total fuel bed volume); d, fuel bed depth; 

l, fuel bed porosity 

RH T Depth Wind TanðyÞ LFM HC Bulk sbd 
density 

T –0.77 
Depth 0.22 –0.15 
Wind 0.03 –0.15 0.12 
TanðyÞ 0.22 –0.21 –0.22 –0.17 
LFM –0.20 0.06 0.02 0.16 0.28 
HC 0.51 –0.32 –0.04 –0.03 0.21 –0.44 
Bulk –0.39 0.38 –0.38 –0.22 0.10 0.04 –0.28 
sbd 0.05 0.03 0.87 0.01 –0.23 –0.07 –0.11 0.06 
sl 0.45 –0.45 0.37 0.25 –0.08 –0.03 0.30 –0.96 –0.04 

degrees of freedom ¼ 6, 116). All coefficients were significant; 
however, the effect due to wind was not significant (Table 4). 
Correlation between most coefficients was generally low except 
for heat content and the intercept term, suggesting that the 
selected variables were reasonably independent: 

logðROSÞ ¼ 2:740 - 0:017ðair temperatureÞ þ 0:198ðwind velocityÞ 
þ2:202 tanðyÞ - 0:015ðmoisture contentÞ 
-0:00008ðheat contentÞ - 0:120ðbulk densityÞ ð2Þ 

Four flame length–fireline intensity relationships for shrub fuels 
(Alexander and Cruz 2012) were selected for comparison: 
fynbos (Van Wilgen 1986), Galician shrublands (Vega Hildago 
et al. 2009), Australian and New Zealand heathlands (Catchpole 
et al. 1998a), and Mediterranean heathland (Fernandes et al. 
2000). Variable and fixed heat content yielded similar flame 
length models ba0 ¼ 0:20; 0:21; ba1 ¼ 0:34; 0:35Þ for the vari
able and fixed heat models respectively. Based on a smaller 

¼ 0:2I0:34AIC, the variable heat content model was chosen: Lf B 
(Fig. 2). The inverse fitted model, IB ¼ 160:8L2:16, was signifif 
cant (a ¼ 0.05); confidence intervals (95%) for ba2 and ba3 were 
[98, 239] and [1.62, 2.77] respectively (Fig. 3). Only the 
Galician shrublands model was statistically similar to the data 
from the present study. 

Spread model comparison 

The slight differences in packing ratio for the Rothermel var
iants were of no practical importance to the model predictions. 
In general, the range of predicted spread rates was similar to 
observed with the exception of the Rothermel model (Fig. 4). 
Because 117 fires failed to spread, the actual percentile value for 
a rate of spread value of zero in the ecdf was 0.488 (117/240); 
this value is shown on the plots as a dotted horizontal line. 
Rothermel predicted zero ROS for all but one dry fuel bed (0.09 
moisture content). Increasing the live fuel extinction moisture 
dramatically improved Rothermel2; the ecdfs of Rothermel2 
and Cohen did not differ significantly. Cohen predictions were 
the highest of the models and greater than the actual data. Wilson 
and Catchpole predictions differed from Cohen but not each 
other. Balbi and Catchpole predicted fewer cases of no spread 
(lower probability of zero) (Fig. 4). Wilson, Rothermel2 and 

Table 3. Summary of fitted logistic model to predict fire spread success in laboratory fuel beds 
All variables had one degree of freedom. s.e., standard error 

ZAVariable Deviance Coefficient s.e. Pr . ZB Odds ratio 

Intercept 332.6 5.90 4.29 1.38 0.169 
Wind velocity 84.1 5.97 0.93 6.40 ,0.0001 392.00 
sbd 32.5 0.24 0.04 5.95 ,0.0001 1.27 
Chaparral type 9.9 –1.44 0.51 2.81 0.005 0.24 
Air temperature 8.2 0.17 0.04 4.76 ,0.0001 1.19 
Heat content 5.9 –3.9 x 10 -4 1.4 x 10 -4 –2.75 0.006 1.00 
Slope 3.9 0.07 0.01 5.99 ,0.0001 1.08 
LFM 3.3 –0.11 0.02 –5.18 ,0.0001 0.89 
Residual (d.f. ¼ 232) 184.8 

AStandard normal variate (Zar 1974). 
BProbability of a greater Z-value. 



  

 

0 

0.5 

1.0 

1.5 

3.0 

Spread model comparison – chaparral Int. J. Wildland Fire 985 

Table 4. Summary of fit of regression model for log-transformed rate of spread 
s.d., standard deviation; MSE, mean squared error; t, Student’s t statistic 

Term Model fit Coefficient estimates 

MSE F Prob . F Estimate s.d. t Prob . t 

Intercept (I) 
Temperature (T) 
Wind velocity (W) 
TanðyÞ 
LFM 
Heat content (H) 
Bulk density (B) 
Residual 

14.81 
0.24 
29.33 
2.90 
0.33 
3.77 
0.17 

87.50 
1.41 

173.26 
17.14 
1.96 
22.25 

,0.001 
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Fig. 2. Observed flame length and calculated Byram’s fireline intensity for 
fire spreading in high-bulk-density fuel beds composed of live chaparral 
foliage and branches less than 0.63 cm in diameter. Fitted line with 95% 
confidence band (grey area) estimated. 

Cohen models predicted more cases of no fire spread than 
actually occurred. 

The x 2 tests indicated there was a relationship between actual 
and predicted spread for Rothermel2, Cohen, Wilson, Catchpole 
and Balbi in chamise (Table 5) and for all models in broadleaf 
fuels; the statistic was undefined for Rothermel. The percentage 
of correctly classified fires ranged from 49% ((43 þ 1 þ 74 þ 0)/ 
240) for Rothermel to 69% for Wilson. In chamise, the range 
was 39% (Rothermel) to 76% (Balbi); in broadleaf chaparral, the 
range was 58% (Rothermel) to 64% (Wilson). 

0 

Fig. 3. Comparison of various fireline intensity-flame length relationships 
developed for shrub fuels. Models are [1] current study; [2] Byram (1959); 
[3] Van Wilgen (1986); [4] Vega et al. (1998); [5] Catchpole et al. (1998a); 
and [6] Fernandes et al. (2000). Monte-Carlo simulation used to estimate 
95% confidence band (grey area). 

The logistic models that identified the variables related to 
agreement between actual and predicted spread success con
tained three to seven variables (Table 6). When ranked by 
deviance reduction, the presence of wind accounted for the 
largest reductions. It was selected in all models; air temperature, 
slope ðtanðyÞÞ and fuel bed surface area ðsbdÞ were selected in 
four of six equations. 

The error metric FAC2 ranged from 0 for Rothermel to 0.86 
for Pagni in chamise (Table 7); FAC2 was higher in chamise for 

3.0 
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Fig. 4. Empirical cumulative distribution function of actual and predicted rate of spread for laboratory fires in chaparral fuels; v 2 is 
the Cramer–von Mises statistic and p̂ is the probability of achieving a greater value of v 2 (Csorgo and Faraway 1996). 

Table 5. Classification of fire spread success in chaparral fuel beds by various rate of spread models 
Pagni model not included because only predictions exist if fire spread successfully. AUC is area under curve of the classification 

P is probability of a greater x 

Model Actual AUC Rate 

Chamise (C) Broadleaf (B) C B 

No Yes x 2A PB No Yes x 2 P 

Rothermel No 43 69 0.00 1.000 74 53 0.507 0.500 0.49 
Yes  0 1  0 0  

Rothermel2 No 29 25 9.51 0.002 53 28 3.94 0.050 0.659 0.608 0.63 
Yes 14 45 21 25 

Cohen No 29 25 9.51 0.002 58 38 0.43 0.510 0.659 0.533 0.61 
Yes 14 45 16 15 

Wilson No 20 7 17.57 2 x 10 -5 67 38 6.40 0.010 0.694 0.585 0.69 
Yes 23 63 7 15 

Catchpole No 20 14 7.68 0.006 31 7 10.79 0.001 0.625 0.645 0.64 
Yes 23 56 43 46 

Balbi No 21 5 23.84 1 x 10 -6 19 0 14.05 2 x 10 -4 0.709 0.628 0.66 
Yes 22 65 55 53 

ACalculated Chi-square statistic. 
B 2 . 
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Table 6. Variables selected by logistic regression to predict agreement between model prediction and 
observed fire spread success 

Numbers indicate the order of the variables by descending deviance (1 denotes largest deviance) and the variables 
are listed in the table in decreasing order based on the number of times the variable was selected 

Variable Rothermel Rothermel2 Cohen Wilson Catchpole Balbi Mean 

Wind velocity 1 1 1 2 1 2 1.33 
Temperature 3 2 2 5 3 
tanðyÞ 6 3 3 1 3.25 
sbd 2 6 2 3 3.25 
Heat content 5 4 4.5 
logðsbdÞ 5 4 4.5 
Chaparral type 4 1 2.5 
LFM 7 7 
Relative humidity 3 3 
Bulk density 

Table 7. Error measures associated with observed and predicted rate 
of spread in laboratory fires in chaparral fuel beds 

Error measures associated with observed and predicted rate of spread in 
laboratory fires in chaparral fuel beds. FAC2, factor of two; MB, mean bias; 
MAE, mean absolute error; NMAE, normalised mean absolute error; RMSE, 

root mean squared error 

Model Fuel type FAC2A MBB MAEC NMAED RMSEE 

^

Rothermel Broadleaf (B) 0.00 –0.15 0.15 1.00 0.29 
Chamise (C) 0.01 –0.23 0.23 0.98 0.40 

Rothermel2 B 0.19 –0.07 0.16 1.10 0.30 
C 0.32 0.06 0.33 1.42 0.77 

Cohen B 0.14 –0.10 0.15 1.05 0.29 
C 0.32 0.13 0.39 1.66 1.01 

Wilson B 0.07 –0.13 0.14 0.97 0.29 
C 0.29 0.03 0.24 1.03 0.50 

Catchpole B 0.15 –0.06 0.15 1.01 0.25 
C 0.41 –0.01 0.19 0.81 0.39 

Pagni B 0.86 –0.05 0.15 0.43 0.22 
C 0.86 0.05 0.18 0.49 0.30 

Balbi B 0.40 0.16 0.21 1.43 0.33 
C 0.63 0.03 0.14 0.61 0.25 

Rothermel All 0.01 –0.19 0.19 0.99 0.35 
Rothermel2 All 0.26 –0.01 0.24 1.29 0.57 
Cohen All 0.24 0.01 0.27 1.41 0.72 
Wilson All 0.20 –0.05 0.19 1.00 0.40 
Catchpole All 0.28 –0.03 0.17 0.89 0.32 
Pagni All 0.86 0.01 0.17 0.47 0.27 
Balbi All 0.51 0.10 0.18 0.95 0.30 

yi =yi � 2:0AFAC2 ¼ fraction of predictions satisfying 0:5 �

all models. In broadleaf fuels, all models except Balbi underesti
mated ROS (MB , 0); bias of Rothermel2, Catchpole, and Pagni 
was less than 0.1 m min -1. MAE was smaller in the broadleaf 
fuels except for the Balbi model and ranged from 0.14 to 0.39 m 
min -1. Relative size of error (NMAE) was greater than one in 
most cases, indicating that prediction error was generally larger 
than the actual ROS. Only Pagni had NMAE less than 0.5 for both 
fuel types. In most cases (exceptions are Rothermel2 and Cohen in 
chamise), the RMSE values were fairly consistent among the 
models and ranged from 0.22 to 0.50 m min -1. When fuel type 
was eliminated, virtually none of the Rothermel predictions fell 
within a factor of 2 of the actual rate of spread. Twenty to nearly 
thirty per cent of the other Rothermel models fell within a factor of 
2 and more than half of the Pagni and Balbi predictions did. All 
models except Rothermel and Balbi were generally unbiased and 
the prediction errors (MAE) ranged from 0.2 to 0.3 m min -1. 
When normalised, most models had errors equivalent to ROS 
except Pagni with errors less than 50%. In most cases, RMSE was 
smallest for Pagni. When all five error measures are considered 
equally, the Pagni model performed best. 

Correlation (Pearson’s r) between predicted and actual 
spread rate ranged from undefined to 0.7 (Fig. 5). Rothermel 
had the lowest correlation values overall, and r was undefined in 
broadleaf fuels. Increasing the live extinction moisture 
improved correlation of Rothermel2 for both fuel types; how
ever, only the correlation for chamise was significantly different 
from zero. In broadleaf fuels, Rothermel2, Cohen and Wilson 
predictions were not significantly correlated with actual ROS; 
however, Catchpole, Pagni and Balbi predictions were. Wilson 
and Catchpole predictions were not correlated with actual ROS. 

nP Pagni and Balbi predictions were significantly correlated withBMB ¼ 1 ^ðyi 
n 

CMAE ¼ 1 P j

- yiÞ n actual ROS. In general, correlation was significant in chamisei¼1 

fuels except for Rothermel. Although correlation was signifi

^

ŷi 

D (chamise) had correlations greater than 0.50.NMAE ¼ MAE=yy sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 P
n
 
yi
 

- yijn 
i¼1 cant for many of the models, only Pagni (both fuels) and Balbi 

ERMSE ¼ 1 - yiÞ2ð Discussionn 
i¼1 

Much of the data that have been collected worldwide examiningŷi; yy; n are observed, predicted, and mean rate of spread; 
n is number of observations. fire spread in live shrub fuels has been field-scale data with limited 
where yi;



988 Int. J. Wildland Fire D. R. Weise et al. 

Rothermel Rothermel2 Cohen 
7 7 7 

0.33 p = 0.00043 
6 6 0.06 p = 0.47 6 

5 Chamise r = 0.11 p = 0.23 5 5 

4 Broadleaf r undefined 4 4 0.33 p = 0.00036 

3 3 3 0.04 p = 0.64 

2 2 2 

1 1 1 

0 0 0 

0 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1.0 1.5 

Wilson Catchpole Pagni/Koo 

7in
) 7 7 

6

m
/m 6 6 

5d 
(

0.42 p = 3.5e−06 5 0.49 p = 4.1e−08 5 0.62 p = 1.4e−08 

4pr
ea 0.05 p = 0.58 

4 
0.26 p = 0.0027 4 

0.68 p = 3e−08 

3of
 s 3 3 

2 2 2

P
re

di
ct

ed
 r

at
e

1 1 1 

0 0 0 

0 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1.0 1.5 

Balbi 

7 

6 

5 0.7 p < 2.2e−16 

4 0.47 p = 3.6e−08 

3 

2 

1 

0 

0 0.5 1.0 1.5 

Actual rate of spread (m/min) 

Fig. 5. Predicted vs actual rate of spread of fire in high-bulk-density chaparral fuel beds. Pearson’s correlation coefficient (r) 
calculated for chamise (black dots) and broadleaf (grey dots) fuel types. 

replication. These fuel beds contained a mixture of live and dead Although many of the physical characteristics of the fuel in 
components, likely producing greater heat release due to the drier fynbos and our live fuel beds were similar, the fynbos fuel beds 
dead fuels; the fuel beds in the present study only contain live contained more dead material and finer-sized fuel particles. 
components. The loading of live material less than 6 mm in Measured fire behaviour of the chaparral fuel beds fell in the 
diameter in the Galician fuels falls within the range of the present lower range of the observed fire behaviour in fynbos. Predicted 
data  (1.83 kg m  -2). Fuel particles in the Galician fuels were fireline intensity for the fynbos fuels was approximately twice 
smaller than the chaparral fuels in the present study; however, a the predicted intensity for chaparral for a given flame height, 
higher heat content was measured in the Galician fuels than which may be due to the presence of the dead fuels and finer fuel 
we assumed. The average wind velocity measured in the field particles. The range of fuel and environmental conditions in the 
(2.1 m s -1) is similar to the maximum wind velocity in the present heathland fuel types (Anderson et al. 2015) were comparable 
experiment (2.0 m s -1). As expected, ROS of the chaparral fires with fynbos, which was reflected in the very similar curves 
fell in the lower portion of the range for the Galician fuels. The (Fig. 3). Similarly, the range of conditions in Fernandes et al. 
Galician fuels were generally moister, however, wind velocity was (2000) was similar to those in the Galician fuels. The discussion 
greater and the fuel bed contained 8 to 12% dead litter. The fitted of Alexander and Cruz (2012) regarding the many factors that 
fireline intensity–flame length relationship for the Galician fuels can affect the statistical fitting of the fireline intensity–flame 
predicted lower intensity for a given flame length as a result. length relationship is supported by these models; the present 
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study provided support that intensity is a quadratic power of 
flame length. 

When originally proposed, the moisture damping coefficient 
and the moisture of extinction functioned like a rheostat that 
moderated the reaction intensity calculation because the role of 
moisture in fuels is complex (e.g. Nelson 2001; Matthews 2006). 
Even though the different methods of handling moisture 
(Rothermel2, Cohen, Wilson, Catchpole) improved the predic
tions, their similarity of performance suggests that factors other 
than moisture of extinction are influencing the performance (or 
lack thereof) of the Rothermel model in these live fuel beds. 

Wind presence was found to be the most important variable 
that influenced the prediction of fire spread success in these live 
fuel beds. Wind was also the most important variable in deter
mining agreement between model prediction and actual spread 
success for most of the models. The importance of wind on rate of 
spread has been recognised from the earliest days of modern 
organised fire research (Show 1919). Thus, wind affects both fuel 
particle ignition and propagation of the flame through the fuel 
bed. It is interesting to note that Lindenmuth and Davis (1973) did 
not find that wind velocity was as important in their experiments 
as in these experiments. They concluded that wind was a limiting 
factor in their experiments because it was required for spread, but 
its influence once the fire was spreading (without spotting) was 
not large. Similarly, in the analysis of our experimental data, wind 
was necessary for spread to occur, but it did not influence rate of 
spread. A greater range of wind speeds is necessary to determine 
if our data support Lindenmuth and Davis. 

None of the models currently consider the effects of wind on 
ignition explicitly (e.g. Bilbao et al. 2001); however, both Balbi 
and Pagni models account for convective heat transfer due to the 
flame above and within the fuel bed. Although the wind profiles 
in our experiments may differ from other experiments and field 
studies, the experiments demonstrated the importance of wind 
and convective flux (Zhou et al. 2005b) on ignition. As numer
ous authors have stated, fire spread in porous fuel beds is simply 
a series of successive ignitions, and conditions in the immediate 
vicinity of a fuel particle are critical to ignition. The high bulk 
density of our fuel beds and flow of the buoyant flame gases 
likely reduced any aberrant flow through the fuel bed caused by 
the rotary fans at the interface between burning and unburnt fuel. 
Results might be different in more porous fuel beds. Recent 
work (e.g. Fletcher et al. 2007; Schemel et al. 2008; Tachaja
pong et al. 2008; Bianchi and Defossé 2015; Finney et al. 2015; 
Butler et al. 2016) points to the dual nature of convection and 
importance of flame contact in fuel particle ignition and 
propagation. 

The effect of moisture on fire spread in the experiments 
should be representative of what occurs in natural settings; 
another limitation of the dataset is wind velocity (0, 2 m s -1). 
There was a step change in fire behaviour over this very small 
interval. Although we now have a small wind tunnel that has 
been used successfully to study fire spread transitions with more 
precise control of wind (Tachajapong et al. 2014; Sanpakit et al. 
2015), these recent experiments with these low wind speeds can 
produce flame heights of 2 m or more, which are challenging to 
manage in a laboratory setting, and so our ability to perform 
laboratory experiments of field-scale fire behaviour in live fuels 
continues to be restricted. 

Although the dataset used in the present study provided an 
opportunity to gain an understanding of the important variables 
that influence marginal fire spread in chaparral fuel beds, it is 
limited in its applicability to field-scale wildland fire spread. 
With their higher bulk density, these fuel beds are more akin to 
forest litter fuel beds and the experimental data used to develop 
and modify the Rothermel model previously described. As such, 
results of the current study illustrate that empirical fire behav
iour relationships derived for low-moisture dead fuels do not 
perform well in high-fuel-moisture live fuels that will also burn, 
thus emphasising the need to better describe the physics and 
chemistry of fire spread in wildland fuels. 

Summary and conclusions 

Analysis of a series of 240 experimental laboratory-scale fires in 
high-bulk-density live chaparral fuels demonstrated the impor
tance of wind velocity, slope and fuel bed surface area on fire 
spread initiation. Comparison of rate of spread predictions with 
several models produced a wide range of results. The original 
Rothermel model performed poorly and failed to predict fire 
spread in nearly all of the experiments. Proposed and generally 
unimplemented changes to the Rothermel model improved 
prediction results and wind was found to be the most important 
experimental variable related to fire spread success. 

Physically based models generally performed better, suggest
ing that improved understanding of the physical and chemical 
processes associated with ignition and propagation will improve 
our ability to predict fire spread in fuel beds that are more 
complex than fuel beds composed of dead, machined wood. 
Implementation and evaluation of the Pagni model with suitable 
modification to predict rate of spread from fuel and environmen

tal variables could be a good first step to developing a physical 
model as the basis for fire spread and fire danger prediction in 
surface fuels containing a significant shrub component. 
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Appendix 1. Summary of fire spread success in marginal burning experiments by fuel type, wind velocity, fuel bed depth and slope 
Table also shows distribution of experiments across all possible combinations of fuel type, wind velocity, fuel bed depth and slope percentage. The numbers in 

each cell of the table are number of successful fires/number of replications 

FuelA WindB DC Slope percentage 

,0 0 .0 

100 70 60 50 40 30 25 20 10 0 20 27 30 35 40 45 50 55 60 70 

B 0 20 0/1D 0/2 0/1 0/2 0/2 0/10 3/9 3/6 2/10 0/4 1/8 1/2 9/9 3/4 
40 2/2 2/3 4/16 0/2 5/8 0/1 2/2 

2 20 7/12 
40 9/11 

C 0 20 0/1 1/1 1/1 1/2 1/2 5/17 0/1 1/2 0/5 0/3 4/5 1/2 1/2 1/1 2/3 
40 1/1 1/1 2/2 2/3 1/1 3/3 1/1 11/20 1/3 3/4 3/3 

2 20 6/7 1/1 1/1 
40 11/11 3/3 

AFuel type: B ¼ broadleaf chaparral, C ¼ chamise chaparral. 
BNominal wind velocity (m s -1). 
CFuel bed depth (cm). 
D0/1 indicates 0 fires out of 1 total fires spread successfully. 


