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Abstract

Within minutes after emission, rapid, complex photochemistry within a biomass burn-
ing smoke plume can cause large changes in the concentrations of ozone (O3) and
organic aerosol (OA). Being able to understand and simulate this rapid chemical evo-
lution under a wide variety of conditions is a critical part of forecasting the impact of5

these fires on air quality, atmospheric composition, and climate. Here we use version
2.1 of the Aerosol Simulation Program (ASP) to simulate the evolution of O3 and sec-
ondary organic aerosol (SOA) within a young biomass burning smoke plume from the
Williams prescribed burn in chaparral, which was sampled over California in Novem-
ber 2009. We demonstrate the use of a method for simultaneously accounting for the10

impact of the unidentified semi-volatile to extremely low volatility organic compounds
(here collectively called “SVOCs”) on the formation of OA (using the Volatility Basis
Set) and O3 (using the concept of mechanistic reactivity). We show that this method
can successfully simulate the observations of O3, OA, PAN, NOx, and C2H4 to within
measurement uncertainty using reasonable assumptions about the chemistry of the15

unidentified SVOCs. These assumptions were: (1) a reaction rate constant with OH of
∼ 10−11 cm3 s−1, (2) a significant fraction (∼ 50 %) of the RO2 +NO reaction resulted in
fragmentation, rather than functionalization, of the parent SVOC, (3) ∼ 1.1 molecules
of O3 were formed for every molecule of SVOC that reacted, (4) ∼ 60 % of the OH that
reacted with the unidentified SVOCs was regenerated as HO2, and (5) that ∼ 50 % of20

the NO that reacted with the SVOC peroxy radicals was lost, presumably to organic
nitrate formation. Additional evidence for the fragmentation pathway is provided by the
observed rate of formation of acetic acid, which is consistent with our assumed frag-
mentation rate. This method could provide a way for classifying different smoke plume
observations in terms of the average chemistry of their SVOCs, and could be used to25

study how the chemistry of these compounds (and the O3 and OA they form) varies
between plumes.
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1 Introduction

Biomass burning is a major source of atmospheric trace gases and particles that im-
pact air quality and climate (e.g., Crutzen and Andreae, 1990; van der Werf, 2010;
Akagi et al., 2011). Within minutes after emission, rapid and complex photochemistry
within the young biomass burning smoke plumes can lead to significant increases in5

the concentrations of secondary pollutants such as ozone (O3, e.g. Mauzerall et al.,
1998; Goode et al., 2000; Hobbs et al., 2003; Pfister et al., 2006; Lapina et al., 2006;
Val Martin et al., 2006; Yokelson et al., 2009; Jaffe and Widger, 2012; Akagi et al., 2012,
2013), peroxyacetyl nitrate (PAN, e.g. Jacob et al., 1992; Alvarado et al., 2010, 2011;
Fischer et al., 2014), and organic aerosol (OA, e.g. Hobbs et al., 2003; Grieshop et al.,10

2009a, b; Yokelson et al., 2009; Hennigan et al., 2011; Heringa et al., 2011; Vakkari
et al., 2014) after less than an hour of aging, while other smoke plumes can show little
to no formation of O3 (e.g. Alvarado et al., 2010; Zhang et al., 2014) or OA (e.g. Akagi
et al., 2012). Understanding the atmospheric chemistry of these young smoke plumes,
especially which conditions can lead to the secondary formation of O3, PAN, and OA, is15

thus critical to understanding the impact of these plumes on atmospheric composition
and the resulting impacts on air quality, human health, and climate. However, global-
and regional-scale Eulerian models of atmospheric chemistry artificially dilute biomass
burning emissions into large-scale grid boxes, which can result in large errors in the
predicted concentrations of O3 and aerosol species downwind (e.g., Alvarado et al.,20

2009; Zhang et al., 2014). In contrast, plume-scale Lagrangian models allow us to ex-
amine the chemical and physical transformations within these concentrated plumes in
detail and can be used to develop parameterizations for this aging process for coarser
models (e.g., the parameterizations of Vinken et al., 2011 and Holmes et al., 2014 for
ship plumes).25

Our understanding of the formation of ozone within biomass burning plumes is still
poor, due both to the limited observational data available on O3 formation in smoke
plumes and the highly variable results seen in the available observations. Several air-
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craft and surface studies of the chemistry of young biomass burning smoke plumes
have found significant formation of O3 within smoke plumes. For example, Baylon
et al. (2014) reported ∆O3/∆CO from 0.4 to 11 %, corresponding to O3 enhance-
ments of 3.8 to 32 ppbv in 19 wildfire plumes samples at Mt. Bachelor Observatory.
They note that plumes that have low values of ∆O3/∆CO can still correspond to sig-5

nificant O3 enhancements in concentrated plumes, with one event with a ∆O3/∆CO
value of 0.81 % corresponding to an O3 enhancement of 17 ppbv. Akagi et al. (2013)
found significant O3 formation (∆O3/∆CO from 10–90 %) within two hours for all of the
South Carolina prescribed fires studied, and Parrington et al. (2013) found values of
∆O3/∆CO increased from 2.0±0.8 % in boreal biomass burning plumes less than 210

days old over Eastern Canada to 55±29 % in plumes that were more than 5 days old.
Similarly, Andreae et al. (1994) found that aged plumes (over 10 days old) from the
biomass burning regions of South America and Africa had ∆O3/∆CO values between
20–70 %. However, other studies, mainly in boreal regions, have found little formation
or even depletion of O3 in some young biomass burning plumes (e.g., Alvarado et al.,15

2010). This low O3 formation is likely due to a combination of low emissions of NOx
from the boreal fires (Akagi et al., 2011), sequestration of NOx in PAN and other or-
ganic nitrates (e.g., Jacob et al., 1992; Alvarado et al., 2010, 2011), and reduced rates
of photochemical reactions due to aerosol absorption and scattering (e.g. Jiang et al.,
2012). Similarly, some studies have shown that fires can contribute to high surface O320

events that exceed the US air quality standard for O3 (e.g., Jaffe et al., 2013), but other
studies suggest that this enhanced surface O3 is only present when the biomass burn-
ing emissions mix with anthropogenic pollution (Singh et al., 2012; Zhang et al., 2014).
However, even given the observed variability among fires, it is likely that biomass burn-
ing has an impact on the concentrations of tropospheric O3. For example, the recent25

review of Jaffe and Widger (2012) estimated that biomass burning could contribute
170 Tg of O3 per year, accounting for 3.5 % of all global tropospheric O3 production.
However, Sudo and Akimoto (2007) estimated that over a third of tropospheric O3 came
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from free troposphere chemical production due to biomass burning outflow from South
America and South Africa.

The NOx emitted by biomass burning is rapidly converted into a wide variety of in-
organic nitrate (i.e. HNO3(g) and total aerosol inorganic nitrate, or NO3(p)) and organic
nitrate species (i.e. alkyl nitrates (RONO2) and peroxy nitrates (RO2NO2), including5

PAN; Jacob et al., 1992; Yokelson et al., 2009; Alvarado et al., 2010, 2011; Akagi et al.,
2012). The rate at which this conversion occurs and the relative production of inorganic
nitrate, alkyl nitrates, and peroxy nitrates are a key control of the impact of the biomass
burning on O3 production and atmospheric composition. Once NOx is converted to inor-
ganic or organic nitrate, it is generally unavailable for further O3 formation near the fire10

source. Furthermore, while conversion of NOx into inorganic nitrate (HNO3(g) +NO3(p))
is generally irreversible (except for the slow reaction of HNO3(g) with OH), peroxy nitrate
species like PAN can act as thermally unstable reservoirs of NOx, allowing transport
of NOx in the upper atmosphere far from the original source and then producing NOx
via thermal decomposition as the airmass descends to the surface (e.g., Fischer et al.,15

2010). This regenerated NOx can thus impact O3 formation far from the original source.
In addition, photochemistry within the smoke plume can rapidly oxidize non-methane

organic compounds (NMOCs), both those that were emitted in the gas phase and
those emitted in the particle phase, lowering their vapor pressure and thus leading to
the formation of secondary organic aerosol (SOA). As with O3 and PAN formation, the20

formation of SOA in smoke plumes is highly variable, with the ratio of OA to CO2 in-
creasing by a factor of 2–3 downwind of some biomass burning fires (e.g. Hobbs et al.,
2003; Grieshop et al., 2009a, b; Yokelson et al., 2009; Hennigan et al., 2011; Heringa
et al., 2011; Vakkari et al., 2014), while in others it can stay constant or even decrease
(e.g. Capes et al., 2008; Akagi et al., 2012). For cases where little net SOA formation25

was observed, it is likely that the NMOCs were still being oxidized. However, in these
cases the fragmentation of the organic species after oxidation (leading to higher volatil-
ity products) is likely more common than functionalization (i.e. the addition of oxygen
to the organic species, leading to lower volatility products).
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Plume-scale Lagrangian parcel models can be used to investigate the evolution of
O3, PAN, and OA in smoke plumes in detail, as their relatively simple parameterizations
of plume dispersion and transport allow detailed simulation of the chemical and micro-
physical processes taking place within the young smoke plumes (e.g., Mauzerall et al.,
1998; Mason et al., 2001, 2006; Jost et al., 2003; Trentmann et al., 2005; Alvarado and5

Prinn, 2009; Arnold et al., 2014; Heilman et al., 2014). Previous plume-scale modeling
studies have greatly advanced our understanding of these transformations. Mauzerall
et al. (1998) found that O3 production within biomass burning plumes was limited by
the concentration of NOx and that the formation and subsequent degradation of peroxy
acetyl nitrate (PAN) helped to maintain NOx concentrations. Mason et al. (2001) and10

Trentmann et al. (2003) showed that oxygenated volatile organic compounds (OVOCs)
were critical to the formation of O3 within the smoke plumes. More recent work has
suggested heterogeneous chemistry and currently unidentified organic species as po-
tential explanations for the rapid formation of O3 and organic aerosol seen within some
smoke plumes (Trentmann et al., 2005; Mason et al., 2006; Alvarado and Prinn, 2009).15

The Aerosol Simulation Program (ASP) was developed to simulate the formation of
ozone and secondary organic aerosol (SOA) within young biomass burning plumes
(Alvarado, 2008). ASP v1.0 was used to simulate several African and North Ameri-
can plumes (Alvarado and Prinn, 2009) and to simultaneously simulate the chemistry,
dynamics, and radiative transfer within a smoke plume using a high-resolution three-20

dimensional plume model (Alvarado et al., 2009). Alvarado and Prinn (2009) showed
while their initial ASP v1.0 simulations underestimated the formation of both OH and
O3 in the Timbavati savannah fire smoke plume (Hobbs et al., 2003), if the OH con-
centration in ASP v1.0 was fixed at the estimated value of 1.7×107 moleculescm−3

then the model was able to reproduce the observed concentrations of O3. This sug-25

gested that the model was missing an important source of OH, and they proposed
a heterogeneous reaction of NO2 on aerosol particles producing HONO, followed by
the photolysis of HONO into NO and OH, as a candidate for the missing source of
OH within the smoke plume. Alvarado and Prinn (2009) also found that including only
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SOA formation from known SOA precursors (mainly aromatic species like toluene) un-
derestimated the concentrations of organic aerosol observed downwind by ∼ 60 %,
suggesting that the model was missing a large source of SOA. They proposed that
the large amount of gas-phase organic compounds that were unidentified by the then
current measurement techniques (Christian et al., 2003; Warneke et al., 2011) could5

include the precursors for the missing SOA. Assuming these compounds had SOA
yields similar to monoterpenes gave the observed SOA formation.

In this paper, we describe recent updates to the gas-phase chemistry and secondary
organic aerosol (SOA) formation modules in ASP. We use this updated version (ASP
v2.1) to simulate the chemical evolution of a young biomass burning smoke plume sam-10

pled over California in November near San Luis Obispo (the Williams Fire, Akagi et al.,
2012). The analysis of the O3, PAN, and OA evolution in biomass burning plumes is
complicated by the fact that a large fraction (30–50 % by carbon mass, Christian et al.,
2003; Warneke et al., 2011) of the NMOCs present in smoke plumes are unidenti-
fied, and thus their oxidation chemistry is not well known. We present a method for15

simultaneously accounting for the impact of the unidentified organic compounds (here
collectively called “SVOCs”) on the formation of OA and O3. We show that this method
can successfully simulate the Williams Fire plume observations using reasonable as-
sumptions about the chemistry of the unidentified SVOCs.

Section 2 describes the updates to the gas-phase chemistry and secondary organic20

aerosol formation modules of ASP for version 2.1. Section 3 discusses our validation
of the gas-phase chemistry in ASP v2.1 against data from a smog chamber (Carter
et al., 2005). Section 4 describes the Williams Fire and summarizes the available ob-
servations of the smoke plume from Akagi et al. (2012). Section 5 discusses the results
of the ASP simulation of the Williams Fire, including sensitivity tests to investigate the25

chemistry of the unidentified SVOCs and their impacts on O3, PAN, other trace gases,
and OA, while Sect. 6 gives the conclusions of our study and directions for future work.
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2 Updates to the Aerosol Simulation Program (ASP)

An overview of ASP v1.0 is given by Alvarado and Prinn (2009), and the routines are
described in detail in Alvarado et al. (2008). Here we briefly discuss the modules of ASP
that have not changed since Alvarado and Prinn (2009) in Sect. 2.1 before describing
the updates to the gas-phase chemistry (Sect. 2.2) and SOA formation (Sect. 2.3)5

routines for ASP v2.1.

2.1 ASP modules

Aerosols are represented in ASP by a single moving-center sectional size distribu-
tion (Jacobson, 1997, 2002, 2005). ASP includes modules to calculate aerosol ther-
modynamics, gas-to-aerosol mass transfer (condensation/evaporation), and coagula-10

tion of aerosols. The thermodynamics module in ASP uses the Mass Flux Iteration
(MFI) method of Jacobson (2005) to calculate the equilibrium concentration of gas and
aerosol species. Equilibrium constants for the inorganic electrolyte reactions match
those of Fountoukis and Nenes (2007). Binary activity coefficients of inorganic elec-
trolytes are calculated using the Kusik–Meissner method (Kusik and Meissner, 1978;15

Resch, 1995), as are the mean activity coefficients. The water content of inorganic
aerosols is calculated with an iterative routine that calculates water activities for aque-
ous solutions of a single electrolyte using a formula based on the Gibbs–Duhem equa-
tion (Steele, 2004). Steele (2004) and Alvarado (2008) found this approach compares
well with other inorganic aerosol thermodynamics models such as ISORROPIA (Nenes20

et al., 1998; Fountoukis and Nenes, 2007).
Mass transfer between the gas and aerosol phases is calculated in ASP using

a hybrid scheme where the flux-limited kinetic equations governing the condensa-
tion/evaporation of H2SO4 and organic species are integrated, whereas NH3, HNO3,
and HCl are assumed to be in equilibrium (Alvarado, 2008). Aerosol coagulation is25

calculated using the semi-implicit scheme of Jacobson (2005) with a Brownian coagu-
lation kernel.
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2.2 Gas-phase chemistry updates

The gas-phase chemistry within the ASP model for Version 2.1 has been completely
revised from ASP v1.0, which used the CalTech Atmospheric Chemistry Mechanism
(CACM, Griffin et al., 2005). The revised ASP v2.1 gas phase chemical mechanism
includes 1608 reactions between 621 species. Examples of the gas-phase species5

input file and the reaction mechanism input file for ASP v2.1, along with other key
chemical input files, are included in the Supplement.

All inorganic gas-phase chemistry within ASP v2.1 was updated to follow the IU-
PAC recommendations (Atkinson et al., 2004; updated data downloaded from http:
//iupac.pole-ether.fr/, accessed June 2012). We also tested the JPL recommendations10

(Evaluation #17, Sander et al., 2011) for these rate constants, but found that the dif-
ferences between the recommendations generally made little difference to the model
simulations, and as the IUPAC values were closer to those in ASP v1.0, these values
were used.

All gas-phase chemistry for organic compounds containing 4 carbons or less has15

been “unlumped,” i.e. the chemistry for each individual organic compound is explic-
itly resolved. This was done by following the reactions of the Leeds Master Chemical
Mechanism (MCM) v3.2 (http://mcm.leeds.ac.uk/MCM/, accessed June 2012; Jenkin
et al., 1997, 2003; Saunders et al., 2003; Bloss et al., 2005) for these species.

The chemical mechanism of isoprene within ASP v2.1 has been updated to follow20

the Paulot et al. (2009a, b) isoprene scheme, as implemented in GEOS-Chem and in-
cluding corrections based on more recent studies (e.g., Crounse et al., 2011, 2012).
The (lumped) chemistry for all other organic compounds in ASP has been updated to
follow the Regional Atmospheric Chemistry Mechanism (RACM) v2 (Goliff et al., 2013).
We chose RACM2 over the SAPRC-07 (Carter, 2010) and CB05 (Yarwood et al., 2005)25

lumped chemical mechanisms as the treatment of peroxy radicals in the RACM2 mech-
anism was more similar to the treatment in the Leeds MCM and the Paulot isoprene
scheme, resulting in a more consistent chemical mechanism for ASP v2.1.
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Photolysis rates are calculated offline using the Tropospheric Ultraviolet and Visible
(TUV) radiation model version 5.0 (Madronich and Flocke, 1998) for 15 min increments,
which are then linearly interpolated in ASP. Alvarado and Prinn (2009) assumed a “clear
sky” radiation field that ignored the effect of aerosol absorption and scattering on the
calculated photolysis rates. Here we instead estimate the time-dependent aerosol, O3,5

SO2, and NO2 concentrations within the smoke plumes and calculate their effect on the
photolysis rates at different heights within the plume (see Sect. 5.1 for details on how
this was done for the Williams Fire).

2.3 SOA formation updates

We have updated the SOA formation module to follow the semi-empirical Volatility Ba-10

sis Set (VBS) model of Robinson et al. (2007). Our implementation of this scheme
followed the approach used by Ahmadov et al. (2012) to link the VBS scheme with
the RACM chemical mechanism within WRF-Chem. We use 9 surrogates or “bins” for
semi-volatile, intermediate volatility, low volatility, and extremely low volatility organic
compounds (hereafter collectively referred to as “SVOCs” for simplicity) as in Dzepina15

et al., 2009, rather than only 4 as in Ahmadov et al. (2012). The saturation mass con-
centration at 300 K (C∗, see Robinson et al., 2007) of each SVOC differs by a factor of
10, and covers the range from 0.01 to 1.0×106 µgm3. Following the Model to Predict
the Multiphase Partitioning of Organics (MPMPO) of Griffin et al. (2003, 2005) and Pun
et al. (2002), we assumed that an aqueous phase and a mixed hydrophobic organic20

phase are always present in the aerosol. Partitioning of organics between the gas and
hydrophobic phase is governed by Raoult’s law (assuming that all hydrophobic-phase
OM is quasi-liquid and can dissolve organics as in Pankow, 1994a, b), while partition-
ing of organics into the aqueous phase is governed by Henry’s law. Following Pun
et al. (2002), we assumed that (1) there is no interaction between the aqueous phase25

inorganic ions and the aqueous phase organics, and thus no organic salt formation,
and (2) the activity coefficients of the organic ions (formed by the dissociation of or-
ganic acids) are equivalent to those of the corresponding molecular solute. We further

32437

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/32427/2014/acpd-14-32427-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/32427/2014/acpd-14-32427-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 32427–32489, 2014

Investigating the
links between ozone
and organic aerosol

M. J. Alvarado et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

assumed that the pH of the aqueous phase is dominated by the strong inorganic acids
and bases, and that the pH effects of the dissociating organic acids are negligible.

Like most organic compounds, SVOCs will react with OH. Most mechanisms for this
chemistry (e.g., Robinson et al., 2007; Dzepina et al., 2009; Grieshop et al., 2009a, b;
Ahmadov et al., 2012) parameterize this chemistry by assuming that the SVOCs react5

with OH to form a lower volatility SVOC, as in the reaction:

SVOCi +OH
kOH−−→ µSVOCi−n (R1)

where µ is the relative mass gain due to oxidation (e.g. via O addition), kOH is the
reaction rate with OH, and n is the “volatility shift”, or by how many factors of 10 to lower
the C∗ of the product with each OH reaction. This simplified chemistry can be extended10

to account for the fact that the SVOCs could fragment during oxidation, leading to
higher volatility products:

SVOCi +OH
kOH−−→ µ(1−α)SVOCi−n +µαSVOCi+1 +αVOCj (R2)

where α is the fraction of SVOCi that fragments into SVOCi+1 and VOCj . However,
the highly simplified chemistry of Reactions (R1) or (R2) is not appropriate for situ-15

ations where reactions with the SVOC compounds are a potentially significant sink
of OH, such as in a concentrated smoke plume. Thus in ASP v2.1, the chemistry of
the SVOCs is instead parameterized in a more realistic manner for a generic organic
species, following the idea of “mechanistic reactivity” (e.g., Carter, 1994; Bowman and
Seinfeld, 1994a, b; Seinfeld and Pandis, 1998). After reaction with OH SVOCs produce20

peroxy radicals (RO2), which can react with NO to form NO2 and HO2, thereby regen-
erating OH and forming O3. Reactions (R3) and (R4) show this more general chemical
mechanism for the SVOCs:

SVOCi +OH
kOH−−→ RO2,i (R3)

RO2,i + χNO
kRO2,i−−−−→ µ(1−α)SVOCi−n +µαSVOCi+1 +αVOCj +βNO2 +δHO2 (R4)25
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where kRO2,i
is assumed to be 4.0×10−12 cm3 molecule−1 s−1 based on the reaction

rate for the peroxy radicals from long-chain alkanes and alkenes with NO in RACM2
(Goliff et al., 2013). We can see that χ −β is the number of NOx lost (implicitly via the
addition of a nitrate group to the product SVOCs), 1−δ is the number of HOx lost,
and β+δ is the number of O3 made per reaction (by subsequent reactions of NO25

and HO2 to generate O3). For example, the values for long-chain alkanes (HC8) in the
RACM2 mechanism (Goliff et al., 2013) would be χ = 1, δ = 0.63, and β = 0.74, such
that 0.26 NOx and 0.37 HOx are lost and 1.37 O3 are formed per reaction. Note that
the mechanism of Reactions (R3) and (R4) is still highly simplified: we assume that
reaction of SVOC with OH always produces a RO2 radical, and that the RO2 produced10

does not react with HO2 or another RO2. Our purpose is less to detail all the possible
reactions of the unidentified SVOCs and more to explore how their average chemistry
might affect O3 and OA evolution in smoke plumes.

We also adjusted the calculation of aerosol water content to use the “kappa” (κ)
parameterization of organic hygroscopicity (Petters and Kreidenweis, 2007) for the15

lumped SVOCs. In this parameterization, the hygroscopicity parameter κ for the or-
ganic species is defined as:

1
aw

= 1+ κ
Vs,i

Vw,i
(1)

where aw is the activity of water in the solution (equal to the relative humidity at equi-
librium), Vs,i is the volume of the dry organic solute i and Vw,i is the volume of water20

in the solution. The water content calculated for each organic species, along with that
calculated for the inorganic solution (Vw,inorg see Sect. 2.1 above) are then combined
using the Zdanovskii, Stokes, and Robinson (ZSR) approximation (Zdanovskii, 1948;
Stokes and Robinson, 1966):

Vw =
aw

1−aw

∑
i

κiVs,i + Vw,inorg (2)25
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3 ASP photochemistry evaluated with smog chamber data

To evaluate the performance of the updated photochemical mechanism in ASP v2.1
in predicting the formation of ozone, several test simulations were performed to com-
pare the results of the mechanism to laboratory smog chamber data. This comparison
provides us with a baseline for interpreting the results of our simulation of O3 forma-5

tion in the Williams Fire in Sect. 5. The data used for the comparison came from the
EPA chamber of Carter et al. (2005). This chamber consists of two collapsible 90 m3

FEP Teflon reactors (chambers A and B) mounted on pressure-controlled moveable
frameworks inside a temperature-controlled room flushed with purified air. Solar radi-
ation is simulated in the chamber using a 200 kW Argon arc lamp for all experiments10

considered here.
Table 1 shows the temperature and initial reactant concentrations used in our model

to simulate each chamber study. All model simulations were performed at a pres-
sure of 1000 mbar, a relative humidity of 1 %, and a CH4 concentration of 1800 ppbv.
The temperature and concentration data were provided by William P. L. Carter15

(http://www.cert.ucr.edu/$∼$carter/SAPRC/SAPRCfiles.htm, accessed March 2014).
The EPA chamber runs used an 8 compound surrogate for ambient VOC concen-
trations, consisting of formaldehyde, ethylene, propene, trans-2-butene, n-butane, n-
octane, toluene, and m-xylene (Carter et al., 1995, 2005). The initial concentrations
of HONO were extrapolated from CO-NOx and n-butane-NOx runs to account for the20

potential chamber radical source (Carter et al., 2005).
Table 2 presents the rates of off-gassing, wall reaction rates, and selected photolysis

rates for the chamber experiments considered here. The off-gassing rate for HONO
was determined as the rate that enabled the SAPRC-99 chemical mechanism (Carter,
2000) to best predict the O3 formation observed in CO-air, HCHO-air and CO-HCHO-25

air experiments performed within the chamber (Carter et al., 2005). The rate in Cham-
ber A was found to be slightly higher than that in Chamber B, so different values are
used for the chambers. The off-gassing rate of HCHO was chosen to match the low but

32440

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/32427/2014/acpd-14-32427-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/32427/2014/acpd-14-32427-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.cert.ucr.edu/\protect \unhbox \voidb@x \penalty \@M \ {}carter/SAPRC/SAPRCfiles.htm


ACPD
14, 32427–32489, 2014

Investigating the
links between ozone
and organic aerosol

M. J. Alvarado et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

measurable amount of formaldehyde found even in pure air and CO-NOx experiments
in the chamber. Heterogeneous wall loss reaction rates for O3, NO2, and N2O5 were
also estimated from reactor observations (Carter et al., 2005). The photolysis rate of
NO2 in the chambers was measured directly, and scaling factors for the other photoly-
sis rates were calculated by Carter et al. (2005) from the relative spectral intensity of5

the arc lamp.
Following Carter et al. (2005), we evaluated the ability of our mechanism to simu-

late the total amount of NO oxidized and O3 formed in the experiments, measured as
∆([O3]− [NO])t ≡ ([O3]t − [NO]t)− ([O3]initial − [NO]initial). The hourly results of the com-
parisons for ∆([O3]− [NO]) are presented in Fig. 1a. We can see that the ASP v2.110

mechanism tends to underestimate ∆([O3]− [NO]), with a mean absolute bias of
−24.6 ppbv and a mean normalized bias of −22.4 %. Comparisons of the ASP cal-
culations for O3, NO, and NOx (not shown) show that this model underestimate of
∆([O3]− [NO]) is primarily due to the model underestimating O3 formation, rather than
underestimating the loss of NO or NOx. Similarly, the ASP v2.1 calculations for the15

concentrations of the organic gas species matches well with the chamber measure-
ments (not shown) except for formaldehyde (HCHO) (see Fig. 1b), where the sec-
ondary formation of HCHO appears to be underestimated. Figure 2 shows the bias in
∆([O3]− [NO]) vs. the initial ratio of the mixing ratio of reactive organic gases (ROGs,
e.g., the concentration of the surrogate gases in ppm C) to the mixing ratio of NOx (in20

ppm N). We can see that the bias is between 0 and −10 % for ROG/NOx ratios greater
than 30, but increases to −40 to −50 % for “high NOx” cases (ROG/NOx ratios� 20).
For comparison, the initial ROG/NOx ratio in biomass burning smoke can range from
∼ 10–100 (Akagi et al., 2011, assuming that the total NMOC mass is 1.6 times the mass
of carbon in these compounds). Both the general underestimation of ∆([O3]− [NO]) and25

the increase of the negative bias at low ROG/NOx concentrations is consistent with
the behaviors of the SAPRC-99 (Carter et al., 2005), SAPRC-07 (Carter, 2010), and
CB05 (Yarwood et al., 2005) mechanisms evaluated against the EPA chamber data.
Carter (2010) noted that this under-prediction of O3 at low ROG/NOx ratios was ap-
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parently linked to the presence of aromatics in the surrogate mixture, with comparisons
of SAPRC-07 with EPA chamber runs with a non-surrogate mixture showing a positive
bias of about +25 % for cases with low ROG/NOx ratios.

4 Williams Fire data

The Williams Fire (34◦41′45′′N, 120◦12′23′′W) was sampled by the US Forest Service5

(USFS) Twin Otter aircraft from 10:50–15:20 LT on 17 November 2009 (Akagi et al.,
2012). The fire burned approximately 81 ha of scrub oak woodland understory and
coastal sage scrub. Skies were clear all day and RH was low (11–26 %) with variable
winds (2–5 ms−1). The Williams Fire smoke plume showed significant secondary pro-
duction of O3 and PAN, but the enhancement ratio of OA to CO2 decreased slightly10

downwind (Akagi et al., 2012). In this study, we use the processed data from Akagi
et al. (2012) that provided concentrations of several trace gases and OA measured
during several quasi-Lagrangian transects of the Williams Fire. Full details on the mea-
surements made and the processing of the data for the plume transects are given in
Akagi et al. (2012); those used in this study are briefly described here.15

4.1 Airborne Fourier Transform InfraRed spectrometer (AFTIR)

The University of Montana AFTIR system and the instruments described below were
deployed on a US Forest Service (USFS) Twin Otter aircraft. The AFTIR was used
to measure 21 gas-phase species: water vapor (H2O), carbon dioxide (CO2), car-
bon monoxide (CO), methane (CH4), nitric oxide (NO), nitrogen dioxide (NO2), am-20

monia (NH3), hydrogen cyanide (HCN), nitrous acid (HONO), peroxy acetyl nitrate
(PAN), ozone (O3), glycolaldehyde (HCOCH2OH), ethylene (C2H4), acetylene (C2H2),
propylene (C3H6), formaldehyde (HCHO), methanol (CH3OH), furan (C4H4O), phenol
(C6H5OH), acetic acid (CH3COOH), and formic acid (HCOOH). Ram air was directed
through a halocarbon-wax coated inlet and into a Pyrex multipass cell. IR spectra were25
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collected at 1 Hz by directing the IR beam into the cell where it traversed a total path
length of 78 m and was then focused onto an MCT detector. “Grab samples” of air
were selected by closing the valves for 1–2 min to allow signal averaging. The IR spec-
tra were analyzed to identify and quantify all detectable compounds. More details on
the AFTIR system used are given by Yokelson et al. (1999, 2003).5

4.2 Aerosol Mass Spectrometer (AMS)

An Aerodyne compact time-of-flight (CToF) aerosol mass spectrometer (herein referred
to as AMS) measured aerosol chemical composition in a repeating cycle for 4 out of
every 12 s during flight, including within the smoke plume. An isokinetic particle inlet
sampling fine particles with a diameter cut-off of a few microns (Yokelson et al., 2007;10

Wilson et al., 2004) supplied the AMS. The AMS does not measure super-micron par-
ticles, so the inlet transmission should not have affected the results. In addition, parti-
cles smaller than 1 µm diameter account for nearly all the fine particle mass emitted by
biomass fires (Radke et al., 1991; Reid et al., 2005b), so the composition analyses for
fine particles should not have been affected by the lack of sensitivity to super-micron15

particles. The AMS collected sub-micron particles via an aerodynamic lens into a high
vacuum particle sizing chamber. At the end of the particle sizing chamber, the particles
impact a 600 ◦C vaporizer and filament assembly where they are vaporized and ionized
by electron impact. The resulting molecular fragments are then extracted into an ion
time-of-flight chamber where they are detected and interpreted as mass spectra. The20

AMS has been described in great detail elsewhere (Drewnick et al., 2005; Canagaratna
et al., 2007). A collection efficiency of 0.5 (Huffman et al., 2005; Drewnick et al., 2003;
Allan et al., 2004) was applied to the AMS data, which were processed to retrieve the
mass concentration at standard temperature and pressure (µgm−3, 273 K, 1 atm) for
the major non-refractory particle species: OA, non-sea salt chloride, nitrate, sulfate,25

and ammonium, with <36 % uncertainty.
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4.3 Other measurements

Measurements of the ambient three-dimensional wind velocity, temperature, relative
humidity, and barometric pressure at 1 Hz were obtained with a wing-mounted Aircraft
Integrated Meteorological Measuring System probe (AIMMS-20, Aventech Research,
Inc., Beswick et al., 2008). A 25 mm i.d. forward facing elbow “fast flow” inlet, collocated5

with the isokinetic and AFTIR inlets, fed air to a non-dispersive infrared instrument
NDIR (LiCor model 7000) that measured CO2 (at 0.5 Hz) from the third channel on the
isokinetic particle inlet that also supplied the AMS, allowing the data from the AMS to
be coupled to the trace gas data.

5 ASP simulation of Williams Fire10

5.1 ASP setup

As in Alvarado and Prinn (2009), we simulated the Williams Fire smoke plume using
ASP within a simple Lagrangian parcel model following Mason et al. (2001). We as-
sume a Lagrangian parcel of fixed vertical extent (H , here assumed to be 1 km) and
down-trajectory length (L), but variable cross-trajectory width y(t). The temperature15

and pressure of the parcel are assumed to be constant. The full continuity equations
for the Lagrangian parcel model are then

dCq
dt

= −
4Ky(

y2
o +8Kyt

) (Cq −Caq)− vd

H
Cq +

(
dCq
dt

)
cond

+

(
dCq
dt

)
chem

(3)

dni
dt

= −
4Ky(

y2
o +8Kyt

) (ni −nai )− vd

H
ni +

(
dni
dt

)
cond

+
(

dni
dt

)
coag

(4)
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dcq,i

dt
= −

4Ky(
y2
o +8Kyt

) (cq,i −caq,i

)
−
vd

H
cq,i +

(
dcq,i

dt

)
cond

+

(
dcq,i

dt

)
coag

+

(
dcq,i

dt

)
chem

(5)

where Cq is the concentration of gas-phase species (moleculescm−3 air), ni is the

number concentration of particles in size bin i (particlescm−3), cq,i is the concentration

of aerosol species q in size bin i (molcm−3 air), yo is the initial plume width (m), and5

Ky represents the horizontal diffusivity of the atmosphere (m2 s−1). The superscript a
indicates the concentration of the given species in the atmosphere outside of the parcel
(i.e., the background concentration).

The first term on the right-hand side of Eqs. (3)–(5) represents the effect of plume
dispersion on the concentrations. Note that in yo and Ky can be reduced to a single10

parameter, the initial dilution time scale τmix,o:

−
4Ky(

y2
o +8Kyt

) = − 1
y2
o

4Ky
+2t

= − 1
τmix,o +2t

(6)

The second term on the right hand side of Eqs. (3)–(5) is the effect of deposition on the
concentrations, where vd is the deposition velocity (ms−1). We set the dry deposition
velocity equal to 0 for gas-phase species, as the plume did not touch the ground during15

the modeled period, and use the size-dependent terminal velocity of the aerosol par-
ticles as the deposition velocity for aerosol species assuming a 1 km thick plume. As
submicron aerosol dominated the aerosol mass in the smoke plume, this deposition of
aerosol species has a negligible effect on the results, and given the low relative humid-
ity during the Williams Fire, we also did not include wet deposition of particles or gases.20

The remaining terms represent the change in gas- and particle-phase concentrations
32445
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due to net mass transfer between the gas and aerosol phases (cond), coagulation of
particles (coag), and chemical production and loss (chem).

The observed changes in CO mixing ratio were used to determine the best-fit model
initial dilution time scale (τmix,o = 106.9 s) as well as upper and lower limits of the time
scale (τmix,o(0)=15.0 and 212.2 s, respectively), as shown in Fig. 3. The temperature5

of the plume was set at a constant value of 288.4 K, pressure of 880 hPa, and rela-
tive humidity of 15.7 % based on the observations of Akagi et al. (2012). The parcel
was assumed to be emitted at 11:00 Pacific Standard Time (PST) and the model was
integrated for 5 h. The integration of the different terms of the continuity Eqs. (3)–(5)
were operator split for computational efficiency. The chemistry and mixing time steps10

were 1 s for the first 10 min of model integration due to the rapid dilution and chemical
changes during this period, and were 60 s thereafter. The aerosol thermodynamics,
condensation, and coagulation time steps were 60 s throughout.

The initial and background concentrations for the gas-phase inorganic and NMOC
species are in Tables 3 and 4 gives the initial and background concentrations used for15

the aerosol species. Initial and background concentrations of trace gases and aerosols
in the smoke were taken from observations of the Williams Fire (Akagi et al., 2012),
where available. Emission ratios for other species were calculated using the literature
reviews of Akagi et al. (2011) and Andreae and Merlet (2001). Other background con-
centrations were taken from runs of the GEOS-Chem model (Bey et al., 2001), run for20

our period as in Fischer et al. (2014). The volatility distribution for the POA was taken
from the wood smoke study of Grieshop et al. (2009a, b). For all organic species, we
assumed a constant κ = 0.04, corresponding to an O/C ratio of 0.25 (Jimenez et al.,
2009) that is typical of biomass burning organic aerosol (Donahue et al., 2011). Since
the relative humidity in the Williams Fire plume was very low, this assumption had lit-25

tle impact on our results. The initial smoke aerosol size distribution was assumed to
be a log-normal with a geometric mean diameter Dg of 0.10 µm and a SD σ of 1.9
based on Reid and Hobbs (1998) for flaming combustion of Brazilian cerrado, which
structurally is a similar mix of shrubs and grasses as in the Williams Fire. The initial
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total number concentration of aerosol particles (2.34×106 particlescm−3) was calcu-
lated such that the initial total organic aerosol mass matched the ∆OA/∆CO2 emission
ratio from Akagi et al. (2012). The evolution of the aerosol size distribution with time
was simulated by ASP v2.1 using a center-moving sectional size distribution with 10
bins, 8 bins for particles with volume-equivalent spherical diameters between 0.05 and5

2.0 µm, one for particles with diameters smaller than 0.05 µm, and one for particles with
diameters greater than 2 µm.

Photolysis rates were calculated offline using TUV v5.0 (Madronich and Flocke,
1998) as noted in Sect. 2.2 above. The smoke aerosols were assumed to dilute with
time according to the three dilution rates derived above (see Fig. 3). In the TUV sim-10

ulations, we assumed no clouds and an initial AOD of 8.0 at 330 nm (consistent with
the ASP v2.1 calculated initial extinction coefficient and the assumed plume thickness
of 1 km), which decreases due to dilution assuming a background concentration of
∼ 0, as well as a constant single scattering albedo of 0.9 (based on the review of
AERONET biomass burning smoke optical property retrievals by Reid et al., 2005a).15

We also assumed initial plume and background concentrations of the trace gases NO2
(initial 295 ppbv, background 0 ppbv) and SO2 (initial 50.9 ppbv, background 0 ppbv),
as these species can also absorb ultraviolet and visible (UV-VIS) light and thus can
impact photolysis rates. For the photolysis rate calculations only, O3 was assumed to
be 0 initially and increased after 15 min to a constant value of 100 ppbv to account for20

the observed formation of O3 within the smoke plume. The overhead ozone column
was assumed to be 278 Dobson Units (DU), based on the average of values from the
Ozone Monitoring Instrument (OMI) for 11/16/2009 (276 DU) and 11/18/2009 (280
DU) (accessed through http://jwocky.gsfc.nasa.gov/teacher/ozone_overhead.html on
June 2012, now at: http://ozoneaq.gsfc.nasa.gov/tools/ozonemap/ozone_overhead).25

The surface albedo was assumed to be 0.035 based on the GEOS-Chem data file
for the 0.5◦ ×0.667◦ North American grid for November 1985, which is in turn based
on data from the Total Ozone Mapping Spectrometer (TOMS). Photolysis rates were
calculated for three altitudes: just above the plume (i.e., at 2.1 km altitude), near the
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middle of the plume (1.6 km), and near the bottom of the plume (1.1 km). This, com-
bined with the three dilution rates, gave nine estimates of photolysis rates vs. time. The
nine values for the NO2 photolysis rate (JNO2

) were compared with the clear sky (no
aerosol) case in Fig. 4. In the middle of the plume (1.6 km), JNO2

was reduced from

an initial clear-sky value of 9×10−3 s−1 to an initial value of 2×10−3 s−1. However, by5

15 min after emission JNO2
in the middle of the plume increased to 6–8.5×10−3 s−1

depending on the dilution rate, showing that the plume reduced photolysis rates by 5–
33 % after the initial, rapid dilution of the plume. JNO2

was slightly enhanced above the

plume (initially 1.1×10−3 s−1) over the clear sky value, and the photolysis rates were
lowest in the bottom of the plume. As expected, the impact of the plume was larger for10

lower dilution rates, but the difference between the different dilution rates was largest
for the bottom of the plume.

5.2 ASP results with no unidentified SVOC chemistry

We first ran ASP assuming the unidentified SVOCs emitted by the fire are unreactive.
Deficiencies in these simulations provide information on what the average chemistry of15

the unidentified SVOCs needs to be in order to explain the observations.
Figure 5 shows the ASP v2.1 results and Akagi et al. (2012) observations for the en-

hancement ratios (EnR, molmol−1) of O3 and PAN in the Williams Fire smoke plume vs.
time after emissions. The EnR is defined as the ratio of the enhancement of a species
X within the smoke plume (∆X = Cx −C

a
x, Akagi et al., 2011) to the enhancement of20

a less reactive species, such as CO2 or CO. We can see that the range of dilution
rates and photolysis rates simulated for this case capture the general rate of the sec-
ondary formation of O3 and PAN, but ASP v2.1 appears to be overestimating the rate
of formation of these compounds. This is in contrast to Alvarado and Prinn (2009), who
found that ASP v1.0 dramatically underestimated the much faster O3 formation in the25

Timbavati savannah fire smoke plume.
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The ASP v2.1 “average” value (i.e., the best-fit dilution combined with the middle of
the plume photolysis rates, plotted as a solid black line in Fig. 5) at 4.5 h for ∆O3/∆CO
is 0.116 molmol−1 which is within the uncertainty associated with the average value
measured for the Williams Fire (0.095±0.022). This overestimate is similar to the pos-
itive bias (∼ 25 %) of the SAPRC-07 mechanism vs. the EPA smog chamber for low5

ROG/NOx (< 20 ppbC/ppbN) ratios when aromatics are not part of the surrogate. As
aromatics are a minor constituent in biomass burning smoke, and the ROG/NOx ra-
tio for savannah/scrubland fires like the Williams Fire (without including unidentified
species) is ∼ 10 ppbC/ppbN, we would expect the mechanism in ASP v2.1 to show
a similar positive bias. ASP v2.1 predicts an “average” value of ∆PAN/∆CO of 0.01210

at 4.5 h downwind, 68 % larger than the observed value of 0.0072±0.0017.
Figure 6 shows the ASP v2.1 results and observations for ∆NOx/∆CO2 and

∆C2H4/∆CO vs. time. Figure 6a shows that the ∆NOx/∆CO2 values 2–5 h after
emission are correctly simulated by ASP v2.1, with the “average” ASP case EnR of
3.4×10−4 matching the observed value of 4.6±2.3×10−4. However, the observations15

show a faster rate of decay in the first two hours after emission than is seen in the
model results. Figure 6b shows that the decay of C2H4 is also well matched by the
model results, suggesting that the modeled OH is similar to the actual OH concen-
trations. This can also be seen by comparing the modeled OH concentration for the
“average” case (5.3×106 moleculescm−3) to that derived by Akagi et al. (2012) using20

the observed decay of C2H4 (5.27±0.97×106 moleculescm−3). This is again in con-
trast with Alvarado and Prinn (2009), who found that ASP underestimated the observed
OH radical concentrations for the Timbavati smoke plume (1.7×107 moleculescm−3,
Hobbs et al., 2003).

We can explore this contrast further by looking at the rate of loss of HONO in the25

smoke plume, shown in Fig. 7. Note that unlike the previous figures, Fig. 7 only shows
the first hour after emission as the observations showed no detectable HONO further
downwind. As noted in Sect. 1, to explain the underestimate of O3 and OH in the Tim-
bavati fire, Alvarado and Prinn (2009) posited that a heterogeneous reaction of NO2
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to make HONO and HNO3 was taking place in that plume. However, the O3 and OH
results for the Williams Fire show no evidence of this chemistry, and the HONO de-
cay seen in Fig. 7 also shows little evidence for a secondary source of HONO except
for a few points within the first 12 min after emission that have more HONO than is
predicted by the model. While explaining the discrepancy between the Williams and5

Timbavati results is beyond the scope of this paper, we note that the Timbavati fire took
place closer to the equator (24◦ S vs. 35◦N) and earlier in the year (7 September vs. 17
November) than the Williams Fire, and that the relative humidity was slightly higher as
well (45.0 vs. 15.7 %). All of these differences would tend to increase photolysis rates
and the formation of OH. In addition, the higher actinic flux and RH in Timbavati may10

have increased the speed of reactions for forming HONO from NO2 that are not in-
cluded in standard chemical mechanisms, either via aqueous chemistry (Jacob et al.,
2000), sunlight-activated humic acid surfaces (Stemmler et al., 2006, 2007), or pho-
toexcited NO2 reacting with H2O (Ensberg et al., 2010). Though we find no evidence
for secondary HONO production in the Williams Fire data, this does not preclude that15

some HONO was made, but remained below the AFTIR detection limit as the plume
diluted.

Figure 8 shows the ASP results for the aldehydes such as HCHO and glycoaldehyde
(HCOCH2OH), and the organic acids as well as formic acid (HCOOH) and acetic acid
(CH3COOH) within the Williams Fire in terms of EnRs to CO. We can see that ASP20

generally underestimates the formation of these species. Part of this underestimate
may be due to errors in the chemical mechanism for known precursor compounds,
as was seen for HCHO in the smog chamber results in Fig. 1b, but neglecting the
chemistry of the SVOCs and their ability to form these smaller organic compounds is
also likely responsible for this underestimate.25

5.3 OH reaction rate and fragmentation probability of the unidentified SVOCs

Here we evaluate the ability of the parameters from the original VBS paper of Robinson
et al. (2007), a study of SOA formation in wood smoke by Grieshop et al. (2009a, b),
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and the implementation of the VBS scheme into WRF-Chem by Ahmadov et al. (2012)
to simulate the observed evolution of OA in the Williams Fire plume. Table 5 shows the
values for the parameters in Reactions (R3) and (R4) that define these various SVOC
mechanisms.

Figure 9 shows the modeled OA enhancement ratios (∆OA/∆CO2, gg−1) at 4.5 h5

downwind using the parameters listed in Table 5 in addition to the observed average
OA enhancement ratio and the modeled OA enhancement ratio for the case where
the chemistry of the unidentified SVOCs is not included (see Sect. 5.2). When SVOC
chemistry was not included, some of the original OA evaporated into the gas phase
as the plume diluted, and as there was no chemistry to make these SVOC species10

less volatile, they stayed in the gas phase leading to a net decrease in ∆OA/∆CO2
with time. However, the modeled decrease without SVOC chemistry is larger (but still
within the error bars) of the decrease that was reported by Akagi et al. (2012). In
addition, the assumption that the SVOCs do not react is unrealistic – as large multi-
functional organic compounds, they should have a relatively fast reaction rate with OH15

(see below).
Figure 9 also shows that the SVOC mechanisms of Robinson et al. (2007) and

Grieshop et al. (2009a, b) overestimated the OA downwind by a factor of 3.1 and
7.2, respectively. This is primarily due to their relatively large values for kOH. For
the Grieshop et al. (2009a, b) case, the overestimation is also partially due to the20

large increase in mass (µ) and decrease in volatility (n) for each OH reaction. The
scheme of Ahmadov et al. (2012), with kOH = 10−11 cm3 molecule−1 s−1, was closest
to the observations, with an overestimate of a factor of 1.9. One approach to further
reduce this remaining overestimation would be to reduce kOH even further. However,
it seems unlikely that the average OH reaction rate of the unidentified SVOC species25

would be less than 10−11 cm3 molecule−1 s−1, as this is close to the reaction rate for
large alkanes (kOH(298 K)=1.1×10−11 cm3 molecule−1 s−1, Goliff et al., 2013) and the
presence of other functional groups (double bonds, aldehydes) would be expected
to result in even higher reaction rates. For example, α-pinene has a kOH(298 K) of
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5.0×10−11 cm3 molecule−1 s−1 (Goliff et al., 2013), and other monoterpenes can have
even faster reaction rates with OH. Thus, we think a more likely explanation for the
remaining overestimate is that a substantial fraction of the SVOC and OH reactions
resulted in the fragmentation of the primary SVOC into more volatile compounds, as in
the 2D-VBS schemes of Jimenez et al. (2009) and Donahue et al. (2011).5

Figure 9 shows that a kOH of 10−11 cm3 molecule−1 s−1 and a fragmentation proba-
bility of 50 % (the “Half Fragmentation” case, see Table 5) provided a reasonably good
match with the observed ∆OA/∆CO2 4.5 h downwind in the smoke plume (3.1×10−3

vs. the observed value of 2.83±1.02×10−3). Here we assumed that the SVOC frag-
mented into a small VOC and another, more volatile, SVOC, as in Reactions (R3)10

and (R4). While this is a relatively large fragmentation probability, we note that it
seems reasonable given the likely complex and multifunctional nature of the unidenti-
fied SVOCs in a biomass burning smoke plume.

This fragmentation of the SVOCs after reaction with OH could also help to explain
the underestimate of aldehydes and organic acids seen in Sect. 5.2 when SVOC chem-15

istry was neglected. For example, Fig. 10 shows the ASP modeled EnR of acetic acid
when we assumed that the VOC fragment produced in Reaction (R4) is acetic acid.
This provided a remarkably good match with the observed acetic acid formation, pro-
viding additional evidence to support the fragmentation hypothesis. While we are not
claiming to have proven this is the source of the missing acetic acid, we note that the20

fragmentation hypothesis is thus consistent with the initial underestimate of the sec-
ondary formation of aldehydes and organic acids in ASP v2.1. In addition, there is
some evidence from biomass burning plume observations that the formation of acetic
acid and OA are inversely correlated with each other. In the Yucatan plume studied
by Yokelson et al. (2009), a large amount of SOA was formed, but acetic acid did not25

increase downwind, while in the Williams Fire, acetic acid increased, but OA did not.
Thus, the limited amount of relevant airborne data in BB plumes is so far consistent with
the idea that the branching between functionalization and fragmentation in BB plumes
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is variable and future work should identify what environmental and combustion factors
determine this variability.

An additional potential explanation for the SOA overestimate observed when the
schemes of the Robinson et al. (2007), Grieshop et al. (2009a, b), and Ahmadov
et al. (2012) were used is that the OA was becoming more viscous and “glassy” with5

time (i.e., the particles had a lower bulk diffusivity), thereby reducing the amount of
quasi-liquid OA for SVOC compounds to dissolve into (e.g., Kidd et al., 2014; Zaveri
et al., 2014). There has been some recent evidence for this process occurring in smoke
plumes from biomass burning in the western US (A. Sedlacek, personal communica-
tion, March 2014). ASP v2.1 is not able to examine this possibility in detail, but we10

do note that while the formation of “glassy” OA would reduce SOA formation, it likely
would not increase the formation of aldehydes or organic acids as in the fragmentation
hypothesis.

5.4 HOx and NOx chemistry of the unidentified SVOCs

Section 5.2 showed that an SVOC mechanism following Reaction (R2) with a kOH of15

10−11 cm3 molecule−1 s−1 and a fragmentation probability α of 0.5 (the “Half Fragmen-
tation” scheme in Table 5) could explain the observed evolution of OA in the Williams
Fire. However, neglecting the regeneration of HOx and reaction of the peroxy radical
with NO, as in Reaction (R2), can lead to substantial underestimates of OH in the
concentrated smoke plumes. This is because including Reaction (R2) in ASP leads to20

a loss of OH with no corresponding regeneration of HO2.
For example, Fig. 11 shows that using the “Half Fragmentation” scheme reduced the

ASP v2.1 estimates of the enhancement ratios of O3 and PAN downwind by 32 and
67 %, respectively (for the “average” case), while Fig. 12 shows that it increased the
ASP v2.1 estimates of C2H4 and NOx downwind by 50 % and a factor of 3.3, respec-25

tively. The new O3 and PAN estimates are more consistent with the observations – the
overestimate of PAN seen with the unidentified SVOC chemistry neglected in Sect. 5.2
has disappeared – but the large overestimate of NOx (i.e., underestimate of NOx loss in

32453

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/32427/2014/acpd-14-32427-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/32427/2014/acpd-14-32427-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 32427–32489, 2014

Investigating the
links between ozone
and organic aerosol

M. J. Alvarado et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the plume presumably due to missing organic nitrogen formation) is a serious problem.
While this underestimate of NOx loss reduces the amount of O3 and PAN formed within
five hours after emission, it would lead to large overestimates of the impact of biomass
burning plumes on O3 and PAN formation further downwind.

In addition, the chemistry of Reaction (R2) is unrealistic, in that it implies a total loss5

of OH and no effect of the SVOC oxidation on NOx. One approach for addressing the
first concern is to artificially regenerate the OH by simply adding it as an additional
product to Reaction (R2). While this makes sense as a “first do no harm” modeling
approach to keep the gas-phase results the same regardless of the SVOC scheme, it
is equally unrealistic, as it assumes that the SVOCs are oxidized without having any10

impact on NOx or HOx.
We prefer to approach this problem by recognizing that SVOCs are going to have

impacts on the HOx and NOx radical budgets just like any other organic species, and
that this chemistry can be approximated via Reactions (R3) and (R4). Including this
more realistic, yet still simplified, chemistry allows ASP to simultaneously simulate the15

observed changes in OA and O3 while still making reasonable, chemically plausible
assumptions about the chemistry of the unidentified SVOCs emitted by the fire.

Our approach thus used the observations of OA, O3, PAN, NOx, and C2H4 in the
Williams Fire as constraints on β and δ, the amount of NO2 and HO2 produced in
Reaction (R4), respectively, while assuming that χ = 1 throughout. For the Williams20

Fire, we know from the above results that we want the optimized SVOC chemistry to
(a) increase O3, PAN, and OA formation as little as possible, (b) increase the loss of
NOx, either through organic nitrate formation or increased OH concentrations, and (c)
increase the OH concentration, thereby increasing C2H4 loss. We found that using the
parameters for large alkanes from RACM2 (δ = 0.63 and β = 0.74) generally produced25

too much O3 and PAN and too little OH, but did a reasonable job for NOx loss. However,
attempts to increase OH by increasing δ led to too much O3 formation except for unre-
alistically low values of β (∼ 0.1). Thus we set δ = 0.6 and reduced β to 0.5, implying
that 1.1 O3 is formed per molecule of SVOC reacted. These parameters (arrived at by
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trial and error) appear to give the best balance of reducing modeled NOx and C2H4
mixing ratios while minimizing the increase in O3, PAN, and OA. The following section
discusses the ASP v2.1 model results for the Williams Fire smoke plume using these
parameters in detail. Note that while slightly different, more precise parameters might
provide a slightly better match with observation, our goal here is not to derive exact5

best-fit parameters, but rather to roughly classify the average chemistry of the SVOCs
in the Williams Fire smoke plume, both for modeling this fire and for future comparisons
with other smoke plumes.

5.5 Results with optimized SVOC chemistry

Figure 9 shows the ∆OA/∆CO2 4.5 h downwind in the smoke plume using the opti-10

mized SVOC chemistry discussed in Sect. 5.4. The “average” model case ∆OA/∆CO2

is 3.5×10−3 (gg−1), within the uncertainty of the observed value of 2.83±1.02×10−3.
Figure 13 shows the enhancement ratios of O3 and PAN for the optimized SVOC

chemistry, and Fig. 14 shows the results for NOx and C2H4. The O3 results are very
similar to those from Sect. 5.2 (where SVOC chemistry was not included in the model),15

while the PAN results are slightly lower (and closer to the observed values) than in that
case. In the ASP “average” case ∆O3/∆CO is 0.119 at 4.5 h downwind, about 25 %
larger than the observed value of 0.095±0.022, while the ∆PAN/∆CO is now 0.0098
at 4.5 h downwind, about 36 % larger than the observed value of 0.0072±0.0017. How-
ever, the O3 and PAN values are reasonably close given the uncertainties in the con-20

centrations and in the estimated smoke ages for the observations.
The NOx results were much improved from the “half frag” case in Sect. 5.4, with

the “average” ASP case ∆NOx/∆CO2 of 9.6×10−4 being below the mean observed
value of 4.6±2.3×10−3, but consistent with the error bars of the individual samples
as shown in Fig. 14. We could attempt to get a closer match by increasing β, but25

at the cost of increases in the modeled O3, PAN, and OA formation. The decay of
C2H4 is also better modeled than in the “Half Fragmentation” case, but the results
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suggest OH was still underestimated in the model. The modeled OH concentration
for the “average” case is now 3.2×106 moleculescm−3, below the observed value of
5.27±0.97×106 moleculescm−3, but attempts to increase OH by increasing δ would
increase O3, PAN, and OA.

6 Conclusions5

We have used version 2.1 of the ASP model, which includes extensive updates to the
gas-phase chemistry and SOA formation modules, to simulate the near-source chem-
istry within the smoke plume from the Williams Fire, as sampled by Akagi et al. (2012).
We find that the assumptions made about the chemistry of the unidentified SVOCs
emitted by the fire have a large impact on the simulated secondary formation of O3,10

PAN, and OA within the plume. We showed that reasonable assumptions about the
chemistry of the unidentified SVOCs can successfully simulate the observations within
the uncertainties of the measurements, the estimated smoke ages of the samples,
the plume dilution rate, and the vertical location of the samples in the plume. For
the Williams Fire, these assumptions were: (1) a reaction rate constant with OH of15

∼ 10−11 cm3 s−1, (2) a significant fraction (∼ 50 %) of the RO2 +NO reaction resulted
in fragmentation, rather than functionalization, (3) ∼ 1.1 molecules of O3 were formed
for every molecule of SVOC that reacts; and (4) 60 % of the OH that reacted with the
SVOC was regenerated as HO2 by the RO2 +NO reaction, which implied (5) that 50 %
of the NO that reacted with the SVOC peroxy radicals was lost, likely due to to organic20

nitrate formation.
The method used in this study can provide a way of classifying different smoke plume

observations in terms of the average chemistry of their unidentified SVOCs. Similar
studies of other young biomass burning plumes would allow us to see how the chem-
istry of the unidentified SVOCs varies with fuel type, combustion efficiency, and other25

environmental parameters, providing an additional constraint on the reactivities of the
unidentified SVOCs. These constraints could then provide more insight into the for-
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mation of O3, PAN, and OA in young biomass burning smoke plumes and serve as
the basis of parameterizing this process for regional or global scale models. Future
field experiments, focused on quasi-Lagrangian sampling of biomass burning smoke
plumes, may also provide data beyond that available for the Williams Fire that will in-
crease our understanding of the chemistry of these plumes. These include (a) observa-5

tions of changes in particle size distribution to test model simulations of condensational
growth, coagulation, and new particle formation, (b) observations of a larger suite of
NOy species, such as HNO3(g), peroxy nitrates, and alkyl nitrates, for use in studying
and constraining the transformations of reactive nitrogen, (c) measurements of organic
aerosol viscosity and mixing state with black carbon and inorganic aerosols, and (d)10

more detailed measurements of the currently unidentified organic species present in
the smoke plumes.

The Supplement related to this article is available online at
doi:10.5194/acpd-14-32427-2014-supplement.
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Table 1. Initial temperatures (T , in K) and mixing ratios (ppbv) used for the EPA chamber
simulations. Note HONO initial concentration is set at 0.05 ppbv for all runs. PRO=propene,
t-BUT= trans-2-butene, BUT=n-butane, OCT=octane, TOL= toluene, and XYL=m-xylene.

Case T NO NO2 CO HCHO C2H4 PRO t-BUT BUT OCT TOL XYL

96A 303.9 64.13 45.14 0 21.73 12.29 9.907 7.779 62.03 16.15 15.96 15.13
96B 303.9 64.25 46.83 0 21.66 12.29 9.907 7.779 62.03 16.15 15.96 15.13
97A 303.7 3.107 2.175 0 12.2 8.386 7.605 6.649 52 11.16 10.59 9.833
97B 303.7 3.168 2.039 0 12.05 8.208 7.566 6.513 52 11.28 10.65 10.08
80A 303.6 62.54 29.69 0 112.3 76.64 61.63 58.43 365.7 96.88 90.98 86.35
80B 303.6 62.54 29.69 0 112.3 76.64 61.63 58.43 365.7 96.88 90.98 86.35
81A 303.5 33.47 16.43 0 59.27 41.41 31.91 29.46 187.1 60.08 50.47 46.97
81B 303.5 33.5 16.51 0 59.01 41.42 32.23 29.31 185.7 60.08 49.91 46.7
128A 302.6 30.59 17.03 0 10.98 8.751 8.258 7.124 53.93 12.17 11.67 11.57
83A 303.5 31.69 16.17 20.67 18.32 26.02 14.68 12.97 88.29 24 20.23 19.19
84B 303.5 33.61 17.51 20.67 24.72 16.34 16.79 15.32 100.4 29 24.23 22.94
110B 303.4 19.57 11.91 20.67 0 9.763 8.834 7.81 58.71 12.99 12.43 12.7
114A 302.7 19.88 10.9 20.67 21 8.219 7.473 6.664 50.45 12.67 11.9 11.51
127B 302.8 18.65 10.37 20.67 11.82 8.636 8.025 6.791 52.78 11.88 11.33 11.18
137A 303.4 18.29 10.28 20.67 11.01 8.845 8.476 7.335 55.43 12.17 11.35 13.29
143A 303.5 18.41 10.26 20.67 0.1523 8.688 8.126 6.791 51.84 11.48 10.95 10.84
143B 303.5 18.5 10.3 20.67 0 8.782 8.134 7.053 52.82 11.89 11.39 11.21
151B 303.7 18.23 11.39 20.67 10.12 8.292 7.683 6.77 50.22 12.66 11.57 11.95
163B 303.9 14.87 8.699 20.67 10.79 7.781 7.341 6.468 48.11 11.94 11.51 11.29
167A 304.1 18.02 11.05 20.67 10.87 8.48 8.111 7.113 52.25 12.31 11.57 11.64
168B 303.9 18.16 10.83 20.67 10.87 8.677 8.168 6.921 51.06 12.09 11.26 11.62
226A 304.7 19.56 11.3 45.65 0 9.064 8.274 8.5 47.09 13.15 12.89 12.73
226B 304.7 19.5 11.37 41.32 0 9.22 8.481 8.849 47.81 13.46 13.05 13.37
229B 303.3 20.18 11.62 41.32 0 10.26 9.799 9.776 56.15 15.27 14.1 15.51
230A 302.6 20.68 12.53 41.32 0 9.08 8.81 9.089 50.51 14.29 13.25 14
100A 303.6 3.07 2.254 41.32 9.2 5.34 4.65 3.885 35 6.899 5.851 5.581
180B 304.8 31.64 19.92 41.32 33 34.38 32.62 34.36 186.6 51.03 48.85 47.51
181B 305.1 13.17 10.8 41.32 32 35.49 32.88 34.78 188.1 47.84 45.71 44.52
182B 304.6 30.15 22.52 41.32 15 18.16 16.85 17.89 98.27 23.83 22.59 22.21
188B 304.4 7.546 6.216 41.32 8 8.663 8.183 8.404 49.4 11.87 11.27 11.07
189B 302.0 7.754 5.641 41.32 16.5 16.94 15.63 16.35 91.4 21.89 20.93 20.17
190B 304.4 63.32 34.07 41.32 10.5 8.578 7.998 8.121 49.63 12.94 12.43 12
191B 301.8 8.104 4.7 41.32 4 4.211 4.15 4.184 27.14 6.464 6.162 6.154
192B 304.0 3.916 3.08 41.32 6 8.259 7.881 8.252 48.32 10.46 9.853 9.844
193B 304.4 32 15.67 41.32 4 4.619 4.461 4.337 28.08 6.068 5.762 5.749
197B 304.9 64.16 39.59 41.32 43 34.03 31.52 33.29 183 44.37 42.29 41.4
113A 303.1 44.42 24.84 41.32 0 16.32 14.88 12.91 91.75 24 22.9 22.59
180A 304.8 31.61 20.22 41.32 33 34.38 32.62 34.36 186.6 51.03 48.85 47.51
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Table 2. Off-gassing, wall reaction, and selected photolysis rates used for the EPA chamber
simulations.

Reaction Rate (s−1)

OffGas→HONO 5.5424×10−8 (Chamber A)
OffGas→HONO 3.6805×10−8 (Chamber B)
OffGas→HCHO 8.33×10−8

O3→Wall O3 1.8×10−6

NO2→0.2 HONO+0.8 Wall NOX 2.67×10−6

N2O5→Wall NOX 4.67×10−5

NO2→NO+O 4.333×10−3

O3→O1−D +O2 2.947×10−6

O3→O+O2 8.6667×10−4

HONO→0.9 OH+0.9 NO+0.1 HO2 +0.1 NO2 8.6667×10−4

NO3→NO+O2 8.233×10−3

HCHO→HO2 +HO2 +CO 4.767×10−6

Acetaldehyde→CH3O2 +HO2 +CO 5,776×10−7

Acetone→CH3CO3 +CH3O2 4.767×10−8

MGLY→CH3CO3 +CO+HO2 6.5×10−5
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Table 3. Initial and background trace gas concentrations for the ASP simulations of the Williams
Fire smoke plume. Only compounds with non-zero values are listed. “GEOS-Chem” refers to
the GEOS-Chem model output from the study of Fischer et al. (2014).

Species Initial Conc. (ppbv) Background Conc. (ppbv) Initial Conc. Source Background Conc. Source

CO 1.00E+04 1.29E+02 Akagi et al. (2012) –
CO2 5.28E+05 3.90E+05 Akagi et al. (2012) Approximate
Trace 1.00E+03 0.00E+00 – –
NO 1.14E+02 1.50E−02 Akagi et al. (2012) GEOS-Chem
NO2 2.27E+02 3.90E−02 Akagi et al. (2012) GEOS-Chem
O3 0.00E+00 5.00E+01 Akagi et al. (2012) Akagi et al. (2012)
H2O2 7.55E−01 7.55E−01 – GEOS-Chem
HONO 3.95E+01 0.00E+00 Akagi et al. (2012) –
SO2 3.79E+01 1.20E−01 Akagi et al. (2011) (chaparral) GEOS-Chem
HNO3 4.10E−01 4.10E−01 – GEOS-Chem
H2SO4 1.00E−04 0.00E+00 – –
HCl 1.95E+01 1.00E−05 Akagi et al. (2011) (chaparral) –
NH3 3.79E+02 9.60E−04 Akagi et al. (2012) GEOS-Chem
H2 3.74E+03 1.00E−05 Akagi et al. (2011) (savannah) –

C1 Parent Compounds

CH4 2.76E+03 1.90E+03 Akagi et al. (2012) Approximate
HCHO 1.63E+02 3.30E−01 Akagi et al. (2012) GEOS-Chem
Methanol 1.65E+02 0.00E+00 Akagi et al. (2012) –
Formic Acid 6.50E+00 0.00E+00 Akagi et al. (2012) –
HCN 1.28E+02 0.00E+00 Akagi et al. (2012) –

C2 Parent Compounds

Ethylene 1.26E+02 0.00E+00 Akagi et al. (2012) –
Ethane 5.28E+01 0.00E+00 Akagi et al. (2011) (chaparral) –
Acetaldehyde 5.70E+01 0.00E+00 Akagi et al. (2011) (savannah) –
Ethanol 9.87E−01 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah) –
Acetic Acid 1.39E+02 0.00E+00 Akagi et al. (2012) –
Glyoxal 8.52E+01 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah) –
Acetylene 2.68E+01 0.00E+00 Akagi et al. (2012)

C3 Parent Compounds

Propene 4.74E+01 0.00E+00 Akagi et al. (2012) –
Propane 1.78E+01 0.00E+00 Akagi et al. (2011) (chaparral) –
Acrolein 5.92E+00 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah) –
Propanal 6.42E−01 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah) –
Acetone 1.21E+01 0.00E+00 Akagi et al. (2011) (savannah) –
n-Propanol 1.84E+00 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah) –
Methyl Glyoxal 4.47E+01 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah) –
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Table 3. Continued.

Species Initial Conc. (ppbv) Background Conc. (ppbv) Initial Conc. Source Background Conc. Source

C4 Parent Compounds

Butadiene 4.23E+00 0.00E+00 Akagi et al. (2011) (savannah) –
1-Butene 3.34E+00 0.00E+00 Akagi et al. (2011) (savannah) –
cis-2-Butene 6.80E−01 0.00E+00 Akagi et al. (2011) (savannah) –
trans-2-Butene 8.55E−01 0.00E+00 Akagi et al. (2011) (savannah) –
i-Butene 1.89E+00 0.00E+00 Akagi et al. (2011) (savannah) –
n-Butane 9.87E+00 0.00E+00 Akagi et al. (2011) (chaparral) –
i-Butane 3.23E−01 0.00E+00 Akagi et al. (2011) (savannah) –
Butanal 3.34E+00 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah) –
MEK 1.53E+01 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah) –
n-Butanol 5.00E−01 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah) –

Lumped Parent Compounds

FURAN 2.02E+01 0.00E+00 Akagi et al. (2012) –
ISOP 2.53E+00 0.00E+00 Akagi et al. (2011) (savannah) –
ALD 7.22E−01 2.00E−02 Andreae and Merlet (2001) with 2009 updates (savannah) GEOS-Chem
API 3.26E+01 0.00E+00 Akagi et al. (2013) –
BALD 1.25E+00 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah) –
BEN 1.11E+01 0.00E+00 Akagi et al. (2011) (savannah)
DIEN 1.20E+00 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah)
HC5 2.38E+00 1.08E+00 Akagi et al. (2011) (savannah) GEOS-Chem
KET 1.58E+00 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah)
LIM 3.26E+01 0.00E+00 Akagi et al. (2013) –
OLI 2.14E+00 0.00E+00 Akagi et al. (2011) (savannah)
OLT 8.75E−01 0.00E+00 Akagi et al. (2011) (savannah)
PHEN 1.46E+01 0.00E+00 Akagi et al. (2012) –
ROH 1.70E+00 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah)
TOL 4.07E+00 0.00E+00 Akagi et al. (2011) (savannah)
XYM 3.15E−01 0.00E+00 Akagi et al. (2011) (savannah)
XYP 8.59E−02 0.00E+00 Akagi et al. (2011) (savannah)
XYO 1.62E−01 0.00E+00 Akagi et al. (2011) (savannah)

Highly oxygenated VOCs

HOCH2CHO 1.85E−01 0.00E+00 Akagi et al. (2012) –
ACETOL 2.68E+01 0.00E+00 Akagi et al. (2011) (savannah) –
BIACET 2.79E+01 0.00E+00 Andreae and Merlet (2001) with 2009 updates (savannah) –

Organic Nitrates

PAN 6.61E+00 3.00E−02 Akagi et al. (2012) GEOS-Chem
PPN 3.20E−03 3.20E−03 GEOS-Chem GEOS-Chem
CH3NO3 2.91E−02 0.00E+00 Akagi et al. (2011) (savannah) –

VBS compounds

SVOC3 2.15E−02 0.00E+00 Grieshop et al. (2009a, b) –
SVOC4 2.55E−01 0.00E+00 Grieshop et al. (2009a, b) –
SVOC5 3.08E+00 0.00E+00 Grieshop et al. (2009a, b) –
SVOC6 3.78E+01 0.00E+00 Grieshop et al. (2009a, b) –
SVOC7 4.67E+02 0.00E+00 Grieshop et al. (2009a, b) –
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Table 4. Initial and background aerosol mass concentrations for the ASP simulations of the
Williams Fire smoke plume. Only compounds with non-zero values are listed. Bold is used for
compounds that are components of modeled OA.

Species Initial Background Initial Conc. Background
Conc. Conc. Source Conc. Source

(µgm3)a (µgm3)a

OA 849 1.335 Akagi et al. (2012) GEOS-Chem
SVOC3 84.9 – Grieshop et al. (2009a, b) –
SVOC4 118.9 – Grieshop et al. (2009a, b) –
SVOC5 280.2 – Grieshop et al. (2009a, b) –
SVOC6 280.2 – Grieshop et al. (2009a, b) –
SVOC7 84.9 – Grieshop et al. (2009a, b) –
CPD3b – 1.335 – GEOS-Chem
BC 187 0.357 Akagi et al. (2012) GEOS-Chem
K 1.86 – Amount needed to –

neutralize anions
NH4 14.3 1.291 Akagi et al. (2012) GEOS-Chem
SO4 0.855 6.603 Akagi et al. (2012) GEOS-Chem
NO3 30.4 0.174 Akagi et al. (2012) GEOS-Chem
Cl 11.9 – Akagi et al. (2012) –

a Values at the temperature and pressure of the plume (T = 288.4 K, P = 880 hPa).
b Extremely low volatility humic-like species, see Alvarado (2008).
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Table 5. SVOC chemistry parameters in the mechanisms studied here. See Reactions (R3)
and (R4) for definitions of the parameters.

Mechanism kOH ×1011 µ n α χ β δ
(cm3 molecule−1 s−1)

Grieshop et al. (2009) 2.0 1.4 2 0 0 0 0
Robinson et al. (2007) 4.0 1.075 1 0 0 0 0
Ahmadov et al. (2012) 1.0 1.075 1 0 0 0 0
Half Fragmentation 1.0 1.075 1 0.5 0 0 0
Optimized SVOC Chemistry 1.0 1.075 1 0.5 1 0.5 0.6
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(a) 

(b) 

Figure 1. (a) ASP calculated hourly values of ∆([O3]− [NO])≡ ([O3]final − [NO]final)/([O3]initial −
[NO]initial) vs. the values measured in the EPA chamber of Carter et al. (2005) for 30 “full sur-
rogate” experiments. Note that all time points for the 30 chamber experiments are plotted, not
just the final values. (b) ASP calculated vs. measured formaldehyde (HCHO) values for the
chamber experiments.
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Figure 2. Percentage bias in final ∆([O3]− [NO]) vs. the initial ratio of reactive organic gases
(ROG) to NOx (ppmC/ppmN) for the chamber experiments.
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Figure 3. CO mixing ratio (ppbv) vs. smoke age. Red, black, and green are for the slow, best-
fit (medium), and fast plume dilution rates. Asterisks are the measured mixing ratios, with the
horizontal error bars showing the uncertainty in the estimated age, which is much larger than
the uncertainty in the CO mixing ratio.
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Figure 4. NO2 photolysis rates (s−1) vs. local time. Red, black, and green are for the slow,
best-fit (medium), and fast plume dilution rates. Dashed lines are for photolysis rates above
the plume, solid lines are for the middle of the plume, and dotted lines are for the bottom of the
plume, as described in the text. The black dot-dashed line is the clear-sky (no plume) photolysis
rate.
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Figure 5. Enhancement ratios (molmol−1) of (a) O3 to CO and (b) PAN to CO2 vs. estimated
smoke age when the chemistry of the unidentified SVOCs is not included in the model. As-
terisks are the measured mixing ratios, with the horizontal error bars showing the uncertainty
in the estimated age and the vertical error bars showing the uncertainty in the measurement.
Red, black, and green are ASP results for the slow, best-fit (medium), and fast plume dilution
rates. Dashed lines are for above-plume photolysis rates, while solid lines are for the middle of
the plume, and dotted lines are for the bottom of the plume (see the legend in Fig. 4).
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Figure 6. (a) NOx enhancement ratio (EnR, molmol−1) to CO2 vs. estimated smoke age when
the chemistry of the unidentified SVOCs is not included in the model. (b) EnR of C2H4 to CO vs.
estimated smoke age. Asterisks are the measured mixing ratios, with the horizontal error bars
showing the uncertainty in the estimated age and the vertical error bars showing the uncertainty
in the measurement. Red, black, and green are ASP results for the slow, best-fit (medium), and
fast plume dilution rates. Dashed lines are for above-plume photolysis rates, while solid lines
are for the middle of the plume, and dotted lines are for the bottom of the plume (see the legend
in Fig. 4).
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Figure 7. HONO mixing ratio (ppbv) vs. estimated smoke age for the first hour after emission
(note difference in x axis scale from Figs. 4–6) when the chemistry of the unidentified SVOCs
and a downwind HONO source is not included in the model. Asterisks are the measured mixing
ratios, with the horizontal error bars showing the uncertainty in the estimated age and the
vertical error bars showing the uncertainty in the measurement. Red, black, and green are ASP
results for the slow, best-fit (medium), and fast plume dilution rates. Dashed lines are for above-
plume photolysis rates, while solid lines are for the middle of the plume, and dotted lines are for
the bottom of the plume (see the legend in Fig. 4).
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Figure 8. Enhancement ratio (EnR, molmol−1) of (a) HCHO, (b) glycoaldehyde (HCOCH2OH),
(c) formic acid (HCOOH), and (d) acetic acid (CH3COOH) to CO vs. estimated smoke age
when the chemistry of the unidentified SVOCs is not included in the model. Asterisks are the
measured mixing ratios, with the horizontal error bars showing the uncertainty in the estimated
age and the vertical error bars showing the uncertainty in the measurement. Red, black, and
green are ASP results for the slow, best-fit (medium), and fast plume dilution rates. Dashed lines
are for above-plume photolysis rates, while solid lines are for the in-plume rates, as described
in the text.
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Figure 9. Enhancement ratio (EnR, g g−1) of organic aerosol (OA) to CO2 after 4 to 4.5 h of
smoke aging. The error bars on the observed values are based on the 36 % uncertainty in the
AMS observations of OA. All model results assume the best-fit dilution rate and the photolysis
rates corresponding to the middle of the plume (solid black line in Fig. 4).
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Figure 10. As in Fig. 8d, but for the “Half Fragmentation” SVOC mechanism (see Table 1) where
the VOC fragment produced by fragmentation of the parent SVOC is assumed to become acetic
acid.
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Figure 11. As in Fig. 5, but for the “Half Fragmentation” SVOC mechanism rather than no
fragmentation (see Table 5).
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Figure 12. As in Fig. 6, but for the “Half Fragmentation” SVOC mechanism (see Table 5).
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Figure 13. As in Fig. 5, but for the optimized SVOC chemistry (see Table 5).
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Figure 14. As in Fig. 6, but for the optimized SVOC Chemistry (see Table 1).
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