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ABSTRACT

Effectsof wind velocityandslopeonfire spreadrateandflamelengthwere
examined.Fuelbedsof verticalsticks(13.97cmx 0.455cmx0.110cm)andcoarse
excelsior were burned in an open-topped tilting wind tunnel. Mean fuel moisture content of

sticks apd excelsior was 11% and 12%, respectively. Mean surface area to volume ratio was
23 cm- . Five slopes (negative, positive, none) were combined with five wind velocities
(heading, backing, none). Spread rate was measured with thermocouples; flame length was
estimatedfromvideoimagery.Meanspreadraterangedfrom0.001to 0.06m/s. Spreadrate
of downslope heading fIres exceeded spread rate of no-wind/no-slope fIres. Mean flame
length ranged from 0.08 to 1.69m; 0.25 m was the maximum observed for most backing
fires. Increased fuel moisture reduced spread rate and flame length. Data indicate that the
current formulation of an empirical wildland fIre spread model is inappropriate.

KEYWORDS: spread rate, flame length, heading fire, backing fire

INTRODUCTION

Wind velocity and slope are incorporated into models of wildland fIre behavior. We
know of no studies in which their combined effects on fIre spread rate and flame length have
been examined experimentally concurrently in porous, thermally thin fuels. Only four rate of
spread models containing wind velocity and slope have been found [1-4]. Two of these
models were developed using statistical model-fitting techniques (eq. 1,2) [3,4] and are
based in part on observed wildland fIre spread rates [4-6]. Parameters of the third model,
which is based on the conservation of energy, were estimated from experimental data (eq. 3)
[7, 1]. The last model(eq. 4) is the only true physical model in the sense that many heat
transfer components were explicitly included [2].

1 This article was written and prepared by a U.S. Government employee on
offIcial time, and it is therefore in the public domain and not subject to
copyright.
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RO~, ROSH' ROSC and ROSp are spread rate predicted by the Rothermel [1],
Noble [3], Canadian L4],ancfPagni and1>eterson[2] models, respectively. ROis spread rate
for no-wind/no-slope,fO through pO denote various functions, U is wind velocity, and Bs is
slope angle. The functions of U and Bscan be quite complex and all are nonlinear in form.
The interested reader is referred to the original references [1-4] for explicit form of the
functions.

COMBINING WIND AND SLOPE

Wind velocity and slope have been incorporated as multipliers of spread rate
expected in the absence of wind and slope [I, 3, 4] (eq. 1,2,3). The Pagni and Peterson
model [2] included a term that combined wind and slope effects on flame angle and, thus,
heat transfer from the flame to unburned fuel via radiation (eq. 4). The idea that the effect of
slope on spread rate is similar to the effect of wind and, as such, can be viewed as an added
component of wind velocity was discussed as early as 1946 [8]. All of these models were
originally formulated for wind-aided fire spread upslope.

In order to extend the utility of models that have been operationally implemented,
procedures to combine wind and slope effects have been devised. Vector addition to
combine wind and slope factors into an "effective" wind speed is presently used in the U.S.
and Canadian systems [9,4]. An elaborate vector-based system that has not been
implemented in the U.S. system was devised by Albini [10].

Dimensional analysis was used to derive an equivalence relation between wind speed
and slope angle [11]. This analysis was then extended to derive a correlation between spread
rate and interaction between wind and slope [12]. The correlation was restricted to wind-
aided fires on any slope. Wind and slope effects on fire behavior have been studied
experimentally separately, Le. when one of the two factors has been zero. The combined
effects of wind velocity and slope on the spread rate of non-flaming combustion have been
examined [13]. Combined effects of wind velocity and slope angle on spread rate or flame
length have not been determined experimentally.

This paper presents experimental data from a study in which wind velocity and slope
percent were varied concurrently. The results of statistical analysis to determine the effects
of wind velocity and slope on spread rate and flame length are presented. No attempt to
develop a physical model for spread rate was made because several such models already
exist. The data presented in this paper were used to validate existing models (eq. 1-4).
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ROSN =exp(t(Bs»*g(exp(U» (1)

ROSC =h{l-exp«exp(U))) (2)

ROSR =RO{l + j(U) + k(Bs» (3)

ROSp =l(m(U) + neBs + p(U))) (4)

ROS N '" exp(f(as»*g(exp(U» (I) 

ROSC '" h(l-exp((exp(U))) (2) 

(3) 

RaSp = ((m(U) + Ir(as + p(U») (4) 
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Details of model validation are beyond the scope of the present paper; however, both the
Pagni and Peterson model (eq. 4) and the Rothermel model (eq. 3) coupled with Albini's
vector system [10] compared favorably [14].

EXPER~NTALSETUP

Fuel beds were constructed using white birch (Betula papyrifera Marsh.) sticks (L =
13.97 cm, W =0.455 cm, D = 0.110 cm) and coarse excelsior made from quaking aspen
~ tremuloides Michx.). Stick size and spacing of fuel particles, particularly sticks,
have been shown to affect spread rate [15]. However, the effect of spacing was not
examined in the present study. The spacing was arbitrarily chosen within the range of other
similar experiments while considering the cost of fuel bed construction. Sticks were placed
vertically in soft insulating brick using a rectangulr grid (2.86 cm x 2.26 cm). This spacing
resulted in a stick density of one stick per 6.45 cm . This technique has been widely used in
laboratory-based spread rate studies [16,17]. Fuel bed dimensions were 2.52 m (L) x 0.69 m
(W) x 0.11 m (D). To ensure successful spread for the no-wind/no-slope treatment, 0.2 kg of
coarse excelsior was uniformly distributed over the each fuel bed. Average excelsior depth
was less than 0.5 cm. Mefn surface area \0 volume ratios for the birch sticks and aspen
excelsior were 22.75 cm- and 24.90 cm- ,respectiv~y. Mean total fuel bed dry weight was
1.14 kg and mean weight per unit area was 0.66 kg/m .

Recognizing that orientation of a noncircular stick may be critical to heat transfer, we
held stick orientation constant within each fuel bed. As detailed below, 25 combinations of
wind velocity and slope were examined. To determine if stick orientation affected the
results, the experiment (30 fires) was run twicenonce with the 0.5-cm face toward the flame
and once with the face perpendicular to the flame. Fuel moisture was not controlled;
however, ambient conditions in the test facility did not vary greatly during the experiment,
and fuel moistures were fairly constant.

All tests were conducted in the combustion laboratory of the U.S.D.A. Forest Service
Southern Forest Fire Laboratory in Macon, GA between July 24 and August 17, 1992. The
combustion laboratory is a room approximately 12.2m x 12.2 m x 10 m tall. A 3.66-m
diameter circular hood, centered in the room, exhausted the room through a 0.356-m
diameter stack. The fuel beds were burned in a small, open-topped wind tunnel centered
under the hood [14].

Fires were ignited at one end of a fuel bed. After the first two or three rows were
burning, the fan was turned on to induce flow. Steady-state spread was achieved within the
next fifteen rows for all but one wind velocity and slope combination. The one exception is
noted below.

MEASUREMENTS

An array of 3-mm (30 gauge) chromel-alumel thermocouples (TCs) were insertdd
through the ceramic brick base of the fuel bed. Height of the TCs above the fuel bed base
was approximately 5 cm. Two rows of nine TCs arranged on a 22.5-cm by 22.5-cm spacing
were located equidistantly from the edge of the fuel bed. The TCs were connected to two
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Keithley-Metrabyte2 EXP-16A multiplexer boards. A Keithley-Metrabyte DAS-8 eight-
channel analog input board gathered TC voltages that were then converted to temperatures.
A single reference junction was used for all TCs. Voltages were collected at a sample rate of
10 Hz for all TCs.

Spread rate (Rf) was estimated using eq. 5. The distance from thermocouple a to
thermocouple b was 0.225 m, t is the time at which thermocouple z (z =a, b) first reached
the reference temperature, and ~f is spread rate in m/s. Mean spread rate was estimated for
each fire with the harmonic mean [18]. Spread rate variation within a fuel bed was estimated
with the standard error. Sample size of 16 was not obtained in all instances because of (a)
failure of fire to spread or (b) failure of a TC.

(5)

A video camera recorded each fire. The equipment and procedures used to measure
flame length (Lf) have been described [19,20]. The video image was digitized using a
standard length placed in the field of view, and flame properties were calculated using
geometric properties of photographs. Arithmetic means for flame length were estimated
using a sample size of ten for each fire. Sample sizes used by others ranged from four to
eighteen [21].

EXPERIMENTAL DESIGN AND ANALYSIS

Five nominal wind velocities (-1.1, -0.4,0,0.4, and 1.1 m/s) were combined with five
slope percentages (-30%, -15%, 0%,15% and 30%). Wind velocities < 0 denote backing
fires and slope percentages < 0 indicate downslope fires (Fig. 1). The experiment of 30 fires
consisted of all 25 wind and slope combinations (treatments) and a partial replication
consisting of the four treatment extremes and the no-wind/no-slope treatment. The four
treatment extremes were (a) -1.1 mls wind velocity, -30%; (b) -1.1 mIs, 30%; (c) 1.1 m/s,-
30%; (d) 1.1 mIs, 30%. These 60 fires (30 fires per experiment x 2 stick orientations) will be
referred to as the "main" experiment.

To determine if the relationship between wind velocity and slope angle was invariant
under different fuel moisture regimes, a second experiment was conducted in which stick
fuel moisture was increased by soaking the sticks prior to fuel bed construction. The partial
replication described above was applied to fuel beds with a higher moisture content. These
fires are referred to as the "moisture" experiment. Excelsior moisture content was not
controlled.

Response surface methodology (RSM) was used to analyze the experiment. RSM is a
statistical process that includes (a) setting up an experiment(s) that yields reliable
measurement of the response of interest, (b) determining a mathematical model that fits the
observed data best by using hypothesis testing, and (c) determining the optimal settings of
the experimental factors that produce a maximum (or minimum) response [22]. If no

2 Trade names or products are mentioned for information only and do not
imply endorsement by the U.S. Dept. of Agriculture.
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2 Trade names or products are mentioned for infonnation only and do not 
imply endorsement by the U.S. Dept. of Agriculture. 
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theoretical relationship between the variables of interest exists, a polynomial approximation
is often used. We initially analyzed the data using a 2nd order polynomial model (eq. 6), but
ultimately chose a 3rd order model that fit the data (eq. 7). Analysis of variance (ANOV A)
was used to test the significance of each of the terms in eq. 6, 7.

(a) (b)

(c) (d)

Figure 1. Various combinations of wind velocity and slope: (a) upslope heading fire, (b)
upslope backing fire, (c) downslope backing fire, (d) downslope heading fue. Small arrows
indicate direction of fue spread, large arrows indicate wind direction.

y =130 + 131(SO) + 132(EMC) + 133(SMC) + 134(U) +

135(SP) + 136(U)2 + 137(SP)2 + 138(U*SP) (6)

y =130 + 131(SO) + 132(EMC) + I33(SMC) + 134(U)+

135(SP) + 136(U)2 + I37(SP)2 + 138(U*SP) + 139(U)3 +

131O(SP)3 + 1311(U*SP2) + 1312(U2*Sp) (7)

where Y is a fire behavior measure (Rf' 4), so is birch stick orientation, EMC is
excelsior moisture content, SMC is stick moisture content, U is wind velocity in mis, SP is
percent slope (lOOtan(Os)where Osis slope angle) and 130-(312are model parameters. The
data from the 60 fues was used to estimate the parameters of eq. 6 and 7. The effects of stick
orientation and moisture content were included as covariates in the models.
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RESULTS

Ambient conditions remained relatively constant for the duration of the experiment.
Mean air temperature and relative humidity for the main experiment were 30.2°C and 52.8%,
respectively. Relative humidity ranged from 40% to 70%. Ambient air temperature ranged
from 27 to 33°C. Mean moisture contents of the birch sticks and excelsior were 11.45% and
12.03%, respectively, for the main experiment and 35.94% and 12.62%, respectively, for the
moisture experiment fuel beds. Fuel moisture variability, expressed as the coefficient of
variation (CV), was 25.3% and 8.2% for the excelsior and sticks, respectively, for the main
experiment.

Quasi-steady-state spread rate and flame length were estimated for most fires.
Missing data was due to equipment malfunction. In the main experiment, seven fires failed
to burn the entire length of the fuel bed. Fire was backing into a wind velocity of 1.1 mls in
six of seven instances. For fires that spread the entire length of the fuel bed, spread rate
ranged from 0.0008 to 0.0697 m/s. Flame length ranged from 0.07 to 2.06 m. These
extremes were observed at the treatment extremes (-1.1 mis, 30% downslope and 1.1 mIs,
30% upslope).

Mean spread rate for 16 of 25 treatments was < 0.01 mls. Mean spread rate for all
backing fires except for the -0.4 mIs, 30% upslope treatment fell below this threshold as did
spread rate for most no-slope or downslope spread. Mean spread rate ranged by 1 order of
magnitude from 0.001 to 0.06 m/s. Spread rate for heading/downslope fires was greater than
spread rate of the no-wind/no-slope fires. Mean flame length ranged from 0.08 to 1.69 m.
Flame length for 7 of 10 backing fires was less than 0.25 m. 14 of 25 treatment
combinations yielded mean flame length < 0.3 m.

Eq. 7 fit the data and explained 96.2% and 95.3% of Rf and Lf variation, respectively.
The covariates (stick orientation, stick moisture content and excelsior moisture content) were
not significant in the model. 2nd and 3rd order wind velocity terms were significant for the
Rf and Lf models. Significant crossproduct (interaction) terms indicated that the shape of
spread rate and flame length responses to wind changed as slope percent changed. Parameter
estimates, used to test if each term in eq. 6 and 7 differed from 0, are not presented and can
be found elsewhere [14].

As mentioned above, 16 of 25 treatments resulted in spread rate < 0.01 m/s. The
relative flatness of the rate of spread response for most backing fires is evident (Fig. 2). Note
the close agreement within most replicates for both Rf and Lf as indicated by the vertical
error bars (Fig. 2, 3). The latter 3 standard errors are 3 of the 4 largest errors observed. The
1.1 mIs, 30% slope treatment exhibited the widest range of spread rate. If steady-state spread
was achieved, for a specific wind and slope combination, a smaller range in observed spread
rate among the various replicates of the treatment would be expected. This, coupled with the
visual observation that flame zone depth did not appear constant for this treatment, indicated
that quasi-steady-spread was probably not achieved for this treatment.

The interaction of wind and slope can be observed in Fig. 2 and 3. The rate of
increase in Rf increases as slope percent increased for all heading fires (U > 0 m/s). This
increase is also visible for Lf- Note the apparent decrease in Rfand Lffor the 30% slope
between U =0 and U =0.4 m/s. The Lf error bars overlap for the 0.4 mls heading wind
velocity. Flame length standard errors for the -30%, -15%, 0%,15%, and 30% slopes were
0.033,0.013,0.129,0.115, and 0.101, respectively. Given the standard errors reported, we

1046

RESULTS 

Ambient conditions remained relatively constant for the duration of the experiment. 
Mean air temperature and relative humidity for the main experiment were 30.2'C and 52.8%, 
respectively. Relative humidity ranged from 40% to 70%. Ambient air temperature ranged 
from 27 to 33'C. Mean moisture contents of the birch sticks and excelsior were 11.45% and 
12.03%, respectively, for the main experiment and 35.94% and 12.62%, respectively, for the 
moisture experiment fuel beds. Fuel moisture variability, expressed as the coefficient of 
variation (CV), was 25.3% and 8.2% for the excelsior and sticks, respectively, for the main 
experiment. 

Quasi-steady-state spread rate and flame length were e.oltimated for most fifes. 
Missing data was due to equipment malfunction. In the main experiment, seven fires failed 
to burn the entire length of the fuel bed. Fire was backing into a wind velocity of 1.1 mjs in 
six of seven instances. For fires that spread the entire length of the fuel bed, spread rate 
ranged from 0.0008 to 0.0697 mjs. Flame length ranged from 0.07 to 2.06 m. These 
extremes were observed at the treatment extremes (-1.1 mjs, 30% downslope and 1.1 mjs, 
30% upslope). 

Mean spread rate for 16 of 25 treatments was < 0.01 mjs. Mean spread rate for all 
backing fifes except for the -0.4 mjs, 30% upslope treatment fell below this threshold as did 
spread rate for most no-slope or downslope spread. Mean spread rate ranged by I order of 
magnitude from 0.001 to 0.06 mjs. Spread rate for heading/downslope fires was greater than 
spread rate of the no-windlno-slope fires. Mean flame length ranged from 0.08 to 1.69 m. 
Flame length for 7 of 10 hacking flfes was less than 0.25 m. 14 of 25 treatment 
combinations yielded mean flame length < 0.3 m. 

Eq. 7 fit the data and explained 96.2% and 95.3% of Rf and Lf variation, respectively. 
The covanates (stick orientation, stick moisture content and excelsior moisture content) were 
not significant in the model. 2nd and 3rd order wind velocity terms were significant for the 
Rf and Lf models. Significant crossproduct (interaction) terms indicated that the shape of 
spread rate and flame length responses to wind changed as slope percent changed. Parameter 
estimates, used to test if each term in eq. 6 and 7 differed from 0, are not presented and can 
be found elsewhere [14]. 

As mentioned above, 16 of25 treatments resulted in spread rate < 0.01 mjs. The 
relative flatness of the rate of spread response for most backing fires is evident (Fig. 2). Note 
the close agreement within most replicates for both R\and Lf as indicated by the vertical 
error bars (Fig. 2, 3). The latter 3 standard errors are of the 4 largest errors observed. The 
1.1 mIs, 30% slope treatment exhibited the widest range of spread rate. If steady-state spread 
was achieved, for a specific wind and slope combination, a smaller range in observed spread 
rate among the various replicates of the treatment would be expected. This, coupled with the 
visual observation that flame zone depth did not appear constant fOf this treatment, indicated 
that quasi-steady-spread was probably not achieved for this treatment. 

The interaction of wind and slope can be observed in Fig. 2 and 3. The rate of 
increase in Rf increases as slope percent increased for all heading fires (U > 0 m/s). This 
increase is also visible for Lf- Note the apparent decrease in Rf and Lf for the 30% slope 
between U = a and U = 0.4 m/s. The Lf error bars overlap for the 0.4 mls heading wind 
velocity. Flame length standard errors or the -300/0, -15%, 00/0, 15%, and 30% slopes were 
0.033, 0.GI3, 0.129, 0.115, and 0.101, respectively. Given the standard errors reported, we 
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can not statistically that the mean flame lengths differ. The same is true for spread rate;
however, the observed value departs from what would be expected given the other observed
means.

Backing Heading
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Figure 2. Actual spread rate response to various levels of wind velocity and slope percent.
Vertical lines indicate +1- one standard error. Spread rate for fuel beds with stick moisture
content> 35% denoted by "+".

FUEL MOISTURE

Spread rate and flame length were depressed by fuel moisture. Increasing the stick
fuel moisture content had a marked effect on spread rate for the no-wind/no-slope fIre as well
as both backing fIres. These fIres all failed to spread the length of the fuel bed. Both
heading fIres spread successfully upslope and downslope even though fuel moisture was
greater than 35%. Spread rate of the upslope fIre (0.034 m/s) was nearly double that of the
downslope fIre (0.014 m/s). This relationship was also true for the spread rate of the same
fires at the lower moisture content (0.061 vs 0.022 m/s). It was not possible to fIt eq. 7 to the
moisture data; however, the responses of spread rate and flame length to wind velocity and
slope percent at the higher fuel moisture appeared to be similar in shape to the response from
the main experiment (Fig. 2, 3). High fuel moisture fIres are denoted by plusses.

No-wind/no-slope flame length for the high fuel moisture fIres was 0.15 m while
mean flame length for the same wind and slope was 0.6 m in the main experiment. However,
flame length for the -1.1 mis, -30% fIre at the higher moisture content (0.08 m) was not that
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dissimilar from mean flame length in the main experiment (0.09 m). Flame length for the 1.1
mis, 30% fire was reduced by approximately 50% as fuel moisture increased from 11% to
36% (1.69 m vs 0.83 m).

Backing
Heading ,1

Figure 3. Actual flame length response to various levels of wind velocity and slope percent.
Vertical lines indicate +1-one standard error. Spread rate for fuel beds with stick moisture
content> 35% denoted by "+".

DISCUSSION AND SUMMARY

Spread rates observed in this study were of the same order of magnitude as results of
other experiments in similar fuels [23]. Rates of spread of 0.002 to 0.042 m/s for small-scale
backing fires in ponderosa pine needle fuel beds have been reported [24, 8]. A "rule-of-
thumb" estimate of spread rate for backing fIres in natural fuels is generally 0.006 to 0.017
mls [25]. The spread rates for backing fIres in this study, while of the same order of
magnitude, are reduced in comparison to spread rate observed in natural settings. The
relative insensitivity of backing fire spread rate to different wind velocities observed in the
present study has been previously described [24] and is the basis for some operational
methods of combining wind and slope. To our knowledge, no physical model for backing
fires in porous fuels has been explicitly formulated. However, as noted above, the physical
mOdel (eq. 4) compared well with the observed data [14]. In eq. 4, convective heating terms
vanish for backing fIres and the only modes remaining are conduction and radiation.
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DISCUSSION AND SUMMARY 

Spread rates observed in this study were of the same order of magnitude as results of 
other experiments in similar fuels [23). Rates of spread of 0.002 to 0.042 m/s for small-scale 
backing frres in ponderosa pine needle fuel beds have been reported [24, 8]. A "rule-of
thumb" estimate of spread rate for backing fires in natural fuels is generally 0.006 to 0.017 
m/s [25]. The spread rates for backing fires in this study, while of the same order of 
magnitude, are reduced in comparison to spread rate observed in natural settings. The 
relative insensitivity of backing fire spread rate to different wind velocities observed in the 
present study has been previously described [24] and is the basis for some operational 
methods of combining wind and slope. To our knowledge, no physical model for backing 
fires in porous fuels has been explicitly formulated. However, as noted above, the physical 
model (eq. 4) compared well with the observed data [14]. In eq. 4, convective heating terms 
vanish for backing fires and the only modes remaining are conduction and radiation. 
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Wind velocity and slope angle can be viewed as two forces acting on a flame and its
spread rate. Much attention has been focused on the situation in which these forces act in
concert on spread rate. However, many situations arise in which wind and slope forces
oppose one another. The relative magnitude of each force then is critical. If wind velocity
dominates, then one of two outcomes results. If wind transfers heat to unburned fuel in
advance of the flame, then the ftre should spread successfully. An example of this is wind-
aided ftre spread down slopes. This phenomenon is known as a "Sundowner" ftre in southern
California and has been responsible for much property damage. Observed spread rate and
flame length in this study for this combination of wind and slope were signiftcantly greater
than spread rate and flame length for the no-wind/downslope ftres.

The second outcome of wind dominance is failure of the ftre to spread. Six of the
seven fues that failed to spread the length of the fuel bed were backing fues. In all six
instances, wind was cooling the unburnt fuel in advance of the flame even though slope angle
would increase heat transfer via radiation.

Fuel moisture reduces spread rate and flame length and is treated as such in spread
rate models. In the Rothermel model [1], if fuel moisture exceeds 30 to 35%, the no-
wind/no-slope fue will not spread. Because of model formulation, if the no-wind/no-slope
fue will not spread, predicted spread with wind will be 0 (eq. 3). Fuel moisture content must
be less than 30% for the Noble model [3] to predict a positive spread rate in grasses. The
Canadian system [4] restricts fuel moisture to less than 250% [26]. Observed spread rate and
flame length were reduced by increasing fuel moisture content; however, the flame front
spread successfully at a moisture content that the Rothermel and Noble models predict would
preclude successful spread. Flame angles of 40. for these fues indicated that the flame was
tilted by the force of wind velocity over the fuel, thereby increasing heat transfer from the
flame to the fuel. Slope effect may be reduced in this situation so that the effect is primarily
caused by wind, but this was not possible to determine in this limited test. Successful fue
spread required a wind velocity adding to the process. However, ftnite rates of spread were
observed in an experiment examining fue spread in live fuels [27]. Fuel beds of live French
broom (Cvtisus monsDessulanus L.) with moisture contents ranging from approximately 30%
to 100% were burned on slope angles ranging from O. to 90.. No ambient wind flow was
imposed. The results from the present study combined with the French broom results
indicate that modelling of the role of moisture content in fue spread needs improvement.
The functional requirement that spread in the no-wind/no-slope setting must be finite and
nonzero in order for spread with wind and slope to occur is not supported by results of this
experiment.

The range in wind velocity and slope used in this study was small due to the physical
limitations of the wind tunnel. Note that steady state spread was not achieved for the high
heading/high upslope treatment in this wind tunnel because fuel bed length was insufftcient.
The range of wind velocity studied is also a small percentage of the possible range of values.
The steepness of the slope of the spread rate response between U =0.4 m/s and U =1.1 m/s
may change as U increases beyond the present range. In a similar fuel, U =2.5 m/s was
found to be a breakpoint at which the exponent of U changed from approximately 0.5 to 3
[28]. Other studies have indicated other breakpoints and exponents. Extrapolation beyond
the limits of the data should be undertaken carefully. However, the shapes of the response
curves with respect to upslope spread and heading wind are similar to those reported in the
literature [1, 29, 30].
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The cover flames were drawn by Dr. Y. Hasemi of the Building Research Institute, Tsukuba, Japan,
based on photographs taken by Prof. E. E. Zukoski of California Institute of Technology, Pasadena,
California, USA.
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