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Abstract

A height increment model is developed and evaluated for individual trees of ponderosa pine throughout the species range in western United

States. The data set used in this study came from long-term permanent research plots in even-aged, pure stands both planted and of natural origin.

The data base consists of six levels-of-growing stock studies supplemented by initial spacing and other permanent-plot thinning studies for a total

of 310 plots, 34,263 trees and 122,082 observations. Regression analysis is the most commonly used statistical method in forest modeling.

However, research studies with repeated measurements are common in forestry and other biological disciplines. We choose the mixed models

instead of the regression analysis approach because it allows for proper treatment of error terms in a repeated measures analysis. The model is well

behaved and possessed desirable statistical properties. Our goal is to present a single height increment model applicable throughout the geographic

range of ponderosa pine in the United States and by using only data from long-term permanent plots on sites capable of the productivity estimated

by Meyer [Meyer, W.H., 1938. Yield of Even-aged Stands of Ponderosa Pine. US Department of Agriculture Technical Bull. 630].
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1. Introduction

Height increment data for modeling is usually obtained

either by remeasured heights on standing trees or by stem

analysis (stem analysis is the procedure used for determining

past growth by directly measuring the accumulated stem

increments of height and diameter). Of these two methods stem

analysis is the most accurate, although very expensive.

Remeasured heights are particularly difficult in mountainous

terrain and in dense stands. Additionally, in boreal and many

temperate forests height growth can be slow and height

measurement error can be large relative to the increment

(Hasenauer and Monserud, 1997).
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Consequently, rather than measure heights of all trees,

growth and yield modelers develop heuristic functions of

diameter. Diameter at breast height (dbh) is obtained on all trees

and heights are measured on a sub-sample. A heuristic function

predicting height from diameter is developed using trees that

have both height and diameter measurements. The height-

diameter equation developed is then used to predict height for

all trees (Meyer, 1940; Curtis, 1967; Curtis et al., 1981; Wykoff

et al., 1982; Larsen and Hann, 1987; Burkhart et al., 1992).

Historically, these equations have included only diameter as the

independent variable (Curtis, 1967). More recently, however,

other independent variables have been included such as, stand

basal area, basal area in trees of larger diameter, site index,

slope, aspect, elevation, crown competition factor, and soil and

precipitation factors (Larsen and Hann, 1987; Hasenauer and

Monserud, 1997; Uzoh, 2001).

Many regional growth and yield models are available for

ponderosa pine (Pinus ponderosa Dougl.) (Ritchie, 1999).

Since data collection and analysis procedures differ among

these models, comparisons of growth responses that may be due

to geographic variation of the species are not possible. Also,
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Table 1

Location and literature citations for five levels-of-growing-stock installations in ponderosa pine in western United States

Province Installation name Geographic location Literature citation

I Elliot Ranch West slope northern Sierra Nevada, CA Oliver (1997)

II Lookout Mountain East side of Cascade Range, OR Cochran and Barrett (1999a)

III Crawford Creek Blue Mountain, OR Cochran and Barrett (1995)

IV Black Hills Black Hills, SD Boldt and Van Deusen (1974)

V Taylor Woods Coconino Plateau, AZ Ronco et al. (1985)
data bases are often compiled all or in part from temporary plots

in unmanaged stands using stem analysis techniques. Such data

suffer from the same weaknesses as retrospective studies. The

investigator is never certain that the response measured is the

result of the stated condition. Therefore, forest managers need a

height increment model that can provide useful guidelines for a

variety of management objectives throughout the geographic

range of ponderosa pine in the United States. We had the

opportunity to develop such a height increment equation

through access to a unique data base of long-term studies of

levels-of-growing-stock, initial spacing and other permanent-

plot thinning studies throughout the range of ponderosa pine in

the United states. The objective of this study is to overcome

these weaknesses by presenting a height increment model

applicable throughout the geographic range of ponderosa pine

in the United States and by using only data from long-term

permanent plots on sites capable of normal yields (Meyer,

1938). An individual-tree/distance-independent height incre-

ment model for managed even-aged stands of ponderosa pine is

presented using linear mixed effects models.

2. Methods

2.1. The data base

The foundation of the data base is six levels-of-growing-

stock studies established throughout the western United States

in the 1960s. All used a common study plan that specified five

or six stand density levels replicated three times (Myers, 1967).

Results from individual installations have been reported

previously (Table 1). These data were supplemented with

initial spacing and other permanent-plot thinning studies.

Individual tree data were from plots in planted stands or stands
Table 2

Distribution of plots in each province by stand origin and tree size used to

develop the height increment model for managed even-aged stands of ponderosa

pine throughout the western United States

Province

I II III IV V

Number of plots

Stand origin

Natural 11 71 33 42 18

Planted 95 26 14 0 0

Stand size class

Saplings 31 10 0 0 0

Plots 64 83 47 42 18

Sawtimber 11 4 0 0 0
of natural origin and included a wide range of size classes

(Tables 2 and 3). Stands were free or mostly free of competing

shrubs that reduce growth of young ponderosa pine, especially

in central Oregon and California (Oliver, 1984, 1990; Cochran

and Barrett, 1999b). Trees in all plots in the data base were

tagged allowing the collection of information on individual

trees. The number of growing seasons between remeasure-

ments was usually five, but most plots were observed for a

much longer period. Eighty-two percent of the plots were

observed for 20 years or more—four 5-years growth periods.

Basic records for each plot included latitude, elevation, aspect,

slope percent and plot size. Tree records at each remeasure-

ment included species, diameter at breast height and total

height on a sample of trees. In some studies, every tree height in

the plot was measured; in others a systematic sample of tree

heights was taken; yet in other studies height sample trees were

randomly selected within 2 in. diameter classes across the

range of tree sizes. Height measurements were repeated on the

same trees ensuring that the 5-year height increment is given by

the difference between the two successive observations of

height.

3. Data analysis

3.1. Theoretical formulation

Regardless of mathematical form, two approaches to model

development are commonly used (Wykoff, 1990):
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redict maximum potential increment as a function of site

quality and tree maturity, then adjust potential with a modifier

function that reflects intertree competition (Monserud, 1975;

Alder, 1979; Hahn and Leary, 1979; Lear and Holdaway,
ble 3

mmary statistics for the data used to develop the height increment model for

anaged even-aged stands of ponderosa pine throughout western United States

riable No. of trees

observed

Mean S.D. Minimum Maximum

T (m) 34263 10.797 4.542 0.034 53.214

h (cm) 34263 18.167 8.801 0.254 98.044

(m) 310 21.619 6.859 13.106 48.768

ge (year) 310 58.759 21.416 4.000 110.000

EVA (m) 310 41.789 4.303 35.280 48.500

L (m2/ha) 34263 13.930 9.570 0 74.249

ope (per) 310 6.466 7.264 0 42.000

spect (rad) 310 116.951 100.942 0 360.000

I (trees/ha) 34263 473.026 226.967 0 1444.220
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1979; Holdaway, 1984; Shifley and Brand, 1984; Shifley,

1987).
� D
Fig. 1. Plot of 5-year periodic annual height increment by initial diameter at

breast height using the coefficients derived for Eq. (1).
evelop a composite model that incorporates tree, stand and

site characteristics in a single equation (Cole and Stage, 1972;

Wykoff, 1990; Uzoh, 2001).

Martin and Ek (1984) described these respective choices as

‘‘semi-empirical’’ and ‘‘empirical.’’ In practical terms, the

differences in approach are mostly semantic (Wykoff, 1990).

Wykoff and Monserud (1988) maintained that, if the relation-

ships within a model are based on generally accepted principles

of tree growth (Assmann, 1970), either approach can produce

acceptable behavior. In the first case, competition and vigor are

used to explain deviations from an age and site dependent

potential; in the second case, similar effects are used to explain

deviation about a mean growth rate that has been corrected for

other tree, site and stand effects (Wykoff, 1990; Uzoh, 2001).

The second (composite) approach was chosen to avoid the

estimation problem associated with the first approach because

while the potential approach is a useful construct for purposes

of organizing model structure, it is extremely difficult to

observe (Wykoff, 1990).

Spatial information from mapped tree locations was not

available; therefore, our model is distance-independent

(Munro, 1974). The choice of variables was restricted to site,

stand and tree attributes that could be reliably obtained from

stand inventories normally used in the various regions (e.g.,

USDA Forest Service, 1978).

3.2. The equation

Growth of the individual trees was potentially affected by

three groups of variables: (1) tree size and vigor effects, (2) site

effects and (3) competitive effects. The combination of some of

these predictor variables and the transformation of others were

initially tested for predicting 5-year periodic annual height

increment using mixedmodels analysis procedure. The variable

selection process involves a series of steps beginning with an

initial data exploration that involves plotting the data and

examining correlation statistics to identify those variables that

may be useful in the model.

3.3. Tree size effects

We started by defining the relationship between increment

and size and accounting for the two different sizes of

experimental units: a spatial unit which is an individual tree

and a set of temporal units which are the repeated measurements

on individual trees. The following equation was used:

E½lnðPAIHTÞ�

¼ b0 þ b1 lnðdbhÞ þ b2ðdbhÞ2 þ hl þ e jðlÞ þ eikð jlÞ; (1)

where E[ln(PAIHT)] is the expected value of the natural

logarithm of 5-year periodic annual height increment in meters;

ln(dbh), the value of the natural logarithm of initial diameter in
cm; (dbh)2, the value of the square of initial diameter; b0, b1, b2
are regression coefficients; hl, the fixed effect of the lth loca-

tion; ej(l), the random error for plot j within locale l assumed to

have expected value of zero (0) and constant variance (s2
l ) and

eik(jl) is a random error for measurement k on tree i within plot j

and locale l assumed to have expected value of zero (0) and

variance (s2) with the covariance between observations k and k0

on the same tree separated by d years following an autore-

gressive process:

Covðeikð jlÞ; ei0k0ð j0l0ÞÞ

¼
s2rjdj if i 6¼ i0; k ¼ k0; j ¼ j0; l ¼ l0

s2 if i ¼ i0; k ¼ k0; j ¼ j0; l ¼ l0

0 otherwise;

8<
:

where r is the serial correlation coefficient for errors across

time on the same tree.

When the resulting predictive function is plotted against

dbh, the resulting function is a skewed unimodal shape with a

maximum between 20 and 30 cm (Fig. 1). Additionally, the

intercept term, b0, can be expanded to include other tree and site

effects that modify height increment while still retaining the

basic relationship between tree size and growth (Uzoh, 2001).

3.4. Site effects

For a model to adequately characterize tree growth, it must

include some measure of site productivity. Latitude, longitude,

aspect, slope, elevation and site indexwere initially tested for site

effects variables. The site quality indicator term is represented as:

SITE ¼ b3SI; (2)

where SI is site index (m) (Meyer, 1938).

Meyer’s site index was chosen because the data came from

the widest geographic range of any site index system presently

available. Provincial site index systems may more accurately

portray sites within that province but they are widely divergent

(Dunning and Reineke, 1933; Minor, 1964; Boldt and Van

Deusen, 1974; Barrett, 1978; Powers and Oliver, 1978).

Because, the main objective of this study is to provide forest

managers with a single model that can provide useful

guidelines for a variety of management objectives throughout

the geographic range of ponderosa pine, we had to use a range-

wide site index system.
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In addition to SI, other geoclimatic variation (OGV) may

remain because of the range of variation in species

characteristics and stand conditions in the study area, which

extended from the Black Hills of South Dakota to the Pacific

Coast. As a result, slope (SL), aspect (ASP) and elevation

(ELEVA) terms can help in refining the overall site effect.

These factors generally have no direct effect on tree growth, but

act indirectly by influencing moisture, temperature, light and

other chemical and physical agents of the site. Slope and aspect

are included using Stage’s (1976) transformation. The

combined effects of slope, aspect and elevation are represented

by OGV:

OGV ¼ b4SL½cosðASPÞ� þ b5ELEVA; (3)

where SL is the slope angle in percent, ASP the aspect in

radians and ELEVA is elevation in meters.

3.5. Competitive effects

Finally, the increment attained by an individual tree is also

dependent on its competitive status relative to neighboring

trees and the impact of management. Basal area in larger

trees (BAL), stand density index (SDI), stand basal area and

basal area in larger trees divided by dbh of the subject tree

were initially tested for competitive effects variables. The

competitive effects (CE) term is represented by SDI

(Reineke, 1933) for overall stand density and BAL for the

individual tree’s competitive position. SDI has a distinct

advantage over stand basal area as a measure of stand density

because it is less influenced by age and site quality. BAL has

been used often as a tree-position variable in equations for

predicting growth because it describes a tree’s position in

relation to all trees measured in a plot or stand (Ritchie and

Hann, 1985; Wykoff, 1986, 1990; Dolph, 1988; Uzoh et al.,

1998; Uzoh, 2001). The competitive effects (CE) term is

represented by SDI and BAL:

CE ¼ b6SDIþ b7BAL; (4)

where SDI is stand density index (m) and BAL is the basal area

in larger trees (m2/ha) divided by the dbh of the subject tree.

3.5.1. Model selection

Many different tools can be used in evaluating competing

models to determine which model is most appropriate. Most of

these criteria are based on the presumption that you want to

create a model that minimizes the unexplained variability (the

mean squared error of prediction) with the fewest number of

variables possible. Of the potential models, the one selected

was chosen on the basis of the following criteria:
� T
he covariance structure was chosen among the two

candidates of autoregressive errors and compound symmetry

based on a maximum likelihood estimation of the fixed

effects and random effects and choosing the structure that

produced the smallest Akaike’s information criterion (AIC)

(Rawlings et al., 1998; Hastie et al., 2001; Burnham and

Anderson, 2002).
� R
estricted maximum likelihood (REML) was used to fit

different fixed effects models. Then AIC was used to assess

model fitness.
� R
esidual plots were examined to check on normality

assumptions and the Spearman rank correlation coefficient

was calculated for examining the stability of the variance

across the range of independent variables (Carroll and

Ruppert, 1988).
3.5.2. Repeated measures analysis

Selecting an appropriate covariance model is important in

repeated measures analyses. If an important correlation is

ignored by using a model that is too simple, the risk of Type I

error rates is increased for fixed effects tests. If the model is too

complex, power and efficiency is sacrificed. This decision

process can be assisted by using the goodness of model fit

criteria (AIC).

In this study based on the value of AIC, the autoregression

covariance structure (with multiple observations on individual

trees autocorrelated in time) outperformed other covariance

structures such as compound symmetry (with multiple

observations on an individual tree equally correlated irrespec-

tive of time). The covariance structure with the smallest value

of the criteria is considered most desirable. Because of the

repeated sampling from individual trees, it seemed natural to

consider an autoregressive process to describe that error

structure. Other covariance structures were also considered and

the final selection was made using the value of AIC.

The three random terms (a variance component for plots

within locales and for trees within plots along with the

correlation between successive measurements on individual

trees) are represented, which provided the best relationship

between 5-year periodic annual height growth increment of

individual ponderosa pine trees and (1) tree size and vigor

effects, (2) site effects and (3) competitive effects.

4. Model testing and validation

Shugart (1984) defined model validation as ‘‘procedures, in

which a model is tested on its agreement with a set of

observations that are independent of those observations used to

structure the model and estimate its parameters’’. There are

many types of validation methods available; some are

qualitative and others are quantitative (Holmes, 1983; Sargent,

1999). The use of statistical tests in model validation has drawn

much debate since the work of Wright (1972) because of the

varying criteria for the ‘‘value’’ of models and the methods of

determining it (Mayer et al., 1994; Morehead, 1996). Because

each model is unique, no single validation technique or method

is widely applied. For selecting the most suitable regression

model, it is generally advisable to use some measure of lack of

fit in combination with one or more test statistics (Kozak and

Kozak, 2003). Therefore, it is important to know that model

validation is not designed to prove that a model is correct

(Popper, 1963), but rather to show that model predictions are

close enough to independent data and that decisions made

based on the model are defensible (Yang et al., 2004).
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Table 4

Parameter estimates for the height increment model for managed even-aged

stands of ponderosa pine throughout western United States using the SAS

system MIXED model analysis procedure

Parameter 95% Confidence interval

Estimate Standard

error

T-statistic P (2-TAIL)

Intercept �3.2377 0.09869 �34.27 0.0001

ln dbh (cm) 0.4807 0.00702 68.49 0.0001

dbh2 (cm) �0.00021 0.00007 �28.63 0.0001

SI M (m) 0.04605 0.00213 21.67 0.0001

SL[cos(ASP)] 0.01158 0.00221 5.25 0.0001

ELEVA (m) �0.00016 0.00005 �3.21 0.0015

SDI (trees/ha) �0.00037 0.00002 �15.95 0.0001

BAL (m2/ha) �0.00352 0.00031 �11.52 0.0001

Standard error of estimate = 0.53705 (m).

Fig. 2. Plot of 5-year periodic annual height increment by initial diameter at

breast height and site index (SI) for managed even-aged stands of ponderosa

pine throughout the western United States using the coefficients in Table 4.
There are four procedures commonly used in model

validation: (1) a comparison of predictions and coefficients

with physical theory; (2) a comparison of results with those

obtained by theory and simulation; (3) the use of new data; (4)

the use of data splitting or cross validation (Snee, 1977). Since a

new data set is often not available, data splitting is regarded as

an acceptable alternative bymost practitioners provided that the

data set is large enough (Yang et al., 2004).

The dataset was randomly split into 10 parts and 90% was

used for initial model development and 10% was used for

model validation. The final model was developed using the

entire dataset. Using the validation dataset, a mixed model

analysis and a regression model analysis of the actual height

increments versus estimated height increments were then fit

using the values of the natural logarithm. The two lacks of fit

statistics, prediction mean squares error and mean bias were

selected because they are both meaningful and diagnostically

useful in determining the predictive power of models. Mean

bias indicates trends in lack of fit, and prediction mean squares

error indicates the extent of the spread of the residuals about the

mean.

5. Results

The following equation provided the best fit:

E½lnðPAIHÞ�
¼ b0 þ b1 lnðdbhÞ þ b2ðdbhÞ2 þ b3SIMþ b4SL½cosðASPÞ�
þ b5ELEVA þ b6SDIþ b7BAL þ bhl þ e jðlÞ þ eikð jlÞ; (5)

the random effects were trees, plots and locations. Where

E[ln(PAIH)] is the expected value of the natural logarithm

of 5-year periodic annual height increment (m), ln(dbh) the

value of the natural logarithm of initial dbh (cm), (dbh)2 the

square of initial dbh (cm), SIM the Meyer’s site index (m), SL

the average slope for the stand (percent), ASP the average

aspect for the stand (radians), ELEVA the elevation for the

stand (m), SDI the stand density index (trees/ha), BAL is the

basal area in larger trees (m2/ha) divided by the dbh of the

subject tree (see Table 4). b0, b1, b2, b3, b4, b5, b6 and b7 are

regression coefficients, bhl the fixed effect of the lth location, ej(l)
the random error for plot j within locale l assumed to have

expected value of zero (0) and constant variance (s2
l ), and eik(jl)

is a random error for measurement k on tree i within plot j and

locale l assumed to have expected value of zero (0) and variance

(s2) with the covariance between observations k and k0 on the

same tree separated by d years following an autoregressive

process:

Covðeikð jlÞ; ei0k0ð j0l0ÞÞ

¼
s2rjdj if i 6¼ i0; k ¼ k0; j ¼ j0; l ¼ l0

s2 if i ¼ i0; k ¼ k0; j ¼ j0; l ¼ l0

0 otherwise;

8<
:

where r is the serial correlation coefficient for errors across

time on the same tree.
From the foregoing analysis, the height increment model

developed [Eq. (5)] displayed a unimodal, positively skewed

shape that is typical of tree growth processes (Fig. 2) (Assmann,

1970; Wykoff, 1990; Uzoh, 2001). The function plots (Fig. 2)

patterns are logical and in line with expectations. A value of

1000 was assigned for elevation (m), a value of 25 was assigned

for both slope and aspect, a value of 120 was assigned for SDI

and a value of 10 was assigned for BAL. The coefficients from

Eq. (5) are presented in Table 4. The model of 5-year height

increment using a logarithmic transformation indicate that

function plots are comparable with those found in other height

increment studies where the same transformation was applied

(Stage, 1975; Hasenauer and Monserud, 1997; Uzoh, 2001).

The logarithmic-bias correction to the intercept term

(Flewelling and Pienaar, 1981) was estimated by adding half

of the mean squared error to the intercept term (Baskerville,

1972). Flewelling and Pienaar (1981) suggested that for degrees

of freedom >30 and S2 < 0.5, the multiplicative correction of

e�S2=2 is usually adequate. Since the residual mean squared

error estimate is<0.5 and the sample size is>30, Baskerville’s

correction should be a close approximation to the true

logarithmic bias for the equation presented (Eq. (5)). Therefore,

Baskerville’s method was used for the logarithmic bias

correction.
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Table 5

Prediction mean squares error (MS error, m), mean bias (m) and absolute mean

bias (a mean bias, m) by mixed model and regression model using validation

data set of size 10% of the total data set

Model n MS error Mean bias A mean bias

Mixed 9250 0.2663 �0.1880 0.3889

Regression 9250 0.4955 �0.2495 0.4061

Table 7

Ranking of variables based on change in the size of the standard error of

prediction without the variable in question

Variable Value of standard error

of prediction without

the variable in question

Value of standard

error of prediction

for the full model

SIMM 0.7225 6088

ln dbh 0.6461

dbh2 0.6322

BAL (m2/ha) 0.6160

SL[cos(ASP)] 0.6136

ELEVA 0.6121

SDI 0.6097
The validation results are presented in Tables 5 and 6.

6. Discussion

The relative importance of a variable is assessed by the

change in size of the standard error of prediction without the

variable in question. Table 7 shows the ranking of the variables

based on this criterion.

Site index (Meyer, 1938) (SIM) had more effect on height

growth than any other variable (Table 7). It is important to

realize, however, that other factors were combined under the

variable SIM. The data were scattered over a vast geographic

area of contrasting soils and climate, and included two varieties

of ponderosa pine (P. ponderosa var. ponderosa and var.

scopulorum). Some of the genetic differences may have

affected PAI height. Nevertheless, what we called SIM seemed

to perform credibly in integrating and explaining these complex

differences. A contributing reason for the good performance of

site index may have been that stockability was not a problem.

All data were from sites capable of the productivity estimated

by Meyer (1938).

The natural logarithm of initial diameter (ln(dbh)) had the

second greatest effect on height growth followed by the square

of initial diameter (dbh)2 (Table 7). The size of initial diameter

is an indication of a tree’s competitive status within a plot or

stand, and thus, an expression of tree vigor. The square of initial

diameter (dbh)2 had the third greatest effect on diameter

growth. The inclusion of (dbh)2 gave Eq. (5) its asymptotic

approach to zero for large heights, removing the need for

imposition of an arbitrary maximum height (Fig. 2).

Within the fundamental constraint of site quality, tree

position significantly influenced height growth. BAL (basal

area in larger trees (m2/ha)/(dbh of the subject tree)) had the

fourth-greatest influence on height growth (Table 7). The

increment attained by an individual tree is dependent on its

competitive status relative to neighboring trees. Consequently,
Table 6

Prediction mean squares error (m), mean bias (m) and absolute mean bias (m) by prov

of the total data set

Province n Mixed model validation statistics

Prediction MS error Mean bias Absolute me

I 1475 0.2794 �0.2085 0.3887

II 2572 0.3414 �0.2420 0.4684

III 2216 0.2512 �0.1472 0.3922

IV 1726 0.2317 �0.1219 0.3647

V 2254 0.1438 �0.1742 0.3032
the coefficient of BAL is negative, indicating a competition

modifier that would reduce height growth rates relative to a

tree’s competitive status. Therefore, the largest diameter tree in

a plot would have a BAL value of zero, while the smallest

diameter tree in the plot would have a BAL value near that of

the plot’s total basal area. As BAL decreases, the predicted

increment increases. The more open-grown the tree, the less it

is influenced by competitors because the measure of relative

size is tied to stand density. As a result, dominance is less of a

factor in increment predictions in sparsely stocked stands

(Wykoff, 1990; Uzoh et al., 1998; Uzoh, 2001).

Overall stand density as measured by SDI had the seventh-

greatest influence on height growth (Table 7). The importance

of SDI in the model suggests that height growth of all trees in a

stand is affected by stand density—trees with the largest

diameters as well as those with the smallest diameters. This

relationship is in accordance with that reported for the two

levels-of-growing-stock installations in Oregon (Cochran and

Barrett, 1995, 1999a).

After thinning from below in dense stands, BAL is

unchanged, but predicted increment increases because SDI is

lower. In rare instances when growth after thinning from above

is modeled, predicted response may be overestimated, at least

initially. Both BAL and SDI are reduced, causing a predicted

growth increase greater than that for thinning from below. The

response might be delayed until tree crowns and root systems of

subordinate trees expand to take advantage of the added space.

In general, however, the effects of BAL and SDI are

biologically rational and simple in concept yet they can

accommodate extensive variation in stand structure and site

conditions (Wykoff, 1990; Uzoh et al., 1998).
ince for mixedmodel and regression model using validation data set of size 10%

Regression validation statistics

an bias Prediction MS error Mean bias Absolute mean bias

0.4915 �0.2485 0.3894

0.5705 �0.2728 0.4764

0.5001 �0.2286 0.4176

0.4857 �0.2086 0.3772

0.3743 �0.2573 0.3343
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Stage’s (1976) transformation of slope (SL) and aspect

(ASP) (SL[cos(ASP)]) had the fifth greatest effect on height

growth (Table 7). The transformation of slope and aspect has

two important properties, it is circular and optima exist with

respect to both slope and aspect.

Elevation had the sixth greatest effect on height growth

(Table 7). Elevation is an important variable because average

temperatures decline as elevations increase. Tree growth is

sensitive to growing season temperature, which as the model

location coefficient describes this climatic trend. Consequently,

the coefficient of elevation is negative.

PROC MIXED will not calculate the coeffiecients of

variable with very high degrees of multicollinearity. Conse-

quently, latitude, which would seem to be an obvious location

variable was dropped in favor of elevation because a high

degree of multicollinearity existed between the two variables

and because elevation had more effect on height growth than

did latitude. The two variables were confounded because

ponderosa pine is found at increasing elevations as latitudes

decrease. Age and longitude were dropped because they were

highly correlated with the more important variable, site index.

The validation results of this study decisively show that the

mixed model analysis outperformed the regression analysis

model (Tables 5 and 6). The mixed model analysis mean biases

and absolute mean biases were closer to zero than for the

regression model analysis and the mixed model analysis

prediction mean squares errors were smaller. The results show

that the mixed model predictions are closer to the independent

data set than is the regression model prediction. Our finding

confirms the previous findings (Biging, 1985; Gregoire et al.,

1995; Keselman et al., 1999; Hall and Bailey, 2000; Littell

et al., 2000; Kowalchuk and Keselman, 2001). What makes

mixedmodels unique is the ability of the models to include both

fixed regression parameters (fixed effects) that describe the

shape of the typical growth curve over the entire population,

and random regression coefficients (random effects) that

individualize the curve to capture site-specific, tree-specific,

or other unit-specific characteristics of the growth pattern (Hall

and Bailey, 2000).
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