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Smoke from biomass fires makes up a substantial portion of global greenhouse gas, aerosol, and black car
bon (GHG/A/BC) emissions. Understanding how fuel characteristics and conditions affect fire occurrence 
and extent, combustion dynamics, and fuel consumption is critical for making accurate, reliable estimates 
of emissions production at local, regional, national, and global scales. The type, amount, characteristics, 
and condition of wildland fuels affect combustion and emissions during wildland and prescribed fires. 
Description of fuel elements has focused on those needed for fire spread and fire danger prediction. 
Knowledge of physical and chemical properties for a limited number of plant species exists. Fuel beds 
with potential for high impact on smoldering emissions are not described well. An assortment of systems, 
methods, analytical techniques, and technologies have been used and are being developed to describe, 
classify, and map wildland fuels for a variety of applications. Older systems do not contain the necessary 
information to describe realistically the wildland fuel complex. While new tools provide needed detail, 
cost effectiveness to produce a reliable national fuels inventory has not been demonstrated. Climate 
change-related effects on vegetation growth and fuel distribution may affect the amount of GHG/A/BC 
emissions from wildland fires. A fundamental understanding of the relationships between fuel character
istics, fuel conditions, fire occurrence, combustion dynamics, and GHG/A/BC emissions is needed to aid 
strategy development to mitigate the expected effects of climate change. 

Published by Elsevier B.V. 
1. Introduction 

Total land area of the United States (US) is estimated to be 
9,161,966 km2 (Central Intelligence Agency, 2009). Approximately 
65% of the conterminous US (Fry et al., 2011), 74% of Alaska, 55% of 
Hawaii, and 62% of Puerto Rico is occupied by natural vegetation 
(Homer et al., 2004). The vegetation types of the US encompass 
most of the vegetation biomes found in North America, which in
cludes tundra, boreal, temperate, and tropical (Barbour and Bill
ings, 2000; Brown et al., 2000). Within a biome, all species have 
the potential to burn depending on plant and environmental con
ditions, although the plant organs burned, the amount and type 
of plants consumed, and the nature of the combustion process vary 
widely. 

Fire is a global phenomenon that releases the energy stored by 
plants during photosynthesis. Live and dead vegetation is the fuel 
source for wildland fires. Consideration of the inter-relationship 
between vegetation and fuel is, therefore, critical for evaluating 
likely changes associated with a changing climate. Development 
of novel climatic conditions in a greenhouse world is likely to affect 
future fire regimes (McKenzie et al., 2004) and create ‘‘no-analog’’ 
vegetation communities (Williams and Jackson, 2007), which may 
affect the biological, physical, and chemical characteristics of fuel 
sources for wildland fires (Bowman et al., 2009). Open biomass 
burning is the largest contributor of fine particulate matter 
(PM2.5) and the second largest contributor of black carbon to the 
atmosphere (US Environmental Protection Agency, 2012), so an 
understanding of the ecology of vegetation and fuels provides 
important context for discussions of wildfire and emissions of 
greenhouse gases, aerosols, and black carbon (GHG/A/BC). Esti
mates of past, current, and projected future emissions from wild-
land fires are critical for understanding the carbon cycle, 
including the effects of carbon emissions on atmospheric pro
cesses; measuring and assessing effects on air quality; and produc
ing accurate projections of climate change. The objective of this 
paper is to synthesize the state of science regarding wildland fuels 
as they relate to GHG/A/BC emissions. The synthesis will examine 
the assortment of systems, methods, analytical techniques, and 
technologies that have been used and are being developed to de
scribe, classify, and map wildland fuels and their characteristics. 

For a given wildland fire, the fire size, the amount and type of 
fuel combusted, and the combustion efficiency determine emis
sions production and composition. Seiler and Crutzen (1980) 
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proposed that the mass of wildland fuels burned annually could be 
estimated as a function of total area burned, the mass per unit area 
available for combustion (available fuel) within the burned area, 
and the fraction of wildland fuel actually consumed during the 
combustion process. The product of the consumed wildland fuel 
mass and appropriate emission factors yields an estimate of emis
sions by pollutant species, including greenhouse gases, aerosols, 
and black carbon, that can be summed to determine total emis
sions (French et al., 2011). Emission factors differ with fuel type 
and combustion phase (i.e., flaming, smoldering, and glowing), so 
attributing the proportion of total consumption to the different 
combustion phases is important for accurate estimation of total 
emissions (Hardy et al., 2001; Ward and Hardy, 1991; Ward and 
Radke, 1993). 

Loading (mass/unit area), fuel consumption (mass/unit area), 
and emission factor (mass of chemical species produced/mass of 
fuel burned) are the primary variables tied directly to vegetation 
characteristics in the process used to estimate emissions produc
tion. Substantial error and uncertainty can be introduced to emis
sions estimates by our current inability to accurately quantify the 
amount of fuel present and consumed within burned areas and the 
type and efficiency of combustion of the fuels (flaming, smoldering, 
or glowing) (French et al., 2011; Mobley et al., 1976; Ottmar et al., 
2008; Peterson, 1987). Chemical composition of a wildland fuel 
and the type and efficiency of combustion determine the composi
tion of the gaseous and particulate emissions produced. It is, there
fore, critical to carefully quantify all of the different variables 
necessary in these calculations to minimize compounding error 
and generate an accurate estimate of emissions with quantifiable 
levels of error and uncertainty (French et al., 2004). A full and accu
rate retrospective accounting is challenging for large areas, long 
time scales, and complex fuelbeds, when the necessary data are 
scarce or lacking. Similarly, prospective accounting is challenging 
in light of uncertainty about future fire pattern, intensity, and fre
quency coupled with changes in vegetation associated with cli
mate change and elevated carbon dioxide levels (Miller and 
Urban, 1999; Whitlock et al., 2003). 

Shifts in vegetation growth and distribution associated with cli
mate change may alter fuel composition, amount, arrangement, 
and condition. Climate change-induced increases in area burned 
(Littell et al., 2009; McKenzie et al., 2004), shifts in vegetation type 
(Whitlock et al., 2003), and changes in fire severity (Marlon et al., 
2006) will likely affect GHG/A/BC emissions from biomass burning. 
Climate change may also change fire occurrence timing, location, 
and size; the intensity and severity of prospective fires; the type 
and amount of fuel consumed; and the characteristics of combus
tion (Bowman et al., 2009; Hessl, 2011; Sandberg and Dost, 1990). 
Disturbances other than fire, such as insect outbreaks and severe 
wind events, also affect fuelbed properties, which can alter the 
intensity, severity, location, and timing of fire occurrence (Whit
lock et al., 2003; Williams and Jackson, 2007), and therefore, the 
quantity and composition of emissions produced for a given geo
graphic area and time period. The direction, timing, and magnitude 
of changes in GHG/A/BC emissions will likely vary for a given loca
tion or spatial domain and time period (Hessl, 2011). 
Fig. 1. The pentagon portrays the five vegetation criteria used to classify vegetation 
at all levels of the NVCS hierarchy. These criteria are arranged from the most fine-
scaled on the left to the most broad-scaled on the right. The five criteria are derived 
from stand attributes or plot data (inside oval) and reflect the ecological context 
(outside oval) of the stand or plot. The ecological context includes environmental 
factors and biogeography considered at multiple scales, as well as natural and 
human disturbance regimes. The upper levels of the NVCS hierarchy are based on 
dominant and diagnostic growth forms that reflect environment at global to 
continental scales. The mid levels are based on dominant and diagnostic growth 
forms and compositional similarity reflecting biogeography and continental to 
regional environmental factors. The lower levels are based on diagnostic and/or 
dominant species and compositional similarity reflecting local to regional environ
mental factors (Fig. 2.1 from (Federal Geographic Data Committee, 2008)). 
2. Classification of wildland fuels 

Vegetation is grouped into classes or communities based on 
similarities in species occurrence and abundance. Attributes of 
the vegetation assemblage may be used to describe fuelbed charac
teristics for different vegetation classes. It should be noted, how
ever, that, in addition to among-vegetation-class differences in 
fuelbed characteristics, within-vegetation-class variability is com
mon and often substantial (Hall et al., 2006). Generalized relation
ships between vegetation communities and fuelbed characteristics 
that do not account for this variability, and any assessments or 
inferences made from such generalizations, may be fraught with 
uncertainty. 

2.1. Vegetation 

A vegetation classification is developed by grouping similar 
stands or plots into vegetation, or plant community, types (Tart 
et al., 2005). Various agencies and groups have used several vege
tation classification systems yielding inconsistent systems for 
describing vegetation nationally in the United States. Examples of 
vegetation classifications that are based on the current composi
tion of the flora include cover types as defined by the Society of 
American Foresters (Eyre, 1980) and the Society for Range Manage
ment (Shiflet, 1994). Alternatively, potential natural vegetation 
classification systems attempt to describe a site’s biophysical 
capacity to support different species and species combinations, 
and are identified based on the composition of the species assem
blage that is likely to dominate at the climax of succession in the 
absence of disturbance (Daubenmire, 1968; Franklin and Dyrness, 
1988). 

The National Vegetation Classification System (NVCS) was 
established to address the inconsistent application of different 
classification systems among agencies and groups (Federal Geo
graphic Data Committee, 1997). Typically for classification sys
tems, each class or type name represents a taxonomic group 
with defined limits, about which meaningful and reliable state
ments can be made (Jennings et al., 2009). The structure of the 
NVCS is based on five diagnostic criteria used to classify vegetation 
at all levels of the hierarchy: diagnostic species, dominant species, 
diagnostic growth forms, dominant growth forms, and composi
tional similarity (Fig. 1). The NVCS formalizes standards for data 
collection, data analysis, data presentation, and quality control 
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and assurance. Implementation of the NVCS is intended to produce 
a data classification system consisting of a hierarchical list of veg
etation types and their descriptions. The classification system re
quires that vegetation types be defined and characterized using 
appropriate data and consistent standards. Definition of new veg
etation types, refinement of existing types, and classification is 
performed with acquisition and analysis of new data and scientific 
understanding. The NVCS is part of a proposed International Vege
tation Classification (IVC) that currently includes the Canadian Na
tional Vegetation Classification and parts of Latin America; the IVC 
claims integration with classification systems based on Braun-
Blanquet approaches (Westhoff and Van der Maarel, 1973). De
tailed study of classification systems is beyond the scope of this pa
per, so it was not possible to determine if the IVC and the NVCS 
address all of the issues concerning vegetation classification (De 
Cáceres and Wiser, 2012). 

2.2. Fuel 

Until recently in the US, fuel characterization and classification 
approaches have focused on providing inputs for predicting surface 
and crown fire behavior (Rothermel, 1991, 1972; Van Wagner, 
1977) and simulating wildland fire spread (Finney, 1998; Peterson 
et al., 2009). A set of numerical values called a fuel model describes 
the physical characteristics of vegetation pertinent to fire spread 
and energy release. Seventy-three fuel models have been devel
oped for use in fire behavior and fire danger calculations (Albini, 
1976; Anderson, 1982; Deeming and Brown, 1975; Scott and Bur
gan, 2005). Additional fuel models for vegetation not well-repre
sented in the initial 13 Northern Forest Fire Lab models (Albini, 
1976; Cohen, 1986; Frandsen, 1983; Hough and Albini, 1978; 
Weise et al., 2010) are also available. Fuel models tend to include 
only the fuel elements involved in flaming combustion and pro
gression of a surface fire’s flaming front which makes them inade
quate for estimating fire effects associated with post-frontal 
combustion, including GHG/A/BC emissions for several reasons: 

(1) Fuel models do not include a full accounting of all fuel par
ticles present in a fuelbed1. Fuel particles not involved in 
flaming combustion and surface fire spread, such as large 
woody material, ground fuels, and tree canopies, which can 
be a substantial fraction of the total fuel loading and fuel con
sumed during combustion, are not included in fire behavior 
fuel model descriptions. 

(2) Fuel models are general representations of fuelbeds based 
on expected fire behavior and do not necessarily correspond 
to actual measured fuel characteristics. 

(3) Fuel models require developers	 to adjust characteristics 
(fuelbed depth, surface area-to-volume ratio, moisture of 
extinction, fuel loading, etc.) in a circular fashion such that 
modeled fire behavior meets expectations under different 
weather and fuel moisture conditions (Sandberg et al., 
2007). 

(4) Models for predicting fire effects, such as BURNUP, CON
SUME, FFE-FVS, and FOFEM, require fuels data, particularly 
fuel loading, ‘‘as measured’’ and not adjusted to yield 
expected fire behavior (Albini and Reinhardt, 1997; Prichard 
et al., 2006; Reinhardt et al., 1997; Reinhardt and Crookston, 
2003). 

(5) Estimates	 of carbon pools and fluxes in response to fuel 
treatments and wildland fire require fuels data as measured 
(Dicus et al., 2009). 
Fuelbed is a generic term to describe all fuel particles, regardless of the manner in 
which they are expected to burn. 

1 
(6) Subtle and even moderate (and sometimes large) differences 
in fuel characteristics are generally not captured by the lim
ited number of fuel models (Sandberg et al., 2007). For 
example, fuel loading in conifer-dominated ecosystems can 
vary by an order of magnitude depending on site, age, and 
disturbance, but is represented by a limited number of fire 
behavior or fire danger rating fuel models (Albini, 1976; 
Anderson, 1982; Scott and Burgan, 2005) with a narrow 
range of fuel loading in comparison to published information 
on fuel loading in conifer-dominated ecosystems (Brown 
and Bevins, 1986; Jenkins et al., 2012; Mobley et al., 1976; 
Ottmar and Vihnanek, 2000; Ottmar et al., 2003; Page and 
Jenkins, 2007; Sackett, 1979, 1975; Vihnanek et al., 2009; 
Wade et al., 1993; Weise et al., 1997; Woodall and Nagel, 
2007; Wright et al., 2012). While dynamic fuel models were 
developed to accommodate the seasonal variability and 
change over time in fuel characteristics in chaparral and pal-
metto-gallberry fuel types, they seem to be seldom used 
(Cohen, 1986; Hough and Albini, 1978; Rothermel and Phil-
pot, 1973). A procedure exists (Burgan and Rothermel, 1984; 
Burgan, 1987) to create custom fire behavior fuel models 
(site-specific fuel models) for situations not represented by 
the original fuel models. Although several custom fuel mod
els have been published (e.g. Freifelder et al., 1998; Knapp 
et al., 2011; Parresol et al., 2012b; Stephens, 1998), there 
exists no central repository so the number and reliability 
of these models is unknown. In some instances, published, 
potentially useful fuels information representing important 
fuel types for GHG/A/BC emissions has been lost from mem
ory (e.g. Wendel et al., 1962). 

Keane (2013) reviewed methods and systems for describing 
surface fuelbeds used in the US, Canada, and Australia and noted 
many of the same limitations of fuel models identified above. Ref
erences to non-US approaches can be found therein. 

Lutes et al. (2009) proposed a framework for evaluating fire ef
fects, including emissions, with what amount to ‘‘fire effects fuel 
models’’ that they called Fuel Loading Models. The fire effects fuel 
model approach does not distinguish among different fuelbeds that 
might produce similar fire effects. For example, fuel types with 
high woody fuel loading might be considered the same as those 
with a deep forest floor or organic soil horizon because they exhibit 
similar soil heating and smoke emissions when burned under dry 
conditions, when in fact their fuel characteristics are quite differ
ent. In the Fuel Loading Models framework, the fire effects used 
in the classification scheme determine similarity or difference, 
not the actual fuel characteristics. 

The Fuel Characteristic Classification System (Ottmar et al., 
2007; Sandberg et al., 2001) (FCCS) is an organizational structure 
for describing fuels that addresses some of the aforementioned 
shortcomings of fuel models (and fuel loading models). In the FCCS, 
data characterizing fuelbeds are organized into six strata: canopy, 
shrubs, herbs and grasses, dead and down woody debris, litter (in
cludes lichens and mosses) and duff or ground fuels (Fig. 2). 
Numerous quantities (e.g., coverage, density, height, size, species 
composition, biomass, etc.) describe modal properties for variables 
in each stratum for each fuelbed, as appropriate (Riccardi et al., 
2007a). Each fuelbed includes a full accounting of all of the com
bustible material (aboveground only at this point), in contrast to 
fire behavior, fire danger, and fire effects fuel models, which only 
characterize a fraction of the fuel present, and may or may not 
equate with actual measured conditions on the ground. Allometric 
methods are used to estimate biomass and carbon content for each 
fuelbed component and stratum (Riccardi et al., 2007b). As well as 
linking to widely used models for estimating fuel consumption and 
emissions (i.e., FOFEM and CONSUME), the FCCS incorporates a 
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Fig. 2. Natural fuelbeds such as this twoneedle pinyon (Pinus edulis) woodland 
contain different strata. 
modified version of the Rothermel (Rothermel, 1972) surface fire 
behavior algorithm (Sandberg et al., 2007) and a conceptual model 
for assessing crown fire potential (Schaaf et al., 2007). The FCCS is 
able to provide a comprehensive accounting of the fuel complex 
necessary to estimate both GHG/A/BC emissions and fire behavior 
during wildland fires. FCCS fuelbeds can describe fuels on a contin
uous scale, allowing the user to resolve and detect differences in 
fuel characteristics and potential wildland fire emissions among 
fuel types that are not possible with fuel models which are pre
dominantly static, discrete representations. 
3. Characterization and measurement 

The physical and chemical properties of fuel particles influence 
the nature of the combustion process (Byram, 1959; Countryman, 
1964; Philpot, 1970) including the amount of fuel likely to be con
sumed as well as the proportion of combustion that occurs as flam
ing, smoldering, and glowing (Ward, 2001). Fuelbed properties are 
highly variable both among (Fig. 3) and within general ecosystem 
or fuel types (Fig. 4). Accurate estimates of available fuel and the 
proportion of consumption that occurs in the different combustion 
phases are important for accurate estimates of GHG/A/BC emis
sions during wildland fires. 

Techniques to describe and quantify vegetation and fuels have a 
rich history in forestry and ecology (Canfield, 1941; Greig-Smith, 
1952; Husch et al., 2003; Mueller-Dombois and Ellenberg, 2002; 
Van Wagner, 1968). Well-established field and laboratory tech
niques estimate species composition, mass, height, area, volume, 
spatial arrangement, chemical composition, and energy content. 
Techniques range from destructive methods at fine scales 
(<1 cm) for chemical composition to remotely-sensed methods 
that cover larger areas at slightly to substantially coarser scales 
up to 1000 m (Jones and Vaughan, 2010). 
3.1. Composition 

Wildland fuelbeds are composed of fuel particles derived from 
the live and dead plant parts of the various species of grass, forb, 
shrub, and tree species present. Different species produce fuel par
ticles with different properties, including size, shape, mass, den
sity, and chemical composition. The structural and chemical 
characteristics of individual fuel particles and of fuelbeds (the col
lection of all fuel particles) and environmental conditions affect the 
frequency, size, intensity, and season of wildland fires (i.e., the fire 
regime) and the emissions produced. The elemental composition of 
plant tissue varies slightly and is often assumed to be approxi
mately 50% carbon, 44% oxygen, and 5% hydrogen on a mass basis 
(Ward, 2001); these proportions are determined using ultimate 
analysis and several standard techniques for ultimate analysis have 
been developed (Jenkins et al., 1998). Reported composition of bio
mass fuels, which are derived from plant tissue, is 42–54% carbon, 
35–45% oxygen, and 5.0–5.9% hydrogen (Demirbas, 2004; Friedl 
et al., 2005). The relative proportion of cellulose, hemicellulose, 
and lignin (all complex hydrocarbons) varies within plant struc
tures and among species, and affects combustion processes and 
products (Yang et al., 2007). Commonly used techniques to deter
mine the relative proportion of cellulose, hemicellulose, and lignin 
originated in the livestock community (forage analysis) and the 
wood products community (proximate analysis). Forage analysis 
is typically used to determine the amount of cellulose and lignin 
(acid detergent fiber), cellulose, hemicellulose, and lignin (neutral 
detergent fiber) and lignin alone present in foliage and other dry 
matter through a series of chemical digestion techniques (Goering 
and Van Soest, 1970; Undersander et al., 1993). Similar techniques 
are used for wood (Dore, 1920; Rowell et al., 2005). 

The presence of macro- (N, P, S, K, Mg, Ca) and micro- (Fe, Mn, 
Zn, Cu, Mo, B, Cl), nutrients common to most plants (Bidwell, 1979) 
can influence the formation and composition of GHG/A/BC emis
sions (Ward, 2001). Standard analytical techniques such as X-ray 
fluorescence spectroscopy (Marguí et al., 2005) to determine the 
elemental composition of plants are available; however, these 
techniques are not always used to characterize fuels prior to burn
ing. This is particularly true for field emissions studies in which the 
fuelbed is a mixture of vegetation, so collection of a representative 
sample of the fuelbed to perform elemental analysis is not trivial. 
Elemental analysis of single species fuelbeds in laboratory studies 
has been performed occasionally. The same techniques are used to 
determine the elemental composition of particulate matter (Chen 
et al., 2007; Hays et al., 2002). 

The physical and chemical traits of fuels affect the timing, loca
tion, and final size of individual fires, total annual area burned 
(Kane et al., 2008; Philpot, 1977; van Wilgen et al., 1990), and 
therefore GHG/A/BC emissions. Because wood is a valuable and an
cient commodity, a great deal of effort has been devoted to the 
study of its chemical and physical characteristics (Bergman et al., 
2010; Fengel and Wegener, 1989). These traits affect its decompo
sition rate (Keane, 2008; Melin, 1930; Zhang et al., 2008). Traits 
such as hydrocarbon composition (Mutch, 1970; Ryan and McMa
hon, 1976) and presence of volatile compounds (Philpot, 1969a) 
can affect a fuel’s flammability (Babrauskas, 2003). Lignin content 
in foliage differs between hardwood and coniferous foliage, rang
ing from 5% to 30% (Scott and Binkley, 1997) which affects the 
decomposition rate of leaf litter, and therefore forest floor fuel lev
els and accumulation rates. Although the lignin content can be 
highly variable within life forms, herbs and grasses generally have 
lower lignin content (5–15%) than woody parts of trees and shrubs 
(16–33%) (Patton and Gieseker, 1942; Ward, 2001). Fats, terpenes, 
waxes, oils, and other extractive compounds have higher heat con
tent than cellulose and the other complex carbohydrates that con
stitute the bulk of vegetation mass, which can affect ignition and 
combustion (Hough, 1969; Philpot, 1969b). Many of these com
pounds accumulate in the heartwood of 2- and 3-needled pines 
of the southern and western US, which results in wood pieces that 
ignite easily and will burn even during precipitation. The composi
tion of smoke emissions from the burning of this so-called ‘‘light 
wood’’ or ‘‘fat lighter’’ are only now being described (Akagi et al., 
2012). 
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Fig. 3. Fuel properties vary widely among types. For example, fuel loading ranges from (A) 0.7 Mg ha-1 in a cheatgrass (Bromus tectorum) grassland in eastern Oregon, (B) 
5.4 Mg ha-1 in big sagebrush (Artemisia tridentata) fuels in eastern Oregon, (C) 47.2 Mg ha-1 in a mixed hardwood forest in Vermont, (D) 74.1 Mg ha-1 in a slash pine (Pinus 
elliottii) forest in Florida, (E) 207.7 Mg ha-1 in a shortleaf pine (P. echinata) forest with hurricane damage in Texas, and (F) 444.7 Mg ha-1 in an old-growth Douglas-fir 
(Pseudotsuga menziesii) forest in western Washington. 

Fig. 4. Fuel properties vary widely within types. Fuel loading ranges from 18 to 361 Mg ha-1 in Douglas-fir (Pseudotsuga menziesii) forests that are suitable habitat for 
northern spotted owl nesting in the Pacific Northwest (adapted from Fig. 5 from Wright et al., 2012). 
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3.2. Physical characteristics 

In addition to chemical composition, the size, shape, density, 
and absorptivity of a fuel particle affects moisture dynamics (Fos
berg, 1970; Meentemeyer, 1978), flammability (Anderson, 1970), 
pyrolysis and devolatilization (Lu et al., 2010), combustion charac
teristics such as energy release rate and efficiency (Albini and Rein
hardt, 1995; Ward, 2001), and, therefore, resulting emission 
characteristics (e.g., amount, rate, duration, plume rise). Sound 
woody fuels tend to be cylindrical in shape (Van Wagner, 1968); 
however, foliage shape is quite variable ranging from cylindrical 
(needle-like) to elliptical to very complex shapes modeled by frac
tals (e.g. Wang et al., 2008). The effect of complexity in leaf shape 
on combustion has tended to be ignored with simplifying assump
tions made to describe non-cylindrical foliage (Brown, 1970). 

Due to the renewed interest in biomass utilization for energy 
and fuel production, there are many studies that either measure 
or model fuel particle size and shape on the processes just men
tioned; however, the particles examined are generally very irregu
lar in shape having been produced by grinding, chipping or 
pulverizing wood. Experimental and modeling results of the com
bustion of these chipped and ground wood particles may apply to 
masticated fuels; however, this has not been examined to our 
knowledge. 

A fuelbed with an abundance of thermally thin fuel particles 
will ignite more readily and experience a higher combustion rate 
than a fuelbed that lacks these elements (Anderson, 1970). In addi
tion to potentially affecting the total amount of fuel available for 
combustion, the relative complexity of the fuelbed is also likely 
to affect the nature of the combustion (and emissions) that occurs 
by virtue of the diversity of fuel particles with different chemical 
and physical properties. 

3.3. Amount 

Fuel amount largely determines the quantity of emissions pro
duced during biomass fires (Brown et al., 1991; Mobley et al., 
1976; Wright and Prichard, 2006). Fuel measurement has histori
cally focused on quantifying fuel loading (i.e., the mass of fuel par
ticles of varying type and size), although other metrics, such as fuel 
volume or surface area (Sandberg et al., 2007) may also be used to 
describe the amount of fuel present in a fuelbed or at a given loca
tion. In complex fuelbeds, especially those with multiple fuelbed 
strata, such as are found in forested ecosystems, it is important 
to quantify fuel amount for each stratum individually, as not all 
strata will necessarily be involved in the combustion process and 
contribute emissions for all fires. 

Well-established methods are used to estimate surface fuel 
loading at the stand scale (Sikkink and Keane, 2008) including 
the line and planar intersect methods (Brown, 1971; Lutes et al., 
2006), photo-based methods and databases (Keane and Dickinson, 
2007; Maxwell and Ward, 1976; Wright et al., 2010), and sampling 
using fixed or variable-area plots (Kalabokidis and Omi, 1992; Val
entine et al., 2001). Remote sensing technologies bridge from mea
surements at plot and stand scales to larger areas. Well-
characterized fuel loading across large spatial domains is critical 
for estimating and inventorying emissions from wildfires (French 
et al., 2011). 

Tree canopies represent a large potential source of wildland fire 
emissions in forested fuelbeds. Available fuel loading (i.e., foliage 
and small twigs), canopy bulk density, and canopy base height 
are the most commonly reported metrics for quantifying the can
opy fuel stratum (Cruz et al., 2003; Sando and Wick, 1972). Studies 
of tree allometry have traditionally been used to characterize for
est crown fuels at the scale of individual trees and combined with 
forest inventory data to scale individual tree crown fuel estimates 
to stands and forests. This method assumes that the allometric 
model being applied is a proper fit for the species, forest type, or 
location being assessed (Biging and Gill, 1997; Brown, 1978; 
Mäkelä and Valentine, 2006; Monserud and Marshall, 1999). Tradi
tionally, work modeling crowns has focused on biomass prediction 
and partitioning into foliage and branches (Brown, 1978; Clark and 
Taras, 1976; Clark et al., 1985; Jenkins et al., 2004; Loomis et al., 
1966; Ter-Mikaelian and Korzukhin, 1997) and foliage distribution 
within canopies (Aber, 1979; Garber and Maguire, 2005; Maguire 
and Bennett, 1996; Massman, 1982; Todd et al., 2003; Xu and Har
rington, 1998; Zeide, 1998). Allometric models to predict crown 
fuel mass specifically have been developed primarily for conifer 
species in the western US (Cruz et al., 2010, 2003; Jorgensen and 
Jenkins, 2011; Keyser and Smith, 2010; Reinhardt et al., 2006; 
Tausch, 2009) with considerably less emphasis in the southern 
US (Agca et al., 2011). This geographic disparity likely reflects the 
fact that crown fires occur more frequently in western and boreal 
conifer forests than in southern pine forests. Sand pine (Pinus clau
sa), a southern pine with limited distribution, does occasionally 
burn in stand-replacement crown fires (Hough, 1973). Allometric 
work has also occurred in shrub systems prone to fire such as sage
brush, chaparral, and palmetto-gallberry (Brown, 1976; Dickinson 
and Zenner, 2010; McNab et al., 1978; Parresol et al., 2012a; Reiner 
et al., 2010; Riccardi et al., 2007b; Riggan et al., 1994; Sah et al., 
2004). Several newer methodologies that utilize specialized instru
ments and ground and aerial remote-sensing have been tested and 
show promise for quantifying tree and shrub canopy fuel metrics 
(Erdody and Moskal, 2010; Keane et al., 2005; Skowronski et al., 
2007, 2011). 
3.4. Arrangement 

Within a fuelbed, particle arrangement affects energy and mass 
transfer and oxygen availability, which can affect fuel conditions 
and combustion. Arrangement may also affect fuel particle and 
air temperatures and local humidity depending on shading effects 
(Byram and Jemison, 1943). Loosely arranged fuel particles provide 
more void space through which air and energy can flow unim
peded. In contrast, smaller void spaces associated with tightly ar
ranged fuel particles restrict air and energy flow. 

Fuel arrangement influences GHG/A/BC emissions through ef
fects on heat transfer among fuel particles in a fuelbed, the instan
taneous and overall energy released during combustion, and the 
efficiency and rate of combustion (Ottmar et al., 2008; Ward, 
1979). Traditional metrics for describing fuel arrangement include 
bulk density (kg m-3), packing ratio (ratio of fuel volume to fuelbed 
volume) (Countryman and Philpot, 1970), and porosity (ratio of 
volume of air space to fuelbed volume). Note that the definition 
of porosity in Countryman and Philpot (1970) is nonstandard and 
typically not used. The porosity of a fuelbed is a measure of the 
void space within a fixed volume. In high porosity fuelbeds, air 
and energy are able to flow in easily altering the individual parti
cles; similarly, air and energy are able to easily flow out of the fuel-
bed potentially reducing the chances of ignition of fuel particles. 
Fuelbed arrangement and porosity also affect the impact of precip
itation and atmospheric relative humidity on dead fuel particles 
(Anderson, 1990; Fosberg, 1972; Matthews, 2006). Oxygen is typ
ically more available for combustion in high-porosity fuelbeds, 
which can change the reactions that occur in the combustion pro
cess. Other metrics include horizontal continuity (percent cover) 
and vertical continuity (gap width). Fuels arranged so that combus
tion is most efficient will generate the fewest non-CO2 emissions 
for each unit mass of fuel consumed (Ward and Hao, 1991). Fuel 
continuity (both horizontal and vertical) affects the relative ease 
with which a fire will sustain spread through a fuelbed which 
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has implications for area burned and resulting quantity of GHG/A/ 
BC emissions. 

Fuel amount and arrangement variables important for modeling 
the amount, source strength, and fate of emissions produced by 
wildland fires are inputs to physically based fire models such as 
FIRETEC, the Wildland-urban interface Fire Dynamics Simulator 
(WFDS), and the coupled fire-atmosphere models WRF-Fire and 
WRF-SFIRE (Coen et al., 2013; Linn et al., 2002; Mandel et al., 
2011; Mell et al., 2007; Parsons et al., 2011). FIRETEC is a coupled 
fire-atmosphere model that solves governing physical equations to 
model combustion processes and fire behavior in a three-dimen
sional spatial domain. WFDS also simulates fire dynamics in a 
three-dimensional domain by solving governing physical equa
tions, but atmospheric processes are not included. WRF-Fire and 
WRF-SFIRE couple a meteorological model with the Rothermel 
(1972) surface fire spread model to provide fire spread predictions. 
FIRETEC and WFDS have also been applied in fuel types outside of 
the US (Mell et al., 2007; Pimont et al., 2011). While numerous 
studies have investigated the effects of vegetation structure and 
arrangement on air flow in forest, shrub, and grass canopies (Aylor 
et al., 1993; Baldocchi and Meyers, 1988; Driese and Reiners, 1997; 
Wang, 2011), Pimont et al. (2011) may be the first to use a coupled 
fire-atmosphere model. Development of similar physics-based 
models is an active area of research in Europe and Australia as 
well; the interested reader is referred to recent reviews by Sullivan 
(2009a, 2009b, 2009c) for more details on the state of fire behavior 
modeling. Although they require a more detailed description of the 
fuel complex than has been performed traditionally, outputs from 
these types of models can contribute to our understanding of the 
relationship between fuels and emission impacts from wildland 
fires. 

Terrestrial and aerial laser scanning (Loudermilk et al., 2012, 
2009; Morsdorf et al., 2010; Seielstad et al., 2011) and newer meth
ods and models for describing fuel arrangement and architecture 
show promise (Krivtsov et al., 2009; Parsons et al., 2011; Pimont 
et al., 2009; Todd et al., 2003). These techniques and tools can pro
duce highly detailed, spatially explicit information about the fuel-
bed properties required to simulate pyrolysis, combustion, fuel 
consumption, and fire emissions with physics-based fire models. 
These modeling approaches are recent and have received limited 
testing. The resolution of the fuels information used by the afore
mentioned new generation of fire behavior models differs. The 
SFIRE component of WRF-SFIRE incorporates the Rothermel model 
which assumes steady-state fire dynamics so the level of detail in 
fuels as provided in a fuel model is sufficient and appropriate for 
WRF-SFIRE. However, FIRETEC and WFDS do not assume steady-
state fire dynamics and require fuels data of greater complexity 
than is embodied in a fuel model. 

In addition to affecting surface fuel properties, the arrangement 
of vegetation also affects airflow within canopies. Unburned vege
tation above a wildland fire may affect the nature and quantity of 
emissions transported into the open air above the canopy. While 
there are numerous studies examining pollutant transport within 
canopies and deposition of pollutants from the atmosphere onto 
plant canopies (e.g. Karl et al., 2010), to our knowledge, there are 
few, if any, studies examining the filtering effect that plant cano
pies might have on smoke emissions that are lofted through the 
canopy. Potential condensation of water on foliage has been 
hypothesized, which suggests that other aerosols might condense 
on the canopy and not be lofted into the free air (Martin et al., 
1969). 

3.5. Moisture content 

The proportion of fuel mass that is consumed during wildland 
fires varies as fuel moisture changes with diurnal, seasonal, and in
ter-annual fluctuations in environmental conditions and plant 
biology (Hough, 1978). Dead fuel moisture content varies with 
environmental conditions (solar radiation, temperature, relative 
humidity, and rainfall) and is affected by fuel particle size, weath
ering, and decay status (Anderson, 1985; Fosberg, 1970; Haines 
and Frost, 1978; Van Wagner, 1979) while live fuel moisture is a 
function of plant physiology and phenology (Agee et al., 2002; Kra
mer and Kozlowski, 1979). Nelson (2001) provided a detailed 
description of water relations in fuels. In fire danger calculations, 
live fuel moisture content is estimated from large woody fuel 
moisture content, drought indices, and other slow-responding 
measures of water content (Burgan, 1988, 1979; Viegas et al., 
2001); however, recent work is examining the potential of more 
physiologically based methods to estimate the water content of 
living vegetation (Jolly et al., 2005; Thornley, 1996). 

The water content of fuels (fuel moisture content) influences 
combustion dynamics in wildland fire by affecting the time-tem
perature history of dead and live fuels exposed to heat fluxes (Da
vis and Martin, 1960; Fletcher et al., 2007; Rothermel, 1972). The 
time-temperature history determines when moisture evaporates 
from the surface of the fuel, when pyrolysis begins and ends, when 
ignition occurs, when charring occurs, and when the burning of the 
fuel particle is finished. Thus, measures of fuel moisture are impor
tant for estimating fire danger (Deeming et al., 1977), fire behavior 
(Rothermel, 1972), and fuel consumption (Bragg, 1982; Goodrick 
et al., 2010; Hardy et al., 1996; Hough, 1978; Ottmar, 1983; Sand-
berg, 1980; Wright and Prichard, 2006). Indices of fuel moisture 
derived for fire behavior and fire danger estimation have been cor
related with fuel consumption (Ottmar, 2014). Small dead fuel par
ticles with a high ratio of surface area-to-volume respond more 
quickly to changes in relative humidity and precipitation than lar
ger particles. Given sufficient time and lack of precipitation, large, 
downed logs (also known as coarse woody debris) can reach very 
low fuel moisture levels and burn, contributing significantly to 
residual smoldering combustion. Dead fuel moisture content of 
typical fuel particles can be measured directly by taking the differ
ence between the weight of samples collected under ambient con
ditions and the weight after oven drying, or by regularly field-
weighing voucher specimens (i.e., 10-hr timelag fuel moisture 
sticks) with known oven-dry weight. While standard techniques 
to determine moisture content of wood and wildland fuels exist 
(Countryman and Dean, 1979; D07 Committee, 2007; Norum and 
Miller, 1984), these techniques are often ignored to the possible 
detriment of the affected study. In the United States, previously 
developed statistically-derived models for dead fuel moisture con
tent (Bradshaw et al., 1984) are being replaced gradually in opera
tional systems by the physical model developed by Nelson (2000). 
Both of these models use daily weather observations as input. 

Live fuel moisture content varies by species and season as 
plants complete their annual cycles of growth and senescence in 
response to environmental cues. The foliar moisture content of tree 
crowns and shrubs, in particular, can vary widely throughout the 
year (Agee et al., 2002; Blackmarr and Flanner, 1975; Chrosciewicz, 
1986) and is theorized to affect vertical and horizontal fire initia
tion and spread (Scott and Reinhardt, 2001; Van Wagner, 1993). 
Similarly, grass fuels show pronounced seasonal trends in fuel 
moisture, and the propensity to burn, associated with annual cur
ing as the moisture content of individual leaves and the ratio of li
ve:dead plant parts change. Oven-dried samples collected from a 
few discrete locations traditionally provide the data to estimate 
the moisture content of live fuels. Periodic, repeated sampling from 
the same location over one or more years can be used to establish 
the timing and variability of seasonal fuel moisture trends (Coun
tryman and Dean, 1979). Methods for analyzing remotely sensed 
imagery are being developed to estimate live fuel moisture content 
over large areas. To date these methods are limited by the spatial 
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resolution of the sensors being used and the strength of the rela
tionship between fuel moisture and vegetation indices or spectral 
measurements (Dasgupta et al., 2007; Peterson et al., 2008; Schnei
der et al., 2008). Space-based sensors, such as MODIS and AVHRR, 
have spatial resolutions of 0.25–1.1 km depending on the spectral 
band and the sensor (Table 1). Compared to satellite-based instru
ments, airborne sensors have been shown to be superior for live 
fuel moisture estimation (Peterson et al., 2008). Airborne sensors 
can be used to improve the coarser resolution of space-borne 
instruments, which provide for more extensive spatial coverage 
(Cheng et al., 2006a; Roberts et al., 2006). Canopy structure affects 
correlations to estimate water content of live vegetation (Cheng 
et al., 2006b). Since current fire danger and behavior systems were 
designed primarily with dead fuels in mind, live fuel moisture 
information currently functions as an index of fire potential, at best 
(Alexander and Cruz, 2012; Fernandes and Cruz, 2012; Weise and 
Saveland, 1996), and the resolution provided by space-borne sen
sors is probably sufficient for the present. 

Depending upon the fuelbed type and burning conditions, live 
fuels in general, and crown fuels in particular, represent a large 
emissions source from wildland fires. Should projected changes 
in climate lead to increases in water balance deficit in more pro
ductive ecosystems and shifts in plant distributions, this could lead 
to reductions in the fuel moisture content of live vegetation and in
creased combustion and consumption of live fuels, particularly if 
these areas experience an increase in fire frequency and area 
burned (Littell and Gwozdz, 2011). 
4. Mapping 

Recall that wildland fire emissions are determined as a function 
of the total area burnt over a given time period, the nature of the 
fuels present within the burnt areas, the fraction of the available 
fuel that is combusted, and the nature of the combustion. Vegeta
tion, and therefore fuel, composition and characteristics are spa
tially dependent and influenced by the biophysical setting (e.g., 
latitude, slope, aspect, elevation, incoming solar radiation, poten
tial evapotranspiration) of a given location. It is, therefore, critical 
to understand the spatial distribution of available fuel on the 
earth’s surface so that geographically coincident information about 
area burned and fuels can be used to estimate wildland fire 
emissions. 

Early fuel mapping efforts focused on assessing fire danger 
(Burgan and Shasby, 1984; Hornby, 1935) and, therefore, charac
terized only those components thought to be important for fire 
danger. As these map units do not include a description of many 
Table 1 
Remote sensing platforms commonly used in vegetation mapping and biomass estimation

Sensor Spatial resolution App

Landsat TM 30 m (multispectral) Vege
120 m (thermal IR) 

Landsat ETM+ 15 m (panchromatic) Vege
30 m (multispectral) 
60 m (thermal IR) 

SPOT 2.5–20 m (various modes) Vege
MODIS 250–1000 m (multispectral) Land
AVHRR 1100–5000 m (visible, near IR, thermal IR) Land
IKONOS 1 m (panchromatic, multispectral) Vege
QuickBird 0.6 m (panchromatic) Vege

2.4 m (multispectral) 
ASTER 15 m (near IR) Vege

30 m (short wave IR) 
90 m (thermal IR) 

AVIRIS Varies from approx. 1–30 m (hyperspectral) Vege
Hyperion 30 m (hyperspectral) Vege
of the fuel elements that combust and contribute GHG/A/BC emis
sions during smoldering and glowing combustion, their use in 
emissions estimates will tend to underestimate total emissions 
and produce questionable results. Fuel model maps are currently 
limited to either 23 fire danger or 50 fire behavior categories. 

4.1. Vegetation 

Vegetation mapping is the process of delineating the geographic 
distribution, extent, and landscape patterns of vegetation types 
and/or structural characteristics. Consistent mapping of vegetation 
types requires that a classification be completed first because clas
sification defines the entities to be mapped (Tart et al., 2005). Map
ping and field checking vegetation types helps improve the 
classification concepts, which should facilitate more effective map
ping of vegetation at multiple scales. Due to varying scale of vege
tation patterns and the resolution of remotely sensed spatial data, 
map units may often include more than one vegetation type at any 
given level of the hierarchy. Both vegetation description detail and 
map unit spatial resolution must be considered. 

A number of different remote sensing technologies are used for 
mapping vegetation types and attributes. Measurement and inter
pretation of spectral reflectance from vegetation has matured 
greatly from the initial LANDSAT imagery in the 1970s and is rou
tinely used to identify and map vegetation types (Xie et al., 2008). 
A variety of satellite sensors that operate in different portions of 
the electromagnetic spectrum with varying levels of spatial and 
temporal resolution are commonly used in vegetation mapping 
(Table 1). Fuel mapping efforts often use remote sensing-based 
vegetation maps as data sources. 

Estimation of available fuel mass is one of the largest sources of 
error in the estimation of emissions from wildland fire (Ottmar 
et al., 2008). In addition to classifying vegetation, remote sensing 
technology has the potential also to estimate biomass. Biomass 
estimation from remote sensing is still a challenge and a current 
area of research and development (Lu, 2006). Since biomass esti
mation involves integration of different sensors, algorithms and 
variables, an understanding of the sources of uncertainty is critical. 
As an example, the root mean square error of models associated 
with a fine resolution biomass map of temperate forest ranged 
from 14 to 34 Mg ha-1 (Zhao et al., 2009). 

4.2. Fuels 

Fuels have been mapped using remote sensing, biophysical 
modeling, field reconnaissance, and sampling approaches (Keane 
et al., 2001). Methods that use a combination of the aforemen-
 (adapted from Table 1, Xie et al., 2008). 

lication 

tation community mapping at regional scales 

tation community and sometimes dominant species mapping at regional scales 

tation community and species mapping at regional scales 
 cover type mapping at global and continental scales 
 cover type mapping at global and continental scales 
tation community and species mapping at local and regional scales 
tation community and species mapping at local and regional scales 

tation community and species at regional to continental scales 

tation community and species at local to regional scales 
tation community and species at regional scales 
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tioned approaches have the highest likelihood of generating the 
most useful, accurate, and complete spatial characterization of 
wildland fuels. The most commonly used remote sensing method 
is to indirectly map fuels by relating fuel characteristics to readily 
identifiable attributes in the imagery, such as broad vegetation 
types or land cover classes, so development of technologies and 
methods for mapping vegetation bear directly on mapping fuels. 
Vegetation types or classes are often not well correlated with fuel-
bed properties which may compromise the accuracy and utility of 
the resulting map product when attempting to relate remotely 
sensed vegetation attributes to fuel characteristics and conditions 
(Reich et al., 2004). 

Remote sensing can also be used to directly map some fuelbed 
characteristics (e.g., fuelbed height, leaf area, etc.) and has been 
commonly used to map foliage moisture content for fire danger 
and fire behavior purposes (Burgan and Shasby, 1984; Peterson 
et al., 2008). Not all fuelbed attributes can be resolved with imag
ery; a full accounting of fuelbed characteristics and conditions is 
not possible using direct mapping methods. In addition, many fuel 
characteristics vary over spatial scales that are too small (i.e., <1 m) 
to be resolved by many satellite-based sensors. Airborne sensors 
are generally able to provide higher resolution data than satellite 
sensors (Andersen et al., 2005), and ground-based sensors are able 
to provide higher resolution than airborne sensors (Loudermilk 
et al., 2009; Seielstad et al., 2011). In forested systems, remote 
sensing instruments may be unable to differentiate spectral differ
ences between canopy and surface fuels (Belward et al., 1994; van 
Leeuwen and Huete, 1996) and tree canopies physically obstruct 
the sensor’s view of fuels in lower strata (Keane et al., 2001). In 
vegetation types with more open canopies, ground and canopy 
coverage mapping has been achieved with accuracies >80% 
(Muñoz-Robles et al., 2012). Newer technologies, such as Light 
Detection and Ranging (LiDAR) and Synthetic Aperture Radar 
(SAR) show promise for being able to see through and below tree 
canopies to improve the measurement resolution of different 
structural attributes of the fuelbed (Gleason and Im, 2011; Roberts 
et al., 2007; Saatchi et al., 2007; Seielstad and Queen, 2003; van 
Leeuwen and Nieuwenhuis, 2010). Saatchi et al. (2007) report that 
SAR fuel estimates accounted for 70% of variation in field data at 
plot and stand levels and as much as 85% of the variation when 
separated into fuel load classes. 

Biophysical modeling is another indirect fuel mapping method 
that relates information about environmental gradients, distur
bance history, and ecological processes to vegetation dynamics to 
predict fuel characteristics (Keane et al., 2001). A number of ana
lytical techniques are employed, including gradient nearest neigh
bor imputation (Ohmann and Gregory, 2002) and compartment 
modeling (Hall et al., 2006). A benefit of this approach is that the 
linkage between biophysical processes and fuel characteristics 
can be used to dynamically map fuelbeds as climate and distur
bance regimes change (Keane et al., 2001). 

Field reconnaissance mapping (Hornby, 1936) which involves 
in situ measurements or assignments of fuel characteristics for spe
cific areas based on direct human observation is costly and imprac
tical given modern funding and staffing limits, but it is performed 
at small spatial scales (<100 m2) for use in image classification or 
photo interpretation and accuracy assessment and validation. The 
aforementioned biophysical modeling parameterizes relationships 
from spatially referenced plot-level vegetation and fuels data. 

The Landscape Fire and Resource Management Planning Tools 
project (LANDFIRE; Rollins et al., 2004) has used a combination 
of direct and indirect remote sensing, biophysical modeling, and 
field sampling to produce a comprehensive, 30 m-resolution na
tional map of different vegetation and fuels classes and attributes 
(Fig. 5). LANDFIRE fuels products include maps of fuel models (Al
bini, 1976; Deeming et al., 1977; Scott and Burgan, 2005; Stocks 
et al., 1989), FCCS fuelbeds (McKenzie et al., 2007; Ottmar et al., 
2007), fuel loading models (Lutes et al., 2009), and different canopy 
fuel characteristics (coverage, height, base height, and bulk den
sity). Integration of multiple data sources and fuel mapping tech
niques for the LANDFIRE project represents a significant 
advancement in fuel mapping capabilities; however, its reliance 
on indirect methods and modeling means that LANDFIRE designa
tions for individual map pixels may not accurately represent exist
ing fuelbed characteristics. 

Development of data reduction and analysis techniques for the 
various sensors, including airborne and terrestrial LiDAR, is an area 
of active research that could represent the next step forward in fuel 
characterization. For example, image fusion, a technique that com
bines airborne LiDAR and advanced image-processing, is able to 
produce information that cannot be attained from a single sensor 
and appears to provide improvements in estimates based on LiDAR 
alone (Erdody and Moskal, 2010; Mutlu et al., 2008). Other types of 
image fusion using Quickbird imagery have been used with some 
success in pasture and woody vegetation (Muñoz-Robles et al., 
2012). Innovative techniques that integrate repeat imagery, field 
data, and disturbance history (Meigs et al., 2011; Powell et al., 
2010) are also contributing to a more robust understanding of 
trends in biomass accumulation and therefore potential future fuel 
loading and GHG/A/BC emissions. 
5. Knowledge gaps 

Methods for estimating GHG/A/BC emissions from wildland 
fires rely on accurate characterization of the fuelbeds that burn 
within the fire perimeter. Although fuels are characterized for 
many ecosystems, there are still many types that are described 
insufficiently. There is currently no central repository containing 
all of the fuels information that has been published in the US and 
old data are often overlooked by current researchers (Wendel 
et al., 1962). Fuelbeds in landscapes that are dominated by invasive 
species such as salt cedar (Tamarix pentandra), cheatgrass (Bromus 
tectorum), buffel grass (Cenchrus ciliaris), fountaingrass (Pennisetum 
setaceum), Brazilian peppertree (Schinus terebinthefolius), and mel
aleuca (Melaleuca quinquenervia) now experience uncharacteristi
cally frequent or intense fire and require additional study (Loope, 
2000; Wade et al., 1979; Zouhar et al., 2008). In addition, very little 
research has been conducted to document fuel characteristics in 
shortgrass prairies and many wetland ecosystems (Wade et al., 
1979; Wendel et al., 1962). Preliminary investigations are under
way in manipulated fuelbeds such as those treated with different 
kinds of mastication equipment (Battaglia et al., 2010; Kane 
et al., 2009; Sikes and Muir, 2009) and mulches (Manzello et al., 
2006; Steward et al., 2003), although more research and develop
ment is warranted. In addition, further study is necessary to deter
mine how novel vegetation and fuel assemblages arising under an 
altered climate regime could affect area burned, combustion effi
ciency, fuel loading and consumption, and, ultimately, GHG/A/BC 
emissions. 

In addition to a shortage of information for some wetland fuel-
bed types, some fuelbed components are also quantified poorly. In 
particular, description of belowground and soil fuel characteristics 
is not well defined or documented. The belowground component is 
important from a carbon cycling and accounting perspective, as it 
has been estimated that 30% or more of the total site biomass is 
plant roots (Seiler and Crutzen, 1980). Large amounts of biomass 
with long-duration smoldering potential are found in ecosystems 
with deep organic soils, such as pocosin shrublands in the Atlantic 
coastal plain of the US (Blackmarr and Flanner, 1975; Frandsen, 
1997; McMahon et al., 1980; Reardon et al., 2007; Wendel et al., 
1962) and sphagnum bogs in boreal regions. Our inability to de
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Fig. 5. Fuel Characteristic Classification System (FCCS) fuelbed map (1-km resolution) for the conterminous United States derived from LANDFIRE existing vegetation types. 
This is an example of a fuel map product developed by using direct and indirect remote sensing, and biophysical modeling. 
scribe fully their biogeochemical characteristics (including mois
ture dynamics) limits our ability to adequately estimate and model 
fire behavior and effects, including fuel consumption and emis
sions. Although not typically considered a wildland fuel, with the 
increasing encroachment of development into the wildlands, struc
tures represent a large potential emission source in some locations. 
At present there is no method or framework for characterizing 
houses and other built infrastructure in the context of wild-
land fire and GHG/A/BC emissions. Between 1990 and 2007, 
approximately 250–3000 homes burned annually in extreme wild
fires (Cohen, 2008); in 2010 alone, the National Fire Protection 
Association reported 46,300 intentionally set structure fires 
(http://www.nfpa.org/assets/files/PDF/Latest%20estimates/Latest
EstimatesIntentionalFires.pdf). Given the relatively small number 
of houses burned by wildland fire and the complexity of materials 
within such structures, the contribution of these structures to 
emissions from wildland fire is unknown and may actually be more 
important in other categories of GHG/A/BC emissions. 

The relationship among fuel characteristics, fuel consumption, 
and emissions is relatively poorly documented and understood 
for several fuel components, including tree crowns, live shrubs, 
and belowground biomass. Both FOFEM and CONSUME, software 
tools for estimating fuel consumption and emissions that currently 
represent the state of the art, do not include any evidence-based 
prediction capability for canopy fuel consumption and require a 
best-guess estimate by the user. FOFEM and CONSUME also have 
a very limited selection of models for estimating live fuel con
sumption (Hough, 1978; Wright and Prichard, 2006), although 
work is ongoing in this area (Goodrick et al., 2010; Reid et al., 
2012; Wright, in press-a, in press-b). 

The deposition of aerosols on vegetation surfaces in canopies as 
smoke is lofted through the canopy has not been reported any
where in the literature to our knowledge. The impact of this 
‘‘scrubbing’’ or ‘‘filtering’’ effect on the quantity of emissions intro
duced into the free air is unknown. 

Methods for describing fuel heterogeneity and discontinuity (or 
connectedness) at all spatial scales require new techniques, meth
ods, and metrics. Heterogeneity and discontinuity have been 
shown to affect fire spread and intensity, which will ultimately 
influence emissions production by way of effects on area burned, 
combustion efficiency, consumption rate and amount of fuel con
sumed. Related to the concept of developing more sophisticated 
methods for quantifying spatial properties of the fuelbed, our abil
ity to describe the variability and level of uncertainty in fuel type 
and amount in fuel maps needs additional attention to refine emis
sions estimates (French et al., 2011, 2004). 
6. Summary 

Description and quantification of wildland fuel consumption is 
a key step in the estimation of emissions produced by wildland 
fire. Numerous systems and tools have been devised to character
ize vegetation and wildland fuels in the United States. Older sys
tems do not contain the necessary information to describe 
realistically the wildland fuel complex nor do we have adequate 
tools to provide a cost-effective, reliable inventory of the actual 
mass of wildland fuel produced and burned annually. There are 
many promising solutions to these problems, but national imple
mentation will be required. 

Several important fuel types are described poorly such as mas
ticated fuels, organic soils, wetland fuelbeds, invasive species, and 
shortgrass prairie. Fuelbed elements not related to fire spread or 
fire danger prediction have not been quantified extensively. The 
relationships among fuel characteristics, fuel consumption, and 
emissions are poorly documented and understood for several fuel 

http://www.nfpa.org/assets/files//PDF/Latest%20estimates/LatestEstimatesIntentionalFires.pdf
http://www.nfpa.org/assets/files//PDF/Latest%20estimates/LatestEstimatesIntentionalFires.pdf


36 D.R. Weise, C.S. Wright / Forest Ecology and Management 317 (2014) 26–40 
components including tree crowns, live shrubs, and belowground 
biomass. Elimination of many of these knowledge gaps should re
duce the uncertainty associated with the fuel component of the 
GHG/A/BC emissions equation. 
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