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ABSTRACT  
Based on energy conservation and detailed heat transfer mechanisms, a simple physical 
model for fire spread is presented for the limit of one-dimensional steady-state 
contiguous spread of a line fire in a thermally-thin uniform porous fuel bed. The solution 
for the fire spread rate is found as an eigenvalue from this model with appropriate 
boundary conditions through a fourth order Runge-Kutta method. Three experiments on 
fire spread are compared to the model simulations and good agreement is demonstrated. 
The comparisons with wind tunnel experiments on white birch fuel beds show that the 
physics in this model successfully evaluates wind and slope effects on the fire spread 
rate. The grassland fuel experiments with various fuel characteristics also compare well 
to the simulations. Limited comparison with data on fire spread in shrubs, obtained in 
China, also shows good agreement. These comparisons suggest that this model may serve 
as the basis for an improved operational model.  
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NOMENCLATURE LIST 
afb fuel bed absorptivity  Greek 
cp specific heat (kJ/kgK) ε emissivity 
D diameter (m) 
E emissive power (kW/m2) 

θ 
 

angle between fuel bed normal 
and flame sheet 

h heat transfer coefficient (W/m2k) ρ density (kg/m3) 
k thermal conductivity (W/mK) 
L length (m) 

φ 
 

ratio of solid-fuel volume to 
fuel bed volume 

lf fuel bed thickness (m) σ Stephen-Boltzmann constant 
Mw mass fraction of water Ωs slope angle of fuel bed 
q heat flux (W/m2) 
Pr Prandtl number 

Ωw 
 

tilt angle of flame due to the 
wind 

R flame spread rate (m/s) Subscripts 
Re Reynolds number b ember 

f fuel s 
 

total fuel-particle surface area per 
fuel bed volume (m-1) fb fuel bed 

Ufb internal wind speed (m/s) fl flame 
Uw ambient wind speed (m/s) ig ignition 
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w width of fuel bed (m) vap vapor 
y distance from the flame (m) ∞ ambient or infinity 

 

INTRODUCTION  
This study concerns steady-state modeling of contiguous spread of fire through a thin fuel 
bed. Chaparrals, grasses, pine needles and trees in the forest can be modeled as a layer of 
porous fuel, so this study can be used to predict spread rates for fires through these fuels. 
The thermally-thin limit is assumed to apply if the fuel bed thickness is small compared 
to the flame length. The spread rate of a fire is defined as the steady propagation speed of 
the flame front moving through this fuel layer. This steady-state combustion process of a 
fuel bed is driven by energy conservation within the fuel bed and heat transfer between 
the flame, the fuel bed and the ambient air. The flame is the only heat source in the 
system, so the shape of the flame – length and angle – is an important factor determining 
the spread rate. Other major factors include fuel bed porosity, fuel moisture content, fuel 
bed thickness, the slope of fuel bed, and the ambient wind speed. These parameters can 
be categorized into: fuel properties, fuel bed configuration, and ambient conditions. 

Researchers have attempted to quantify fire spread rate for more than 50 years, and many 
mathematical models have been developed. Fons [1] first analyzed flame spread in forest 
fuels, assuming that the fuel was preheated to ignition by conductive, convective, and 
radiative heat transfer from the flaming zone. Emmons [2] discussed the mechanisms of 
forest fire spread and introduced a simple physics-based fire spread model for forest fires. 
Hotttel et al. [3] developed flame-spread models that included radiative and convective 
losses during preheating. Rothermel and Anderson [4] developed an empirical model for 
pine-needle fuel beds, which described the dependence of flame-spread rates on wind 
velocity and moisture content. Fang and Steward [5] evaluated the effects of fire spread 
rate parameters through lab-scale experiments with wood shavings as fuels. Rothermel 
[6] developed an empirical spread rate model for a wide variety of wildland fuels which 
led to the development of the BEHAVE [7] and FARSITE [8] operational models. 
However, his model assumes that wind and slope effects are additive and thereby may 
lack accuracy. Much research has been done to find the correct relationship between 
wind, slope and spread rate. Albini [9] developed a wildfire spread model with wind. 
Putnam [10] and Thomas [11] investigated the effects of wind on flame geometry. Pitts 
[12] provided a thorough review of wind effects on fire. Weise and Biging [13] built a 
statistical model based on laboratory experiments with white birch fuel. Pagni and 
Peterson [14] developed a physics-based flame spread model through porous fuels, and 
Mongia, Pagni and Weise [15] compared their model to Weise and Bigging’s 
experimental results. Recently, Mabli [16] did flame spread experiments for grass fuels 
and developed modifications to the BEHAVE program inputs. Wu et al. [17] investigated 
surface burning of various fuel types such as shrubs and bamboo.  

ANALYSIS  

Physical Model 
In this model, the fuel bed is assumed to be a thin, one-dimensional, homogenous, porous 
fuel layer. Since the fuel layer is thermally thin, there is no temperature difference 
between top and bottom surfaces at the same distance from the flame. This makes it 
possible to assume a one-dimensional fuel bed. The flame is also assumed to be a line 
fire; the flame is a two-dimensional sheet; its thickness is considered only in flame 
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emissivity calculations. This assumption also implies that chemical reactions are 
infinitely fast. The system reference frame is attached to the flame sheet. Thus, the flame 
is fixed at the origin (y=0) and the fuel bed is moving toward the flame sheet at a 
constant spread rate, R. The assumption of a constant spread rate, which implies steady-
state combustion, has been validated experimentally for uniform fuels and ambient flows. 

Figure 1 shows the schematic of the physical model and the coordinate system. The 
flame, which is of length Lfl and angle θ relative to the normal to the fuel bed, is placed at 
the origin. Uw is the ambient wind speed, which is parallel to the fuel bed. Ωs is the angle 
between the fuel bed normal and gravity vector, so it is the slope of the fuel bed. 

 

qinternal radiation 

R 

qinternal convection 

qsurface radiation qsurface convection 

dy

θ 

Ωs

y

qradiative loss 

Uw 

Fuel Bed 

Flame Sheet 

 
Fig. 1. Flame spread schematic.  

Before local ignition, the fuel bed is heated by the flame to the ignition temperature, Tig. 
Thus, the fuel temperature is a function of the distance y from the flame. At y=∞, the fuel 
is at the ambient temperature, T∞, and at y=0, the fuel is at the ignition temperature, Tig. 

Energy Conservation  
Energy is conserved in every fuel element as shown in Eq. 1. The left hand side is the 
sum of the energy absorbed and used for raising the temperature or evaporating the 
moisture within the fuel bed element. The right hand side of Eq. 1 is the sum of all 
possible heat transfer mechanisms for a fuel element. The lower fuel bed surface is 
assumed to be adiabatic and impermeable.  

)convectioninternal(icq)convectionsurface(scq

)lossradiative(rlq

)radiationinternal(irq)radiationsurface(srqlatentqsensibleq

++

+

+=+

 (1) 

Conductive heat transfer through fuel bed is neglected. Radiative heat transfer can occur 
in three ways: surface radiation, internal radiation, and radiative loss, which is radiative 
heat transfer from the fuel bed to the ambient surroundings. Convective heat transfer can 
occur both on the surface and inside the fuel bed. Within the approximations of steady 
state spread through a thin fuel bed, the accuracy of the mathematical model depends on 
how well the terms in Eq. 1 are modeled. 
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Required Ignition Energy 

The left hand side of Eq. 1 is the energy absorbed in each fuel element. This energy 
transfer from the flame is required to sustain the flame at the origin, i.e., required to 
maintain the ignition temperature at the origin. For the fuel element of length dy, the 
sensible energy required at distance y per unit fuel bed volume per unit time is: 

⎪⎩

⎪
⎨
⎧

=

≠−=
,K373Tat,0

,K373Tat,
dy
dTRcq pff

sensible
φρ    (2) 

where ρf is the fuel particle density, cpf is the fuel bed specific heat capacity, φ is the 
volume of solid fuel per unit fuel bed volume (i.e., packing ratio), and T is the fuel 
temperature at y. The energy is assumed to evaporate the moisture in the fuel only when 
the temperature of fuel reaches the assumed boiling temperature of water, 373K. It may 
be expressed as   

⎪⎩
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where hvap is the specific enthalpy change of water to vapor at 373 K, Mw is the mass 
fraction of water, i.e., the mass of water per wet fuel bed mass at y. Evaporation in fuel 
elements not at the boiling temperature is assumed to be negligible. 

Radiation 

The flame radiative emissive power is Efl ≈ εflσTfl
4, where the Tfl is the flame temperature 

and εfl is the flame emissivity. It is assumed that the flame is an isothermal sheet with 
uniform emissivity, so that the emissive power is uniform. Thus, radiation from the flame 
to each element at y on the top surface of the fuel bed is: 
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where w is the width of the fuel bed, lf is the thickness of the fuel layer, Lfl is the flame 
length, and Z = (y/Lfl – sinθ)/cosθ. Z is a result from the crossed strings method for 
determining view factors. The tilt angle of the flame, θ, is the sum of Ωs and Ωw. Ωw is the 
tilt angle due to the wind and approximated as Ωw = tan-1[1.4Uw(gLfl)-1/2] as determined 
by Putnam [10]. The hyperbolic tangent term in Eq. 4 takes into account the finite width 
of the fuel bed and gives good agreement with 3D view factors. 

The flame emissivity is a function of the gas emissivity and the soot emissivity as 
described by Bard and Pagni [18]. Using the soot properties for wood fuel obtained 
experimentally [18], the flame emissivity εfl can be approximated as in Eq. 5 with the 
flame mean beam length proportional to Lfl and an effective total absorption coefficient of 
0.6 m-1 : 
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flL6.0
fl e1 −−=ε . (5) 

Within the porous fuel bed, unburned fuel receives radiative heat flux through the fuel 
bed volume from the ember zone. This internal radiation exponentially decays with 
distance y from the burning zone as described by Hottel [3,14]: 

)sy25.0exp(sE25.0q bradiationinternal −= ,  (6) 

where s is the total fuel-particle surface area per fuel-bed volume and the ember emissive 
power is Eb ≈ εbσTb

4. The ember emissivity is assumed to be one and the ember 
temperature is assumed to be the ignition temperature. 

Unburned fuel elements lose heat to the ambient by the radiative heat loss at the top 
surface of the fuel bed: 

f

44
fb

lossesradiative

)T)y(T(
q

ι
σε ∞−

−= . (7) 

Convection 

Convective heat transfer is defined as heat transfer between the fuel bed and the ambient 
air due to bulk fluid motion. The effects of buoyancy are neglected; only forced 
convective heat transfer due to the ambient wind is included. Thus, there is no convection 
unless an ambient wind exists. The fuel bed exchanges heat with the air by convection 
both on the surface and in the interior and may be heated or cooled by convective heat 
transfer. Fig. 2 shows the definitions of either upslope or downslope, heading or backing 
fires. 

Figure 1 might suggest that the flame serves as an impermeable barrier. However, 
according to Beer [19], the wind can penetrate the flame sheet due to three dimensional 
effects. Thus, here the wind is approximated as plug flow blowing straight through the 
flame. Inside a sufficiently porous fuel bed, the wind can also be assumed to produce 
plug flow with a uniform velocity proportional to both porosity and the ambient wind 
velocity, Ufb = (1-φ)Uw. 

For surface convection, the flame temperature Tfl is used as a gas reference temperature 
for heading cases and T∞ is used for backing cases. For heading cases, the temperature 
difference is assumed to exponentially decay with distance y from the flame [14]. The 
heat transfer coefficient for plug flow over the flat surface is used [20]. The convective 
heat transfer to the top surface of the fuel bed is then: 
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Fig. 2. Wind and slope configurations. 

The convective heat transfer coefficient for a single cylinder in cross flow is used for the 
interior of fuel bed [21]. It is assumed that fuel elements are comprised of cylinders, 
which represent branches or needles. The porosity of the fuel bed is large enough to use 
the heat transfer coefficient for a single cylinder rather than banks of cylinders in cross-
flow. Equation 9 represents the convective heat transfer inside the fuel bed. Note that the 
Reynolds numbers in Eq. 8 and Eq. 9 are different. The length scale in Eq. 8 is the fuel 
bed coordinate and the velocity is Uw; the length scale in Eq. 9 is the branch diameter, D, 
and the velocity is Ufb. 

( ) sy25.0
b

3/1385.0
Db

heading,convectioninternal e)y(TT
D

PrResk911.0q −−= , (9a) 

( ))y(TT
D

PrResk911.0q
3/1385.0

D
backing ,convectioninternal −= ∞

∞ . (9b) 

Solution Method  
To solve Eq. 1 for T(y) and the eigenvalue, R, two boundary conditions are needed: 

. y at M )(M;T  )T(

0,y at0  (0)M;T  T(0)

ww

wig

∞==∞=∞

===

∞∞

  (10) 

A fourth order Runge-Kutta method is used iteratively, adjusting the spread rate, R, until 
the ignition temperature exists at the origin. The fuel temperature is assumed to be fixed 
once it reaches 373 K until all the fuel moisture is removed. Typical temperature and 
moisture profiles are shown in Fig. 3a. Figure 3b shows typical heat flux contributions to 
the fuel bed calculated with Eqs. 1-10. 
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Fig. 3. (a) Temperature and mass fraction of water profiles; (b) various heat flux 
contributions. These calculations are for a white birch wind tunnel  

experiment [13]. (+17° slope, 1.1 m/s wind , Lf = 1.69 m);  
R: 0.061 m/s (exper.), 0.062 m/s (calc.). 

The surface radiation appears to be the dominant heat flux contribution, as shown in 
Fig. 3b, for heading, upslope cases with larger spread rates. Either the radiative loss or 
the convective heat transfer at the surface is the second most important term. In these 
cases, heat exchange at the surface of the fuel bed appears to dominate heat transfer 
mechanisms inside of the fuel bed. 

RESULTS  
Three different sets of experiments have been simulated with this flame spread model. 
First, Weise’s experiments on white birch in a wind tunnel were simulated [13]. Mongia 
et al. [15] have compared their model with the same data and better agreement is obtained 
here. Weise’s experiments provided all four cases shown in Fig. 2. Mabli’s experiments 
[16] were no-wind, no-slope cases, but they had a variety of fuel characteristics. Also 
Mabli used the BEHAVE program for comparison with her experiments, which allows 
comparison of this model's results with those of the BEHAVE model. Thirdly, the data 
gathered by Wu et al. [17] on surface fire spread rates in shrubs and litter under a pine 
forest have been compared to this model’s simulations. In the case of Weise’s 
experiments, all the fuel characteristics and the fuel bed geometry were well-described. 
For Mabli’s data and Wu’s data, some fuel characteristics and properties, which were not 
described in their papers, were estimated from other sources [19-22]. Table 1 shows the 
input variables and their ranges used in these calculations. 

White Birch Experiments 
Weise’s experimental data for flame spread on very porous white birch fuel beds in a 
laboratory wind tunnel are compared to this model. The purpose of the experiments was 
to examine wind and slope interaction effects on flame properties. A tilting wind tunnel 
with an adjustable roof and 2.5 m long by 0.9 m wide test section was employed. 
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Table 1. Input variables and their ranges for fire spread model calculations. 

Name Units Weise 
(white birch) 

Mabli 
(grass) 

Wu et al. 
(shrub) 

Flame length (Lfl) m 0.08 – 1.69 0.7 – 1.4 1.3 
Ambient wind speed (Uw) m/s -1.15 – +1.15 0 3 
Fuel bed slope (Ωs) ° -17 – +17 0 15 
Fuel density (ρf) kg/m3 609 200 560 
Fuel particle surface/volume (s) m-1 17.5 1000 5.7 
Initial water mass fraction - 0.11 0.07 – 0.17 0.16 
Packing ratio (φ) - 0.008 0.06 – 0.145a 0.0026a 
Diameter of branch (D) m 0.00252 0.001 0.0022 
Fuel bed width (w) m 0.686 1 30 
Fuel bed thickness (lf) m 0.114 0.05 – 0.33 0.7 
Fuel bed absorptivity (afb) - 0.6 0.6 0.6 
Fuel bed emissivity (εfb) - 0.9 0.6 0.9 
Ambient temperature (T∞) K 303 303 297 
Flame temperature (Tfl) K 1083 1083 1083 
Ignition temperature (Tig) K 561 561 561 
Fuel specific heat (cpf) kJ/kgK 2500 1250 2800 

aPacking ratios were estimated from the fuel loads (kg/m2) and fuel bed thicknesses (m) 
with assumed fuel densities (kg/m3).  
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Fig. 4. Comparison of predicted and experimental flame spreads for white birch  

fuel in a wind tunnel for various wind and slope conditions; wind: 
-1.15m/s to +1.15m/s, slope: -17° to +17°. 

An open-topped wind tunnel was used to remove any effects that a ceiling may have on 
the buoyancy of the flame. Wind velocities of -1.15, -0.4, 0, +0.4, and +1.15 m/s were 
combined with slopes of -17, -8.5, 0, +8.5, and +17 degrees. Wind was induced by a 
commercially available three-blade, 0.75 m diameter, free-standing rotary fan that was 
placed at either end of wind tunnel depending on the type of fire spread desired. The 
adjustable roof was gradually extended behind the flame during each experimental fire to 
insure a relatively constant wind velocity without impeding buoyancy. The fuel bed 
consisted of vertical white bitch (Betula papyrifera Marsh.) sticks (139.7 × 4.55 × 
1.1 mm). The mean fuel loading was 0.43 kg/m2 for this fuel bed. The mean surface area 
to volume ratio was 22.75 cm-1. The mean fuel moisture of the sticks was ~11% [13]. 
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Figure 4 shows comparisons of predicted and experimental spread rates for these white 
birch fuels. Good quantitative agreement is illustrated for all data points. The fuel 
characteristics and test conditions of these wind tunnel experiments were well-controlled 
and well-documented, so the model should have good agreement and it does. To see wind 
and slope effects more clearly, the same data points are plotted as a function of the wind 
and slope conditions in Fig. 5.  
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 Fig. 5. Predicted flame spread rates (lines) and experimental flame spread rates 

(symbols) for white birch fuel with wind and slope conditions. 

Grassland Fuel Bed Experiments with No Wind and No Slope 
Mabli [16] experimented on backing grassland fire spread rates. Here, the term of 
“backing” is used for a no-wind, no-slope condition. 1 m × 1 m fuel beds freshly cut from 
wild grassland plots were used. These comparisons show the effectiveness of this model 
for a wide range of fuel characteristics. Because real grass was used, the fuel bed depth 
couldn’t be uniform through out the fuel bed, so average fuel bed thicknesses are used. In 
Mabli’s experiments, the fuel moisture range is 6 to 22%, the fuel load range is 0.164 to 
1.27 kg/m2, and the fuel bed depth range is 0.06 to 0.33 m.   
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Fig.6. Comparisons of experimental flame spread rates vs. (a) BEHAVE predictions 

[7,16]; (b) predictions of this model for no-wind and no-slope. 

Figure 6a, which is from Mabli’s dissertation [16], shows comparisons of experiments 
with BEHAVE simulations. Figure 6b shows comparisons of Mabli’s experiments and 
the simulations run here. In Fig. 6a, nineteen out of twenty simulations are 
underestimated. With this model, even though the predictions still underestimate the 
experiments, the general trend represents better agreement. Since this model focuses on 

-17° slope
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conditions with wind and slope effects, the reasonable agreement with no-wind and no-
slope experiments is encouraging. 

Under-story Burning of Shrubs in a Pine Forest 
To further test the range of this model the experimental data of Wu et al. [17] were also 
compared to simulations. The case of shrub fuels was selected from the five experimental 
fuels studied by Wu et al. since more fuel characteristics were reported for the shrubs. 
Litter and living shrubs were measured as surface fuel. The slope of the test section was 
15 degrees, the ambient temperature was 297 K, the relative humidity was 60% and the 
wind was heading at 3.0 m/s. The surface fuel was 0.7 m thick. Litter fuel loading was 
0.9 kg/m2 and the moisture content of the litter fuel was 14.2%. The living shrub fuel 
loading was 0.13 kg/m2 and the moisture content of the shrub fuel was 61.8%. The 
observed flame height was 1.3 m. Blending the litter and shrub properties as weighted 
averages as shown in Table 1, the simulation gave a flame spread rate of 0.052 m/s, 
which is close to the experimental result of 0.050 m/s.   

CONCLUSIONS  
A simple model for flame spread in a thin porous fuel bed has been developed based on 
energy conservation and the heat transfer mechanisms between the flame, the fuel bed 
and the ambient. With appropriate boundary conditions, the flame spread rate was found 
as an eigenvalue. Forty-six experiments were simulated (25 white birch sticks, 
20 grassland fuel and 1 shrub fuel). Good agreement has been shown. In comparison to 
wind tunnel experiments on white birch stick fuel beds, the model predicted flame spread 
rates accurately and showed the model’s ability to deal with wind and slope effects. With 
the grassland fuel experiments, various fuel conditions were simulated and generally 
better agreement was achieved than with BEHAVE. The simulation of flame spread in 
shrub and surface fuels beneath a pine forest also showed reasonable agreement. The 
accuracy of the predictions depends on the reliability of the input parameters, such as fuel 
characteristics, wind and slope conditions, and flame length. Future work will be aimed at 
improving the accuracy of each term in the heat transfer sub-models [22] and at 
independent prediction of the flame length [23] which currently needs to be provided 
experimentally. This is an inherently over-simplified model, but hopefully it may play 
some role in the efforts of the USDA Forest Service to revise their operational models. 

Future work will also explore another mechanism that conveys energy from the flame to 
the unburned fuel. Piloted ignitions by firebrands landing well in front of current fire 
lines have long been observed and studied [24-27]. However, this phenomenon also 
contributes to contiguous flame spread by the mechanism of firebrands which land 
immediately in front of the spreading flame. Adding this mechanism to both simple and 
complex [28] spread models is a future challenge. 
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