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A Mixed-Effects Heterogeneous Negative Binomial
Model for Postfire Conifer Regeneration in
Northeastern California, USA
Justin S. Crotteau, Martin W. Ritchie, and J. Morgan Varner

Many western USA fire regimes are typified by mixed-severity fire, which compounds the variability inherent to natural regeneration densities in associated forests. Tree
regeneration data are often discrete and nonnegative; accordingly, we fit a series of Poisson and negative binomial variation models to conifer seedling counts
across four distinct burn severities and three forest types 10 years after the 23,000-ha Storrie Fire, a large mixed-severity fire in northern California. Despite the
accessibility and power of the zero-inflated negative binomial mixture model, a flexible heterogeneous negative binomial model offered a superior fit. Incorporation
of a random stand effect further improved model performance. A parametric bootstrap analysis was conducted to examine seedling distributions and stand
stocking. Mean simulated seedling densities had an expansive range (272–29,257 ha�1). Stocking analyses suggest a high probability of deficient conifer coverage
in the majority of lower-elevation high-severity burn stands. In addition, models were fit to fir and pine seedling counts. Only a minority of postfire stands were likely
to be stocked in the pine-only analysis. These models will help land managers prioritize limited resources for artificial reforestation in mixed-severity burned
landscapes.
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Many forests in the western United States experience
mixed- or moderate-severity fire (Agee 1993, p. 19–24,
305). The immediate effect of mixed-severity fire is often

a patchy mosaic of diverse stand structures (Lentile et al. 2005,
Halofsky et al. 2011). Natural regeneration or the development of a
new cohort is an integral stage in postdisturbance single-cohort or
multicohort stand development (Oliver and Larson 1996). In addi-
tion to a number of environmental factors that affect conifer regen-
eration (e.g., Bonnet et al. 2005, Gray et al. 2005, Moghaddas et al.
2008), variable remnant overstory densities that directly result from
mixed-severity fire contribute to high spatial and compositional
variability in seedling establishment across a landscape (similarly,
McDonald 1976, Turner et al. 1997, Jayen et al. 2006).

Managers must decide whether postfire natural regeneration will
meet management objectives or whether additional planting is re-
quired to meet stocking objectives in a timely manner. Planting is a
conventional postfire alternative to the natural development of a
new stand. Artificial regeneration can expedite establishment of de-
sirable species at suitable densities (Smith et al. 1997, p. 5), resulting

in ecosystems more quickly restored to a productive state for a
number of management goals, from timber production to habitat
restoration (e.g., Zhang et al. 2008). Despite the potential ecological
and future monetary benefits of planting efforts, this avenue of
restoration can be costly. To maximize management efficiency after
mixed-severity fires, it is important to concurrently determine where
natural regeneration is dependable and where artificial regeneration
may be preferred for landscape restoration.

In an era of large wildfires in the western United States (Stephens
2005, Westerling et al. 2006, Miller et al. 2009b), land managers
may be unable to quickly plant seedlings across a landscape because
of constraints of time, resources, and accessibility. When highly
variable regeneration is convoluted by a mixed-severity fire event
(Turner et al. 1997, Crotteau et al. 2013), a landscape-level regen-
eration model can inform managers whether supplemental planting
to meet silvicultural goals is needed. Although regeneration dynam-
ics may vary substantially by species and ecoregion, modeling of
postfire natural regeneration patterns has utility for predicting re-
covery from future wildfires.
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Natural regeneration is often modeled as discrete count data, for
which a collection of linear and nonlinear modeling tools is available
(Cameron and Trivedi 2008, p. 15–16, Zeileis et al. 2008). Count
data may be assumed to follow a Poisson distribution; however, this
distribution has limited applicability because a single parameter
quantifies both the mean and variance. In situations in which ob-
served count data exhibit overdispersion, i.e., observed variance ex-
ceeds the mean (Cameron and Trivedi 2008, p. 4), distributions
such as the discrete Weibull or negative binomial may be favored.
The negative binomial distribution is more flexible and well suited
for applications where Poisson overdispersion is present. This two-
parameter distribution can be parameterized so that a dispersion
parameter, �, relates the mean and variance: V(y) � � � (�2/�);
� � 0.

Modified Poisson and negative binomial applications have been
developed in response to observed phenomena in which mixtures of
distributions most aptly describe the underlying process. Two such
mixture models include the zero-inflated Poisson (ZIP) and the
zero-inflated negative binomial (ZINB), both of which incorporate
binary proportions to account for a surplus of zeroes (Lambert 1992,
Welsh et al. 1996).

Mixture models are becoming more commonly applied to obser-
vational studies in forest sciences, with varying model complexity
(e.g., Affleck 2006, Eerikäinen et al. 2007, Eskelson et al. 2009,
Flores et al. 2009, Li et al. 2011). Mixtures incorporating flexible
(two-parameter negative binomial or Weibull) distributions are of-
ten superior to Poisson mixtures (e.g., Fortin and DeBlois 2007,
Zhang et al. 2012). Yet, in popular statistical packages (e.g., R,
S-PLUS, and SAS software) application of the negative binomial is
often restricted by the assumption of a single dispersion parameter.
That is, although the mean response may vary conditionally on
some explanatory variable(s), the dispersion parameter (�) remains
fixed for all observations. If the data exhibit heterogeneity, as is
common in natural regeneration subpopulation distributions, re-
strictions on the estimation of � may produce unsatisfactory results
(Hilbe 2011, p. 157, 323).

Finally, many contemporary observational studies are designed
in a hierarchical fashion (e.g., Booth et al. 2003, Li et al. 2011).
Nested studies are often designed for the sake of logistics (resource-
saving) or because of a lack of other options (opportunistic empiri-
cism). Observed variances must be calculated and handled with
regard to the nesting inherent in these designs, resulting in a tiered
model analysis with random and fixed effects. The resultant statis-
tical mixed-effects model, although more complicated in formula-
tion and interpretation than a fixed-effects model, accounts for ob-
served error and may offer a truer description of the potentially
autocorrelative error structure and conditional mean (e.g., Garber
and Maguire 2005). Furthermore, inclusion of random effects ex-
pands the potential for model inference by describing the probabil-
ity distribution of nested structures.

Our study examined conifer seedling regeneration in the Lassen
National Forest approximately 10 years after the 2000 Storrie Fire,
a 23,000-ha wildfire that burned with mixed severity. This study
was designed to aid future postfire management decisions in the
bioregion by identifying remotely sensed postfire landscape charac-
teristics attributable to insufficient conifer seedling densities. We
used the Composite Burn Index (CBI) (Key and Benson 2006), as a
metric to evaluate the effects of burn severity on postfire regenera-
tion, with regard to forest type. We defined three coniferous species
classes to address this objective: all observed species; Abies spp.; and

select Pinus spp. We compared a series of pure and mixed distribu-
tion models and, in the interest of model flexibility, restricted and
heterogeneous negative binomial models. We finalized our selected
model with the inclusion of random effects. Bootstrapped model
predicted values were subsequently used in seedling stocking analy-
ses to further gauge regeneration trends on the landscape. The
results have utility for predicting regeneration dynamics after wild-
fire and aiding managers in the prioritization of restoration
expenditures.

Methods
Study Site

The study site was a 9,371-ha portion of the Lassen National
Forest (hereafter “Lassen”) burned by the 2000 Storrie Fire in north-
eastern California (40°0�0� N, 121°15�0� W). The elevation within
the study area varies from approximately 900 to 2,100 m above
mean sea level. Regional climate is characterized as montane Medi-
terranean, having warm summers (mean monthly maximum tem-
perature, June to September: 21–26° C) and cool winters (mean
monthly maximum temperature, November to March: 6–9° C).
Less than 5% of the annual precipitation falls during the summer,
with the bulk of the 1,894 mm annual precipitation falling during
the winter as snow (30-year prefire average) (PRISM Climate Group
2011).

Vegetation and topography were variable across the study area, as
is typical of the montane westside southern Cascades bioregion (see
Skinner and Taylor 2006). The most dominant regenerating conif-
erous species observed after the Storrie Fire were white fir (Abies
concolor [Gordon & Glend.] Lindley), California red fir (Abies mag-
nifica var. magnifica Andr. Murray), incense-cedar (Calocedrus de-
currens [Torrey] Florin), sugar pine (Pinus lambertiana Douglas),
ponderosa pine (Pinus ponderosa Laws.), and Douglas-fir (Pseudo-
tsuga menziesii [Mirbel] Franco) (Crotteau et al. 2013). Although
less common, Sierra lodgepole pine (Pinus contorta Louden var. mur-
rayana [Grev. & Balf.] Critchf.), Jeffrey pine (Pinus jeffreyi Grev. &
Balf.), and western white pine (Pinus monticola Douglas) were also
found. In addition to these conifers, California black oak (Quercus
kelloggii Newb.) and a suite of shrubs (including pinemat manzanita
[Arctostaphylos nevadensis A. Gray], greenleaf manzanita [Arctostaph-
ylos patula E. Greene], mountain whitethorn [Ceanothus cordulatus
Kellogg], deer brush [Ceanothus integerrimus Hook. & Arn.], snow-
brush [Ceanothus velutinus Dougl.], bush chinquapin [Chrysolepis
sempervirens (Kellogg) Hjelmq.], and huckleberry oak [Quercus vac-
cinifolia Kellogg]) were present across the postfire landscape.

Sampling Methods
To evaluate the effect of burn severity (Keeley 2009) on conifer

regeneration after accounting for prefire overstory species variabil-
ity, we divided the postfire landscape into 12 condition classes: 4
levels of severity � 3 levels of forest type. The CBI was used to
determine burn severity category for the postfire stands. Because
CBI is a field-based assessment of burn severity, we calculated the
relative differenced normalized burn ratio (RdNBR) to remotely
obtain CBI estimates (Miller and Thode 2007, Miller et al. 2009a).
The RdNBR formulated a continuous index from prefire and 1-year
postfire Landsat Thematic Mapper images, which was subsequently
transformed into four CBI categories: unchanged (minimal or no
visible effect of fire); low-severity; medium-severity; and high-sever-
ity (Table 1). Forest types were segregated by three elevation bands:
mixed conifer (978–1,463 m); low-elevation fir (1,463–1,774 m);
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and high-elevation fir (1,774–2,188 m) (Table 2). Abbreviated
strata names reflect forest type (MC, mixed conifer; LF, low-eleva-
tion fir; and HF, high-elevation fir) modified by burn severity (U,
unchanged; LS, low-severity; MS, medium-severity; and HS, high-
severity); e.g., MCLS represents mixed conifer low-severity.

Sixty stands were randomly selected (five per stratum) with prob-
ability proportional to size from a population of 2,292 stand poly-
gons identified from 1-year postfire GIS data, ranging in area from
less than 0.4 to 195 ha. Field data were collected over the course of
two summers (half in 2009 and half in 2010), 9 and 10 years after
the Storrie Fire. A randomly located and oriented hexagonal cluster
of at least 19 0.004-ha (3.59-m radius) circular plots 20 m apart was
established in each of the 60 selected stands, resulting in a total of
1,166 plots visited (see Crotteau et al. 2013, Appendix B).

Live mature seedlings were counted on each of the plots. Mature
seedlings are here defined as seedlings that were “well-established,”
i.e., taller than 15.24 cm, up to any stem with dbh 	10.16 cm. We
did this to avoid counting ephemeral first-year seedlings.

Woody shrub cover (%) was estimated on each plot to assess
perennial competing understory competition. Surviving overstory
trees were sampled using a concurrent point sample (basal area fac-
tor: 4.592 m2 ha�1). These additional vegetation measurements
varied across the strata (stratum-level values incorporated into Fig-
ures 2–4). Because of the random sampling of stands across the
landscape, topographic attributes within and among strata were also
highly variable.

Model Distributions
Models were developed for three separate natural regeneration

response variables (counts) to assess three species-preferential fac-
tors: “all conifers”; Abies spp.; and select Pinus spp., in which the
Abies spp. were A. concolor and A. magnifica and P. jeffreyi, P. lam-
bertiana, and P. ponderosa comprised the Pinus class. The count
response exhibited a high proportion of zeroes (31% for all species
combined; 40 and 65% for Abies and Pinus classes, respectively),

large arithmetic mean (14.1 for all species combined; 12.2 and 1.2
for Abies and Pinus classes, respectively), and extensive range (0–560
per plot for all species combined; 0–560 and 0–48 for Abies and
Pinus classes, respectively). We considered a number of discrete
distributions to find the best model fit for the skew-positive data, as
many options were available (e.g., Zeileis et al. 2008).

Count data are inherently discrete and nonnegative. A traditional
distribution for count data is the Poisson (P) distribution (Cameron
and Trivedi 2008, p. 1–3). The Poisson probability mass function
(PMF) is

fP
 y, �� �
�

ye��

y!
(1)

where y is a nonnegative integer value and � is both the mean and
variance. The primary limitation of the Poisson distribution is the
assumption that mean and variance are equal. As is common in
modeling of ecological data, when the observed variance is greater
than the mean, the data are considered to be overdispersed (Cam-
eron and Trivedi 2008, p. 77).

The negative binomial distribution (NB), a mixture between
Poisson and gamma distributions, is a bivariate function that per-
mits the shape of the distribution to be more flexible than that of the
Poisson distribution (Cameron and Trivedi 2008, p. 71). The neg-
ative binomial PMF is
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where � � 0 is the dispersion parameter and 0 	 p 	 1. The
expected value of y in this parameterization is �, where
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and the variance of y is
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The Poisson distribution is a special case of the NB where �3. In
NB fits, the estimated value of � is often assumed to be constant
across factors (“NB2” in Hilbe 2011, p. 39). If data exhibit hetero-
geneity, � may vary (“NB-H” in Hilbe 2011, p. 39, 319). For the
purpose of this study, we refer to models with a fixed � parameter as
“restricted” negative binomial (RNB) and models with varying �
parameters as “heterogeneous” negative binomial (HNB).

In observational abundance studies, it is common to encounter
an abundance of zeroes, as in measuring abundance of a rare species.
“Zero-inflated” modifications of the Poisson and NB distributions
have been used to account for observed zeroes that are in excess of
those expected from the Poisson or NB distribution (Lambert 1992,
Welsh et al. 1996). Recent work suggests that the ZIP and ZINB
may also be applicable for modeling natural regeneration (Barry and
Welsh 2002, Keefe 2004, Affleck 2006, Rathbun and Fei 2006,
Fortin and DeBlois 2007, Flores et al. 2009, Li et al. 2011, Zhang et
al. 2012). These two-part mixture models incorporate a binary pro-
portion for excess zeros, which can be expressed as a mixture param-
eter, �. The ZIP PMF is

fZIP
 y, �, �� � �� � 
1 � �� fP
 y, �� y � 0

1 � �� fP
 y, �� y 	 0 (5)

Table 1. CBI thresholds used to create four burn-severity classes
within the Storrie Fire perimeter, Lassen National Forest.

Fire severity level

CBI thresholds

Lower Upper

Unchanged 0.00 0.10
Low-severity 0.10 1.25
Medium-severity 1.25 2.25
High-severity 2.25 3.00

CBI values were approximated via RdNBR (Miller et al. 2009a) using prefire and
1-year postfire Landsat imagery.

Table 2. Society of American Foresters (SAF) cover type and
elevation thresholds used to delineate three forest types within the
Storrie Fire perimeter, Lassen National Forest.

Forest cover type SAF type

Elevation

Minimum Maximum

. . . . . . . .(m). . . . . . . .

Mixed conifer Mixed conifer (243) 978 1,463
Low-elevation fir White fir (207), red

fir (211)
1,463 1,774

High-elevation fir White fir (207), red
fir (211)

1,774 2,188
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where � is the probability of observing a zero independent of the
Poisson process. Similarly, the ZINB PMF is

fZINB
 y, �, �, p� � �� � 
1 � �� fNB
 y, �, p� y � 0

1 � �� fNB
 y, �, p� y 	 0

(6)

where the probability of observing a zero independent of the nega-
tive binomial process, �, adjusts the restricted (RZINB) or hetero-
geneous (HZINB) model.

Model Selection and Evaluation
We used Akaike’s information criterion (AIC) and Pearson’s

dispersion parameter (
) for model selection and validation. AIC is
calculated as

AIC � �2L � 2k (7)

where the model’s log-likelihood L is penalized by parameters k. The
best models were selected using AIC in an information theoretic
approach. With regard to the lowest calculated AIC, models with
�AIC �2 were considered to be relatively well supported by the
data; models with �AIC �10 were regarded as unsupported (Burn-
ham and Anderson 2002, p. 70). AIC is a relative metric that only
considers rankings among models considered in the analysis; the
bias-corrected AICc was not used because there is no agreement as to
the proper calculation of the bias-correction term for discrete de-
pendent variables (Burnham and Anderson 2002, p. 380).

Pearson’s dispersion parameter is defined as


 � �

Ri

P�2

n � k
(8)

where n is total sample size, k is the number of estimated parameters,
and Pearson’s residuals (Ri

P) are

Ri
P �

yi � ŷi

�V
 ŷi�
(9)

where ŷi is the predicted value and V(ŷi) is the variance of the ith
observation yi. Values for 
 near 1.0 indicate equidispersion of the
variance within the data set and thus better model fit (Zuur et al.
2009, p. 224, Hilbe 2011, p.88–89); 
 �1.0 may indicate model
distribution misspecification or improper estimation of the mean
and variance (Cameron and Trivedi 2008, p. 151).

Models were fit and analyzed using both R (The R Foundation
for Statistical Computing 2012) and SAS software (SAS Institute,
Inc. 2012) with strata as a 12-level independent factor, or class,
variable in an effort to gauge the effect of burn severity on dependent
seedling counts in three forest types. Models were developed in a
piecemeal approach using R’s pscl (Jackman et al. 2012) and glm-
mADMB (Skaug et al. 2011) packages and paralleled in SAS soft-
ware’s PROC NLMIXED. We began by modeling the all conifers
response with a Poisson generalized linear model (GLM). The pres-
ence of overdispersion (
 � 57.89) led us to consider a RNB GLM;
the RNB had a dispersion parameter much lower than that of the
Poisson (
 � 1.36). Yet, the preponderance of zeroes in addition to
large values prompted us to also fit a RZINB. After including strata
predictors, the RZINB mixture model had lower total AIC
(�AIC � 39.1) and Pearson’s 
 than the corresponding RNB
model (25 and 13 predictors, respectively). Despite a better fit, the

shape of the RZINB-predicted distribution of seedling counts dif-
fered from the empirical distribution in many strata as a result of the
common (restricted) � parameter. In addition, the estimated prob-
ability of observing an excess zero (�) was 0 for 3 of the 12 strata
(� 	 0.05 in two other strata), thus providing little or no evidence
of a zero-inflated process.

We hypothesized that a HNB model may properly account for
variation within our data set, allowing � to vary by stratum. For
comparison purposes, we fit a suite of models with parameters con-
ditioned on forest type and burn severity: (1) Poisson; (2) ZIP; (3)
RNB; (4) HNB; (5) RZINB; and (6) HZINB. In the interest of
model convergence and simplicity, plots were treated as indepen-
dent observations. Models were subsequently compared via inspec-
tion of AIC, model variance, and Pearson’s 
.

After selecting the HNB from the candidate distributions, we
amended the model error structure to include the random effect of
sampled stands from the study area, thereby more appropriately
addressing the hierarchical nature of the study design. We did not
pursue altering the P, ZIP, RNB, RZINB, and HZINB error struc-
tures because of their inferior AIC values. A random stand-level
error term ij �N(0, �i

2), i � stratum, j � [1, 5] was included
within the log-link, thereby creating a HNB model with mixed
effects (HNBmixed). In so doing, we shift the interpretation of the
data’s count response from being unconditionally negative binomial
to negative binomial conditioned on any given stand’s random nor-
mal variate. To generate biologically meaningful values, as per the
data, the unconditional means were calculated using a parametric
bootstrapping technique (Efron and Tibshirani 1994). We simu-
lated conifer counts using the data-derived HNBmixed model, cre-
ating a data set that mimicked the hierarchical structure of its parent
[12 strata, each composed of 5 stands with ij �N(0, �i

2), which in
turn house 19 plots]. This process was executed 10,000 times after
we set a random start seed, whereby we attained the unconditional
simulated count means by stratum.

Although biotic and abiotic variables commonly assumed to in-
fluence seedling growth were measured on plots, they are not here
presented as model covariates because of convergence failure or only
marginal significance in some of the more complex models. Further-
more, the core predictors in the HNBmixed model used up 36 df
and was already approaching overparameterization, given the sam-
ple size. We therefore refrained from further complicating the
model form in the spirit of parsimony.

Stocking Analysis
A conventional method for assessing regeneration densities, nat-

ural or artificial, is a stocking analysis. The goal of stocking analyses
is to determine whether the spatial distribution of regeneration is
sufficiently balanced within a stand. Within the USDA Forest Ser-
vice (US Department of Agriculture 1987), plots are evaluated as
“stocked” or “not stocked” based on regional density thresholds: at
least 50% of plots visited must be stocked for adequate restocking
certification (US Department of Agriculture 1987). In California,
the recommended standard for reforestation is 741 trees ha�1

(3.7-m spacing) in red and white fir cover types, whereas the recom-
mended density threshold for the mixed conifer type (having a sig-
nificant Pinus spp. component) is 494 seedlings ha�1 (4.5-m spac-
ing) on 0.004-ha plots or larger (US Department of Agriculture
1987). Actual stocking certification further requires that sample
plots be systematically located at a sample intensity of 1%; our study
does not fully accomplish the recommended sample intensity but
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assumes that within-stand variability is captured within the model
distributions. We calculated the probability of stocked stands, based
on the aforementioned specific density thresholds, via the paramet-
ric bootstrap procedure to evaluate stocking by stratum.

Results
Model Distribution Selection

The HNB produced the most favorable fit statistics. �AIC values
subdivided by the 12 factors are presented in Table 3, using the
lowest model AIC within each stratum to calculate �AIC. The
HNB AIC was the lowest of the model structures for 11 of the 12
strata. The Poisson and ZIP models consistently had the largest AIC
values across strata, suggesting they are not supported by the data.
�AIC suggested that the RNB was no different from the HNB in
three strata. RZINB and HZINB zero-inflated mixture parameters,
�, reached the bound at 0 in three and eight instances, respectively,

although when convergence was successful, �AIC was relatively
low.

Stratum-by-stratum AIC values indicated that the HNB was
clearly a better fit than the Poisson and ZIP, and the HZINB col-
lapsed to the HNB more often than not. Therefore, we proceeded to
examine this model in comparison with the more typical alterna-
tives, i.e., the RNB and RZINB. Whereas the stratum-by-stratum
approach taken to examine the inner workings of the models was
useful, we proceeded in the typical full model approach to inspect
the overall AIC. The 13-parameter RNB model had the largest total
AIC of the three models, whereas the 24-parameter HNB had the
lowest despite the penalty for additional parameters.

Calculated model variances (Equation 4) from the HNB ex-
pressed as a proportion of the RNB estimate demonstrate that the
restricted model imprecisely estimated strata variance, which we
defined as the free-to-vary HNB variance (Figure 1). It also appeared

Figure 1. HNB conifer seedling count relative variance as modeled by the RNB and RZINB alternatives after the 2000 Storrie Fire, Lassen
National Forest.

Table 3. �AIC values for six conifer seedling regeneration models across 12 strata 9–10 years after the 2000 Storrie Fire, Lassen
National Forest.

Model Parameters

Stratum

MCU MCLS MCMS MCHS LFU LFLS LFMS LFHS HFU HFLS HFMS HFHS

Poisson 1 636.2 1,571.5 5,689.4 633.8 934.9 5,140.7 2,148.9 123.9 527.0 9,151.9 3,514.6 634.5
ZIP 2 553.9 1,176.5 4,217.4 228.5 699.2 3,904.3 1,364.5 56.2 368.6 6,450.5 2,632.1 283.1
RNB 2 64.8 20.5 61.6 44.3 19.2 34.6 19.7 26.2 28.1 42.4 75.4 71.2
HNB 2 16.8 20.2 58.7 31.1 14.2 21.7 19.7 25.5 9.1 22.7 71.6 71.2
RZINB 3 — 24.1 67.5 31.5 — 41.1 20.5 28.3 — 34.0 73.4 71.0
HZINB 3 — — — 31.5 — — 20.5 — — — 73.3 69.6
HNBmixed 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

These values are only comparable within columns, where the number of parameters used to calculate AIC is given and �AIC is obtained by subtracting best model AIC per
stratum. Parameters given indicate the number of estimated parameters necessary to calculate likelihood values for each individual stratum. —, convergence collapsed to a
non-zero-inflated RNB and HNB, respectively.
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that the RZINB underpredicted variance for 8 of the 12 strata;
underprediction was exacerbated as estimated binary proportion �
increased. These differences are a direct consequence of estimating a
single common model � parameter.

Pearson’s dispersion parameters (
) incorporate model variance
in the calculation of Pearson’s residuals. RZINB Pearson’s residuals
produced the largest 
 value; 
 was lowest for HNB (Table 4). With
a value nearest 1.0, the HNB 
 (1.2153) indicated that the model
best accounted for dispersion relative to the mean; this value was
15% smaller than that of the RZINB.

Overall, model comparison techniques supported the HNB. Al-
though the RZINB appeared to be considerably better than the
RNB, the HNB more properly addressed variance than the more
accessible RZINB. Furthermore, the HNB estimated one less pa-
rameter than the RZINB; thus, it was chosen as the most appropri-
ate discrete distribution. Finalization of the HNB by including ran-
dom effects to formulate the HNBmixed yielded a model that was
both more statistically sound and more supported by the data than
any of the fixed-effects models (Table 4). The HNBmixed model
addressed the hierarchical nature of the data and affirmed that some
level of spatial autocorrelation was present, i.e., that plots within a
stand are more similar than plots from another stand within a given
stratum. To verify that the model had altogether marginalized the
effects of spatial autocorrelation, we further inspected within-stand
variability in a georeferenced nearest neighbor approach using
Moran’s I (Moran 1950). We calculated a grand I statistic of 0.05
(range of potential values [�1, 1]) and associated P value of 0.37 in
a four nearest neighbor analysis, indicating that the within-stand
seedling spatial autocorrelation was negligible.

Natural Regeneration
The above approach was performed with the all conifers count as

the dependent variable; Abies and Pinus models were subsequently
fit with the HNBmixed distribution as well, similarly using the
strata as independent variables and incorporating the random effect
of forest stands in which the plots were located.

The HNBmixed all conifers response model 
 was 1.1042
(Table 4). Simulated model means ranged from 1.1 to 118.4
counts/plot (Table 5). The two lowest simulated means were for
counts in MCHS and LFHS, both high-severity strata. HFMS,
HFLS, and MCMS had the greatest simulated means. Within each
forest type, the largest simulated mean was at least 13 times greater
than the smallest. The greatest deviation of the simulated means
from the sample mean was in the high-elevation fir forest type
(HFLS and HFHS; 3.5 and 3.8 times greater, respectively). Overall,
model � coefficients varied from 0.305 in HFLS to 1.589 in
HFHS.

The Abies spp. HNBmixed model had a 
 of 1.0771 (Table 4).
Simulated model means ranged from 0.6 to 143.9 seedlings plot�1

(Table 6). The model’s simulated means were just below the all
conifers response means in the majority of strata. Means positively
deviated from the all conifers response, however, in the MCU,
MCMS, HFLS, and HFMS. Model � coefficients were generally
similar to those for the all conifers model.

We only observed a total of seven Pinus seedlings in the high-el-
evation fir forest type. Because this was, as expected, such a rare
event, we omitted the high-elevation fir forest type in formulating
the Pinus model. The Pinus model 
 was 0.9258 (Table 4). Simu-
lated means were low, ranging from 0.1 to 4.6 seedlings plot�1

(Table 7). The greatest means within each forest type were in
medium- and low-severity burns, whereas coefficients for un-
changed and high-severity burns were the lowest. Although simu-
lated means for the Pinus model had a much smaller range than the
means for the first two models, model � values ranged from 0.209 in
the LFU to 2.408 in the LFLS. In addition, the ratio of the SD of the
random error term to the model � coefficients was much larger than
the all conifers and the Abies models, indicating high interstand
variability.

The mean portion of simulated stands stocked ranged from 5.7
to 97.8% across strata (Figure 2). The bootstrap simulation using
the all conifers model predicts that there are four strata that have
more unstocked/understocked stands than stocked: the LFLS,

Table 4. Select model fit statistics under heterogeneous and re-
stricted approaches, modeling seedling regeneration 9–10 years
after the 2000 Storrie Fire, Lassen National Forest.

Response Model k AIC 


All conifers RNB 13 7,173.30 1.3592
RZINB 25 7,134.20 1.4014
HNB 24 7,070.79 1.2153
HNBmixed 36 6,767.00 1.1042

Abies spp. HNB 24 6,302.18 1.0853
HNBmixed 36 5,742.76 1.0771

Pinus spp. HNB 16 1,993.47 1.0616
HNBmixed 24 1,727.00 0.9258

AIC values are only comparable within similar response variables.

Table 5. HNBmixed model coefficients and parametric bootstrap simulated mean “all conifers” seedling counts 9–10 years after the
2000 Storrie Fire, Lassen National Forest.

Stratum

Sample statistics HNBmixed coefficients Bootstrap simulation

Mean Median �̂ �̂ �̂ Mean Median 90th percentile

MCU 9.3 6.5 7.9 1.552 0.57 9.3 8.9 13.0
MCLS 9.1 3.0 6.2 0.598 0.89 9.2 8.1 15.1
MCMS 31.9 6.0 11.9 0.724 1.60 41.6 25.2 85.3
MCHS 2.9 0.0 1.1 0.580 1.30 2.6 1.9 5.0
LFU 7.2 3.0 5.5 0.706 0.67 6.9 6.4 10.1
LFLS 16.4 1.0 8.3 0.327 1.04 14.2 11.7 25.2
LFMS 13.2 4.5 9.1 0.525 0.90 13.6 11.9 22.7
LFHS 0.9 0.0 0.4 0.841 1.48 1.1 0.7 2.2
HFU 6.7 4.0 6.0 0.984 0.53 6.8 6.5 9.3
HFLS 33.6 3.0 12.9 0.305 2.12 118.4 42.8 247.4
HFMS 34.3 19.0 17.3 1.394 1.41 46.7 32.8 91.0
HFHS 4.8 2.0 1.3 1.589 2.29 18.2 5.5 35.3

HNBmixed � represents a negative binomial mean count conditional on the normally distributed random effect of stands within a stratum. Statistics derived using the
parametric bootstrap algorithm are unconditional, less biased, and not of a strictly negative binomial distribution.
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MCHS, LFHS, and HFHS. The probability that no more than
20% of postfire stands are naturally stocked is highest in the LFLS
(0.97) and MCHS (0.69). Abies spp. stocking probabilities similarly
mirror the all conifers response (Figure 3). The MCMS is the only
stratum in the Pinus model in which nearly half of simulated stands
are stocked (mean � 0.46) (Figure 4). Simulations in the remaining
strata suggest a high probability of poor stand stocking across the
landscape despite evaluation of Pinus spp. at the 494 seedlings ha�1

density level in both the mixed conifer and low-elevation fir
forests.

Discussion
Model Selection

Our data strongly suggest that the Poisson distribution is a poor
choice for modeling natural regeneration after the Storrie Fire (as in,
e.g., Affleck 2006, Zhang et al. 2012). Even the more flexible ZIP
model was not supported by the data in the stratum-by-stratum
model analysis (�AIC � 30) (Table 3). The variance-mean equiv-
alency restriction that defines the Poisson process does not ade-
quately describe the shape of the response even if one entertains a
zero-inflated process. Although the maximum likelihood estimation
(MLE) of the classic Poisson distribution provides the proper frame-
work for estimating our sample means (Cameron and Trivedi 2008,
p. 59–60), the seedling variability inherent to this study suggests
the NB is a more appropriate distribution for proper variance
calculation.

We observed that the HZINB mixture was capable of closely
matching the empirical distribution of seedling counts in various
strata. Strata in which the HZINB model excelled were not neces-
sarily bimodal; where the HNB distributions were simultaneously
driven by a multitude of zeroes and large response values, resulting
in underestimated third quartiles, the mixture model was able to
account for slight deviations from an otherwise HNB distribution.
Yet, the AIC penalization of additional parameters estimated by the
HZINB was not sufficiently counterbalanced by the reduction in
log likelihood (Affleck 2006), and the cases for which � reached the
zero-bound and reverted to the HNB further suggests that the
HZINB mixture overfit the data. Overall, the more parsimonious
HNB appeared adequate for most observed conditions. Negative
binomial models were similarly selected over more complex options
via parsimony in stand mortality (Affleck 2006) and snag abun-
dance (Eskelson et al. 2009) applications, although expressly “re-
stricted” model forms were reported.

Modeling strata subsets of our data naturally created heteroge-
neous NB components, yet the HNB is not necessarily the standard
alternative to the RNB. In discrete ecological applications with mul-
tiple factors, the common modeling pathway begins with fitting the
Poisson distribution followed by the RNB, depending on disper-
sion; the RZINB is then the recommended tool if the RNB is still an
imperfect fit for a data set with abundant zeroes, whereas the HNB
is scarcely mentioned (e.g., missing in Zeileis et al. 2008, Zuur et al.

Table 6. HNBmixed model coefficients and parametric bootstrap simulated mean Abies spp. seedling counts 9–10 years after the 2000
Storrie Fire, Lassen National Forest.

Stratum

Sample statistics HNBmixed coefficients Bootstrap simulation

Mean Median �̂ �̂ �̂ Mean Median 90th percentile

MCU 4.6 2.0 1.5 1.251 2.25 19.5 6.0 36.2
MCLS 3.6 1.0 3.0 0.399 0.63 3.7 3.4 5.4
MCMS 26.5 1.0 5.5 0.590 2.05 44.1 17.6 88.5
MCHS 2.0 0.0 0.6 0.567 1.57 2.1 1.3 4.2
LFU 5.9 2.0 4.0 0.649 0.78 5.4 4.9 8.4
LFLS 15.3 1.0 7.5 0.252 1.06 13.3 10.8 23.6
LFMS 11.4 2.0 5.9 0.472 1.26 13.1 9.8 25.1
LFHS 0.5 0.0 0.3 0.397 1.25 0.6 0.4 1.1
HFU 6.5 4.0 5.8 0.910 0.52 6.6 6.4 9.0
HFLS 33.4 3.0 11.9 0.296 2.26 143.9 45.0 289.3
HFMS 34.0 19.0 14.9 1.316 1.60 52.6 32.4 107.8
HFHS 4.6 1.0 1.2 1.730 2.29 16.6 5.0 32.7

HNBmixed � represents a negative binomial mean count conditional upon the normally distributed random effect of stands within a stratum. Statistics derived using the
parametric bootstrap algorithm are unconditional, less biased, and not of a strictly negative binomial distribution.

Table 7. HNBmixed model coefficients and parametric bootstrap simulated mean Pinus spp. seedling counts 9–10 years after the 2000
Storrie Fire, Lassen National Forest.

Stratum

Sample statistics HNBmixed coefficients Bootstrap simulation

Mean Median �̂ �̂ �̂ Mean Median 90th percentile

MCU 0.8 0.0 0.3 0.867 1.24 0.7 0.6 1.4
MCLS 1.8 0.0 1.1 0.752 0.90 1.7 1.5 2.8
MCMS 3.8 2.0 2.2 0.944 1.25 4.6 3.6 8.7
MCHS 0.7 0.0 0.2 0.825 1.84 1.3 0.6 2.6
LFU 0.1 0.0 0.1 0.209 1.07 0.1 0.1 0.3
LFLS 0.9 0.0 0.3 2.408 1.88 1.5 0.8 3.1
LFMS 1.2 1.0 1.1 1.075 0.47 1.2 1.2 1.6
LFHS 0.3 0.0 0.1 0.482 1.98 0.5 0.2 1.1

HNBmixed � represents a negative binomial mean count conditional upon the normally distributed random effect of stands within a stratum. Statistics derived using the
parametric bootstrap algorithm are unconditional, less biased, and not of a strictly negative binomial distribution.
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2009). Common statistical analysis programs, such as R and SAS
software, have widely used methods for the RNB and RZINB, yet
the heterogeneous alternative is absent from most currently available
packages and published procedures for this software (Hilbe 2011,
p. 319), requiring that the user develop a specific likelihood function
for optimization. The easily accessible zero-inflated packages have
the potential to be misapplied when HNB is called for and may in
fact improve on the RNB due to unfounded inclusion of the zero-
inflated mixture parameters, resulting in erroneous variance calcu-
lations (Figure 1) and muddled model interpretation due to impre-
cise predictor significance tests (Cameron and Trivedi 2008, p. 27,
105). Furthermore, we found that in an improper application,
zero-inflated modeling leads to the misdiagnosis of a zero-inflated
process in the presence of data heterogeneity. In our data, six of the
nonzero (�0.001) RZINB � coefficients assumed zero values when
remodeled as a HZINB, suggesting that the RZINB estimate of �
was not influenced by excess zeroes as much as by response hetero-
geneity. We concluded that the zero-inflated models tended to over-
fit the data. In addition, we did not have a clear biological justifica-
tion for this model-fitting approach. Zero-inflated models were not
formed for the Abies and Pinus models because the problems with
insufficient sample size for the negative binomial are accentuated

when the response was filtered by species. Although our study pro-
vides an empirical example of the HNB in application to natural
regeneration, further research and the development of such a pack-
age in R and SAS software would aid future modeling of heteroge-
neous trends and may preclude instances of inappropriate ZINB
application.

We believe that the inclusion of multiple heterogeneity terms in
the HNB was appropriate because the goal was to model the effect of
forest type and burn severity on the mean and variability of seedling
response. The value of this method is in its assessment of the data’s
variability, or rather, the shape of seedling distributions within each
stratum. Whereas the less sophisticated RNB or even the Poisson
distribution may just as adequately estimate strata means, the HNB
can additionally be used to estimate seedling count probability den-
sities that more precisely fit empirical distributions. In our applica-
tion, this capability was valuable in the parametric bootstrapping
procedure for both addressing unconditional means and stand
stocking. We noticed that slight variations in the estimated � pa-
rameter were highly influenced by the proportion of both zeroes and
very large counts within each stratum. Allowing for heterogeneous �
values enabled more specialized and precise estimates of zero and

Figure 2. Probability of stocked simulated stands across strata 9–10 years after the 2000 Storrie Fire, Lassen National Forest, using the
all conifers response. Parametric bootstrap simulations (N � 10,000) recreated five stands with each stratum, as per the structure of the
observed data. Stocking density thresholds are 494 seedlings ha�1 in the mixed conifer forest type and 741 seedlings ha�1 in the low-
and high-elevation fir forest types; sites below 50% stocking do not meet recommended reforestation thresholds (US Department of
Agriculture 1987). Dashed vertical lines represent the mean percentages of stands stocked. BA, mean observed remnant “all conifers”
stand basal area (m2 ha�1); Shrub, mean observed woody shrub cover (%).
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near-zero count probabilities, which happen to be the most influen-
tial probabilities in our stocking analysis and thus the most valuable
asset to the manager.

Incorporation of stand-level random effects in the mixed-effects
models was supported by our data, as indicated by a substantial
reduction in AIC. When the stand-level error term was included,
model means appeared to have a sizeable log-bias. We know of no
established log-bias correction for this application. The bootstrap-
ping algorithm, however, is a widely accepted means of obtaining
statistics from non-Gaussian distributions, including unconditional
means. Most of the simulated means appropriately corresponded
with the empirical arithmetic mean, yet there were a few discrepan-
cies in which the simulated mean far exceeded the latter. We attri-
bute this to the influence of large magnitude random stand effects
(e.g., � � 2.0) (Tables 5–7) on model � coefficients, which are
exponentially susceptible to changes in the Gaussian random effects
once back-transformed from within the log-link of the negative
binomial model. These discrepancies do not reduce our confidence
in the simulated means (parametric bootstrap procedures were exe-
cuted with 10,000 iterations); rather it is clear that when one is
dealing with highly skewed and discrete non-Gaussian distribu-
tions, the mean is a less stable and iconic statistic than might be
expected. The data in this study, therefore, emphasize the impor-

tance of characterizing the response distribution rather than leaning
solely on a model mean. In light of the high variability even within
strata, future researchers examining negative binomial processes
should increase sample size to both better characterize model error
and provide the opportunity to include ancillary environmental
predictors within the model form.

Natural Regeneration
Simulated all conifers count means across the Storrie Fire trans-

late to mean densities between 272 and 29,257 conifer seedlings
ha�1; correspondingly, Abies spp. densities were between 148 and
35,558 seedlings ha�1, and Pinus densities ranged from 25 to 1,137
seedlings ha�1 (less than densities observed by van Mantgem et al.
2006 and Moghaddas et al. 2008). Median simulated counts were
more stable than means in highly variable strata (e.g., LFLS and
LFHS) (Tables 5–7), suggesting that 50th percentile simulated
seedling densities may be roughly one-third of the mean. Although
we observed abundant seedling densities in many strata, examina-
tion of simulated stocking suggests that postfire regeneration after
the Storrie Fire was not uniformly distributed within or among
stands in a stratum. The USDA Forest Service Region 5 mixed
conifer forest stocking density threshold is lower than that of the
low- and high-elevation fir forests; a lower threshold paired with the

Figure 3. Probability of stocked simulated stands across strata 9–10 years after the 2000 Storrie Fire, Lassen National Forest, using the
Abies spp. response. Parametric bootstrap simulations (N � 10,000) recreated five stands with each stratum, as per the structure of the
observed data. Stocking density thresholds are 494 seedlings ha�1 in the mixed conifer forest type and 741 seedlings ha�1 in the low-
and high-elevation fir forest types; sites below 50% stocking do not meet recommended reforestation thresholds (US Department of
Agriculture 1987). Dashed vertical lines represent the mean percentage of stands stocked. BA, mean observed Abies spp. stand basal area
(m2 ha�1); Shrub, mean observed woody shrub cover (%).
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inclusion of C. decurrens and P. menziesii suggests that all conifers
stocking in the MCU, MCLS, and MCMS was acceptable for the
majority of stands (Figure 2). In addition, the stands in the HFU
and HFMS were predominantly stocked because of heavy A. mag-
nifica establishment. Although roughly 50% of the simulated stands
in the remaining non-high-severity strata were stocked, the presence
of remnant overstory in these strata (Figure 2) may eliminate the
need for further concern in two regards: the assumption that over-
story adjacency promotes some degree of regeneration on available
sites means that further regeneration of shade-tolerant species is
likely (Laacke 1990a, 1990b, Oliver and Larson 1996); and these
strata are now in the process of developing multicohort stands,
which the current stocking analysis procedure does not adequately
address, because no weight is assigned to mature trees (US Depart-
ment of Agriculture 1987). These strata are different, however, from
high-severity strata, which have few or no nearby seed sources. Our
models indicate that fewer high-severity sites (stands in the MCHS,
LFHS, and HFHS) are likely to be stocked by Region 5 standards 10
years after the fire event. The sparse regeneration observed in high-
severity strata reflects the scarcity of surviving, seed-producing over-
story trees and the highly competitive woody shrub colonization
(Figures 3 and 4) (Bonnet et al. 2005, Crotteau et al. 2013). With-
out intervention, the resulting landscape would consist of a patchy
conifer overstory intermingled with resprouting California black
oak (Cocking et al. 2011) and shrubby expanses.

Model � coefficients were similar between the all conifers and
Abies spp. models, underscoring the distributional similarity be-
tween the two. Low � values were driven by frequent zeroes in
conjunction with the occasional large observed count (e.g., �200
seedlings plot�1). This variability is similar to the natural regenera-
tion trends observed by McDonald (1983), Chappell and Agee
(1996), and Larson and Franklin (2005).

The all conifers and the Abies models are more similar than the

Pinus spp. model, which emphasizes the abundance and density
dominance of A. concolor and A. magnifica across the burned land-
scape (as in van Mantgem et al. 2006). Although pine is just one
component in the mixed conifer forest type, there is widespread
concern that pine abundance may have declined relative to that of
Abies spp. (Oliver and Ryker 1990, Ansley and Battles 1998, van
Mantgem et al. 2006). Fire-resilient and shade-intolerant P. pon-
derosa is generally maintained via frequent low- and mixed-intensity
fire (Graham and Jain 2005, Taylor 2010), a feature no longer
characteristic of many of the montane ecosystems in the southern
Cascades since the era of fire suppression (Beaty and Taylor 2001).
In the absence of frequent low-intensity fire, a combination of in-
tensive forest management (i.e., prescribed fire, supplemental plant-
ing, and stand maintenance) coupled with extensive forest and fuels
management (including managed wildfires) may improve the pros-
pects of maintaining pine on western landscapes (Moghaddas et al.
2008) while promoting landscape diversity and mosaics of fire-re-
silient stands.

Model Application to Management
This study’s models confirm that natural seedling densities vary

spatially and compositionally across elevation and burn severity in
this region, 9–10 years postfire (similar to Turner et al. 1997). Total
dependence on natural processes to yield timely, fully stocked stands
as dictated by management goals may be insufficient. Although
planting has the advantage of more rapidly reestablishing trees after
fire (Zhang et al. 2008), the need for planting may not be uniform
throughout the landscape, as we observe in the Storrie Fire.

Our models suggest that postfire natural regeneration was gen-
erally abundant after the Storrie Fire, except when a nearby seed
source was absent (i.e., high-severity burns; similarly, Donato et al.
2009). Approximately one decade after fire, residual conifer cover

Figure 4. Probability of stocked simulated stands across strata 9–10 years after the 2000 Storrie Fire, Lassen National Forest, using the
Pinus spp. response. Parametric bootstrap simulations (N � 10,000) recreated five stands with each stratum, as per the structure of the
observed data. Stocking density thresholds are 494 seedlings ha�1 in the mixed conifer forest type and 741 seedlings ha�1 in the low-
and high-elevation fir forest types; sites below 50% stocking do not meet recommended reforestation thresholds (US Department of
Agriculture 1987). Dashed vertical lines represent the mean percentage of stands stocked. BA, mean observed Abies spp. stand basal area
(m2 ha�1); Shrub, mean observed woody shrub cover (%).
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within the unchanged, low-severity, and medium-severity burns re-
mains; managers may consider the majority of these now multico-
hort stands intact and focus planting efforts elsewhere. The lowest
overall seedling densities and poorest conifer stocking were observed
in the high-severity burns within each of the three forest types; these
strata were also typified by high levels of woody shrub cover (pre-
dominantly Ceanothus spp. and Arctostaphylos spp.) and resprouting
hardwood cover (Q. kelloggii) (Cocking et al. 2013, Crotteau et al.
2013), exacerbating competitive stress and shading out young
shade-intolerant trees. The sparse natural conifer cohort present
after high-severity burns, therefore, would most likely benefit from
supplemental artificial regeneration paired with vegetation manage-
ment methods such as mechanical mastication and herbicide appli-
cation (McDonald and Fiddler 2010).

Overstory and regeneration in the high-elevation fir forest type
was predominantly A. magnifica (Crotteau et al. 2013). Due to the
effect of elevation on other woody species in the region, A. magnifica
has limited competition in reforesting the HFHS. In fact, simulated
seedling stocking in the HFHS indicated the best odds of stand
stocking of all the high-severity strata; the probability of no stands
meeting stocking standards was only 0.12. If conifers are desired,
postfire planting would be most beneficial in the MCHS and LFHS;
these forest types are more compositionally complex than their up-
per-elevation counterpart and previously contained many mature,
legacy pines (J.S. Crotteau, USDA Forest Service, pers. observ.,
2010). Our model suggests that there is a 60% chance that none of
the stands in the 449-ha MCHS and a 93% chance that none of the
stands in the 472-ha LFHS are sufficiently stocked with pine seed-
lings to meet the regional pine stocking standard. In the case of the
Lassen portion of the Storrie Fire, this equates to just 10% of the
total burned area for which means of artificial regeneration may be
of the highest priority, given management objectives. If managers
wish to encourage pine-prominent (as opposed to the currently
more abundant A. concolor) forests in the lower-elevation sites,
planting pine to supplement natural P. jeffreyi, P. lambertiana, and
P. ponderosa regeneration may restore valuable timber while sup-
porting the development of plant communities better adapted to
endure future fires and promote lower-severity burns (Agee 1993, p.
305–306). It is likely, however, that site preparation (e.g., herbicides
or mechanical mastication) and intermediate treatments (e.g., thin-
ning or prescribed fire) would be required to maximize tree growth
while limiting the vertical and horizontal continuity of these devel-
oping stands.

Although we initially suspected that the high-severity burns
would have the least conifer regeneration and that lower-severity
burns would support greater numbers, the magnitudes of these den-
sities were unknown. There are several reasons for this uncertainty in
this region’s potential regeneration. First, the species commonly
found in this region express periodicity in regeneration. Sometimes
this is severe: it is feasible that 7 or 8 years may pass without a good
ponderosa pine crop (Oliver and Ryker 1990). Fir in this region
tends to be less variable (1–4 years between good crops) but exhibits
periodicity as well (Laacke 1990a, 1990b). Over a 10-year period,
therefore, it is possible to find scant natural ponderosa pine regen-
eration even in the presence of mature seed trees. A second reason for
uncertainty in postfire regeneration is that even high-severity classi-
fied burns may host some degree of sparse overstory survival, man-
ifested either as individuals or small islands of trees (a confounding
factor expressed in Donato et al. 2009). Survivors of high-severity
fire sometimes produce stress crops, which can lead to patchy areas

of high seedling densities, as observed after the 1992 Fountain Fire
in northern California (DiTomaso et al. 1997). Third, additional
uncertainty regarding postfire regeneration densities may stem from
the fact that our measure of burn severity was indirect, not field-
based. We used the CBI modeled by RdNBR, which was derived
from prefire and 1-year postfire Landsat imagery (30-m resolution)
to estimate fire severity across the landscape, a technique that is
powerful because it is inexpensive and can be calculated for any
fire. It was not known how well this readily available metric would
relate to observed regeneration 9–10 years after fire, or if the nom-
inal classes would highlight differences in conifer regeneration be-
tween neighboring classes on the scale. Although more detailed
specifics require further research, we believe that linking the re-
motely sensed CBI to postfire conifer regeneration can be informa-
tive to help managers make key restoration decisions and focus
limited resources.

In the future, large-scale mixed-severity burns are likely to influ-
ence western landscapes (Westerling et al. 2006, Miller et al.
2009b). This study emphasizes that properly specified model distri-
butions can more precisely address the high variability of postfire
natural regeneration, useful for guiding a number of forest restora-
tion objectives. Our models are site-specific and any extrapolation
should be made cautiously, yet we believe the overarching trends
observed may be applicable to similar western forest types burned
with mixed-severity wildfire. Where time and resources are limiting
factors under timber growth or site reclamation objectives, manag-
ers may consider prioritizing postfire revegetation efforts with areas
less likely to quickly recover to stocking standards.
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