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Selected allometric equations and fitting strategies were evaluated for their predictive abilities for esti-
mating above ground biomass for seven species of shrubs common to northeastern California. Size classes
for woody biomass were categorized as 1-h fuels (0.1–0.6 cm), 10-h fuels (0.6–2.5 cm), 100-h fuels (2.5–
7.6 cm), and 1000-h fuels (greater than 7.7 cm in diameter). Three fitting strategies were evaluated -
weighted nonlinear least squares regression (WNLS), seemingly unrelated regression (SUR), and multino-
mial log-linear regression (MLR) - to estimate individual shrub biomass as a function of crown area. The
inclusion of the shrub height as a covariate did not increase the accuracy of prediction for all species.
When MLR was used, on the average, RMSE values were reduced by 23.1% for the 1-h component, by
23.9% for the 10-h component, and by 45.6% for the leaf component for serviceberry when compared
to SUR. Based on the residual plots and cross-validation fit statistics, MLR is recommended for estimating
AGB for seven major shrub species in California. The equation coefficients are documented for future use.
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1. Introduction

Shrubs are important drivers of forest ecosystem productivity
and diversity. Forest understory vegetation are ecologically impor-
tant because shrubs, lichens, and mosses can have a direct effect on
belowground processes such as decomposition, nutrient flow, and
the accumulation of soil nutrients (Nilsson and Wardle, 2005).
Many of the studies concerning forest biomass assessment that
use of allometric equations have focused solely on the estimation
of tree biomass (Beedlow et al., 2009; Temesgen et al., 2015).
Although tree biomass is the principle sink of carbon sequestration
in mature forests, it is also necessary to account for shrub biomass,
as these woody plants play an active role in forest ecosystem pro-
ductivity (Beedlow et al., 2009). Allometric shrub equations are
also useful for shrubland ecosystems. Allometric equations for
shrubs have been developed in the past (McGinnis et al., 2010;
Vora, 1988; Elzein et al., 2011), however it is important to further
contribute to this discipline as shrubs are important components of
forest productivity and structure. A comprehensive assessment of
total biomass will provide land managers and researchers with
more reliable assessments of fuel loading, site productivity, and
treatment effects (Návar et al., 2004). This research is necessary
because allometric equations can contribute to the needs of forest
modelers who are interested in assessing total and component bio-
mass for carbon accounting and for fire modelers concerned with
accumulating forest fuels and wildfire prevention.

Aboveground estimates of shrub biomass can also be effective
indicators of the different stages of forest succession. Woody plants
and shrubs growing under tree cover exhibit different form than
from those growing in open areas (Vora, 1988; Paul et al., 2016).
Shrubs growing under tree cover were found to be high in total vol-
ume and dead biomass but low in total and live biomass and num-
ber of twigs (Vora, 1988). Aboveground estimates of shrub biomass
would be beneficial to wildlife managers and researchers inter-
ested in evaluating habitat for mammals and birds that may use
these shrubs as cover or for nesting. The addition of shrub mea-
surement data and allometric equations to existing forest tree bio-
mass data can lead to a better understanding of forest productivity
and diversity (Elzein et al., 2011; Chojnacky and Milton, 2008).

Aboveground shrub biomass equations are conducive to evalu-
ating fuel loading behavior and fire prediction. Accurate assess-
ments of wildfire behavior require quantitative estimates of
available fuel weights by size category and condition. Categorizing
fuel weights by size class is an important aspect in fire modeling
(Murray and Jacobson, 1982). Size classes are determined by sepa-
rating varying twig and branch diameters. Size classes for twigs
and branches range from 0.1 to 0.6 cm, 0.6 to 2.5 cm, 2.5 to
7.6 cm, and greater than 7.6 cm. (Murray and Jacobson, 1982).
These classes parallel with the 1-h, 10-h, 100-h, and 1000-h time
lags defined in the National Fire Danger Rating (NFDR) system
(Roussopoulos and Loomis, 1979). Time lag fuel categories are
important to aboveground biomass studies because such cate-
gories are used in determining fire severity and intensity. Studies
have shown that predictor variables, such as height and vegetation
cover, can explain observed variation in total live fuel biomass (Sag
lam et al., 2008). Having knowledge of whether biomass from
understory shrubs is either alive or dead while knowing the
time-lags of these fuel elements is important for fire behavior
modelers who are concerned with fire rate of spread and intensity
(Sağlam et al., 2008).

The lack of aboveground shrub biomass equations and the
inability to predict shrub growth and accumulation has affected
the accuracy of assessing forest fuel loads in California’s forests.
Little attention has been given to understory vegetation in these
forests, primarily due to lack of economic value associated with
these woody plants. However, it is important to obtain as much
information about shrub growth and accumulation in these forests
as these factors play a role in fire risk and likelihood over time.
Shrub biomass models are needed to improve decision making in
forest management, especially regarding fire risk and fuel
treatments.

McGinnis et al. (2010) developed over 200 shrub and tree
regression equations for Sierra Nevada, CA forests using stem
diameter, basal area, crown diameter, and crown volume as covari-
ates. The use of such covariates is common in the development of
shrub biomass equations due to their ease of measurement in the
field (McGinnis et al., 2010). The equations developed in this study
produced estimates of biomass essential to predicting potential fire
behavior, carbon sequestration rates, and in assessing wildlife
habitat (McGinnis et al., 2010). Allometric equations that were
developed for shrub species, such as greenleaf manzanita, deer-
brush, and bush chinkapin, in the McGinnis et al. (2010) study also
had total and component biomass equations developed for them in
this study. This will be beneficial to researchers interested in pro-
portional biomass as it relates to the composition of total biomass
and with the development of fire behavior models for wildfire
prevention.

Shrub biomass has been estimated for various aspects of forest
management including fire risk management (Botequim et al.,
2015; Roussopoulos and Loomis, 1979; Sağlam et al., 2008), carbon
sequestration (Pasalodos-Tato et al., 2015, Zeng et al., 2010), eco-
logical stresses or disturbances (Elzein et al., 2011), and wildlife
habitat assessment (Grigal and Ohmann, 1977). Shrub biomass
equations have been developed for forests and landscapes
throughout the world, however, there is a need for site-specific,
localized equations. The addition of shrub measurement data and
allometric equations to existing forest tree biomass data can lead
to a better understanding of forest productivity and diversity
(Elzein et al., 2011). Allometric equations derived outside the forest
ecosystem in question may not take into consideration spatial or
temporal variability that may be present within that ecosystem
(Ritchie et al., 2013).

The objectives of this article are to: (1) develop predictive equa-
tions for estimating aboveground biomass of seven species of
shrubs using metrics easily measured in the field; and (2) assess
the predictive abilities of three fitting strategies for estimating
above ground biomass of woody shrubs common to the forests of
northeastern California.
2. Materials and methods

2.1. Study area

The study area (Fig. 1) is located in Lassen National Forest, U.S.
Forest Service (40�500N, 121�000W). The sampling elevation ranges
from 1700 m to 2100 m. The annual precipitation varies from
584 mm to 1092 mm with a mean of 1041 mm. A majority of
the precipitation comes in the form of snowfall between the
months of November to April. The mean annual temperature is
7 �C, with a mean temperature of �6 �C in January and a mean
temperature of 27 �C in August. Soils are classified as Typic
Argixerolls and Typic Haploxerands, which were formed over col-
luvium, glacial till, or glacial outwash. Common plant associations
within Lassen National Forest include the Jeffery pine (Pinus jeffer-
yi [Grev. & Balf.])/white fir/greenleaf manzanita/snowbrush com-
munities and the California red fir (Abies magnifica [A. Murr.])/
white fir/bush chinkapin communities (found in higher eleva-
tions) (USDA, 2011).



Table 1
Common and scientific names, abbreviations, and total number of shrub samples.

Species (common) Species (scientific) n

Serviceberry Amalanchier alnifolia 28
Greenleaf manzanita Arctostaphylos patula 32
Bush chinkapin Castanopsis sempervirens 20
Mountain whitethorn Ceanothus codulatus 27
Deerbrush Ceanothus integerimus 21
Snowbrush Ceanothus velutinus 26
Ribes spp. Ribes spp. 26

Fig. 1. Map depicting the study area located in Lassen National Forest, California.
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2.2. Data

The data were collected over the summers of 2011–2013. A
total of 180 individual shrubs were sampled to fill a range of four
height classes (0.1–0.5 m, 0.5–1.0 m, 1.0–1.5 m, and 1.5–2.0 m). A
minimum of five shrubs per species within each height class was
desired. Crews determined if the shrub was free to grow or not.
Free to grow, for this study, was defined as whether or not the
shrub crown was encroached by neighboring plants. Shrubs were
only sampled if the crown dimensions could be readily observed
due to the difficulty in measuring such dimensions without
damaging the sample. If a tree or snag had fallen across a shrub,
it was not selected for sampling.

Table 1 lists the shrub species sampled by common and
scientific name and total number of samples obtained for each
shrub. The seven shrubs species include: mountain whitethorn
(Ceanothus cordulatus [Kellogg]), snowbrush (Ceanothus velutinus
[Dougl. ex Hook.]), deerbrush (Ceanothus integerrimus [Hook. and
Arn.]), bush chinkapin (Castanopsis sempervirens [Kellogg]), green-
leaf manzanita (Arctostaphylos patula [Greene]), golden currant/-
gooseberry (Ribes spp. [Pursh]), and serviceberry (Amalanchier
alnifolia [Nutt.]). Ribes spp. includes combined observations of
golden currant (Ribes aureum) and Sierra gooseberry (Ribes roezlii).

Shrubs were destructively sampled within the area of the Stor-
rie Fire of 2000, but not exclusively. In some instances, shrub spe-
cies within the desired size classes were not found, so samples
were found on Blacks Mountain and Swain Mountain Experimental
Forests (located within Lassen National Forest). Ecological knowl-
edge and vegetation maps of the region were used to locate shrubs
within this area. Field crews used a random number table to deter-
mine and set an arbitrary bearing and then walked that direction
until a shrub that had the desired specifications (species; height
within a specified height class) was located. Once a shrub with
the desired specifications was located, its location was noted using
handheld GPS devices, which allowing for location precision to
within 3 to 6 m. A measure of crown width (cm) long (a measure
of the horizontal crown width axis) and crown width short (a hor-
izontal crown width perpendicular to the crown width long mea-
surement) were obtained. Three measurements of height (cm)
were taken for the tallest, second, and third tallest stems. Three
measurements of the largest, second, and third largest basal
diameters (cm) were also obtained at 10 cm aboveground and a
count for the total number of stems was taken. Three measure-
ments were obtained for both diameter because precision
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involving noncircular stems can be improved by averaging the
three measurements. A total of eleven measurements were taken
on each individual shrub.

Plant material was bagged by size class. Size classes used were
adopted from the NFDR fuel classification system. Size classes
include leaf (foliage), 1-h fuels (wood <0.64 cm in diameter), 10-
h fuels (wood 0.64–2.54 cm in diameter), 100-h fuels (wood
2.54–7.62 cm in diameter), and 1000-h fuels (wood >7.62 cm in
diameter) (Bradshaw et al., 1983). Total biomass is comprised of
1-h, 10-h, 100-h, 1000-h, and leaf biomass components (kg). Wood
and leaves were bagged by size class and labeled denoting species,
date, and size class of the material. Samples were stored in a dry
room until the fall, when oven drying of the samples occurred.

Plant material was oven dried at 80 �C until weight was stabi-
lized (generally 2–3 days). Weight of the leaves and 1-h biomass
was processed first. Oven-dry biomass (g) for leaf biomass, 1-h,
10-h, 100-h, and 1000-h fuels were recorded. It should be noted
that there was no plant material that was greater than 22.4 cm
in diameter and very little of the recorded biomass fell into the
1000-h fuel class.
2.3. Data analysis

Crown area was considered as a predictor of shrub biomass due
to accurate results obtained in past studies involving the estimation
of shrub biomass (McGinnis et al., 2010; Zeng et al., 2010; Maraseni
et al., 2005). Crown area (m2) is calculated as: CA ¼ cwl � cws � p

40;000
Fig. 2. Scatterplot depicting the relationship between crown ar
and is defined in this study as the area of a vertical projection of the
crown to a horizontal plane (Uzoh and Ritchie, 1996).

It should be noted that increasing the sample size for each
shrub species would have been beneficial to this analysis, as the
size of the sample dictates the amount of information available
for that shrub species and determines precision in the sample esti-
mates. Increasing the amount of shrub species sampled in the field
costs additional time and money, however, this may be desirable
for obtaining a more robust sample of the population. Increasing
the sample size may help to decrease sampling error, however,
the allometry inherent within these shrubs will contribute to vary-
ing degrees of uncertainty within the estimates.

Several nonlinear growth models were considered to fit the
data, including a multivariable (mean height (hh) and crown area)
allometric model and a single variable power model that used
mean height as a predictor of biomass. The model form for the
multivariable allometric model was:

Yij ¼ aXb
1ijX

c
2ij þ eij; i ¼ 1; . . . ;m; j ¼ 1; . . . ;ni;

where m is the number of components, ni is the number of
observations on the ith component, Yij is the jth shrub observation
on the ith component, X1ij is crown area for the jth shrub observa-
tion on the ith component, X2ij is mean height for the jth shrub
observation on the ith component, a, b, and c are regression coeffi-
cients, and eij is the additive error term for jth shrub observation on
the ith component, assumed to be normal (0, r2).
ea (CA) and total biomass for the seven species of shrubs.



Fig. 3. Scatterplot depicting the correlation between mean height (hh) and total biomass for the seven species of shrubs.
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A single variable allometric equation in the form of:

Yij ¼ aXb
ij þ eij;

where Yij; a; b; and eij are as defined above and Xij is crown area for
the jth shrub observation on the ith component was also consid-
ered. A third model examined mean height alone as a predictor in
lieu of crown area, with model form remaining the same as previ-
ously defined. The scatterplots shown in Figs. 2–4 depict a nonlinear
relationship between crown area and total biomass and mean
height and total biomass, respectively.Individual shrubs were sub-
set by species. Starting values for nonlinear regression analysis
were obtained for total, 1-h, and leaf biomass by fitting a linear
log-log regression model in the form of:

logðYijÞ ¼ aþ b logðXijÞ þ eij;

where Yij, Xij, a, b, and eij are as previously defined. The starting val-
ues for the multivariable allometric model were obtained for total,
1-h, and leaf biomass by fitting a linear log-log model in the form of:

logðYijÞ ¼ aþ b logðX1ijÞ þ c logðX2ijÞ þ eij;

where Yij; X1ij, a; b; and eij are as previously defined, with c being a
regression parameter, and X2ij representing mean height. Starting
values for all 10-h and 100-h biomass components for both the sin-
gle and multivariable allometric models were obtained by fitting
simple linear models in the form of:
Yij ¼ aþ bXij þ eij and Yij ¼ aþ bX1ij þ cX2ij þ eij;

with all variables as defined previously. It should be noted that
1000-h biomass estimates were not calculated by NLS here due to
the low occurrence (8 observations across all species) of this size
class within each species. A simple linear log equation for the
1000-h component was instead created for shrubs that possessed
these observations and is not reported.

Three fitting strategies, including weighted nonlinear least
squares regression (WNLS), seemingly unrelated regression
(SUR), and multinomial log-linear regression (MLR) were examined
to estimate above ground biomass for seven shrub species com-
mon to northeastern California.

2.4. Weighted nonlinear least squares regression

Individual shrub biomass was fit using weighted nonlinear

regression, Yij ¼ aXb
ij þ eij, where eij � N 0; r̂2wt

� �
and wt ¼ 1

CA2i
. When

heteroscedasticity is present within the regression model, the vari-
ance covariance matrix will have the following form:

r2ðeÞ ¼

r2
1=wt 0 � � � 0

..

.
r2

2=wt . .
. ..

.

0 0 � � � r2
n=wt

2
66664

3
77775



Fig. 4. Scatterplot depicting the correlation between mean diameter (dd) and total biomass for the seven species of shrubs.
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where r2
1;r2

2; . . .r2
n represent differing variances for each error

term. The weighted least squares estimate b̂WLS is obtained as
(X0WX)�1X0WY, where W is the diagonal matrix of weights defined
as

W ¼
w1 0 � � � 0

..

.
w2

. .
. ..

.

0 0 � � � wn

2
664

3
775

where wi ¼ 1
r2
i
is equal to a value that is proportional to the variance

of the error term (eij).
Weighted regression in the form of 1

CA was employed to correct
heteroscedasticity present in the data for all shrub species. The
presence of local minima was checked by repeatedly fitting the
model with varying initial values. Starting values obtained from
the log-log models provided the smallest sum of squares for the
parameter estimates.

Furnival’s (Furnival, 1961) Index was calculated to compare dif-
ferent weighting options between the single variable and the mul-
tivariable power models. The index compares the fit of different
weight functions and is defined as

FI ¼ exp
P
Pn

i¼1ðln caÞi
n

� �
� RSE;

where P is a scalar that is half the value of the power used for the
weight variable and RSE is residual standard error. Lower values
of Furnival’s Index indicate a better fit of the model.
Akaike’s Information Criterion was used to measure the relative
quality of the allometric models and is defined as:

AIC ¼ �2lnLþ 2q;

where (L) is the likelihood function for the model and q is equal to
the number of parameter(s) the model contains. The lowest values
of AIC were obtained from using the 1

ca2
i
weighting option across the

seven shrub species.

2.5. Seemingly unrelated regression

Seemingly unrelated regression (SUR) was used to develop a
system of equations for the nonlinear models. Statistical depen-
dencies (simultaneous correlations) among sample data are
accounted for by using nonlinear seemingly unrelated regression
(Parresol, 2001; Kralicek et al., 2017). The structural equations
for systems of nonlinear models were specified as

Yl ¼ f 1ðX1; b1Þ þ e1
Y2 ¼ f 2ðX2;b2Þ þ e2

..

.

YL ¼ f LðXL; bLÞ þ eL
Ytotal ¼ f totalðX1;X2; . . . ;XL;b1;b2; . . . ;bLÞ þ etotal;

where each component model contains its own independent
variables and the total shrub regression is a function of all the
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independent variables used. e1,. . .,eL are independent across compo-
nent, but may have cross-equation contemporaneous correlation.

The nonlinear model for total shrub biomass must be a combi-
nation of component biomass models to be additive (Parresol,
2001). Additivity of nonlinear equations is ensured by setting con-
straints on the regression coefficients. Since components are not
independent of one another, there may be contemporaneous corre-
lations. The strength of these correlations determines the increase
in efficiency (Parresol, 2001).

SUR was performed to fit a nonlinear system of equations for
biomass components within each species by defining individual
components as

1-hour biomass¼a1 �cab1 ;

10-hour biomass¼a2 �cab2 ;

100-hour biomass¼a3 �cab3 ;

1000-hour biomass¼a4 �cab4 ;

Leaf biomass¼a5 �cab5 ;

Total biomass¼ða1 �cab1 Þþða2 �cab2 Þþða3 �cab3 Þþða4 �cab4 Þþða5 �cab5 Þ;

where a and b are regression coefficients obtained from previous
model fits and CA is equal to crown area. The residuals obtained
from a fitted simultaneous system of equations may exhibit corre-
lation because the component biomasses come from the same
shrub (Poudel and Temesgen, 2015). A SUR model was developed
that combined all wood biomass together into a new component
named wood. Leaf biomass was modeled separately from the wood
component since total aboveground shrub biomass is composed of
both wood and leaf biomass and because both components come
from the same shrub. The model form is as follows:

1-hourþ 10-hourþ 100-hourþ 1000-hour ¼ ðwoodÞ ¼ ða1 � cab1 Þ;
Leaf biomass ¼ ða5 � cab5 Þ;
Total biomass ¼ ða1 � cab1 Þ þ ða5 � cab5 Þ;

where (a1 � cab1 Þ is equal to all wood biomass (wood) and (a5 � cab5 Þ
is equal to leaf biomass for each shrub species. Root mean squared
error (RMSE) was obtained for both models after seemingly unre-
lated regression was applied.

2.6. Multinomial log-linear regression

Multinomial log-linear regression (MLR) was used to predict
proportions of total shrub biomass found in 1-h, 10-h, 100-h,
1000-h, and leaf biomass components. The model form used for
component proportions were

pK1 ¼ 1
1þ eða1þa2caÞ þ eðb1þb2caÞ þ eðc1þc2caÞ þ eðd1þd2caÞ 1-hour

pK2 ¼ eða1þa2caÞ

1þ eða1þa2caÞ þ eðb1þb2caÞ þ eðc1þc2caÞ þ eðd1þd2caÞ 10-hour

pK3 ¼ eðb1þb2caÞ

1þ eða1þa2caÞ þ eðb1þb2caÞ þ eðc1þc2caÞ þ eðd1þd2caÞ 100-hour

pK4 ¼ eðc1þc2caÞ

1þ eða1þa2caÞ þ eðb1þb2caÞ þ eðc1þc2caÞ þ eðd1þd2caÞ 1000-hour

pKL ¼
eðd1þd2caÞ

1þ eða1þa2caÞ þ eðb1þb2caÞ þ eðc1þc2caÞ þ eðd1þd2caÞ Leaf ;

where pK1, pK2, pK3, pK4, and pKL are proportions of total shrub
biomass found in 1-h, 10-h, 100-h, 1000-h, and leaf biomass,
respectively; CA = crown area; and ai, bi, ci, and di (i = 1, 2) are model
parameters (Poudel and Temesgen, 2015).

Predicted proportions were applied to observed total above-
ground shrub biomass in order to obtain predicted biomass
estimates in different components by applying the function
multinom in the package nnet in R version 3.2.2. (Poudel and
Temesgen, 2015). MLR was used to compare individual proportions
of biomass components separately and for when different combi-
nations of fuel classes were combined, namely the combination
of 100-h and 1000-h components and the grouping of 10-h and
100-h components together while omitting the 1000-h component
from the fitting process.

2.7. Parameter estimation

Equation parameters in MLR were estimated with the Gauss-
Newton optimization technique in a weighted, nonlinear least
squares procedure in R. After comparing different weighting
schemes, a weight of 1/CA2 was used based on the Furnival Index.
Initial approximations for each parameter were obtained from lin-
ear transformation of the equations, where possible. The starting
value of each parameter was varied to find a global minimum,
and the run with the smallest MSE was chosen as providing the
final parameter estimates. The assumption of homoscedasticity of
the weighted residuals was tested using the Goldfield-Quandt test
(Goldfield and Quandt, 1965). The test indicated homogenous vari-
ances over the full range of predicted values at a 0.05 a level.

2.8. Fitting strategy comparison and selection

The performance of the three fitting strategies were examined
using residual plots and a jackknife, exclude-one-plant validation
technique (Stone, 1974). One shrub from each species was
excluded from the data set, and the selected models were fitted
using the rest of the data for that shrubs species. Then, the models
were used to predict the AGB of the excluded shrub. The same pro-
cess was repeated for every shrub of that species in the data set.

The following jackknife cross-validation statistic was applied to
the cumulative data from the excluded shrubs to evaluate the per-
formance of the three fitting strategies:

(1) Prediction bias

Bias ¼ 1
n

Xn
i¼1

ðYi � bY iÞ;

where Yi is the observed ith shrub, bYi is the predicted unweighted
value of the ith shrub, and n is equal to sample size. In statistics, bias
is referred to as the difference between the true value of an
unknown parameter of interest and the expected value of its esti-
mator. In the context of this study, bias is defined as the mean dif-
ference between the measured value and the predicted value of the
variable of interest (Poudel and Temesgen, 2015).

(2) Root mean squared prediction error (RMSPE)

RMSPE ¼ 1
n

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYi � bY iÞ

2
q

;

where Yi is the observed ith shrub, bYi is the predicted unweighted
value of the ith shrub, and n is equal to sample size.

(3) Relative root mean squared prediction error (RRMSPE)

RRMSPE ¼ RMSPE
�y

� 100;

where �y is the mean value of the response variable being modeled
(biomass component) and RMSPE is as described above
(unweighted). Relative root mean square prediction error is a
relative error expressed as a percentage and is obtained after cross
validation has been performed. RRMSPE evaluates the relative
closeness of the predictions to the actual values.



Table 2
Summary statistics used for data analysis. Kt = total biomass, K1 = 1-h biomass, K2 = 10-h biomass, K3 = 100-h biomass, and KL = leaf biomass (kg).

Response Predictor

Species Variable Minimum Maximum Mean Std Dev Variable Minimum Maximum Mean Std Dev

Serviceberry (kg) Kt 0.008 5.08 1.09 1.57 Height (cm) 10.00 200.00 77.79 61.83
K1 0.004 1.44 0.34 0.45
K2 0.000 2.47 0.56 0.84 Crown area (m2) 0.05 2.51 0.81 0.76
K3 0.000 0.59 0.71 0.15
KL 0.002 0.39 0.09 0.11 Diameter (cm) 0.39 3.47 1.62 0.99

Manzanita (kg) Kt 0.080 3.92 1.09 1.24 Height (cm) 19.00 190.00 77.13 39.32
K1 0.004 0.62 0.20 0.20
K2 0.000 1.99 0.42 0.51 Crown area (m2) 0.02 2.78 0.91 0.84
K3 0.000 1.79 0.21 0.43
KL 0.004 0.97 0.26 0.28 Diameter (cm) 0.54 6.71 2.11 1.45

Chinkapin (kg) Kt 0.023 4.27 0.87 1.15 Height (cm) 19.00 105.00 63.00 24.31
K1 0.007 1.21 0.22 0.31
K2 0.000 1.96 0.32 0.48 Crown area (m2) 0.05 2.83 0.87 0.81
K3 0.000 0.56 0.09 0.18
KL 0.012 0.82 0.24 0.27 Diameter (cm) 0.45 3.91 1.82 1.02

Whitethorn (kg) Kt 0.003 21.66 1.75 4.41 Height (cm) 6.00 193.00 52.08 41.38
K1 0.001 2.76 0.49 0.76
K2 0.000 6.34 0.56 1.35 Crown area (m2) 0.04 4.09 1.28 1.20
K3 0.000 8.86 0.41 1.76
KL 0.002 1.88 0.18 0.38 Diameter (cm) 0.26 8.88 1.86 1.74

Deerbrush (kg) Kt 0.012 3.65 0.48 0.84 Height (cm) 31.00 122.00 64.71 28.03
K1 0.008 2.01 0.23 0.44
K2 0.000 0.93 0.15 0.24 Crown area (m2) 0.13 4.07 1.13 0.98
K3 0.000 0.10 0.01 0.03
KL 0.002 0.70 0.09 0.16 Diameter (cm) 0.49 2.60 1.20 0.61

Snowbrush (kg) Kt 0.013 8.72 1.37 1.90 Height (cm) 13.00 194.00 64.46 38.76
K1 0.006 2.00 0.15 0.47
K2 0.000 3.72 0.78 0.80 Crown area (m2) 0.05 4.49 1.34 1.22
K3 0.000 0.78 0.15 0.24
KL 0.006 1.84 0.33 0.41 Diameter (cm) 0.52 4.19 1.87 0.94

Ribes spp. (kg) Kt 0.003 8.46 0.85 1.87 Height (cm) 12.00 159.00 51.81 34.88
K1 0.002 2.08 0.25 0.46
K2 0.000 3.16 0.34 0.79 Crown area (m2) 0.03 3.99 0.92 1.04
K3 0.000 0.41 0.04 0.09
KL 0.001 2.23 0.17 0.05 Diameter (cm) 0.09 3.46 1.17 0.84
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In order to observe model behavior, plots of predicted values
versus observed biomass values were created. Plots were also cre-
ated showing the relationship between the fitted model values
against the model’s standardized residuals. All statistical analysis
was performed in R (R Core Team, 2016), except for SUR, which
was performed using SAS software.
3. Results

Allometric equations were formulated across seven different
species of shrubs using weighted nonlinear least squares regres-
sion. Five individual biomass components were used to develop
these equations so that allometric relationships within each spe-
cies may be better understood. The results provide evidence that
the power model provides unbiased estimates for most species
and biomass components, but provides somewhat inconsistent
measures of accuracy due to variability within shrub species and
biomass components. SUR provided efficient estimates for most
species and biomass components. MLR resulted in unbiased esti-
mates across all species and components and provided low values
of RMSE.

Data were organized into two separate categories: shrub green
weights (weights of biomass size classes obtained in the field (g))
and shrub dry weights (weights of biomass size classes after oven
drying). Serviceberry had the greatest value for mean height
(77.8 cm) with a minimum height of 10 cm and a maximum height
of 200 cm. Greenleaf manzanita possessed the largest mean basal
diameter (2.1 cm) with a minimum basal diameter of 0.5 cm and
a maximum basal diameter of 6.7 cm. Snowbrush had the greatest
mean value of crown area (1.3 m2) with a minimum crown area
equal to 0.1 m2 and a maximum crown area equal to 4.5 m2. Moun-
tain whitethorn possessed the largest mean total biomass (1.8 kg)
with minimum and maximum weights equal to 0.1 kg and 21.7 kg,
respectively. Deerbrush had the lowest mean total biomass (0.5 kg)
with minimum and maximum weights equal to 0.1 kg and 8.5 kg,
respectively (Table 2).

Fig. 2 depicts the relationship between total shrub biomass and
crown area. Although serviceberry had a smaller observed crown
area, there is some variability between total biomass and crown
area. Total shrub biomass increases as crown area increases for
all shrubs. Figs. 3 and 4 illustrate the relationship between total
shrub biomass and mean height and mean diameter for all shrub
species. Total shrub biomass increases as mean height increases,
although the increase in total biomass is not well defined for some
shrub species. For example, for greenleaf manzanita, the increase
in total biomass in relation to mean height increase tends to be less
pronounced than other shrubs. Bush chinkapin exhibits variability
in total shrub biomass when mean height is 70 cm, with biomass
increasing when mean height is less than 70 cm and decreasing
when mean height is greater than 70 cm. The scatterplots help to
depict the variability that is present in total shrub biomass when
mean height is considered as a covariate.

3.1. Weighted nonlinear least squares regression

Table 3 provides parameter estimates for total biomass for all
shrub species using an unweighted, 1

CAi
and 1

CA2i
, weighting options.

RMSPE tends to increase slightly for five of the species when the



Table 3
Differences in weighting options for total biomass by species using crown area (CA) as a covariate. Standard errors of the coefficients are shown in parentheses. a and b are
regression coefficients, Var = estimated variances for a and b, and RMSPE = root mean square prediction error (kg).

Species Coefficients (standard error) Estimated variances Goodness of fit statistics

Serviceberry a b Var(â) Var(b̂) RMSPE Bias Furnival’s Index

Unweighted 1.4002 (0.2919) 1.0682 (0.3031) 0.0852 0.0919 1.1365 �0.0818 0.18
1/CA 1.2289 (0.2108) 1.3223 (0.2496) 0.0444 0.0623 1.1498 �0.023 0.14
1/CA^2 1.1322 (0.1615) 1.5412 (0.1897) 0.0261 0.036 1.1862 �0.0301 0.13
Greenleaf manzanita a b Var(â) Var(b̂) RMSPE Bias Furnival’s Index

Unweighted 1.1652 (0.1726) 1.0945 (0.1903) 0.0297 0.0362 0.6714 0.0003 0.13
1/CA 1.1627 (0.1396) 1.1036 (0.1563) 0.0195 0.0244 0.6628 �0.0013 0.13
1/CA^2 1.1400 (0.1457) 1.2231 (0.1247) 0.0212 0.0156 0.6675 �0.0361 0.15
Bush chinkapin a b Var(â) Var(b̂) RMSPE Bias Furnival’s Index

Unweighted 0.7296 (0.0951) 1.6834 (0.1552) 0.0091 0.0241 0.3196 0.0425 0.06
1/CA 0.7902 (0.0869) 1.5718 (0.1440) 0.0076 0.0206 0.3231 0.0233 0.06
1/CA^2 0.8618 (0.0857) 1.3569 (0.1145) 0.0073 0.0131 0.3857 0.0341 0.08
Mountain whitethorn a b Var(â) Var(b̂) RMSPE Bias Furnival’s Index

Unweighted 1.5047 (1.1227) 0.9931 (0.6759) 1.2605 0.4568 4.364 �0.259 1.98
1/CA 1.0549 (0.6983) 1.3573 (0.6166) 0.4876 0.3802 4.4242 �0.1135 1.26
1/CA^2 0.8145 (0.4136) 1.6497 (0.4956) 0.1711 0.2457 4.2574 �0.0281 0.80
Deerbrush a b Var(â) Var(b̂) RMSPE Bias Furnival’s Index

Unweighted 0.2181 (0.0433) 1.9995 (0.1579) 0.0019 0.0249 0.2919 0.0419 0.12
1/CA 0.2265 (0.0424) 1.9662 (0.1634) 0.0018 0.0267 0.2653 0.0259 0.09
1/CA^2 0.2436 (0.0404) 1.8852 (0.1720) 0.0016 0.03 0.2779 0.0227 0.08
Snowbrush a b Var(â) Var(b̂) RMSPE Bias Furnival’s Index

Unweighted 0.8938 (0.3038) 1.2074 (0.2914) 0.0922 0.083 2.0318 �0.1937 0.63
1/CA 0.8153 (0.1882) 1.2987 (0.2175) 0.0354 0.0473 1.6128 �0.0676 0.37
1/CA^2 0.7583 (0.1029) 1.3905 (0.1371) 0.0106 0.0188 1.4027 �0.0289 0.25
Ribes a b Var(â) Var(b̂) RMSPE Bias Furnival’s Index

Unweighted 0.2963 (0.0829) 2.3462 (0.2140) 0.0069 0.0458 0.8313 0.1586 0.06
1/CA 0.3790 (0.0768) 2.1499 (0.1629) 0.0059 0.0265 0.7263 0.0643 0.05
1/CA^2 0.5070 (0.0740) 1.8707 (0.1389) 0.0055 0.0193 0.8228 0.0484 0.04
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weight 1
ca2

i
was employed. The increase in RMSPE was nominal, with

the largest gap between 1
CAi

and 1
CA2i

being 0.10 kg (Ribes spp.). Bias

was negligible for all shrub species and there was a noticeable
decrease in the standard error of the coefficients as heavier weight-
ing options were employed. Furnival’s index was lowest for ser-
viceberry, mountain whitethorn, deerbrush, snowbrush, and Ribes
spp., indicating a better model fit. Akaike’s Information Criterion
(AIC) was applied to determine best model fit for the three weight-
ing options. Although the b parameter estimates for serviceberry,
greenleaf manzanita, mountain whitethorn, and snowbrush
increase when this weight is applied, the standard errors of the
coefficients are lowest when compared to the other weighting
schemes. The increases in the b parameter estimate values are
likely caused by high amounts of variability found within the data,
especially for larger shrubs like mountain whitethorn and snow-
brush. Model fits were deemed best when weights were equal to
1
ca2

i
: Using the single variable power model with crown area as a

predictor resulted in convergence for the 10-h and 100-h biomass
components for all species.

The power model performed well in terms of bias with values
remaining very low for almost all of the biomass components.
RMSPE and RRMSPE varied between species and components,
which was somewhat expected given the sporadic sprouting and
branching characteristics that each of these shrubs possesses.
Overall, the power model exhibited the most stability within the
1-h and leaf biomass components for all species, with the excep-
tion of mountain whitethorn, using weighted nonlinear least
squares regression (Fig. 5). Inflated values of RRMSPE results indi-
cate that the model has a large amount of variation between the
predicted and observed biomass values. The precision of the power
model for mountain whitethorn can therefore be defined as poor
across all biomass components. All parameter estimates and good-
ness of fit statistics for each shrub species and biomass component
are found in Table 4.
All RRMSPE values increased sharply from the 10-h component
to the 100-h component. There is a 63.25 kg difference between
the 10-h and 100-h biomass components. A total of 160 shrubs
had biomass that fell within the 10-h component diameter range
whereas only 72 shrubs had biomass that fell within the 100-h
component diameter range. The resulting RRMSPE values from
each species’ model fit explain that the model is unstable for the
100-h biomass component.

3.2. Seemingly unrelated regression

Seemingly unrelated regression (SUR) was used to construct
aboveground biomass equations for all shrub species. A combined
wood SUR model was constructed that grouped all woody biomass
into one component called wood. Tables 5 and 6 depict parameter
estimates and standard errors for both the combined wood and
individual component SUR models. Overall, combining wood into
one category caused total biomass RMSE to decrease when com-
pared to the components fit in the individual component model.
This was most apparent with serviceberry and mountain white-
thorn observations, where total biomass RMSE decreased by
0.19 kg and 2.08 kg for each species, respectively. These species
had large values of total biomass and had observations that fell
within the 100-h and 1000-h biomass components. Combining
the wood observations helped decrease error somewhat, however,
inference concerning individual fuel classes is also lost in this
process.

3.3. Multinomial log-linear regression

Results from MLR unbiasedly predicted component proportions
for all shrub species. Table 7 provides RMSE and RRMSE for all bio-
mass components, with the 1-h biomass component being used as
the reference equation. RMSE and RRMSE were highest within the
100-h biomass component. For species that had observations that



Fig. 5. Scatter plots of total biomass (Kt) vs average height, crown area, and average diameter for all shrub species.
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fell within the 1000-h component, RMSE and RRMSE were equally
or more inflated. Mean RRMSE across all species and the 100-h bio-
mass component is 140.43%.

RMSE and RRMSE values improved when the 100-h and 1000-h
components were combined, as seen in Table 8. When these two
components are combined, the RRMSE for species that had 1000-
h observations decreased within the 100-h + 1000-h component.
This was most evident with serviceberry and snowbrush. Mean
RRMSE across all species within the 100-h + 1000-h component
is 119.64%.
The 10-h and 100-h biomass components were grouped and the
1000-h component was dropped from the fitting process, as
depicted in Table 9. Shrub species that did not contain 1000-h
observations were unbiased, however, results were biased for ser-
viceberry, mountain whitethorn, snowbrush, and Ribes spp. While
RRMSE values for this grouping method are much more reasonable
when compared to the results shown in Table 7, the bias% apparent
in species that had 1000-h observations that were dropped from
the analysis are concerning. Mean RRMSE for the 100-h + 1000-h
component while omitting the 1000-h observations is 35.22%.



Table 4
Weighted nonlinear least squares parameter estimates for total, 1-h, 10-h, 100-h, and leaf biomass components (kg) by species for power model with crown area as a predictor.
Standard errors of the coefficients are shown in parentheses. Weights = 1/CA2, a and b are regression coefficients, Var = estimated variances for a and b, RMSPE = root mean square
prediction error (kg), RRMSPE = relative root mean square prediction error, and FI = Furnival’s Index.

Species Coefficients (standard error) Goodness of fit statistics

Serviceberry a b RMSPE RRMSPE Bias FI

Total biomass 1.1322 (0.1615) 1.5412 (0.1897) 1.19 108.65 �0.03 0.13
1-h 0.3867 (0.0454) 1.3643 (0.1344) 0.34 98.17 �0.01 0.04
10-h 0.5363 (0.0920) 1.7063 (0.2447) 0.63 27.77 �0.01 0.07
100-h 0.0799 (0.0265) 1.4352 (0.4079) 0.16 219.31 �0.01 0.02
Leaf 0.1017 (0.0114) 1.2857 (0.1176) 0.08 96.65 0.00 0.01

Greenleaf manzanita a b RMSPE RRMSPE Bias FI
Total biomass 1.1627 (0.1396) 1.1036 (0.1563) 0.67 61.04 �0.04 0.15
1-h 0.2243 (0.0168) 0.9652 (0.0924) 0.09 43.93 0.00 0.02
10-h 0.4102 (0.0437) 1.2899 (0.1407) 0.23 96.07 0.03 0.04
100-h 0.2255 (0.0892) 1.1253 (0.5173) 0.40 187.39 0.00 0.08
Leaf 0.2910 (0.0276) 0.9703 (0.1172) 0.16 60.99 0.00 0.03

Bush chinkapin a b RMSPE RRMSPE Bias FI
Total biomass 0.8618 (0.0857) 1.3569 (0.1145) 0.39 44.50 0.03 0.08
1-h 0.2222 (0.0264) 1.2219 (0.1203) 0.17 77.42 0.02 0.02
10-h 0.2971 (0.0356) 1.5678 (0.1552) 0.21 138.55 0.01 0.03
100-h 0.0525 (0.0230) 2.3048 (0.5512) 0.45 511.61 �0.08 0.01
Leaf 0.2570 (0.0398) 1.0265 (0.1247) 0.13 54.44 0.01 0.03

Mountain whitethorn a b RMSPE RRMSPE Bias FI
Total biomass 0.8145 (0.4136) 1.6497 (0.4956) 4.26 243.62 �0.03 0.80
1-h 0.2855 (0.0513) 1.3951 (0.1820) 0.65 133.64 �0.02 0.11
10-h 0.2217 (0.1283) 1.8231 (0.5433) 1.38 338.02 �0.04 0.23
100-h 0.1719 (0.1877) 1.7587 (1.0397) 1.90 465.91 �0.04 0.35
Leaf 0.1080 (0.0311) 1.3660 (0.2909) 0.37 206.61 �0.01 0.07

Deerbrush a b RMSPE RRMSPE Bias FI
Total biomass 0.2436 (0.0404) 1.8852 (0.1720) 0.28 57.52 0.02 0.08
1-h 0.1109 (0.0204) 1.9640 (0.1853) 0.23 99.41 0.03 0.04
10-h 0.0759 (0.0149) 1.8593 (0.2056) 0.12 46.82 �0.01 0.03
100-h 0.0084 (0.0035) 1.7097 (0.45369) 0.07 479.44 �0.01 0.01
Leaf 0.0452 (0.0071) 1.8413 (0.1669) 0.08 87.47 0.00 0.01

Snowbrush a b RMSPE RRMSPE Bias FI
Total biomass 0.7583 (0.1029) 1.3905 (0.1371) 1.40 102.23 �0.03 0.25
1-h 0.2164 (0.0293) 1.2819 (0.1342) 0.35 97.26 �0.01 0.07
10-h 0.2506 (0.0495) 1.5353 (0.1970) 0.64 44.72 �0.02 0.11
100-h 0.0675 (0.0209) 1.5998 (0.3058) 0.23 157.92 �0.01 0.04
Leaf 0.2106 (0.0182) 1.1937 (0.0820) 0.26 77.83 0.00 0.05

Ribes a b RMSPE RRMSPE Bias FI
Total biomass 0.5070 (0.0740) 1.8707 (0.1389) 0.82 96.45 0.05 0.04
1-h 0.2176 (0.0200) 1.3731 (0.0940) 0.19 76.43 0.02 0.01
10-h 0.1550 (0.0323) 2.1634 (0.1818) 0.20 26.77 0.00 0.02
100-h 0.0307 (0.0092) 1.4649 (0.3138) 0.09 255.66 0.00 0.01
Leaf 0.0885 (0.0214) 2.0391 (0.2185) 0.36 204.75 0.02 0.01

Table 5
Parameter estimates and their standard errors for the combined wood seemingly unrelated regression (SUR) models for all shrub species. The combined wood model consists of
all wood components combined (wood = 1-h + 10-h + 100-h + 1000-h) and leaf biomass is modeled separately. a1, a2, b1, and b2 are parameter estimates.

Serviceberry Greenleaf manzanita Bush chinkapin Mountain whitethorn

Parameter Estimate Standard Error Parameter Estimate Standard Error Parameter Estimate Standard Error Parameter Estimate Standard Error

a1 1.1908 0.2656 a1 0.8763 0.151 a1 0.4373 0.0732 a1 1.3273 1.0029
b1 1.2164 0.3092 b1 1.1324 0.2201 b1 1.9894 0.1916 b1 1.0183 0.6796
a2 0.1131 0.0182 a2 0.2921 0.0382 a2 0.2676 0.0385 a2 0.1675 0.1144
b2 0.9344 0.2263 b2 0.9529 0.1707 b2 1.0975 0.1871 b2 0.8386 0.6374

Deerbrush Snowbrush Ribes

Parameter Estimate Standard Error Parameter Estimate Standard Error Parameter Estimate Standard Error

a1 0.1749 0.0361 a1 0.6838 0.2521 a1 0.377 0.0705
b1 2.011 0.1638 b1 1.2081 0.3162 b1 1.9709 0.1466
a2 0.0298 0.0053 a2 0.2101 0.0574 a2 0.0001 1.5E�05
b2 2.2465 0.1394 b2 1.2066 0.234 b2 8.8828 1.1044
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However, the omission of the 1000-h component from the analysis
caused species that actually had observed values of the 1000-h
component to become biased (mean bias% equal to �4.43% across
species with 1000-h observations).
The MLR method produced RMSE values that were lower than
both the combined wood and individual component SUR methods.
Using serviceberry and mountain whitethorn as examples, values
of RMSE were considerably lower for these three species across



Table 6
Parameter estimates and their standard errors for the individual component seemingly unrelated regression (SUR) models for all shrub species. The individual component model
is comprised of all biomass components modeled separately. a1, a2, b1, and b2 are parameter estimates.

Serviceberry Greenleaf manzanita Bush chinkapin Mountain whitethorn

Parameter Estimate Standard Error Parameter Estimate Standard Error Parameter Estimate Standard Error Parameter Estimate Standard Error

a1 0.4649 0.0336 a1 0.2078 0.0202 a1 0.1317 0.0277 a1 0.4227 0.0542
b1 1.2538 0.1308 b1 1.0557 0.122 b1 2.1265 0.237 b1 1.3839 0.1365
a2 0.7437 0.0717 a2 0.3113 0.0514 a2 0.1857 0.0406 a2 0.3289 0.0573
b2 1.437 0.1644 b2 1.6682 0.1929 b2 2.2223 0.2432 b2 2.0187 0.1639
a3 0.0495 0.0236 a3 0.214 0.1012 a3 0.0956 0.0405 a3 0.2143 0.0637
b3 2.1106 0.5693 b3 1.1461 0.6002 b3 1.4934 0.5177 b3 2.4114 0.2316
a4 0.0303 0.0154 a4 N/A N/A a4 N/A N/A a4 0.0445 0.0129
b4 2.4905 0.5521 b4 N/A NA b4 N/A NA b4 2.521 0.232
a5 0.1285 0.0102 a5 0.2794 0.0388 a5 0.2571 0.0387 a5 0.1201 0.0226
b5 1.0753 0.1378 b5 1.0166 0.1798 b5 1.1526 0.194 b5 1.7735 0.1733

Deerbrush Snowbrush Ribes

Parameter Estimate Standard Error Parameter Estimate Standard Error Parameter Estimate Standard Error

a1 0.5758 0.0118 a1 0.2517 0.0284 a1 0.1774 0.0199
b1 2.5491 0.1528 b1 1.0534 0.1369 b1 1.6725 0.0937
a2 0.0625 0.0159 a2 0.3041 0.0291 a2 0.1253 0.0242
b2 1.9903 0.1991 b2 1.2848 0.1074 b2 2.3357 0.1452
a3 0.0149 0.0062 a3 0.1064 0.0309 a3 0.0067 0.0035
b3 0.785 0.441 b3 1.0362 0.2623 b3 2.3289 0.2462
a4 N/A N/A a4 0.0201 0.0082 a4 0.0237 0.0044
b4 N/A N/A b4 0.9999 0.3025 b4 2.4044 0.1576
a5 0.0247 0.0047 a5 0.2152 0.033 a5 0.0001 2.20E�09
b5 2.4016 0.1432 b5 1.1546 0.1453 b5 9.9887 1.1533
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the 1-h, 10-h, 100-h + 1000-h, and leaf biomass components for
MLR (Table 8). When comparing RMSE for the individual compo-
nent SUR and MLR methods, RMSE for the 1-h component was
23.1% lower, RMSE for the 10-h component was 23.9% lower, and
RMSE for the leaf component was 46.5% lower for serviceberry
using MLR. There was a noticeable difference with the combined
100-h + 1000-h component for mountain whitethorn using MLR
and the individual component SUR method. The RMSE for the
mountain whitethorn 100-h component using SUR was 2.3594 kg
and 0.4857 kg for the 1000-h component. The combined 100-h
+ 1000-h component RMSE using MLR was 0.885. Although RRMSE
for this component using MLR was 170.98%, the overall reduction
in RMSE demonstrates that the MLR method is accounting for the
variation present within larger biomass components more effi-
ciently than the SUR model is. MLR mostly resulted in low RMSE
values and provided estimates that were unbiased, except when
a component (1000-h) was omitted. This is because MLR ensures
that the predicted component proportions all add to 1 (Poudel
and Temesgen, 2015). Given these results, using the 100-h
+ 1000-h component to obtain proportions of component biomass
would be the preferred approach to estimate total shrub biomass
for MLR, given similar biomass components and shrub species.
4. Discussion

4.1. Equation development

Large shrubs measured in the field have a major influence on
the accuracy (higher RMSPE) of the power model for mountain
whitethorn, snowbrush, and serviceberry. Due to the nature in
which shrubs sprout, branch, and spread, it is not unusual to
encounter difficulties in predicting shrub biomass (McGinnis
et al., 2010). Since the size and shapes of shrubs can vary greatly,
regressions of fuel component versus size, age, and other charac-
teristics may not be strong (Martin et al., 1981). Deerbrush and
Ribes spp. can grow tall and wide, and these types of allometric
relationships can prove to be challenging when attempting to pre-
dict total aboveground shrub biomass. McGinnis et al. (2010)
found that when crown diameter reached a maximum of 318 cm
for Ribes spp. total biomass, mean squared error was larger
(0.731 cm) when compared to shrubs that possessed smaller
crown diameters within their study. However, this variability is
not exclusive to shrub biomass only. To a certain extent, many con-
ifer species also possess complex allometric relationships when
they are young and obtain somewhat uniform stems and radially
symmetric branches by the time they reach middle age. Some of
these conifers may return to a complex form resulting from fire,
pathogens, or other environmental factors later in life (McGinnis
et al., 2010). Wang (2006) also found that equations for stem bio-
mass of Manchurian walnut (Juglans mandshurica) were poor
because the growth form of the walnut frequently had no single,
distinct stem. The choice of the appropriate allometric equation
in which to estimate biomass involves a tradeoff involving preci-
sion, simplicity, and practical application (Wang, 2006).

The most instability (high RRMSPE) is associated with the larger
diameter fuel components (e.g. the 100-h biomass component).
The limited sample size in the 1000 h fuels might have contributed
to high RRMSPE. The inflated RRMSPE for the 100-h biomass com-
ponents and the low values of RRMSPE for the 1-h and leaf biomass
components obtained in this study are consistent with past shrub
biomass studies in which foliage, live, and dead biomass were
compiled into the same size classes (Murray and Jacobson, 1982;
Sağlam et al., 2008; Grigal and Ohmann, 1977). The estimation of
threetip sagebrush biomass using height and stem diameter simi-
larly resulted in high adjusted R2 values for leaves (0.89), leaves
and live twigs <0.6 cm (0.86), and live twigs <0.6 cm (0.95) using
varying forms of the power equation and log-log linear regression
while separating live wood from dead wood by size class (Murray
and Jacobson, 1982). Similarly, live twigs and branches that were
greater than 2.54 cm (100-h biomass component) in diameter
experienced a sharp decline in adjusted R2 (0.09). The Murray
and Jacobson (1982) study provides evidence that suggests that
as biomass component size increases for live branches, the propor-
tion of variation within component class is poorly accounted for by
predictor variables, such as stem diameter and height. The results
obtained by Murray and Jacobson (1982) for model accuracy
regarding live twigs and branches greater than 2.54 cm in diameter



Table 7
Number of observations (n) by biomass component, parameter estimates, RMSE, and RMSE% for individual biomass component by species resulting from multinomial logistic
regression (MLR). a and b are regression coefficients and RMSE = root mean square error (kg).

Serviceberry n a b RMSE RMSE%

1-h 28 Base Base 0.08 22.16
10-h 24 �0.1452 0.3908 0.14 25.71
100-h 8 �0.9047 �0.4581 0.09 129.18
1000-h 1 �9.2315 3.4183 0.11 400.00
Leaf 28 �1.1923 �0.1144 0.04 42.37

Greenleaf manzanita n a b RMSE RMSE%
1-h 31 Base Base 0.07 32.96
10-h 30 0.2156 0.2983 0.16 38.37
100-h 16 �0.1000 0.0961 0.27 127.92
1000-h N/A N/A N/A N/A N/A
Leaf 31 0.2427 0.0119 0.14 54.43

Bush chinkapin n a b RMSE RMSE%
1-h 19 Base Base 0.07 28.70
10-h 18 0.2569 0.0745 0.09 28.15
100-h 6 �1.5993 0.3529 0.12 137.97
1000-h N/A N/A N/A N/A N/A
Leaf 19 0.6769 �0.3380 0.09 39.06

Mountain whitethorn n a b RMSE RMSE%
1-h 25 Base Base 0.73 149.33
10-h 21 �0.6882 0.3167 0.11 19.30
100-h 10 �0.0840 �0.0370 0.78 191.09
1000-h 3 �2.7671 0.4749 0.12 113.07
Leaf 25 �0.5630 �0.1780 0.11 63.26

Deerbrush n a b RMSE RMSE%
1-h 21 Base Base 0.03 12.87
10-h 20 �0.1212 �0.1328 0.03 23.68
100-h 6 �1.5335 �0.5450 0.02 136.20
1000-h N/A N/A N/A N/A N/A
Leaf 21 �0.8835 �0.0422 0.02 21.79

Snowbrush n a b RMSE RMSE%
1-h 26 Base Base 0.08 23.09
10-h 25 �0.0065 0.1434 0.09 17.75
100-h 16 �0.9644 0.0279 0.13 92.19
1000-h 2 �3.4105 0.2861 0.06 251.78
Leaf 26 �0.1750 0.0357 0.16 47.55

Ribes n a b RMSE RMSE%
1-h 26 Base Base 0.07 27.99
10-h 22 �0.4384 0.2647 0.14 39.49
100-h 10 �1.3452 �0.2585 0.06 168.49
1000-h 2 �8.5853 1.9687 0.03 63.00
Leaf 26 �1.1564 0.2774 0.12 69.81
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are similar to the findings of this study, with the choice of the pre-
dictor variable differing for this research.

4.2. Assessment of fitting strategies

A total of 35 allometric equations were derived using nonlinear
weighted least squares regression for seven species of shrubs. An
allometric model was used to fit aboveground biomass compo-
nents (total, 1-h, 10-h, 100-h, and leaf (kg)) as a function of crown
area. The model performed well within all components for deer-
brush, Ribes spp. (currant and gooseberry), and bush chinkapin.
The power model performed best within the 1-h and leaf biomass
components and was unstable for all species within the 100-h
component. Large shrub observations obtained in the field affected
model accuracy, especially for mountain whitethorn, snowbrush,
and serviceberry. Model fits were unbiased for most species and
biomass components.

Variability was present within this dataset and evident by large
RMSPE and RRMSPE values resulting from model fits for some of
the species and their respected components. Due to this variability,
total biomass component estimation for mountain whitethorn and
snowbrush resulted in large values of predicted error, however,
these estimates will be unbiased using weighted nonlinear least
squares regression. Previous research has examined alternative
methods to estimating woody plant biomass, including Parresol
(2001), who found that nonlinear seemingly unrelated regression
resulted in lower variance because it considers contemporaneous
correlations.

Seemingly unrelated regression was applied to create combined
wood and individual component models for total biomass estima-
tion. The individual component SUR model performed worse when
compared to the combined wood SUR model. The grouping of all
wood biomass classes resulted in lower values of RMSE for all spe-
cies when compared to the individual component model. The indi-
vidual component model would be useful to researchers and
landowners who specifically need individual component biomass
parameter estimates.

Using the combined wood SUR model is an efficient approach to
estimate biomass since observed or actual total biomass
information may not be available. Seemingly unrelated regression
allows for the inclusion of dependencies among the error terms of
the component biomass equation and is a commonly used method
of component biomass estimation (Parresol, 1999). This method
may also be applied to multinomial log-linear regression (MLR),
which is used to obtain predicted proportions of biomass in each
component (Poudel and Temesgen, 2015). To obtain predicted
proportions of biomass components, the modeler would first use
the combined wood SUR coefficients to obtain predicted values



Table 8
Number of observations (n) by component, parameter estimates, RMSE, and RMSE%, resulting from combining 100-h and 1000-h components and using multinomial logistic
regression (MLR). a and b are regression coefficients and RMSE = root mean square error (kg).

Serviceberry n a b RMSE RMSE%

1-h 28 Base Base 0.07 21.38
10-h 24 �0.1242 0.3779 0.14 25.03
100-h + 1000-h 9 �1.6919 0.2791 0.14 137.25
Leaf 28 �1.1982 �0.1104 0.04 41.35

Greenleaf manzanita n a b RMSE RMSE%
1-h 31 Base Base 0.07 32.96
10-h 30 0.2155 0.2983 0.16 38.37
100-h + 1000-h 16 �0.1000 0.0960 0.27 127.92
Leaf 31 0.2428 0.0118 0.14 54.43

Bush chinkapin n a b RMSE RMSE%
1-h 19 Base Base 0.07 28.70
10-h 18 0.2570 0.0744 0.09 28.15
100-h + 1000-h 6 �1.5997 0.3531 0.12 137.97
Leaf 19 0.6762 �0.3378 0.09 39.06

Mountain whitethorn n a b RMSE RMSE%
1-h 25 Base Base 0.72 148.31
10-h 21 �0.6811 0.3140 0.11 18.68
100-h + 1000-h 13 �0.0978 0.0615 0.89 170.98
Leaf 25 �0.5668 �0.1765 0.11 62.59

Deerbrush n a b RMSE RMSE%
1-h 21 Base Base 0.03 12.87
10-h 20 �0.1213 �0.1328 0.03 23.68
100-h + 1000-h 6 �1.5331 �0.5451 0.02 136.20
Leaf 21 0.8835 �0.0422 0.02 21.79

Snowbrush n a b RMSE RMSE%
1-h 26 Base Base 0.08 23.06
10-h 25 �0.0062 0.1433 0.09 17.75
100-h + 1000-h 18 �0.9031 0.0666 0.14 78.87
Leaf 26 �0.1749 0.0357 0.16 47.55

Ribes n a b RMSE RMSE%
1-h 26 Base Base 0.06 23.96
10-h 22 �0.4267 0.2605 0.15 44.88
100-h + 1000-h 12 �2.0871 0.3398 0.05 48.28
Leaf 26 �1.1442 0.2731 0.11 64.40

Table 9
Number of observations (n) by components, parameter estimates, RMSE, RMSE%, bias, and bias% resulting from combining the 10-h and 100-h components and dropping 1000-h
component using multinomial logistic regression (MLR). a and b are regression coefficients and RMSE = root mean square error (kg).

Serviceberry n a b RMSE RMSE% Bias Bias%

1-h 28 Base Base 0.08 22.28 �0.08 �2.38
10-h + 100-h 32 0.1518 0.2834 0.16 24.63 �0.02 �2.87
Leaf 28 �1.1955 �0.1124 0.04 41.58 0.00 �2.16

Greenleaf manzanita n a b RMSE RMSE% Bias Bias%
1-h 31 Base Base 0.07 32.96 0.00 0.00
10-h + 100-h 46 0.7548 0.2280 0.19 30.38 0.00 0.00
Leaf 31 0.2428 0.0118 0.14 54.43 0.00 0.00

Bush chinkapin n a b RMSE RMSE% Bias Bias%
1-h 19 Base Base 0.07 28.57 0.00 0.00
10-h + 100-h 24 0.3876 0.1313 0.09 22.83 0.00 0.00
Leaf 19 0.6758 �0.3374 0.09 39.10 0.00 0.00

Mountain whitethorn n a b RMSE RMSE% Bias Bias%
1-h 25 Base Base 0.78 160.11 �0.03 �6.56
10-h + 100-h 31 0.2905 0.1544 0.58 59.43 �0.07 �6.77
Leaf 25 �0.5807 �0.1709 0.13 74.56 �0.01 �6.56

Deerbrush n a b RMSE RMSE% Bias Bias%
1-h 21 Base Base 0.03 12.57 0.00 0.00
10-h + 100-h 26 0.0536 �0.1659 0.04 27.76 0.00 0.00
Leaf 21 �0.8846 �0.0419 0.02 21.56 0.00 0.00

Snowbrush n a b RMSE RMSE% Bias Bias%
1-h 26 Base Base 0.08 23.34 �0.01 �1.85
10-h + 100-h 41 0.3112 0.1180 0.15 22.36 �0.01 �1.92
Leaf 26 �0.1750 0.0357 0.16 48.47 �0.01 �1.89

Ribes n a b RMSE RMSE% Bias Bias%
1-h 26 Base Base 0.07 27.24 �0.01 �4.89
10-h + 100-h 32 �0.1669 0.2066 0.22 59.21 �0.02 �6.15
Leaf 26 �1.1517 0.2757 0.11 60.55 �0.01 �6.56
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of leaf and wood, since the predicted value of dTotal biomass ¼dwood þ dleaf . One can use either the predicted or the observed (if
available) value of total biomass to obtain the proportion of total
shrub biomass by fuel class component (Poudel and Temesgen,
2015). Combining the wood observations helped decrease error
somewhat, however, inference concerning individual fuel classes
is also lost in this process.

Multinomial log-linear regression was also employed to esti-
mate the component biomass for each shrub. The MLR method
produced RMSE values that were lower than both the combined
wood and individual component SUR methods. Combining the
100-h and 1000-h biomass components using MLR resulted in
low values of RMSE across all species and biomass components.
MLR provided estimates that were unbiased, except when a com-
ponent (1000-h) was omitted from the model fit. This is a flexible
approach to obtaining proportional component biomass because
fuel classes containing small numbers of observations may be com-
bined with another fuel class that has similar characteristics.

The results obtained by using the SUR and MLR approaches
applied within this study have also been realized in other studies,
including the estimation of aboveground biomass for Douglas-fir
and lodgepole pine (Pinus contorta var. latifolia Engelm.) for differ-
ent regions in Oregon (Poudel and Temesgen, 2015). That study
found that the system of equations fitted using the SUR method
were superior to analytical methods based on existing equations,
in terms of bias and RMSE (Poudel and Temesgen, 2015). The pre-
dicted proportion method involving multinomial log-linear regres-
sion also produced smaller values of RMSE when compared to the
SUR methods that were applied (Poudel and Temesgen, 2015).
Other studies have looked to different regression methods to
reduce bias and RMSPE. For example, Eskelson et al. (2011) used
beta regression to estimate percent shrub cover, which produced
smaller mean squared prediction error and absolute bias when
compared to ordinary least squares regression models used in their
study. Furthermore, Poudel and Temesgen (2016) found that even
though measures of accuracy differed between species in western
hemlock (Tsuga heterophylla (Raf.) Sarg.) and red alder (Alnus rubra
Bong.) biomass estimation, lower values of RMSE were produced
for multinomial log-linear regression when compared to the SUR,
beta, and Dirichlet regression methods. The same methods (SUR,
MLR) applied within this study yielded similar outcomes when
total aboveground shrub biomass was considered.

A potential limitation involved with this study was the presence
of excess zeros mostly found within the 100-h and 1000-h biomass
components. Values of zero were prevalent within these compo-
nents because as component size increases, therewere fewer shrubs
observed in the field that possessed such diameters. This led to dif-
ficulty in model fitting for some species (bush chinkapin and deer-
brush). An option to address this limitation may be to use a model
that can specifically address the issue of excessive zero values in
data sets. This option will be examined in a follow-up study.

A recommendation that may help to improve future results for
similar studies involves how biomass was grouped into compo-
nents. While results were accurate for the 1-h and leaf compo-
nents, results were not nearly as accurate for the 10-h and 100-h
classes. Studies that separated live and dead branches were also
able to obtain high (0.90+) R2 values for total shrub biomass esti-
mation (Murray and Jacobson, 1982). Separating live and dead
twigs and branches from one another may provide more accurate
estimates within the components used in this study, but this
would be a time consuming and costly endeavor. Combining the
100-h and 1000-h biomass components was also beneficial in
obtaining low values of RMSE and unbiased estimates by imple-
menting MLR.
5. Conclusion

The equations resulting from this research are applicable to
areas within northeastern California where similar climate, soils,
and vegetation associations may be found in relation to the study
area for which this research occurred. Each of the methods exam-
ined within this study have their benefits, but the decision of
which one to utilize will ultimately depend upon the researcher’s
or landowner’s objectives. Applying such methods in other parts
of northeastern California with similar shrub species would help
to validate model accuracy. The allometric equations will be useful
to forest modelers interested in the assessment of total and pro-
portional component biomass for carbon accounting and for fire
modelers concerned with forest fuel accumulation and wildfire
prevention.
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Sağlam, B., Küçük, Ö., Bilgili, E., Durmaz, B.D., Baysal, I., 2008. Estimating fuel
biomass of some shrub species (Maquis) in Turkey. Turkish J. Agric. Forestry 32
(4), 349–356.

Stone, M., 1974. Cross-validatory choice and assessment of statistical predictions. J.
R. Stat. Soc. 36, 111–133.
Temesgen, H., Affleck, D., Poudel, K.P., Gray, A., Sessions, J., 2015. A review of the
challenges and opportunities in estimating above ground forest biomass using
tree-level models. Scand. J. For. Res. 30 (4), 326–335.

United States Department of Agriculture, Natural Resources Conservation Service,
2011. Ecological Site Descriptions of Lassen Volcanic National Park, California:
75–85.

Uzoh, F.C.C., Ritchie, M.W., 1996. Crown Area Equations for 13 Species of Trees and
Shrubs in Northern California and Southwestern Oregon. USDA Forest Service.
Pacific Southwest Research Station. Research paper PSW-RP-227: 1–13.

Vora, S., 1988. Predicting biomass of five shrub species in northeastern California. J.
Range Manag. 41 (1), 63–65.

Wang, C., 2006. Biomass allometric equations for 10 co-occurring tree species in
Chinese temperate forests. For. Ecol. Manage. 222 (1), 9–16.

Zeng, Q., Liu, Q.J., Feng, Z.W., Ma, Z.Q., 2010. Biomass equations for four shrub
species in subtropical China. J. Forest Res. 15 (2), 83–90.

http://refhub.elsevier.com/S0378-1127(16)31152-5/h0125
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0125
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0130
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0130
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0130
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0135
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0135
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0140
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0140
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0140
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0140
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0145
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0145
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0145
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0150
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0150
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0155
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0155
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0155
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0165
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0165
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0165
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0170
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0170
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0175
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0175
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0180
http://refhub.elsevier.com/S0378-1127(16)31152-5/h0180

	Allometric equations for estimating aboveground biomass for common shrubs in northeastern California
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Data
	2.3 Data analysis
	2.4 Weighted nonlinear least squares regression
	2.5 Seemingly unrelated regression
	2.6 Multinomial log-linear regression
	2.7 Parameter estimation
	2.8 Fitting strategy comparison and selection

	3 Results
	3.1 Weighted nonlinear least squares regression
	3.2 Seemingly unrelated regression
	3.3 Multinomial log-linear regression

	4 Discussion
	4.1 Equation development
	4.2 Assessment of fitting strategies

	5 Conclusion
	References


