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Applying survival analysis to managed even-aged stands of ponderosa pine
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a b s t r a c t

A critical component of a growth and yield simulator is an estimate of mortality rates. The mortality mod-
els presented here are developed from long-term permanent plots in provinces from throughout the geo-
graphic range of ponderosa pine in the United States extending from the Black Hills of South Dakota to
the Pacific Coast. The study had two objectives: estimation of the probability of a tree survival for the
next 5 years and the probability of a tree surviving longer than a given time period (survival trend) for
a given set of covariates. The probability of a tree surviving for the next 5 years was estimated using a
logistic model regressed on 18 covariates measured 5 years before the last measurement period with
15 smoothing variables (S1–S15) for spatial effects of latitude and longitude surface. The fitted model
showed that the probability of survival increased with increasing diameter at breast height (DBH),
DBH periodic annual increment (PAIDBH) and increasing plot basal area/number of trees per hectare
(PBAH/TPH), and decreased with increasing average of the 5 tallest trees in the plot (AVGHT5) when other
selected covariates were included in the model. The probability of a tree surviving longer than a given
time period was estimated by fitting the Cox Proportional Hazard model to the last observed survival per-
iod regressed on 13 covariates measured at the first measurement period. This probability also increased
with increasing DBH and PAIDBH, and decreased with increasing AVGHT5. The Akaike’s Information
Criterion (AIC) and graphs of partial residuals were used in the selection of covariates included in the
models.

Published by Elsevier B.V.

1. Introduction

Competition among trees is one of the main factors determining
their growth and mortality (Oliver and Uzoh, 1997; Zeide, 2004).
The competition stressors can be long-term or short-term (van
Mantgem et al., 2003). For a model to adequately characterize tree
growth it must include estimates of mortality rates (or survival),
because mortality is an integral part of stand dynamics (Monserud,
1976; Hamilton, 1986; Hann and Wang, 1990). The literature on
modeling tree mortality is voluminous; nevertheless, mortality
estimates remain the weakest link in growth and yield simulators
because of estimation difficulties (Hamilton, 1986). There are two
main causes of tree mortality: external and internal factors. Mor-
tality resulting from external factors tends to be episodic and often
even catastrophic, especially if mortality is a result of factors such
as bark beetles, root disease, or wind. Mortality resulting from
internal factors arises from inter-tree competition and it tends to
be more uniform and constant (Oliver and Uzoh, 1997).

The first generation of statistical mortality models was at the
stand level, predicting the future number of trees per unit area
(Lee, 1971; Moser, 1972; Ek, 1974; Somers et al., 1980; Clutter
et al., 1983; Harms, 1983). Subsequently, Hamilton (1974) and
Monserud (1976) introduced the use of logistic regression models
for individual tree mortality response.

Survival analysis is a recent improvement in assessing mortality
trends and dynamics of individual trees. Woodall et al. (2005) pro-
vided a superb history and reason for the use of survival analysis in
modeling tree mortality. In general, survival analysis is a collection
of statistical procedures for data analysis used for studying the
occurrence and timing of events for which the outcome variable
of interest is most often death, which was the purpose for their ori-
ginal designs (Kleinbaum and Klein, 2005; Woodall et al., 2005;
Allison, 2010). The uniqueness of survival analysis stems from the
fact that it allows for censoring of observations (lack of exact time
of death) and inclusion of time-dependent covariates, and dealing
with non-normal distributions (Woodall et al., 2005). These
features of survival data make it difficult to handle with
commonly-used conventional statistical methods, but ignoring
them will reduce the precision of the estimates (Allison, 2010).
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Consequently, conventional approaches such as Logistic regression
are inadequate for dealing with either censoring or time-dependent
covariates, something at which survival analysis excels (Allison,
2010).

Kleinbaum and Klein (2005) defined two quantitative terms
that should be considered in any survival analysis. These are the
survivor function, denoted by S(t) and the hazard function denoted
by h(t) for the survival time t. The survivor function S(t) gives the
probability that an individual (in our case, a tree) survives longer
than some specified time t: that is, S(t) gives the probability that
the random variable T exceeds the specified time t (Kleinbaum
and Klein, 2005; Woodall et al., 2005; Allison 2010). The hazard
function focuses on failing, that is, on the event occurring because
the hazard function h(t) gives the instantaneous potential per unit
time for death to occur, given that the individual has survived up to
time t. In contrast the survivor function focuses on not failing, that
is, on the event not occurring. In a unique sense, both functions can
be considered as giving the opposite side of the information given
by the other (Kleinbaum and Klein, 2005).

We used two survival modeling approaches in our investiga-
tion: the logistic regression (parametric approach, McCullagh and
Nelder, 1991) for 5-year responses, and the Cox Proportional Haz-
ard, regression (semi-parametric approach, Cox, 1972, 1975; Lee
and Wang, 2003) for censored responses.

The objective of this study is to develop an individual tree mor-
tality model applicable for even-aged pure stands of ponderosa
pine throughout its geographic range in the United States. The
objective is divided into two phase: (1) to build a survival model
for predicting the probability of a tree surviving to the next 5 years
based on plot/tree information measured 5 years before the last
measurement period and (2) to build a survival model to estimate
the probability of a tree surviving longer than a given time period
based on plot/tree information at the first measurement period.
The Cox PH model here is used as an explanatory model but not
as a predictive model, because of its non-parametric distribution
assumption for the survival time. For phase (1), we fitted the Logis-
tic model, and for phase (2), we fitted the Cox Proportional Hazard
(PH) model. For both models, we considered the following groups
of measured candidate explanatory (predictors) variables:

1. Plot spatial information: latitude, longitude, elevation, slope and
aspect.

2. Stand structure information at measurement time: plot basal area,
number of trees per hectare, stand age, average of the five tall-
est trees in the plot (however, if less than five, then we just cal-
culated their average.), site index, site density index, and basal
area per hectare in larger diameter.

3. Tree information at measurement time: DBH, DBH periodic
annual increment, and tree basal area.

2. Methods

2.1. Data

The measurements were made in years ranging from 1938 to
1998. Some plots were measured repeatedly (for example, 1938–
1943–1948–1953; 1963–1967–1971–1979–1984–1989–1994),
and others only once or twice. Several datasets used in this study
were from long-term permanent plots consisting of: (a) levels-of-
growing-stock studies established in the 1960s using a similar
study design with five or six stand density levels replicated three
times (Myers, 1967) and (b) initial spacing and permanent-plot
thinning studies. Individual-tree data were from plots initiated
from both artificial stands and natural stands located in the five
provinces of ponderosa pine in the western United States (Fig. 1)
and initially covering a wide range of size classes. Stands were free,

or mostly free, of competing shrubs that reduce growth of young
ponderosa pine especially in central Oregon and California (Oliver,
1984; Oliver and Ryker, 1990; Cochran and Barrett, 1999). Results
from individual installations of the levels-of-growing-stock studies
have been previously reported (Tables 1 and 2), as were growth
models based on five installations (Oliver and Edminster, 1988;
Uzoh and Oliver, 2006, 2008).

Trees were tagged and repeatedly measured on periods of differ-
ent length (ranging from 2 years to 18 years lag), but about 68% of
the measurement were done every 5 years. Seventy-eight percent
of the plots were measured for more than 10 years. The data result-
ing from this study consisted of 305 plots with a total of 29,449
trees. Of those trees, 28,901 trees were used for fitting the Cox PH
model. Some trees had to be removed from the analysis because
some plots were measured only once, while at others plots, mea-
surements were done in 2-year interval but not in the same years.
Of these, 20,118 trees were used for the logistic model because they
were measured in 5-year intervals. Table A1 in the Appendix shows
the summary of the original dataset and Table A2 shows a summary
of the last 5-year measurement periods. Fig. 2 shows the distribu-
tion of mortality within the study area.

Basic records for each plot included latitude, longitude, eleva-
tion, aspect, slope percent, and plot size. Individual tree measure-
ments included diameter at breast height (DBH) and total height.
Different methods were used at different locations for sampling
tree height. At some locations, every tree height in each plot was
measured; at others, a systematic sample of tree heights were
measured; yet at other locations, height sample trees were ran-
domly selected within 2 in. diameter classes across the range of
tree sizes. Height measurements were repeated on the same trees
(Uzoh and Oliver, 2006). Mortality was noted and the causal agent
investigated. The data for this analysis consists only of the initial,
and the last two measurement periods, called from now on ‘‘Ini-
tial’’, ‘‘Prior’’ and ‘‘Current’’. The two models (the Logit model and
the Cox Proportional Hazard model (Cox PH model)) aim to pre-
dict/explain the current survival response with the information
from the prior or initial period. Therefore, only the values of the
explanatory variables from the initial measurement period, from
the 5-year period prior to the last measurement period and the
current survival status, are used in this analysis.

Many trees in a number of plots suffered competition-induced
mortality. For the Cox PH model, since a tree either died during
an interval or is alive at the end of the study and the year of death
is unknown, we have a case of interval censoring (Allison, 2010).
Some of the measurement periods were of different length, there-
fore, it is possible that the estimated survival probability has some
bias or added imprecision. It is possible that a greater than 10-year
time lag between measurements increases the bias or decreases
the precision of the estimate, however, only 4.3% of all the
28,901 trees had a time-lag greater than 10 years and of these only
1.2% died in those intervals. We fitted the COX model with these
trees removed and the trees and the slopes’ trend of the coeffi-
cients did not change and the deviance residual plots showed the
same pattern as that shown for the whole dataset. As a result,
we chose not to remove the trees from the analysis.

2.2. Statistical analyses

2.2.1. Logistic model for predicting 5-year survival probability
We used the Logistic model from the family of the Generalized

Additive Models (GAMs) (Hastie and Tibshirani, 1990).

2.2.1.1. Logit model.

log
p

1� p

� �
¼ gðLAT; LONGÞ þ

Xm

j¼0

cj � xj
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where p is the probability that a tree is alive at the end of 5 years
from last measurement date; g(LAT,LONG) is a smoothing function
of latitude and longitude (to account for the spatial correlation
and location effect); cj is the regression coefficients of the covariates
xj, j = 1 to m, and m is the number of selected covariates. x0 = 1 and
c0 = intercept term. Since there was almost a one-to-one correspon-
dence between elevation and location (LAT–LONG pair), elevation
was not included as a covariate candidate. The variable selection
was done using the partial residual graphs for the application of
the Generalized Additive Model (GAM, Hastie and Tibshirani,

1990) for the response alive/dead, using the Logit link regressed
on spline transformed (smoothed) covariates. The need for para-
metrically transforming an explanatory variable (polynomial, expo-
nential or logarithmic transformation) was determined after
visually observing the partial residual graphs of the spline-smooth-
ing resulting from the application of GAM. The spatial effect was
forced in all the candidate models. We used an information theoret-
ical approach to determine the best-supported model for estimating
the probability of survival regressed on selected explanatory vari-
ables (Burnham and Anderson, 2002). We evaluated candidate

Fig. 1. Study area provinces used in developing the individual tree mortality model for managed even-aged stands of ponderosa pine throughout the western United States
(from Myers, 1967).

Table 1
Location and literature citations for five levels-of-growing-stock installations in ponderosa pine stands in western United States.

Province Installation name Geographic location Literature citation

I Elliot Ranch West slope northern Sierra Nevada, CA Oliver (1997)
II Lookout Mountain East side of Cascade Range, OR Cochran and Barrett (1999)
III Crawford Blue Mountain, OR Creek Cochran and Barrett (1995)
IV Black Hills Black Hills, SD Boldt and Van Deusen (1974)
V Taylor Woods Coconino Plateau, AZ Ronco et al. (1985)
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models using Akaike’s Information Criterion (AIC) (Rawlings et al.,
1998; Hastie et al., 2001; Burnham and Anderson, 2002). The spatial
function g was fitted using the tensor product spline techniques
(Wood, 2006). Analyses and parameter estimation were conducted
using GAM MGCV routine in R (version 2.15.1, 2012). We used the
selected model and R for predicting the probability of a tree surviv-
ing the next 5-year.

2.2.2. The Cox Proportional Hazard model for survival probability
trend

The objective of the analysis is to estimate the tree survival
probability trend as a function of tree conditions and plot charac-
teristic. The survival function, S(t), is defined as Si(t) = Probability
that a tree i survives longer than a given time t from diagnosis,
with t in 1-year units. The Cox Proportional Hazards model (Lee
and Wang, 2003), a semi-parametric survival regression model,
was used to model the probability of Si(t).

2.2.2.1. Cox PH model. The hazard function for interval censored
data is modeled as follows:

hðtjxÞ ¼ hiðtÞEXP
Xv

j¼1

aj � xj

 !
;

where hi(t) is baseline hazard function, that is, it is the underlying
hazard function that represents the risk of the tree dying about time
t for stratum i; stratum was defined as a categorical variable defined
for each latitude–longitude pair at the same initial measurement
year. Latitude and longitude were stratified by rounding to the first

decimal. Therefore, the survival analysis was done in the ‘‘neighbor-
hood’’ of the Locale (for example, latitude = 35.28, longi-
tude = 111.72 and initial measurement year = 1969, would be
stratum: 35.3–111.7–69). The total number of strata is 55. aj is
the regression coefficients and xj, is the covariate j, j = 1 to v, mea-
sured at the initial measurement year and v is the number of se-
lected covariates. Increases in the risk results in lower probability
of survival. Since there was almost a unique elevation per LAT–
LONG pair, elevation was not included as a covariate candidate.
Similarly to the logistic model, we used an information theoretical
approach to determine the best-supported model for estimating
the probability of survival. To obtain a list of candidate models,
we applied the best subset selection method based on the likelihood
score statistic on untransformed and transformed explanatory vari-
ables used for the logistic model, and then we evaluated some of the
apparently best candidate models using Akaike’s Information Crite-
rion. The parameter estimation was conducted using the SAS PHREG
procedure (SAS 9.2, Cary, North Carolina, USA) for stratified data.

Covariate candidate and notation
1. DBH = tree diameter at breast height,
2. PAIDBH = tree DBH periodic annual increment,
3. PBAH = plot basal area per hectare,
4. TPH = number of trees per hectare,
5. StAGE = stand age,
6. BAINLDH = basal area per hectare in larger diameter,
7. AVGHT5 = average height of the 5 tallest trees in the plot,
8. SIM = site index (Meyer, 1938),
9. SDI = stand density index,
10. SLOPE = plot slope percent,
11. ASP = plot aspect,
12. SLCOSASP = SLOPE � cos(ASP),
13. SLSINASP = SLOPE � sin(ASP),
14. LAT = site latitude,
15. LONG = site longitude,
16. Initial year.

Since SDI was highly correlated with PBAH (Corr = 0.96), we also
tried the ratio PBAH/TPH as an explanatory variable instead of PBAH
and it was very significant. The transformation enabled us to in-
clude SDI in the model. In total, there were 16 candidate variables
and possible functions of them such as logarithms or polynomials
as explanatory variables, and 20,118 observations for the logistic
model and about 28,901 observations for the Cox PH model.

2.3. Model testing and validation

Shugart (1984) defined model validation as ‘‘procedures, in
which a model is tested on its agreement with a set of observations
that are independent of those observations used to structure the
model and estimate its parameters.’’ There are many types of mod-
el validation procedures used by most practitioners; some are
qualitative and others are quantitative (Holmes, 1983; Sargent,
1999). The use of statistical tests in model validation has resulted
in vigorous debates following the work of Wright (1972), because
of the different criteria used for assessing the value of models and
the methods of deciding it (Mayer et al., 1994; Morehead, 1996).
Each model is unique; as a result, no single validation technique
or method has a monopoly in application (Kozak and Kozak,
2003). For deciding the most suitable model, it is advisable to
use a combination of lack-of-fit measures with one or more test
statistics (Kozak and Kozak, 2003). Consequently, it is important
to know that the goals of model testing and validation are not

Table 2
Plot distribution in each province by stand origin and tree size used to develop
survival analysis model for managed even-aged stands of ponderosa pine throughout
the western United States.

Province
I II III IV V

Number of plots

Stand origin
Natural 7 81 32 42 18
Planted 92 18 15 0 0

Stand size class
Saplings 32 30 9 15 0
Poles 58 61 38 27 18
Sawn timber 9 8 0 0 0
Total 99 99 47 42 18
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Fig. 2. Latitude and longitude of sampled plots. Showing the distribution of
mortality within the study area.
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designed to prove that a model is accurate (Popper, 1963). Rather
to see how well the predicted survival probabilities agreed with
the observed probabilities and demonstrate that model predictions
are statistically and biologically close enough to independent data
and that decisions made based on the model are defensible (Yang
et al., 2004).

There are five established procedures commonly used in model
validation: (1) a comparison of predictions and coefficients with
physical theory; (2) a comparison of results with those obtained
by theory and simulation; (3) the use of new data set; (4) the
use of data splitting or cross validation (Snee, 1977); and (5) a
combination of calibration and discriminatory power (Pearce and
Ferrier, 2000). Independent data sets are often not available; as a
result, most practitioners accept data splitting as an acceptable
substitute for model testing and validation, provided that the data
set is large enough (Kozak and Kozak, 2003). To validate the Cox PH
model, the dataset was randomly split into 10 parts, then 8 of those
10 parts (80%) were used for initial model development and 2 parts
(20%) were used for model validation. We repeated this procedure
20 times and obtained an averaged percentage of matches. The fi-
nal model was developed using the entire dataset. We used spatial
latitude and longitude and initial measurement year to account for
autocorrelation and location effect. We did not validate the Logistic
model because we did enough diagnostics for the goodness of fit.

The logistic model performance was evaluated using a combi-
nation of calibration and discriminatory assessment procedures
(Pearce and Ferrier, 2000). Calibration assessment procedure
examined the R2 index, percentage of deviance explained, plot of
residuals and the reliability diagram to see the model power of
predictability and how well the predicted survival probabilities
agreed with the observed probabilities. The discriminatory assess-
ment procedures were used to show how well the model was able
to discriminate between living and dead trees. Specifically, the re-
ceiver operating characteristic (ROC) curve, measured by the area
under the ROC curve (AUC) was evaluated by discriminatory visu-
alization of ROC curve (Fielding and Bell, 1997). The ROC curve pro-
cedure is a non-parametric and threshold-independent measure
developed by plotting sensitivity (all true positive values) against
1-specificity (all false positive values). The ROC curve can be inter-
preted as the probability that a randomly selected tree that sur-
vived the next 5 years had higher probability of survival than a
randomly selected tree that died during the same period (Fielding
and Bell, 1997).

3. Results

3.1. Predicting 5-year survival probability with the logistic model

The following were the selected covariates: log(DBH), PAIDBH,
PBAH/TPH, [PBAH/TPH]2, [PBAH/TPH]3, StAGE, [StAGE]2, [StAGE]3,
BAINLDH, [BAINLDH]2, [BAINLDH]3, AVGHT5, SLSINASP, SLCOSASP,
SDI, [SDI]2, and [SDI]3 (18 coefficients estimated including inter-
cept). Fifteen smoothing coefficients (S1–S15) were also estimated
for the spatial effect as a function of latitude and Longitude. Almost
all the estimated coefficients were highly significant (Table 4,
R2 = 0.75, Deviance explained = 67%). To visualize the meaning of
the estimated coefficients, we use the partial residuals’ graphs
from the fitted logistic regression in Fig. 3 that depicted the para-
metric form of the explanatory variables and their trends. Fig. 3
shows that the probability of surviving (at the logit scale) 5 more
years increases with increasing log(DBH) (and therefore, with
increasing DBH), PAIDBH and PBAH/TPH. Fig. 3 also shows that
the probability of surviving (at the logit scale) 5 more years de-
creased with increasing SDI, AVGHT5, SLSINASP and SLCOSASP.

The decreasing or increasing trend of SLSINASP, SLCOSASP trans-
lates as follows: (1) for a constant aspect, if the slope percentage
increases then the probability of survival decreases and if the per-
centage decreases the probability of survival increases and (2) for a
constant slope, if aspect increases from East to North, the probabil-
ity decreases, and if aspect increases from North to West to South,
this probability increases (Fig. 6). To illustrate the trend and the
explanatory power of some covariates, Fig. 4 shows the plot of
the predicted probability of surviving the next 5 years as a function

Table 3
Summary statistics for variables used in developing the individual tree mortality
model for managed even-aged stands of ponderosa pine throughout the western
United States.

Variable Mean Minimum Maximum

Stand age (years) 66.45 8 110
DBH (cm) 19.58 1.02 98.04
PAIDH (cm) 0.31 0 2.23
PLOTBA (m2/ha.) 11.05 0.28 30.08
TPH (#trees/ha) 1553.29 44.48 17,173.73
Avg. HT (m) 18.49 3.61 50.28
BAINLDH (m2/ha) 19.92 0 91.33
SDI (#trees/ha) 576.43 21.18 1,444.22
SIM (m) 21.62 13.11 48.77
SLOPE (percent) 6.16 0 42
ASPECT (degrees) 113.07 0 315
ELEV (m) 1503.79 716.28 2266.19

Table 4
Logistic regression estimated coefficients for the individual tree mortality model for
managed even-aged stands of ponderosa pine throughout the western United States,
R2(adj.) = 0.75 and deviance explained = 67%.

Covariatea Estimate StdErr P-value

Intercept 7.24 0.60 <0.0001
log(DBH) 1.87 0.13 <0.0001
PAIDBH 3.67 0.36 <0.0001
SLSINASP �0.24 0.03 <0.0001
SLCOSASP �0.03 0.01 0.0005
PBAH/TPH 188.60 22.84 <0.0001
[PBAH/TPH]2 22.35 14.69 0.1323
[PBAH/TPH]3 116.80 14.11 <0.0001
StAGE 423.00 18.70 <0.0001
[StAGE]2 260.20 14.49 <0.0001
[StAGE]3 �501.60 20.71 <0.0001
BAILNDH 59.31 9.72 0.0000
[BAILNDH]2 �65.03 6.17 <0.0001
[BAILNDH]3 41.35 6.04 <0.0001
SDI �113.25 15.85 <0.0001
[SDI]2 �51.33 10.92 <0.0001
[SDI]3 �16.67 9.43 0.0797
AVGDHT5 �0.58 0.02 <0.0001
S1 �19.023 2.171 –a

S2 4.398 4.074 –
S3 �77.786 34.164 –
S4 �50.923 34.563 –
S5 54.706 12.447 –
S6 �31.143 8.384 –
S7 �72.276 6.485 –
S8 53.985 21.946 –
S9 �26.973 10.149 –
S10 59.338 17.211 –
S11 80.847 13.755 –
S12 970.103 120.677 –
S13 239.293 76.553 –
S14 135.010 40.048 –
S15 56.411 54.072 –

a The overall significance of 15 smooth terms (notated as te.LONG.LAT . . . n, n =
1–15): DF te(LONG,LAT) 14.47, Chi sq. 1352, P-value <0.0001. The 15 coefficients
shown in this table are also displayed in Appendix B.
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of DBH for a given set of measured covariates 5 years before. The
partial residual graph (Fig. 3) also shows that with increasing BAI-
NLDH from 0 to about 20 the probability of survival increases, then
from 20 to 60 it fluctuates down and up and then increases. The
partial residuals’ graph for the stand age, StAGE, a cubic polyno-
mial, shows that the probability of survival decreases for ages
increasing from 0 to about 40 years, then increases from 40 to
about 91 and then decreases beyond 91 years.

Fig. 3. Partial residuals’ graphs from the fitted logistic regression (GAM) for each selected covariates and the 95% confidence interval. The partial residuals for the smoothed
latitude–longitude surface is not shown.

Fig. 4. Example of predicted probability of survival within the next 5 years for
ponderosa pines as a function of DBH for a given set of measured covariates 5 years
before: LAT = 41.62; LONG = -120.33; PAIDBH = 0.36 cm; aspect = 0, slope = 0%;
PBAH = 10 m2/ha; TPH = 333.3 trees/ha; stand age = 70; BAINLDH = 0.5 m2/ha;
SDI = 615; Av. Ht = 30 m.

Table 5
Estimates of the hazard coefficients output from for Cox PH regression model for
strata latitude–longitude and initial year for the individual tree mortality model for
managed even-aged stands of ponderosa pine throughout the western United States.

Covariate Estimate StdErr P-value

log(DBH) �1.610 0.045 <0.0001
PAIDBH �2.133 0.328 <0.0001
St.AGE 0.388 0.100 <0.0001
[St.AGE]2/100 �0.264 0.090 0.0033
AVGHT5 0.040 0.012 0.0005
BAINLDH �0.042 0.012 0.001
[BAINLDH]2 0.0027 0.0005 <0.0001
[BAINLDH]3 �0.000034 0.000007 <0.0001
SIM 1.534 0.209 <0.0001
[SIM]2 �0.064 0.009 <0.0001
[SIM]3 0.0008 0.0001 <0.0001
PBAH/TPH 111.557 9.942 <0.0001
[PBAH/TPH]2 �561.066 125.171 <0.0001
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The fitted logistic model can be used for predicting the next 5-
year survival probability. Appendix B shows an example of how to
use the output of the fitted model to predict 5-year survival prob-
ability of a tree for a given set of covariates including the smooth-
ing covariates (nodes) for latitude and longitude. Appendix B
includes the R source code for obtaining the predicted probability
of survival and its confidence interval, and the needed data. The
needed data are: (1) the 33 estimated coefficient values (18 coeffi-
cients for the covariates and 15 for the nodes), (2) the latitude–lon-
gitude-nodes matrix (a 42 � 17 matrix; matrix row has 42

LAT � LONG combinations and the columns are the LAT, LONG
and nodes (te.LONG.LAT . . . n, n = 1–15)), (3) the covariance matrix
of the estimated parameters (33 � 33 matrix), and the covariate
information for a new tree including its location (LAT and LONG)
as an example.

3.2. Survival probability trend

The following were the selected covariates: log(DBH), PAIDBH,
StAGE, [StAGE2], BAINLDH, [BAINLDH]2, [BAINLDH]3, AVGHT5,

Fig. 5a. Example of predicted probability of survival through time for two ponderosa pines of DBH = 20 cm and DBH = 5 cm, respectively, for a given set of covariates
measured on the prior sampling period: stand age = 40 years; PAIDBH = 0.3 cm; PBAH = 10 m2/ha; TPH = 700 trees/ha; BAINLDH = 15 m2/ha; aspect = 0; slope = 2%; Av.
Ht = 15 m.

Fig. 5b. Example of predicted probability of survival through time for ponderosa pines for three plot PBAH = 5, 10 and 15 m2/ha, for a given set of covariates measured on the
prior sampling period: DBH = 15 cm; stand age = 40 years; PAIDBH = 0.3 cm; TPH = 700 trees/ha; BAINLDH = 15 m2/ha; aspect = 0; slope = 2%; Av. Ht = 15 m.

F.C.C. Uzoh, S.R. Mori / Forest Ecology and Management 285 (2012) 101–122 107



Author's personal copy

SIM, [SIM]2, [SIM]3, PBAH/TPH, and [PBAH/TPH]2. The estimated
hazard coefficients are shown in Table 5. The strata were the most
important variables during variable selection using AIC. However,
no explicit estimate can be obtained for each stratum because
the COX PH model is a semi-parametric model, meaning the sur-
vival time does not have a parametric statistical distribution; the
stratum is considered to be a nuisance parameter. However, the
stratification affects the survival function by making the fit more
precise. The explanatory variables were all highly significant. Ta-
ble 5 shows that the risk of a tree dying decreases with increasing
log(DBH) (and therefore, with increasing DBH), and PAIDBH. Ta-
ble 5 also shows that the risk of a tree dying increases with increas-

ing AVGHT5. Table 5 also shows the estimated coefficients for
stand age (StAGE). The coefficient indicates that the risk of a tree
dying increases for StAGE in the interval 0 to about 80 years of
age and then the risk decreases. Table 5 also shows that for the
third degree polynomial of SIM that the risk increased with
increasing SIM. Figs. 5a and 5b illustrate the probability of surviv-
ing longer than a given time, for given set of explanatory variable
values measured at initial measurement period.

3.3. Model performance

Figs. 7 and 8 are summary measures of goodness of fit for the
COX PH and the logistic models, showing scatter-plot of deviance

Fig. 6. Function proportional to the probability of surviving the next 5 years at a given aspect (function = �.03 � Slope � cos(aspect) � 0.24 � Slope � sin(aspect). Slope is kept
constant.

Fig. 7. Summary measures of goodness of fit for the COX PH model: scatter plot of
deviance residual against tree index and deviance residual histogram.

Fig. 8. Summary measures of goodness of fit for the logistic model: scatter plot of
deviance residual against tree index and deviance residual histogram.
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residuals against tree index, and histograms of deviance residuals.
For the survival models, the deviance residuals are not useful for
checking the goodness of model fit. It is mainly used to check
which points are far away from the rest due to lack of fit, and more
or less are within the [�3,3] interval. These residuals are usually
plotted against the observation identification; in our case, against
an arbitrary tree index. There are relative small numbers of points
outside the [�3,3] interval as shown by the histograms in both
plots. However, they seem not to diminish the adequacy of the

models. The ROC curve of the reduced models appears reliable
(Fig. 9) for the logistic model. The bias-corrected (optimism – cor-
rected) discriminatory power of the reduced model yielded an area
under the curve (ROC curve) value of 0.9645 (Fig. 9). The assess-
ment methodology developed by Hosmer and Lemeshow (2000)
showed that the discriminatory power of the reduced model ap-
pear adequate (ROC curve value of 0.9645). Fig. 10 shows the reli-
ability diagram (Bröcker and Smith, 2007) for the logistic model
showing the observed survival frequency (dots), predicted proba-
bilities (smooth curve) of survivals, and the individual trees’ 95%
confidence intervals against the linear predictor describing the
agreement of estimated probability with the observed frequency.
The observed survival values (dead = 0 or alive = 1) were grouped
into 20 classes according to the linear predictor and for each class
the frequency (observed proportion) was calculated (Bröcker and
Smith, 2007). Overall, the observed proportion seems to agree with
fitted probability with the exception of one case in the lower prob-
ability. The 20 random validation trials for the Cox PH model
showed that the 84% (CI: 79–88%) of the validation points fell with-
in the 95% confidence interval of the survival curve fitted with the
model building dataset. Fig. 11 illustrates this validation with four
examples. The summary statistics of variables used in developing
the individual tree mortality models are presented in Table 3.

4. Discussion

We conducted our analysis in two parts: First, the estimation of
the probability of a tree surviving the next 5 years based on plot/
tree information using a logistic model regressed on 18 covariates
measured 5 years before the last measurement period and 15
smoothing variables (S1–S15) for spatial effects of latitude and
Longitude surface (Table 4). Second, the estimation of the probabil-
ity of a tree surviving longer than a given time period based on
plot/tree information at the first measurement period using the
Cox Proportional Hazard model regressed on 13 covariates (Ta-
ble 5). In both analyses, the models showed that the probability
of survival increased with increasing diameter at breast height
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Fig. 9. receiver operating characteristic (ROC) curve for the original data set
(reduced model). Sensitivity (all true positive values) against 1-specificity (all false
positive values).

Fig. 10. Reliability diagram for the logistic model showing the observed survival frequency (dots), predicted probabilities (smooth curve) of survivals, and the individual
trees’ 95% confidence intervals against the linear predictor describing the agreement of estimated probability with the observed frequency. The observed survival values
(dead = 0 or alive = 1) were grouped into 20 classes according to the linear predictor.
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(DBH) and DBH periodic annual increment (PAIDBH). While the
probability of survival decreased with increasing average of the 5
tallest trees in the plot (AVGHT5) when other selected covariates
were included in the models.

The relative importance of a variable in a model is assessed by
the change in the size of the Akaike Information Criterion (AIC)
without the variable (or polynomial function of the variable) in
question in the model (Uzoh and Oliver, 2008). Table 6 shows
the ranking of the variables based on this criterion for the Cox Pro-
portional Hazard model. Table 7 shows the ranking of variables for
the logistic model. Both tables show that location as a function of
latitude and longitude was the most important factor for tree
survival.

We stratified the data into location using latitude, longitude,
and initial year to account for spatial effects and autocorrelation.
The latitude–longitude and initial year strata had the most signif-
icant effect in the Cox PH model (Table 6). The latitude–longitude
two dimensional spatial smoothing had a greater effect on the
probability of a tree surviving the next 5 years than any other var-
iable for the logistic model (Tables 7). Latitude is an important var-
iable because more northerly locations tend to be cooler, with
shorter growing seasons, than more southerly locations. Because
diameter growth is sensitive to length of growing season, mortality
seems to increase with increasing latitude (Fig. 2). However, longi-
tude had a different effect on tree survival. Mortality tended to de-
crease toward the east (Fig. 2). Plots located in the southwest are
influenced by the summer monsoons, with peak precipitations in
winter and summer months (Knapp et al., 2009) when plants need
moisture the most. As one go eastward into Montana and South
Dakota, summer thunderstorms are accompanied by more rainfall
(Knapp et al., 2009), thereby increasing tree growth and decreasing
mortality (Fig. 2).

Fig. 11. Validation of the Cox PH model: Four examples of 4 trees selected at random from the validation dataset. 84% (CI: 79–88%) of the validation points fell within the 95%
confidence interval of their estimated survival probability fitted with the model building dataset.

Table 6
Ranking of variables based on change in the size of Akaike Information Criterion (AIC)
value without the variable in question for the Cox PH regression model.

Ranking of variables in order of
importance

AIC value without the variable in
question

Strata latitude–longitude and initial
year

91239.780

logDBH 67948.624
PBAH/TPH quadratic polynomiala 67070.601
SIM cubic polynomialb 66991.253
BAINLDH cubic polynomialb 66975.530
PAIDBH 66947.246
StAGE quadratic polynomiala 66927.458
AVGHT5 66917.127

Included variables
Strata latitude–longitude and initial

year only
69943.471

Full model (strata and all the
covariates)

66907.125

Null model (No strata and no
covariates)

95970.203

a Includes 1st and 2nd degrees terms.
b Includes 1st, 2nd, and 3rd degrees terms.
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The natural logarithm of DBH had the second largest effect on
the probability of a tree surviving longer than a given time period.
Further, DBH periodic annual increment (PAIDBH) had the sixth
greatest effect (Table 6). For the logistic model (Table 7), the natu-
ral logarithm of DBH and PAIDBH had the 4th and 6th greatest ef-
fect on the probability of a tree surviving the next 5 years. In both
analyses, the models showed that the probability of survival in-
creased with increasing diameter at breast height (DBH) and
DBH periodic annual increment (PAIDBH) (depicted graphically in
Fig. 4). The magnitude of DBH and its rate of increase is an indica-
tion of tree vigor (Wyckoff, 1990; Uzoh and Oliver, 2008). As a re-
sult, the probability of survival increased with increasing diameter
at breast height (DBH) and DBH periodic annual increment (PAID-
BH). This suggests that the less vigorous trees have relatively low
survival probability (Barnes et al., 1998).

The quadratic polynomial of PBAH/TPH had the third greatest
effect on the probability of a tree surviving longer than a given
time period than any other variable (Table 6). For the logistic
model, the quadratic polynomial of PBAH/TPH had the ninth
greatest effect (Table 7). Within the fundamental constraint of
site quality, number of trees per hectare significantly influences
diameter growth (Wyckoff, 1990). In both analyses, the models
showed that the probability of survival decreased with increasing
average of the 5 tallest trees in the plot (AVGHT5) when other se-
lected covariates were included in the models. For the Logistic
model, the probability of survival increased with increasing plot
basal area/number of trees per hectare (PBAH/TPH), increasing
faster after PBAH/TPH � 0.07 (Table 4, Fig. 3). For the Cox model,
the function of PBAH/TPH was a quadratic polynomial, the maxi-
mum of this polynomial was obtained at PBAH/TPH = [135.63/
(2 � 973.45)] = 0.0696, Table 5), and since the variable PBAH/
TPH ranged from 0 to 0.12, trees with PBAH/TPH values ranging
from 0 to about 0.07 units are at more risk than those greater
than 0.07 units. In both models, for PBAH/TPH values greater than
0.07 the probability of survival increased with increasing PBAH/
TPH. This confirms the findings of Oliver and Uzoh, 1997; Wunder
et al., 2007.

The cubic polynomial of SIM (site index in meters) had the
fourth largest effect on the probability of a tree surviving longer
than a given time period than any other variable (Table 6). SIM
was not used in the logistic model because the Akaike Informa-
tion Criterion (AIC) for the effect of AVGHT5, the average height
of the 5 tallest trees in the plot was smaller (Table 7). We tested

SIM and AVGHT5 separately in the logistic model, and AVGHT5
out performed SIM. We believe also that the 15 smoothing func-
tion (LAT,LONG) might have reduced the effect of SIM in the
logistic model; whereas in the Cox PH model, we used latitude–
longitude and initial year strata. As a result, both SIM and
AVGHT5 were both significant in the Cox PH model but not in
the logistic model. However, from a forest management perspec-
tive, site index is still used as the primary indicator of site pro-
ductive potential because site index is a numerical description
of site productive potential rather than a generalized qualitative
description (Husch, 1963). More importantly, SIM is an expression
of the complex interplay between edaphic, climatic, and biotic
factors of a site that determines tree growth potential measured
by the volume of wood produced (Daniel et al., 1979; Spurr and
Barnes, 1980). Additionally, the data were scattered over a vast
geographic area of contrasting soils and climate, and included
two varieties of ponderosa pine (Pinus ponderosa var. ponderosa
and var. scopulorum), capturing the entire ecological amplitude
of the species. Some of the genetic differences may also have af-
fected diameter increment. Nevertheless, what we called SIM
seemed to perform credibly in integrating and explaining these
complex differences (Uzoh and Oliver, 2008). A contributing rea-
son for the good performance of site index in the Cox PH model
may have been that stockability was not a problem (McArdle
and Meyer, 1930). All data were from sites capable of the produc-
tivity estimated by Meyer (1938).

The cubic polynomial of BAINLDH, basal area per hectare in lar-
ger diameter had the fifth largest effect for both models (Tables 6
and 7). Within the fundamental constraint of site quality, tree po-
sition significantly influenced diameter growth. The increment at-
tained by an individual tree is dependent on its competitive status
relative to neighboring trees. BAINLDH is a competition modifier
that would reduce diameter growth rates relative to a tree’s com-
petitive status (Wyckoff, 1990). Density is a cardinal variable of
stand dynamic because BAINLDH is a reflection of the proportion
of light intercepted by neighbors and relating this proportion to
biomass growth (Zeide, 2002). Consequently, trees with higher
competitive status have more availability of light, water, and nutri-
ents for growth (Yang et al., 2003). Therefore, the largest diameter
tree in a plot would have a BAINLDH value of zero, while the small-
est diameter tree in the plot would have a BAINLDH value near that
of the plot’s total basal area. As BAINLDH decreases, the probability
of a tree surviving increases. The more open-grown the tree, the
less it is influenced by competitors because the measure of relative
size is tied to stand density. As a result, dominance is less of a fac-
tor in sparsely stocked stands (Wyckoff, 1990). The partial residual
graph (Fig. 3) shows that with increasing BAINLDH from 0 to about
20 the probability of survival increases, then from 20 to 60 it fluc-
tuates down and up and then increases.

The quadratic polynomial of stand age (StAGE) had the seventh
largest effect on the probability of a tree surviving longer than a gi-
ven time period (Table 6). However, the cubic polynomial of StAGE
had the second most effects in predicting the probability of a tree
surviving the next 5 years (Table 7). In even-aged stands, stand age
is a complex measure of various physiological processes collec-
tively known as aging (Zeide, 2001). This complex measure is best
captured by stand closure. Closure changes with age, because lat-
eral growth (crown and root) increases closure and mortality
diminishes it (Zeide, 1991). As a result, closure decreases between
6 and 20 years when height increment reaches its maximum
(Zeide, 1991). However, as stands mature, they become less shade
tolerance and the gap created by mortality increases and the more
effort they will need to supply foliage with the same amount of sap
(Zeide, 2001). In an attempt to capture this complex physiological
process, the cubic and the quadratic polynomials of stand age
(StAGE) were used respectively in both models.

Table 7
Ranking of variables based on change in the size of AIC value without the variable in
question for the logistic model.

Ranking of variables in order of
importance

AIC value without the variable in
question

Spatial smoothing function 12198.830
StAGE cubic polynomialb 9117.2880
AVGHT5 7515.6170
logDBH 6950.8820
BAINLDH cubic polynomialb 6894.4340
PAIDBH 6861.5260
SLSINASP 6841.8470
SDI cubic polynomialb 6827.3500
PBAH/TPH cubic polynomialb 6824.7610
SLCOSASP 6758.6770

Included variables
Spatial smoothing function only 14407.7900
Full model (spatial function and all the

covariates)
6750.2990

Null model (no spatial function and no
covariates)

20221.99

b Includes 1st, 2nd, and 3rd degrees terms.
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Table A1
Summary of the original dataset by latitude–longitude neighborhood and initial sampling year for Ponderosa Pine used to develop both models.

Province Locale Latitude Longitude Initial DBH Total plots Total trees Total dead Total alive % Alive

1 11 41.32 121.983 37.07 3 287 79 208 77.57
1 12 41.33 121.93 44.8 3 172 36 136 81.07
1 15 37.05 119.23 24.33 3 32 1 31 96.97
1 16 39.77 122.65 27.5 2 32 0 32 100
1 17 41.33 122.32 12.55 4 66 0 66 100
1 18 37.07 119.22 13.67 3 34 0 34 100
1 19 39.7 121.23 9.85 2 27 0 27 100
1 20 39.1 120.75 13.73 3 51 0 51 100
1 21 39.08 120.73 13.23 3 57 0 57 100
1 22 41.3 121.9 7.32 6 120 1 119 99.28
1 23 40.52 121.62 12.8 4 72 0 72 100
1 24 37 119.15 17.43 4 47 0 47 100
1 25 38.57 120.17 48.8 2 19 1 18 95
1 26 37.05 119.23 16.63 3 38 0 38 100
1 652 39.28 122.67 3.09 15 689 23 666 96.65
1 653 39.47 121.22 2.06 10 120 2 118 98.34
1 1652 39.33 120.75 20.75 15 2004 0 2004 100
1 2007 40.22 121.17 26 1 2 0 2 100
1 2012 40.25 121.33 12.5 1 161 0 161 100
1 2013 40.22 121.17 15.6 1 69 0 69 100
1 2014 40.2 121.18 10.5 1 50 0 50 100
1 2015 40.22 121.2 12.1 1 63 3 60 95.2
1 2018 40.83 120.33 23.6 1 105 37 68 64.8
1 2019 41.83 120.33 16 1 11 8 3 27.3
1 2022 41.53 121.15 13.7 1 67 2 65 97
1 2023 41.53 121.15 10.7 1 98 0 98 100
1 2024 41.53 121.15 10.1 1 63 1 62 98.4
1 2028 40.5 121.85 29 1 29 1 28 96.6
1 2029 40.5 121.85 19.9 1 58 2 56 96.6
1 2030 41.32 121.98 31.7 1 34 13 21 61.8
1 2033 41.3 121.28 23.8 1 45 8 37 82.2
2 1 41.35 120.93 12.9 1 16 2 14 87.5
2 2 41.67 120.97 18.6 1 42 1 41 97.6
2 3 40.8 121.27 20.5 1 42 2 40 95.2
2 4 40.65 121.38 20 1 5 1 4 80
2 4 40.67 121.37 23.1 1 5 0 5 100
2 4 40.67 121.38 15.75 2 35 0 35 100
2 4 40.7 121.35 17 1 7 3 4 57.1
2 4 40.72 121.37 23.4 1 1 0 1 100
2 4 40.73 121.37 24.1 1 6 0 6 100
2 4 40.73 121.38 19.8 1 19 1 18 94.7
2 4 40.75 121.35 25.6 1 8 0 8 100
2 4 40.75 121.38 35.6 1 3 2 1 33.3
2 4 40.77 121.38 24.7 1 14 0 14 100
2 4 40.78 121.37 19.3 1 23 0 23 100
2 4 40.78 121.38 9 1 34 1 33 97.1
2 4 40.78 121.4 23.8 1 11 0 11 100
2 4 40.8 121.35 24.3 1 2 0 2 100
2 4 40.8 121.37 16 1 1 0 1 100
2 4 40.82 121.4 22.3 1 18 0 18 100
2 5 41.65 121.7 22.33 3 50 1 49 97.93
2 5 41.65 121.72 15.15 4 87 3 84 96.35
2 6 41.83 120.3 19.87 6 1053 177 876 87.02
2 7 41.58 121.37 14.8 1 81 13 68 84
2 10 41.62 120.33 21.07 3 604 130 474 80.93
2 13 40.73 121.13 5.2 1 28 3 25 89.3
2 14 40.57 120.93 31.7 3 114 3 111 98.27
2 27 40.98 121.65 33.1 3 54 2 52 95.17
2 35 43.73 121.58 4.87 15 1116 28 1088 98.58
2 10045 48.5 120.27 10.96 13 1725 345 1380 91.97
2 10050 43.77 121.72 25.31 18 1605 809 796 49.2
2 10072 43.77 121.72 6.48 9 213 0 213 100
3 10060 44.56 118.48 17.49 18 2279 831 1448 58.52
3 10082 44.62 118.6 16.63 15 486 55 431 92.51
3 10600 47.02 114.02 9.4 11 3356 813 2543 82.8
3 10600 47.1 114.4 8.8 3 1130 213 917 84.37
4 10700 44.15 103.63 9.4 7 776 128 648 89.31
4 10700 44.15 103.65 9.68 10 896 98 798 90.92
4 10700 44.16 103.63 12.7 1 187 31 156 83.4
4 10700 44.17 103.62 9.8 1 117 8 109 93.2
4 10700 44.17 103.65 9.25 2 235 10 225 96.75
4 10800 44.15 103.63 17.65 6 737 45 692 94.93
4 10800 44.15 103.65 16.4 1 131 1 130 99.2
4 10800 44.16 103.65 14.1 1 202 29 173 85.6
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AVGHT5, the average height of the 5 tallest trees in each plot
had the third largest effect on the probability of a tree surviving
the next 5 years (Table 7). However, AVGHT5 had the eighth larg-
est effect on the probability of a tree surviving longer than a given
time period (Table 6) because of the effect of site index (SIM). In
this study, different methods were used at different locations for

sampling tree height. At some locations, every tree height in each
plot was measured; at others, a systematic sample of tree heights
were measured; yet at other locations, height sample trees were
randomly selected within 2 in. diameter classes across the range
of tree sizes. Height measurements were repeated on the same
trees (Uzoh and Oliver, 2006). AVGHT5 was calculated from the 5

Table A1 (continued)

Province Locale Latitude Longitude Initial DBH Total plots Total trees Total dead Total alive % Alive

4 10800 44.17 103.6 16.8 1 97 1 96 99
4 10800 44.17 103.63 16 1 68 0 68 100
4 10800 44.17 103.65 16.39 9 1098 57 1041 95.19
4 10800 44.18 103.65 15.7 2 216 19 197 94.85
5 10900 35.28 111.72 12.61 18 5694 753 4941 87.06

Total 17.93 305 29449 4837 24612 91.18

Table A2
Mortality data summary for 5-year measurement interval for Ponderosa Pine used to develop the logistic model.

Province Locale Latitude Longitude Total plots Total trees Total dead Total alive % Alive

1 11 41.32 121.983 1 9 9 0 0
1 15 37.05 119.23 3 32 1 31 97
1 16 39.77 122.65 2 32 0 32 100
1 17 41.33 122.32 4 66 0 66 100
1 18 37.07 119.22 3 34 0 34 100
1 20 39.1 120.75 3 51 0 51 100
1 21 39.08 120.73 3 57 0 57 100
1 22 41.3 121.9 6 120 1 119 99.33
1 23 40.52 121.62 4 72 0 72 100
1 24 37 119.15 4 47 0 47 100
1 25 38.57 120.17 2 19 1 18 95
1 26 37.05 119.23 3 38 0 38 100
1 652 39.28 122.67 9 20 20 0 0
1 1652 39.33 120.75 15 1955 0 1955 100
1 2007 40.22 121.17 1 2 0 2 100
1 2012 40.25 121.33 1 161 0 161 100
1 2018 40.83 120.33 1 105 37 68 65
1 2019 41.83 120.33 1 4 4 0 0
1 2022 41.53 121.15 1 67 2 65 97
1 2023 41.53 121.15 1 24 0 24 100
1 2024 41.53 121.15 1 11 0 11 100
2 1 41.35 120.93 1 16 2 14 88
2 2 41.67 120.97 1 42 1 41 98
2 5 41.65 121.7 3 50 1 49 98
2 5 41.65 121.72 4 87 3 84 96.25
2 6 41.83 120.3 5 752 177 575 84.4
2 7 41.58 121.37 1 75 7 68 91
2 10 41.62 120.33 3 471 71 400 87
2 14 40.57 120.93 3 114 3 111 98.33
2 27 40.98 121.65 3 53 1 52 98
2 35 43.73 121.58 15 1097 13 1084 99.47
2 10045 48.5 120.27 13 1644 264 1380 93.23
2 10050 43.77 121.72 18 805 805 0 0
2 10072 43.77 121.72 9 210 0 210 100
3 10060 44.56 118.48 18 703 703 0 0
3 10082 44.62 118.6 6 33 33 0 0
3 10600 47.02 114.02 11 3355 813 2542 82.55
3 10600 47.1 114.4 3 1072 156 916 88
4 10700 44.15 103.63 6 149 32 117 80.5
4 10700 44.15 103.65 9 211 34 177 81
4 10700 44.17 103.62 1 28 8 20 71
4 10700 44.17 103.65 2 57 10 47 85.5
4 10800 44.15 103.63 5 168 33 135 84.8
4 10800 44.15 103.65 1 29 1 28 97
4 10800 44.17 103.6 1 25 1 24 96
4 10800 44.17 103.63 1 19 0 19 100
4 10800 44.17 103.65 9 220 57 163 79.56
4 10800 44.18 103.65 1 13 0 13 100
5 10900 35.28 111.72 18 5694 753 4941 87.06

Total 240 20118 4057 16061 82
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tallest trees in each plot. The methods used in sampling tree
heights notwithstanding, in this context, AVGHT5 can be viewed
as an expression of site productive potential like SIM. Because,
SIM which is used as an indicator of site quality is the average
height attainable by the dominant trees of a species at a specified
forest stand at a chosen reference age (Spur, 1952; Spurr and
Barnes, 1980; Nigh 1996, 1997; Chen et al., 1998). In both analyses,
the models showed that the probability of survival decreased with
increasing AVGHT5.

The cubic polynomial of SDI had the eight largest effects on the
probability of a tree surviving the next 5 years (Table 7). The
importance of SDI in the model suggests that the growth and mor-
tality of all trees in a stand is affected by stand density—trees with
the largest diameters as well as those with the smallest diameters.
This relationship is in accordance with that reported for the two
levels-of-growing-stock installations in Oregon (Cochran and
Barrett, 1995, 1999). Also, this confirms the findings of Hann and
Hanus on diameter growth (2002).

Stage’s (1976) transformation of slope (SL) and aspect (ASP)
(SL[cos(ASP)]) had the tenth largest effect on the probability of a
tree surviving the next 5 years (Table 7). The transformation of
slope and aspect has two important properties, it is circular, and
optima exist with respect to both slope and aspect (Fig. 6). Factors
such as slope, aspect, latitude, and longitude generally have no di-
rect effect on tree growth, but act indirectly by influencing mois-
ture, temperature, light, and other chemical and physical agents
of the site (Uzoh, 2001).

The models developed in this analysis appear to perform well.
The models are enhanced by confining the data set to permanent

plots in pure, even-aged stands of ponderosa pine and by following
the growth of individually tagged trees for long time periods. Sixty-
eight percent of the plots that we used were followed for 20 years
or longer. The diverse ecological requirements of ponderosa pine
trees represented in the data base should enhance model perfor-
mance and would encourage use of the models throughout the
range of ponderosa pine in the United States.
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(a) Data: ‘‘logistic_coeff.txt’’ (33 coefficients):

(Intercept) logDBH PAIDBH SLSINASP SLCOSASP PBAHTPH PBAHTPHsq PBAHTPHcu

7.237993 1.870987 3.674622 �0.24316 �0.03303 188.587 22.3473 116.7581

BAILNDH BAILNDHsq BAILNDHcu SDI SDIsq SDIcu StAGE StAGEsq

59.31363 �65.0323 41.34843 �113.252 �51.3327 �16.6741 422.9727 260.1884

StAGEcu AVGDHT5 node1 node2 node3 node4 node5 node6

�501.586 �0.57824 �19.0233 4.397767 �77.7858 �50.9232 54.70615 �31.1435

node7 node8 node9 node10 node11 node12 node13 node14 node15

�72.2762 53.98461 �26.9731 59.33849 80.84666 970.1026 239.2935 135.0102 56.41076

Data: logistic_var.matrix.txt (33X33 matrix).

Covariate V1 V2 V3 V4 V5

(Intercept) 0.359704 �0.03467 �0.04075 �0.00187 0.00109
logDBH �0.03467 0.017714 �0.00883 �0.00042 �0.00033
PAIDBH �0.04075 �0.00883 0.130282 �9.66E�07 �7.93E�05
SLSINASP �0.00187 �0.00042 �9.66E�07 0.00073 �8.39E�05
SLCOSASP 0.00109 �0.00033 �7.93E�05 �8.39E�05 8.99E�05
poly(PBAHTPH, 3)1 9.148419 �1.12823 �1.81009 �0.13497 0.026184
poly(PBAHTPH, 3)2 �2.06761 0.651784 0.125962 0.066587 �0.02203
poly(PBAHTPH, 3)3 4.783418 �0.24261 �0.46225 �0.04187 �0.01137
poly(StAGE, 3)1 4.7613 �0.01287 1.417948 �0.04595 0.048424
poly(StAGE, 3)2 0.978169 �0.1081 �1.40654 0.078121 �0.03805
poly(StAGE, 3)3 0.586042 0.257936 0.701784 0.02391 �0.00177
poly(BAINLDH, 3)1 �2.13999 0.817738 0.760424 �0.04682 �0.01745
poly(BAINLDH, 3)2 0.164821 �0.05742 �0.31273 0.026396 �0.00285
poly(BAINLDH, 3)3 0.247015 �0.08523 0.121639 �0.01211 0.000589
poly(SDI, 3)1 �0.48079 �0.74662 0.436677 0.138857 �0.0055
poly(SDI, 3)2 0.632942 �0.12518 �0.46876 0.221974 �0.02865
poly(SDI, 3)3 1.16882 �0.14485 0.063586 0.142682 �0.02128
AVGDHT5 �0.01055 �0.00045 0.000987 0.000209 �5.27E�06
te(LONG,LAT).1 0.060456 �0.00854 0.114707 0.009442 0.000558
te(LONG,LAT).2 �0.28823 0.005699 �0.10468 �0.01473 0.001175
te(LONG,LAT).3 0.948155 0.783974 �2.29707 �0.27341 0.006545
te(LONG,LAT).4 3.196382 �0.42786 1.638305 0.303841 �0.0216
te(LONG,LAT).5 �0.94465 0.075267 �0.51757 �0.07569 0.002188
te(LONG,LAT).6 0.481279 �0.03885 0.365466 0.042368 �0.00055
te(LONG,LAT).7 0.971884 0.172103 �0.19465 �0.01624 0.002319
te(LONG,LAT).8 �1.18148 0.191498 �1.25777 �0.07569 �0.00631
te(LONG,LAT).9 0.465015 �0.09001 0.562601 0.046587 0.001999
te(LONG,LAT).10 �1.25898 0.075977 �0.68479 �0.08343 0.00067
te(LONG,LAT).11 �1.22974 �0.00586 �0.43017 �0.07198 �0.00214
te(LONG,LAT).12 �0.29565 �2.92761 4.697684 0.572678 �0.08023
te(LONG,LAT).13 �1.80464 �0.37076 1.051458 0.306242 0.012388
te(LONG,LAT).14 �0.52064 �0.1192 0.232656 0.155526 �0.00485
te(LONG,LAT).15 �8.33025 �0.34425 1.037869 �0.15456 0.11402

F.C.C. Uzoh, S.R. Mori / Forest Ecology and Management 285 (2012) 101–122 117



Author's personal copy

V6 V7 V8 V9 V10 V11 V12

9.148419 �2.06761 4.783418 4.7613 0.978169 0.586042 �2.13999
�1.12823 0.651784 �0.24261 �0.01287 �0.1081 0.257936 0.817738
�1.81009 0.125962 �0.46225 1.417948 �1.40654 0.701784 0.760424
�0.13497 0.066587 �0.04187 �0.04595 0.078121 0.02391 �0.04682

0.026184 �0.02203 �0.01137 0.048424 �0.03805 �0.00177 �0.01745
521.5808 �80.679 176.2101 �18.5853 117.9782 �16.4996 �85.9347
�80.679 214.7875 54.83995 33.46968 �6.82583 15.00553 37.60692
176.2101 54.83995 198.6208 31.09717 22.41352 55.81088 �19.1717
�18.5853 33.46968 31.09717 348.9891 �90.6585 �33.434 11.39823
117.9782 �6.82583 22.41352 �90.6585 210.0909 �187.399 �28.6689
�16.4996 15.00553 55.81088 �33.434 �187.399 428.8838 22.1994
�85.9347 37.60692 �19.1717 11.39823 �28.6689 22.1994 94.50038

9.272555 0.490857 4.1876 �7.17567 2.767675 10.05249 �13.2331
13.58127 �6.17344 �1.28312 3.267666 7.187565 �4.4944 �0.73821
76.92396 �36.3845 �13.9731 �91.1843 70.53958 �39.2073 �77.9591
�10.7079 19.17115 12.4379 �2.30649 28.80425 26.30294 �10.8631
�24.8412 11.52049 12.48645 29.11628 �7.02308 46.59593 �14.9737
�0.28804 0.025195 �0.18181 �0.20385 �0.0098 �0.08077 �0.01838
�7.61687 0.054353 �1.10667 9.000413 �11.1263 12.95628 0.3298
�1.24731 �9.51373 �7.91913 �11.8754 4.045229 �3.52796 �0.0739
90.03967 34.41563 68.57627 �84.1213 1.41637 86.82466 35.25412
�22.0783 26.50879 39.90948 126.4546 �57.9997 124.8498 �24.2185

15.62917 �11.742 �9.76151 �52.2811 32.05068 �40.0768 2.565903
�18.6082 9.131046 2.86994 36.49978 �23.1841 17.64785 0.00504

3.531903 19.15929 25.05983 21.44794 �32.7157 61.78883 10.19268
21.08959 �10.9979 �8.65683 �95.915 61.25264 �50.2458 4.852536
�14.0013 6.451937 1.447349 45.70874 �27.287 23.7194 �2.30554

25.36937 �18.1957 �11.8277 �74.0732 44.83207 �39.195 1.116257
29.79265 �19.8135 �13.5009 �66.3276 48.92383 �58.9241 �3.83416

375.676 �185.338 47.5225 �241.202 300.4678 45.25816 �201.122
69.76734 �36.6503 20.17939 �75.2119 56.50363 72.88117 �20.6404
48.45427 �19.5239 16.18642 �47.0408 49.31318 24.85006 �11.4601
�37.1101 �46.7367 �82.5065 �161.007 �60.1339 19.75113 20.03228

V13 V14 V15 V16 V17 V18 V19

0.164821 0.247015 �0.48079 0.632942 1.16882 �0.01055 0.060456
�0.05742 �0.08523 �0.74662 �0.12518 �0.14485 �0.00045 �0.00854
�0.31273 0.121639 0.436677 �0.46876 0.063586 0.000987 0.114707

0.026396 �0.01211 0.138857 0.221974 0.142682 0.000209 0.009442
�0.00285 0.000589 �0.0055 �0.02865 �0.02128 �5.27E�06 0.000558

9.272555 13.58127 76.92396 �10.7079 �24.8412 �0.28804 �7.61687
0.490857 �6.17344 �36.3845 19.17115 11.52049 0.025195 0.054353
4.1876 �1.28312 �13.9731 12.4379 12.48645 �0.18181 �1.10667
�7.17567 3.267666 �91.1843 �2.30649 29.11628 �0.20385 9.000413

2.767675 7.187565 70.53958 28.80425 �7.02308 �0.0098 �11.1263
10.05249 �4.4944 �39.2073 26.30294 46.59593 �0.08077 12.95628
�13.2331 �0.73821 �77.9591 �10.8631 �14.9737 �0.01838 0.3298

38.08049 �4.06396 6.039766 �12.9973 3.392324 0.004103 0.311422
�4.06396 36.58586 8.901691 0.22584 �9.31762 �0.00607 0.641156

6.039766 8.901691 249.9275 12.38513 �28.0084 0.136161 �0.02264
�12.9973 0.22584 12.38513 119.3395 53.7419 0.01211 2.116917

3.392324 �9.31762 �28.0084 53.7419 88.99729 �0.03251 5.245609
0.004103 �0.00607 0.136161 0.01211 �0.03251 0.000553 0.000158
0.311422 0.641156 �0.02264 2.116917 5.245609 0.000158 4.715726
�0.22885 �0.03206 0.312705 �4.90929 �5.48596 0.006209 �6.36086
�4.43894 �25.2403 �51.2357 �69.4142 �95.706 �0.11068 �52.0831
11.05293 18.39232 43.67562 103.186 115.0134 �0.03876 63.08161
�2.62547 �3.04218 �7.59571 �22.0076 �29.7359 0.01235 �24.1648

0.693853 1.439266 �0.02518 11.37504 18.06461 �0.00355 16.12164
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Appendix B (continued)

V13 V14 V15 V16 V17 V18 V19

0.126679 �4.98421 �20.0676 �0.7171 1.49142 �0.04142 6.031288
�3.43943 �7.26703 �1.70789 �14.9257 �42.0591 0.020443 �42.5603

1.699074 4.084204 2.381391 10.57451 21.62126 �0.0054 19.86098
�1.82987 �2.58683 �2.52738 �23.1099 �35.4165 0.016635 �32.7003
�1.52372 �0.28061 10.38773 �23.3046 �33.1907 0.023265 �26.4784
48.86775 118.9499 266.1741 233.8182 224.6592 0.030808 �27.8938
�11.9415 34.12328 �7.96987 128.7856 117.7737 0.004781 1.434136
�6.42304 16.00713 27.53853 63.59566 45.2414 �0.00241 �6.7884
�14.616 11.14877 �307.628 �16.7886 60.0582 0.104305 �16.6091

V20 V21 V22 V23 V24 V25 V26

�0.28823 0.948155 3.196382 �0.94465 0.481279 0.971884 �1.18148
0.005699 0.783974 �0.42786 0.075267 �0.03885 0.172103 0.191498
�0.10468 �2.29707 1.638305 �0.51757 0.365466 �0.19465 �1.25777
�0.01473 �0.27341 0.303841 �0.07569 0.042368 �0.01624 �0.07569

0.001175 0.006545 �0.0216 0.002188 �0.00055 0.002319 �0.00631
�1.24731 90.03967 �22.0783 15.62917 �18.6082 3.531903 21.08959
�9.51373 34.41563 26.50879 �11.742 9.131046 19.15929 �10.9979
�7.91913 68.57627 39.90948 �9.76151 2.86994 25.05983 �8.65683
�11.8754 �84.1213 126.4546 �52.2811 36.49978 21.44794 �95.915

4.045229 1.41637 �57.9997 32.05068 �23.1841 �32.7157 61.25264
�3.52796 86.82466 124.8498 �40.0768 17.64785 61.78883 �50.2458
�0.0739 35.25412 �24.2185 2.565903 0.00504 10.19268 4.852536
�0.22885 �4.43894 11.05293 �2.62547 0.693853 0.126679 �3.43943
�0.03206 �25.2403 18.39232 �3.04218 1.439266 �4.98421 �7.26703

0.312705 �51.2357 43.67562 �7.59571 �0.02518 �20.0676 �1.70789
�4.90929 �69.4142 103.186 �22.0076 11.37504 �0.7171 �14.9257
�5.48596 �95.706 115.0134 �29.7359 18.06461 1.49142 �42.0591

0.006209 �0.11068 �0.03876 0.01235 �0.00355 �0.04142 0.020443
�6.36086 �52.0831 63.08161 �24.1648 16.12164 6.031288 �42.5603
16.59989 82.11102 �114.275 45.88932 �31.4812 �15.5659 78.83991
82.11102 1167.343 �993.361 333.3953 �223.738 38.57231 617.7436

�114.275 �993.361 1194.822 �403.905 264.4516 63.02499 �703.634
45.88932 333.3953 �403.905 154.9508 �103.618 �37.6202 267.4911
�31.4812 �223.738 264.4516 �103.618 70.30856 25.42179 �179.822
�15.5659 38.57231 63.02499 �37.6202 25.42179 42.05532 �54.198

78.83991 617.7436 �703.634 267.4911 �179.822 �54.198 481.709
�35.4531 �292.926 328.4491 �123.614 82.59947 22.84957 �221.219

65.64884 443.9439 �541.348 212.5843 �144.077 �55.8822 367.1464
51.0321 327.7876 �426.746 168.742 �113.581 �51.8876 287.1544

137.415 �1091.49 726.9484 229.5244 �212.434 �502.518 179.4844
15.44433 �430.767 321.7467 5.776071 �16.7026 �104.644 �72.3292
21.26559 �70.1015 29.01179 47.20096 �39.0423 �52.0857 52.88542
43.45119 �262.472 �153.112 146.4991 �92.8903 �159.781 111.4768

V27 V28 V29 V30 V31 V32 V33

0.465015 �1.25898 �1.22974 �0.29565 �1.80464 �0.52064 �8.33025
�0.09001 0.075977 �0.00586 �2.92761 �0.37076 �0.1192 �0.34425

0.562601 �0.68479 �0.43017 4.697684 1.051458 0.232656 1.037869
0.046587 �0.08343 �0.07198 0.572678 0.306242 0.155526 �0.15456
0.001999 0.00067 �0.00214 �0.08023 0.012388 �0.00485 0.11402

�14.0013 25.36937 29.79265 375.676 69.76734 48.45427 �37.1101
6.451937 �18.1957 �19.8135 �185.338 �36.6503 �19.5239 �46.7367
1.447349 �11.8277 �13.5009 47.5225 20.17939 16.18642 �82.5065

45.70874 �74.0732 �66.3276 �241.202 �75.2119 �47.0408 �161.007

(continued on next page)
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Appendix B (continued)

V27 V28 V29 V30 V31 V32 V33

�27.287 44.83207 48.92383 300.4678 56.50363 49.31318 �60.1339
23.7194 �39.195 �58.9241 45.25816 72.88117 24.85006 19.75113
�2.30554 1.116257 �3.83416 �201.122 �20.6404 �11.4601 20.03228

1.699074 �1.82987 �1.52372 48.86775 �11.9415 �6.42304 �14.616
4.084204 �2.58683 �0.28061 118.9499 34.12328 16.00713 11.14877
2.381391 �2.52738 10.38773 266.1741 �7.96987 27.53853 �307.628

10.57451 �23.1099 �23.3046 233.8182 128.7856 63.59566 �16.7886
21.62126 �35.4165 �33.1907 224.6592 117.7737 45.2414 60.0582
�0.0054 0.016635 0.023265 0.030808 0.004781 �0.00241 0.104305
19.86098 �32.7003 �26.4784 �27.8938 1.434136 �6.7884 �16.6091
�35.4531 65.64884 51.0321 137.415 15.44433 21.26559 43.45119
�292.926 443.9439 327.7876 �1091.49 �430.767 �70.1015 �262.472

328.4491 �541.348 �426.746 726.9484 321.7467 29.01179 �153.112
�123.614 212.5843 168.742 229.5244 5.776071 47.20096 146.4991

82.59947 �144.077 �113.581 �212.434 �16.7026 �39.0423 �92.8903
22.84957 �55.8822 �51.8876 �502.518 �104.644 �52.0857 �159.781

�221.219 367.1464 287.1544 179.4844 �72.3292 52.88542 111.4768
103.0333 �168.129 �131.937 �50.8825 53.26173 �14.1529 �44.8074
�168.129 296.3196 233.7351 466.2608 56.72355 90.04534 212.781
�131.937 233.7351 189.2344 433.5145 31.10491 61.25738 185.511
�50.8825 466.2608 433.5145 14564.45 3813.094 1729.465 3455.465

53.26173 56.72355 31.10491 3813.094 5864.716 3027.986 2273.498
�14.1529 90.04534 61.25738 1729.465 3027.986 1605.016 983.3813
�44.8074 212.781 185.511 3455.465 2273.498 983.3813 2924.639

Data: nodes.txt (17X42 matrix [Lat, Long] (42 locations) and 15 nodes: te.LONG.LAT).

LAT LONG te(LONG,LAT).1 te(LONG,LAT).2 te(LONG,LAT).3 te(LONG,LAT).4 te(LONG,LAT).5 te(LONG,LAT).6 te(LONG,LAT).7

35.28 �111.72 0.221186632 �0.296121369 �0.158164501 �1.015601166 �0.713399409 0.504848515 0.522162905
37 �119.15 0.002836633 0.008971955 0.009692381 �0.108400695 �0.017319608 0.00284612 �0.032046226
37.05 �119.23 �0.014092923 0.018867396 0.010077463 �0.07930339 0.045454298 �0.032166462 �0.033269649
37.07 �119.22 �0.012557179 0.018476225 0.010503609 �0.08656569 0.039438387 �0.029148334 �0.034682731
38.57 �120.17 �0.238257906 0.10868506 �0.004757642 0.170979045 1.024118434 �0.480935926 0.01710961
39.08 �120.73 �0.216189729 0.065925497 �0.020475372 0.272952758 1.363447538 �0.546526552 0.070991527
39.1 �120.75 �0.211839823 0.062946336 �0.020856965 0.274122943 1.368912425 �0.544450443 0.072333033
39.28 �122.67 1.462530946 �0.565690647 0.011306409 �0.032554793 0.01865942 �0.013204637 �0.013657506
39.33 �120.75 �0.206784821 0.052747609 �0.020821041 0.24451884 1.338480956 �0.483064699 0.071864567
39.77 �122.65 1.310030691 �0.372550267 0.00995423 �0.03986893 0.050014496 �0.02425833 �0.016988571
40.22 �121.17 �0.047252215 �0.024235713 �0.017916583 0.149952411 1.080572139 �0.08952035 0.060603943
40.25 �121.33 0.024075735 �0.032232235 �0.017215898 0.143467564 1.036159862 �0.068391461 0.058378545
40.52 �121.62 0.162349409 �0.01068643 �0.011407383 0.086189598 0.77760763 0.094939369 0.036499779
40.57 �120.93 �0.10112382 �0.035816997 �0.011635473 0.088617691 0.863077997 0.144524079 0.037654445
40.83 �120.33 �0.114163874 �0.064846891 �0.004590991 0.034615509 0.529335153 0.267444306 0.01438966
40.98 �121.65 0.104475125 0.071490856 �0.004052343 0.018666936 0.479580406 0.394676488 0.007000408
41.3 �121.9 0.100380228 0.252954173 0.00014559 �0.017348464 0.214593839 0.497265655 �0.008801354
41.32 �121.983 0.112161616 0.304905613 �0.000235851 �0.015712489 0.184108973 0.462428006 �0.007980907
41.33 �122.32 0.186173427 0.51068332 �0.003390687 0.001445656 0.090118947 0.254670137 �0.000137881
41.35 �120.93 �0.03701111 �0.093399786 0.003499312 �0.028144844 0.269467048 0.761184087 �0.014011408
41.53 �121.15 �0.017641868 �0.049735912 0.007663902 �0.061151687 0.137858903 0.904088913 �0.027109281
41.58 �121.37 �0.011047943 0.033755989 0.008677192 �0.069723548 0.099301612 0.903975097 �0.030196844
41.62 �120.33 �0.006045088 �0.168381938 0.000858241 �0.006199103 0.026166304 0.770364704 �0.002995925
41.65 �121.72 �0.010143553 0.235125637 0.008044875 �0.063641126 0.040725368 0.796300307 �0.026778352
41.65 �121.7 �0.010465293 0.222202348 0.008227233 �0.065062717 0.041603155 0.807910617 �0.02737592
41.67 �120.97 �0.011800091 �0.105443334 0.00930461 �0.073281297 0.031530838 1.002993813 �0.030538826
41.83 �120.33 0.019645125 �0.191902008 0.00139007 �0.01501506 �0.093464144 0.885150206 �0.003605337
41.83 �120.3 0.020353039 �0.191418028 0.000750391 �0.009973088 �0.094161376 0.868049677 �0.001547979
43.73 �121.58 �0.169214174 0.293425166 0.050594862 �0.22476059 �0.725811131 1.518002542 0.033927969
43.77 �121.72 �0.251028618 0.446524014 0.061504178 �0.198667232 �0.672066486 1.390220271 0.037578573
44.15 �103.65 0.01259758 �0.014643799 �0.011665576 0.09955552 �0.03803215 0.006477535 0.038070232
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Appendix B (continued)

LAT LONG te(LONG,LAT).1 te(LONG,LAT).2 te(LONG,LAT).3 te(LONG,LAT).4 te(LONG,LAT).5 te(LONG,LAT).6 te(LONG,LAT).7

44.15 �103.63 0.013692797 �0.016998712 �0.011385789 0.094251936 �0.042604244 0.01788758 0.037323504
44.17 �103.65 0.012595997 �0.01465826 �0.011656707 0.099592305 �0.0380229 0.00651344 0.038035132
44.17 �103.63 0.013693605 �0.017009742 �0.011381725 0.0942839 �0.042604364 0.017913136 0.037306595
44.17 �103.62 0.014242416 �0.018185498 �0.011244233 0.091629667 �0.044895125 0.023613054 0.036942323
44.17 �103.6 0.015340046 �0.020537025 �0.010969247 0.086321172 �0.049476677 0.035012963 0.036213775
44.18 �103.65 0.012594976 �0.01466515 �0.011651964 0.099608486 �0.03801762 0.006531196 0.03801655
44.56 �118.48 �0.009612897 0.06580088 �0.060686804 0.75783462 0.104621334 �0.615602592 0.184529152
44.62 �118.6 0.003332838 0.039484588 �0.058703553 0.708654025 0.051802905 �0.492991909 0.179895463
47.02 �114.02 �0.113990314 0.215841826 0.260616197 1.164781739 0.531424533 �1.377567003 �1.036321902
47.1 �114.4 �0.09926963 0.190905586 0.265990713 1.11567521 0.471982431 �1.260072028 �1.053596935
48.5 �120.27 �0.002308788 0.003090971 �0.169583741 �0.012991963 0.007446599 �0.005269705 0.754480588

te(LONG,LAT).8 te(LONG,LAT).9 te(LONG,LAT).10 te(LONG,LAT).11 te(LONG,LAT).12 te(LONG,LAT).13 te(LONG,
LAT).14

te(LONG,
LAT).15

1.016834086 0.59692539 �1.058839611 �0.829392723 0.135320876 0.129350237 �0.218874109 �0.06696
0.649545222 1.007550187 �0.512202772 0.057443563 0.010898522 �0.007276595 0.012949249 0.00406
0.617566573 0.985928678 �0.496565698 0.059896732 0.011143795 �0.00824156 0.013945581 0.004267
0.619032294 0.999544161 �0.501579611 0.062152353 0.011633799 �0.008510039 0.014477694 0.004441
0.068962077 0.707151487 �0.350815813 �0.013306906 �0.004133815 �0.00059373 �0.003030139 �0.00143
�0.136971768 0.359644791 �0.24892132 �0.099185774 �0.02139156 0.013821847 �0.025783248 �0.00814
�0.14198859 0.348318499 �0.245544399 �0.101408357 �0.021834882 0.01422715 �0.026383957 �0.00831

0.034708808 �0.015612967 0.02769463 0.0216933 0.004574634 �0.003383239 0.005724793 0.001751
�0.148444078 0.343004425 �0.234643269 �0.102021432 �0.021896181 0.014337655 �0.02658373 �0.00835

0.043333376 �0.022234934 0.035430015 0.027128186 0.005723446 �0.004212225 0.007155782 0.002191
�0.149003721 0.110003577 �0.124579486 �0.093288273 �0.019689327 0.014244065 �0.024596515 �0.00754
�0.144442495 0.064974168 �0.115252634 �0.090277786 �0.019037574 0.014079522 �0.023824021 �0.00729
�0.094502977 0.004280915 �0.078223161 �0.059105232 �0.012471997 0.009508631 �0.015586309 �0.00478
�0.099519303 0.147076309 �0.067071379 �0.062048688 �0.013050262 0.00893597 �0.01641929 �0.005
�0.046712412 0.285481132 0.085782517 �0.028632932 �0.005738644 0.002834237 �0.007847049 �0.0022
�0.027157819 �0.0122633 �0.041102648 �0.017005575 �0.003628961 0.002865603 �0.004395263 �0.00139

0.014645182 �0.021766426 �0.025743201 0.009207059 0.001890243 �0.001285407 0.002645529 0.000723
0.01344455 �0.020084042 �0.026868315 0.008458936 0.001734646 �0.001178809 0.002451993 0.000663
�0.003239065 �0.007303091 �0.027065984 �0.001987472 �0.000450329 0.000398 �0.00038045 �0.00017

0.024212881 0.017521331 0.105980006 0.014999739 0.003267652 �0.002614511 0.003480544 0.001253
0.062863429 �0.023931141 0.089367162 0.039247081 0.008297782 �0.006168496 0.010095642 0.003177
0.073041224 �0.033319427 0.051013406 0.045656797 0.009625532 �0.007115271 0.01209981 0.003685
0.005885268 0.00825483 0.376453405 0.003534513 0.000806546 �0.000654458 �0.000979669 0.00031
0.067763246 �0.030727289 0.00667231 0.042356139 0.008930514 �0.006602875 0.011529241 0.003419
0.069277391 �0.031402782 0.008963432 0.043302411 0.009130095 �0.00675052 0.011770925 0.003496
0.078382438 �0.036282142 0.163222113 0.049005273 0.010327897 �0.007630947 0.012211878 0.003954
0.019279593 �0.057882406 0.443572444 0.013136413 0.002401607 �0.001514507 0.000717596 0.000912
0.013897104 �0.057470503 0.456761034 0.009816675 0.00168661 �0.000980386 �0.000223806 0.000638
0.25777988 �0.080759763 0.139869641 0.155996988 0.034076754 �0.025462826 0.043132635 0.013086
0.228231409 �0.057239653 0.097685321 0.135868145 0.030211685 �0.022680163 0.038433827 0.011619
�0.106178652 0.029161327 �0.051818058 �0.06283845 0.006538603 �0.995076854 1.761062402 0.196229
�0.100509769 0.034051538 �0.060456005 �0.060704982 0.007344365 �0.997517201 1.765335683 0.196899
�0.106217927 0.029149345 �0.051870095 �0.062813858 0.006566156 �0.996675655 1.759973406 0.19888
�0.100543881 0.034049093 �0.060495644 �0.060696819 0.007372691 �0.999119515 1.764245562 0.199554
�0.097706826 0.03649899 �0.064808459 �0.059638286 0.007775964 �1.000341451 1.766381652 0.199892
�0.092032684 0.041398808 �0.073434131 �0.057521209 0.008582513 �1.002785331 1.770653844 0.200566
�0.106235207 0.029142891 �0.05189491 �0.062799983 0.006579583 �0.997442987 1.759392486 0.20021
�0.790866217 �1.048510774 1.756172488 �0.153589117 �0.107893475 0.071752217 �0.121342412 �0.03931
�0.737845037 �1.014159209 1.688284168 �0.122696661 �0.100782072 0.068191432 �0.115385291 �0.03695
�1.240781683 �0.77523419 1.051188387 0.91033739 �0.165286332 0.031783549 �0.068384057 0.052229
�1.188064761 �0.722807516 0.974127589 0.968952943 �0.158438809 0.041533608 �0.082645764 0.043313

0.013851587 �0.006230821 0.01105237 0.422084649 0.001825644 �0.001350182 0.00228465 �0.00142
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