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Forest understory communities are important components in forest ecosystems providing wildlife habitat
and influencing nutrient cycling, fuel loadings, fire behavior and tree species composition over time. One of
the most widely utilized understory component metrics is understory vegetation cover, often used as a
measure of vegetation abundance. To date, understory vegetation cover estimation and prediction has proven
to be inherently difficult using traditional explanatory variables such as: leaf area index, basal area, slope, and
Keywords: aspect. We introduce airborne lidar-derived metrics into the modeling framework for understory vegetation
Understory vegetation cover cover. A new airborne lidar metric, understory lidar cover density, created by filtering understory lidar points
Lidar using intensity values increased traditional explanatory power from non-lidar understory vegetation cover
Intensity estimation models (non-lidar R2-values: 0.2-0.45 vs. lidar R?-values: 0.7-0.8). Beta regression, a relatively
Beta regression new modeling technique for this type of data, was compared with a traditional weighted linear regression
Weighted regression model using a leave-one-out cross-validation procedure. Both models provided similar understory vegetation
cover accuracies (+22%) and biases (~0%) using 40.5 m? circular plots (n=154). The method presented in
this paper provides the ability to accurately obtain census understory vegetation cover information at fine
spatial resolutions over a broad range of stand conditions for the interior ponderosa pine forest type. Addi-
tional model enhancement and the extension of the method into other forest types warrant further
investigation.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction 2011; Kerns & Ohmann, 2004; Russell et al, 2007; Suchar &

Crookston, 2010; Venier & Pearce, 2007).

Forest understory communities play many important roles in
forest ecosystems (Suchar & Crookston, 2010). They provide habitat
and forage for wildlife, are important factors in nutrient cycling and
fire behavior, and help determine overstory species composition
and structure over time (Falkowski et al., 2009; Legare et al., 2002;
Scott & Reinhardt, 2001). Thus, understory communities are often
considered good ecological indicators of forest health (Kerns &
Ohmann, 2004; Tremblay & Larocque, 2001). To properly utilize
understory components in the assessment of the above criteria,
predictive models are needed for these characteristics (Suchar &
Crookston, 2010). Unfortunately, most of the significant variables
found to be useful for the prediction of the above criteria have been
limited in explanatory power and spatial extent (Eskelson et al.,
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Understory vegetation cover, often used as an abundance mea-
sure, is an important metric used for wildlife habitat and fuel load
characterization, fire behavior modeling, and understanding forest
competition dynamics (Chen et al., 2008a). It is often laborious and
costly to measure, which has resulted in it being sampled in a variety
of ways (Eskelson et al., 2011). Traditional sampling methods include
ocular estimation, line-intercept sampling, and fixed plot sampling
(Bonham, 1989). All of these result in a percentage estimate for a
unit area covered by understory vegetation.

Estimation and prediction of understory vegetation cover using
field-derived explanatory variables has proven to be inherently diffi-
cult. To date, there have been two types of explanatory variables
used in the estimation and prediction of understory vegetation
cover; 1) topographically-derived (e.g. slope, aspect, digital terrain
synthesis (DTS)), and 2) overstory-derived (e.g. basal area (BA),
trees per hectare, leaf area index (LAI), canopy cover). The coefficient
of determination associated with these models has been relatively
poor (R?-values ranging from 0.2 to 0.45) and their spatial extents
are often limited to local study areas (e.g. Eskelson et al., 2011;
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Kerns & Ohmann, 2004; Russell et al., 2007; Suchar & Crookston,
2010; Venier & Pearce, 2007).

Traditional passive remote sensing techniques (e.g. optical imag-
ing) have shown potential for providing information on forest charac-
teristics, such as wildlife habitat, over broad areas at lower costs than
traditional field inventories (Cohen & Goward, 2004; Kerr &
Ostrovsky, 2003; Schroeder et al., 2007). In terms of estimation or
prediction of understory vegetation cover, traditional remote sensing
methods have been used to derive useful explanatory variables in
cover modeling. Unfortunately, these methods are not sufficiently
sensitive to 3D vegetation structure, which restricts their ability in
the direct assessment of smaller areas or objects (Kerr & Ostrovsky,
2003; McDermid et al., 2005; Pesonen et al, 2008; Wulder &
Franklin, 2003). They also have coarse spatial resolutions (>20 m),
which can often constrain their usefulness.

A very promising fine spatial resolution remote-sensing technology
for increasing the accuracy and efficiency of large-scale forest invento-
ries is airborne discrete-return lidar (Maltamo et al., 2006; Naesset,
2002). Airborne lidar can be used to directly measure the three-
dimensional structure of terrestrial and aquatic ecosystems across
large spatial extents (Lefsky et al., 2002). Airborne lidar data produce
three-dimensional characterizations of objects in the form of point
clouds that are defined by precise X, y and z coordinates. They also
help characterize the reflectance and surface properties of intersected
objects by providing intensity values, which are a measure of return-
signal strength, for each point. These attributes are useful for forest
inventory and characterization, because in theory, every object in a for-
est with a vertical dimension can be detected if adequate lidar point
densities are collected within all forest canopy layers (e.g. understory,
overstory) (Pesonen et al.,, 2008).

In recent years, airborne lidar has been used successfully to estimate
many standing tree characteristics such as biomass and volume
(Heurich et al., 2004; Hyyppd et al, 2001; Maltamo et al., 2006;
Nasset, 2002; Packalén & Maltamo, 2006), as well as canopy cover
and height profiles (Coops et al,, 2007; Goetz et al.,, 2007; Lim et al,
2003). Airborne lidar has also been incorporated into assessments of
biodiversity (Clawges et al, 2008; Goodwin et al, 2007; Hill &
Broughton, 2009; Maltamo et al., 2005; Zimble et al., 2003), fire behav-
ior models (Andersen et al., 2005; Mutlu et al., 2008; Riario et al., 2003),
and wildlife habitat models (Goetz et al,, 2007; Vierling et al., 2008).
Estimation and prediction of understory components such as vegetation
cover with airborne lidar has received less study. Martinuzzi et al.
(2009) studied the presence and absence of understory shrub cover
(cover>25%) on 20 mx20 m pixels using airborne discrete-return
lidar. They found presence accuracies of 83% using two airborne lidar
understory metrics along with a transformed slope aspect variable.
Hill & Broughton (2009) examined the presence and absence of under-
story vegetation using two separate airborne discrete-return lidar
datasets collected at the same location; one collected in leaf-on and
one collected in leaf-off conditions. They found accuracies of 77%
using a combination of both lidar datasets and 72% using only the
leaf-off lidar on 20 mx 20 m plots. In another recent study, Morsdorf
et al. (2010) used airborne discrete-return lidar height and intensity in-
formation to identify individual vegetation strataon 5 mx 5 m pixels in
various forest conditions and had some success detecting the presence
of the understory vegetation strata. Detection of coarse woody debris
(CWD) with airborne lidar has also been studied with some promising
results (Pesonen et al., 2008; Seielstad & Queen, 2003).

Intensity values are an often underexploited feature of lidar data,
due to the difficulty and variability associated with acquisition settings
and calibration. Intensity is the power of the returned laser light per
unit area. It is primarily a measure of surface reflectance and is a func-
tion of the wavelength of the source energy, path distance, and the com-
position and orientation of the surface or object which the laser pulse
intersects (Boyd & Hill, 2007). Currently, airborne lidar sensors use
variable gain controls to compensate for variations in ground brightness

and surface object reflectance to help ensure the sensor is adequately
detecting returns. They affect the quality and the usefulness of intensity
values. Variable gain settings can either be manually or automatically
adjusted throughout an acquisition (automatic more prevalent),
which can result in intensity values that lack calibration or normaliza-
tion (often referred to as radiometric calibration) into the same refer-
ence scale. Gain settings are currently proprietary, thus they are
unavailable to end users making radiometric calibration dependent on
vendors (Boyd & Hill, 2007; Donoghue, Watt, Cox & Wilson, 2007;
Kaasalainen et al., 2009). At the time of this study, the majority of
lidar vendors do not calibrate the intensity information; thus they rely
solely on variable gain and acquisition settings to provide useful inten-
sity information. The quality of the intensity data is also dependent
upon additional lidar acquisition parameters. Laser beam divergence,
type of source energy, and path lengths all affect the quality of the
intensity information and thus must be adjusted for different acquisition
scenarios to ensure useful intensity information is obtained. These attri-
butes have resulted in a broad range of quality and limited the use of
intensity data. As vendor calibration and acquisition techniques become
more robust and end user calibration becomes possible, the use of inten-
sity information will likely increase.

Even with these difficulties, intensity information has been used
successfully in many forestry applications to differentiate between
tree species, estimate biomass, and predict basal area (Donoghue et
al., 2007; Holmgren & Persson, 2004; Hudak et al., 2006; Kim et al.,
2009; Lim et al., 2003; Morsdorf et al., 2010). Lim et al. (2003) used
an intensity threshold to remove lower NIR intensity returns when
estimating the live biomass of a northern hardwood forest in Ontario,
Canada. In that study, the mean height of the higher intensity returns
was the best predictor of basal area, biomass and volume. More
recently, Kim et al. (2009) used intensity value threshold filtering to
successfully estimate live and dead standing tree biomass. All of
these studies point toward the great potential of intensity informa-
tion to help characterize many forest attributes. In this study, we
explore the ability of intensity information to filter lidar points asso-
ciated with various understory components.

This study seeks to expand on previous work and exploit the addi-
tional information available in airborne lidar to predict understory
vegetation cover. The primary objectives of this study are to: 1) ana-
lyze the potential of airborne lidar-derived metrics to estimate and
predict understory vegetation cover; 2) explore the use of intensity
values to filter understory component lidar points, 3) compare two
modeling approaches for the prediction of understory vegetation
cover using the airborne lidar-derived metrics; and 4) develop a prac-
tical method that utilizes airborne lidar-derived metrics to predict
understory vegetation cover. New understory airborne lidar metrics
are introduced and explored.

2. Materials and methods
2.1. Study area

The study was conducted at Blacks Mountain Experimental For-
est (BMEF) in northeastern California (Fig. 1). The experimental for-
est (40°40’N, 10 121°10'W), managed by the USDA Forest Service
Pacific Southwest Research Station, is located approximately
35 km northeast of Mount Lassen Volcanic National Park and ranges
between 1700 and 2100 m elevations. Stands are dominated by
ponderosa pine (Pinus ponderosa Dougl. ex P. and C. Laws) with some
white fir (Abies concolor (Gord. and Glend.) Lindl.) and incense-cedar
(Calocedrus decurrens (Torr.) Florin) at higher elevations. At lower ele-
vations, Jeffrey pine (Pinus jeffreyi (Grev. and Balf.); Oliver, 2000) can
also be found in some stands. Classified as an interior ponderosa pine
forest type (Forest Cover Type 237) (Eyre, 1980), the 4358 ha forest
has a wide range of stand conditions as a result of past research and
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Fig. 1. Geographic location of the Blacks Mountain Experimental Forest and layout of the Blacks Mountain Long-Term Ecological Research Project in northeastern California.

management activities, as well as disturbance events (Ritchie et al.,
2007).

As part of a large-scale, long-term interdisciplinary experimental
design at BMEF initiated in 1991, two contrasting stand structures
were created: low structural diversity (LoD) and high structural di-
versity (HiD) (Oliver, 2000). LoD stands were thinned to maintain a
single canopy layer of intermediate trees, with the goal of simplifying
forest tree structure. At the time of treatment implementation, stands
were thinned to a uniformly spaced density of approximately
40 trees ha~!, maintaining trees with heights ranging from 12 to
30 m and crown ratios generally greater than 50%. At the time of
our study, LoD stand densities ranged from 25 to 430 trees ha™!
based on plot-level data (DBH>9 cm). In contrast, the HiD units
retained all canopy layers, which resulted in stands that feature mul-
tiple age classes and varying crown structures (Oliver, 2000). All large
old trees were maintained with one smaller tree retained within the
larger tree's crown circumference. Tree densities ranged from 60 to
95 trees ha™ ! at the initial implementation and ranged from 90 to
1400 trees ha~! at the time of our study based on plot-level data
(DBH>9 cm). Plots with higher tree densities are associated with a
few spatially scattered dense thickets (0.4-0.8 ha) containing smaller
trees that were left as part of the HiD prescription.

Six research units were each randomly assigned from both the LoD
and HiD treatments ranging in size from 77 to 144 ha. Each unit was
then split in half with one randomly assigned half receiving pre-
scribed fire treatments (Fig. 1). Due to the large unit size, treatment
implementation took several years. The three individual treatment

blocks, each with four units, were created in 1996, 1997, and 1998,
respectively.

Also included at BMEF, are four research natural areas (RNA) each
approximately 40 ha in size (RA, RB, RC, RD). The RNAs were set aside
to serve as unmanaged, qualitative controls representative of the
interior ponderosa pine type. They have never received mechanical
treatment, but fire exclusion has greatly increased their understory
tree densities. Two of the four RNAs (RB and RC) received one appli-
cation of prescribed fire in the late 1990s. RNA stand densities ranged
from 420 to 1220 trees ha™—! for trees >9 cm DBH at the time of our
study.

As part of the experimental design all 16 research units at BMEF
have permanently monumented grid markers located within them
on a 100x 100 m lattice pattern. The permanent grid markers serve
as the center points for all plot level research being conducted on
the forest. Each grid was located by conventional survey methods
and placed within 15 cm of their predetermined UTM coordinates
using the High Precision Geodetic Network along with survey grade
GPS (Oliver, 2000). These provide a solid foundation for researchers
to conduct airborne lidar research, because plot location errors are
minimized.

2.2. Field data
Field data were collected on five of the LoD units, six of the HiD

units and 2 randomly selected RNAs in July 2009 (RC and RD). Stand-
ing live tree (DBH>9 cm) attributes for all three structure types at
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the time of our study are summarized in Fig. 2. Using the BMEF
permanent grid system, plot locations were assigned systematically
with a random start within each unit on every other grid point in all
intercardinal directions (282 m spacing). At each selected grid point
location two nested circular plots were established: 1) a 40.5 m?
circular plot to measure understory vegetation, and 2) a 805 m?
circular plot to measure standing trees and coarse woody debris
(CWD). A total of 154 plots were measured (LoD=65, HiD=79,
RNA=10). Every shrub with a height greater than 0.3 m was mea-
sured for crown dimensions and was stem mapped (Fig. 3). These
measurements included the azimuth and distance from the plot cen-
ter to the center of the shrub, two perpendicular crown width mea-
surements, and two height measurements (maximum height and
average height). Maximum height was defined as the top height of
the shrub, and average height was determined by ocular estimation
measured with a tape measure. Shrub species found in our study includ-
ed (listed in order of abundance): greenleaf manzanita (Arctostaphylos
patula Greene), antelope bitterbrush (Purshia tridentate (Pursh)), snow-
brush (Ceanothus veluntinus Dougl. ex Hook.), wax current (Ribes
cereum), Pacific serviceberry (Amelanchier alnifolia Nutt.), rabbitbrush
(species) (Chrysothamnus sp.), common snowberry (Symphoricarpos
albus (L.) S.F. Blake), and Sierra gooseberry (Ribes rozelii Regel).
Greenleaf manzanita and snowbrush exhibit denser foliage with larger
leaf areas, more branching complexity, and tend to grow taller and
wider than the other shrub species.

A geographically registered shrub cover layer was then constructed
in ArcGIS using shrub locations coupled with crown dimensions (Fig. 4).
For each shrub the arithmetic mean of the two perpendicular crown
widths was used as the shrub diameter. Next, a circle was assumed for
the general two-dimensional shrub shape and each shrub's circular
area was incorporated into the layer. Lastly, the circular shrub areas
were merged to create one shrub cover layer for each plot. This tech-
nique accounts for overlapping shrub crowns, edge effects, and should
result in a more accurate estimation of shrub cover when compared to
many traditional sampling methods.

Seedlings over 0.3 m in height and all saplings were tallied for each
plot. Saplings were tallied into two diameters at breast height (DBH)
classes (2.54 and 5.08 cm). For seedling and sapling cover estimates,
predetermined cover values were used (seedlings=0.15 m?; saplings
(2.54 cm class)=0.5 m?; saplings (5.08 cm class)=1 m?). These
cover values were based on average values from a subsample of seed-
ling and sapling crown dimensions. Saplings greater than 6.35 cm in
DBH were considered to have crowns above the understory layer
based on field observations. Total understory vegetation cover was de-
termined by summing all three of the cover areas together and dividing
by the total plot area. This method does not account for overlapping
seedling and sapling crowns which could slightly affect the accuracy
of the plot measured understory vegetation cover values when seed-
lings and saplings were present.

Fig. 3. Field sampling design for understory shrub cover.

In addition to the understory vegetation measured, all coarse
woody debris with at least one end height above 0.3 m and one end
diameter greater than 0.3 m were measured at every understory veg-
etation plot location only using a larger plot size (809 m? circular).
Azimuth and distance was measured to the middle of each end from
the plot center and each end's width and height were also measured
for cover and volume estimation. The spatial characteristics of the data
enable direct determination of the geographic spatial arrangement
associated with each piece of CWD. These attributes provided the ability
to determine the quantity, cover and volume of CWD located within the
40.5 m? circular understory vegetation plots. In addition, prominent
stumps (height>0.5 m) were located using the azimuth and distance
from the plot center.

Standing live and dead trees >9 cm DBH were also measured on the
809 m? circular plots. All trees were stem mapped from the plot center
and measured for total height, DBH, crown width, and height to live and
dead crown. These data were used for verification of plot locations.

2.3. Lidar data

Discrete multiple return airborne lidar data were provided by
Watershed Sciences Inc. in LAS file format (version 1.1). The lidar
data were acquired over the entire BMEF study area in late July 2009
using a Leica ALS50 Phase II laser system mounted on a fixed wing
aircraft. The aircraft was flown at 900 m above ground level following
topography. Data were acquired using an opposing flight line side-lap
of 50% and a sensor scan angle 14° from nadir to provide good penetra-
tion of laser shots through the canopy layers. On-ground laser beam
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Fig. 2. Standing live tree (DBH>9 cm) attributes from all plots per treatment type (LoD, HiD, RNA) at BMEF.
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Fig. 4. ArcGIS understory vegetation cover layer created from field-measured shrub
data.

diameter was approximately 25 cm (narrow beam divergence setting),
which resulted in a low percentage of multiple returns (higher order
than first returns: 9.2%) and a high percentage of first and single returns
(first: 9.4%; single: 81.4%). The high ratio of first and single returns
helped provide better quality intensity information, because calibration
problems associated with laser pulse energy are reduced for these returns
(for review: Morsdorf et al., 2010). An average of 6.9 points m ™2 was
obtained for the entire study area, with a standard deviation of
5.6 points m~2. Ground survey data were collected to enable the
geo-spatial correction of the aircraft positional coordinate data col-
lected throughout the flight, and to allow for quality assurance
checks on final LiDAR data products. Simultaneous with the airborne
data collection mission, multiple static (1 Hz recording frequency)
ground surveys were conducted over monuments with known
coordinates to enable geo-spatial data correction. Indexed by
time, these GPS data were used to correct the continuous onboard
measurements of aircraft position. To enable the assessment of LiDAR
data accuracy, ground truth points were collected using GPS based
real-time kinematic (RTK) surveying.

The vendor post-processed lidar data utilized proprietary software
(TerraScan) coupled with manual methods to identify ground points
for the development of the digital terrain model (DTM). Vertical DTM
accuracy for BMEF was approximately 15 cm at a 95% confidence
level. The vendor used an automatic variable gain setting during acqui-
sition and did not calibrate the intensity values post-acquisition. In past
acquisitions, where the vendor used similar acquisition methods, the
intensity information was successfully used to differentiate between
live and dead biomass (Kim et al., 2009).

2.4. Data analysis

An important step in any airborne lidar data analysis for forestry
applications is verification of geo-registered plot locations. Inaccurate
plot locations can be one of the largest sources of model error found
in many types of airborne lidar analysis. Even though the permanent
grid system at BMEF helps to minimize the need for this step, every
plot location was manually inspected using the standing tree stem
maps for each 809 m? circular plot. Every 809 m? circular plot point
cloud was compared to the field-measured standing tree stem map
to assess the validity of the plot location. All plot locations were
found to be highly accurate (0.2 m) based on the manual inspection.

Once plot locations were verified, the lidar point cloud heights
were normalized using the DTM and points corresponding to the

40.5 m? circular plots were extracted from the normalized lidar
dataset. These plot point clouds were used to derive all potential
explanatory lidar metrics used in the understory vegetation cover
modeling analysis.

2.4.1. Understory lidar metrics

Martinuzzi et al. (2009) found the use of two understory airborne
lidar metrics along with a common slope-aspect transformation variable
that could accurately estimate the presence of shrub cover (accuracy:
83%). The two understory lidar metrics utilized in their study were the
percentage of ground points and percentage of points between 1 and
2.5 m compared to all plot points. We introduce a new understory
lidar metric that combines the inherent information found in these
two metrics.

The new metric, understory lidar cover density (ULCD), can be
derived using a series of standardized steps that can be automated
(Fig. 5). First, the height range for the understory layer is determined
from the average and maximum shrub height data collected from
field measurements. The minimum height for the understory layer
was determined by rounding the field-measured minimum average
shrub height value down to the nearest 0.1 m. The maximum height
for the understory layer of each plot was determined by rounding
the field-measured upper 99th percentile maximum shrub height
value to the nearest 0.1 m. By using the 99th percentile value of the
maximum height range the maximum height threshold for the
understory layer was reduced by 0.4 m and was determined to better
represent the overall shrub crown height distributions for the site.
The maximum height for the understory layer also served as the
cut-off level between understory and overstory points.

For this study, average shrub heights ranged from 0.25 to 1.45 m
and maximum heights ranged from 0.5 to 1.85 m (Fig. 6). This
resulted in an understory layer that ranged from 0.2 to 1.5 m. There
were a total of 8 shrubs (shrub sample size: m=2821) measured
that had portions of their crowns above the maximum understory
layer height threshold. All lidar points located within the understory
layer were then extracted from the plot point cloud for further anal-
ysis. The average plot-level percentage of the first and single returns
in this layer was similar to that of the entire acquisition (first: 6.7%;
single: 83.4%). Theoretically, points in this layer can intersect one of
eight understory components for this forest type: shrubs, the base
of standing tree boles, seedlings, saplings, CWD, taller herbaceous
vegetation, low hanging tree branches, and stumps (Fig. 7). Other
intersected components were considered too rare to be significant
in this study area.

Determine shrub
average height range

Plot level point cloud
segementation

V
Understory layer point cloud
segmentation

1

Apply intenstty filter
(remove pts. w/ intensity >1sd & <1sd)

1
Create ULCD metric
ULCD = UPk/ (UPF + RGP)

Fig. 5. Procedure for the creation of the understory lidar cover density (ULCD) metric.
sd = standard deviation, UPr=number of understory points remaining after filtering,
RGP =relative ground points.
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We explored the use of intensity values to filter and remove points
associated with unwanted understory components (e.g. non-vegetation
and herbaceous points) from the understory layer point cloud. It was
hypothesized that the intensity values would differ for the various under-
story components, thus providing a technique to identify the points asso-
ciated with understory vegetation. For each plot, all points below the
understory threshold (<1.5 m) were used to calculate understory intensi-
ty mean and standard deviation values. It was determined from manual
inspection of understory lidar point clouds, that points associated with
live vegetation typically contained intensity values within one standard
deviation of the mean intensity value, and points associated with other
understory components were often outside this range. Based on this

Overstory Layer

735

observation, all points with intensity values beyond one standard devia-
tion from the plot's mean intensity value were removed from the under-
story point cloud. The understory lidar cover density metric is then
obtained using the formula:

UP;
ULCD = (UP¢ + RGP) (1)
where UPf is the number of remaining understory points after applying
the intensity filter, and RGP is the number of relative ground points
(points under 0.2 m).

Two additional understory lidar metrics derived from the under-
story point cloud (heights<1.5 m) were understory point density
(UPD) and effective plot coverage (EPC). Understory point density
was defined as the number of lidar points per square meter under
1.5 m, and ranged from 1.5 to 24.2 points m~2 with a mean of
5.4 points m~2 and a standard deviation of 3.1 points m 2. Typically,
point densities are used to assess the adequacy of plot point cloud
coverage. High point densities for a plot are often associated with ade-
quate point coverage over the entire plot. In an understory context, it
is possible to obtain high point densities while areas within the plot
have no representative points because of scanning attributes (e.g. scan
angle and path distance) and overstory obstructions. In an attempt to
overcome this trait, the EPC metric was derived to measure the size of
the plot area where the point coverage was adequate. This metric
contains inherent information from overstory characteristics (e.g. cano-
py cover and structure, species composition, etc.) and acquisition meth-
odologies (e.g. point densities, scan angles, pulse rate and pattern). Two
assumptions must be made to derive the metric. First, how much area
an individual point should represent, and second, what the significant
minimum shrub cover area is (i.e. the minimum cover area associated
with a shrub that would meet sampling requirements). A balance
between these two assumptions must be determined. After initial
exploration, it was assumed that an area of 0.09 m? was a good repre-
sentative area in the determination of EPC, because it coincided with
the smallest shrub crown area sampled. To derive the metric, plots
were gridded into 0.3 0.3 m cells and each grid cell was evaluated to
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determine if it contained an understory point. Grid cells containing at
least one point were summed up to determine the effective area cov-
ered by understory lidar points (Fig. 8). EPC was then determined by di-
viding the effective area covered by the total plot area. The effective plot
coverage ranged from 0.12 to 0.88 with a mean of 0.38.

2.4.2. Overstory lidar metrics

Many previous understory vegetation cover studies found variables
associated with the overstory (e.g. standing basal area, tree density,
species composition) to be significant in the estimation of the understo-
ry vegetation cover (Eskelson et al, 2011; Kerns & Ohmann, 2004;
Suchar & Crookston, 2010; Venier & Pearce, 2007). From previous
lidar studies, the following overstory metrics were derived from the
first, last and combined return overstory point clouds (heights> 1.5 m):
1) the quantiles corresponding to the 01, 10,..., 90 percentiles of the
canopy heights; 2) the maximum height values; 3) the mean height
values; 4) the standard deviation and coefficient of variation of height
values; 5) the proportion of points above the 01, 10,..., 90 canopy height
percentiles; 6) the proportion of points located within six pre-
determined canopy height intervals (s1=1.5-5 m, s2=5-10 m, s3=
10-20 m, s4=20-30 m, s5=30-40 m, s6>40 m), and 7) overstory
canopy cover determined by the proportion of first returns over the
1.5 m understory height threshold (Falkowski et al., 2009; Hudak et
al., 2008; Nasset, 2002).

2.4.3. Topographic and stand attribute variables

Seven independent topographic and stand attribute variables were
used in the model selection procedure. Topographic variables are often
used for the estimation and prediction of understory cover (Eskelson
et al., 2011; Martinuzzi et al., 2009). Five independent topographic vari-
ables were derived from the airborne-lidar-generated DTM for each
plot: elevation, slope, aspect, and two commonly used slope aspect
transformations [slope - cosine(aspect); slope - sin(aspect)] (Stage &
Salas, 2007). Stand attribute variables included the research unit
number and strata (LoD, HiD, RNA).

2.5. Estimation and prediction modeling
Although cover is frequently sampled in vegetation surveys, the

theoretical and statistical basis underlying cover measures are not
well understood (Chen et al., 2006). Understory vegetation cover

Aveas covered by LIDAR points ~ Areas not covered by LIDAR points

Fig. 8. Depiction of the ArcGIS layer created to derive the lidar effective plot coverage
(EPC) metric using 0.3x0.3 m grid cells.

data, including data used in this study, are characterized by two key
distributional features that do not conform to the assumptions of
standard statistical procedures (Damgaard, 2009). They are bounded
between 0 and 1, and have heteroscedastic error variances. In ordi-
nary least squares (OLS), parameter estimates are unbiased but are
inefficient when heteroscadastic error variances are present; in addi-
tion the usual parameter estimate variance—covariance estimators are
biased. There are a number of alternative adjustment methods to deal
with the unequal error variance problem in the OLS linear regression
setting. The two most common adjustment methods are applying
independent and dependent variable transformations and the use of
weighted regression (WR) (Kmenta, 1986).

A theoretically correct way to model cover data is by using the prop-
erties of the beta distribution, a flexible and useful tool for modeling
continuous random variables that assume values in the standard unit
interval (0, 1), such as rates, percentages and proportions (Kieschnick
& McCullough, 2003). Thus, it can be appropriate for modeling vegeta-
tion cover data because it adequately describes the frequency distribu-
tion of cover for various individual plant species or plant communities
(Bonham, 1989; Chen et al, 2006; Damgaard, 2009; Pielou, 1977).
While most of the work with the beta distribution has been completed
for grasslands and crop fields (Chen et al., 2006, 2008a, 2008b), it has
recently been applied in forestry applications. For example, Eskelson
et al. (2011) used beta regression (BR) in the estimation of riparian
understory vegetation cover and found that it performed better than
the OLS model. Korhonen et al. (2007) also successfully estimated forest
canopy cover with beta regression.

Based on the characteristics of the study's understory vegetation
cover data (i.e. heteroscedastic error variance), weighted and beta
regression models were specified for the estimation and prediction
of understory vegetation cover using the airborne lidar-derived
metrics. All three treatment strata (LoD, HiD, RNA) were grouped
together to test the models robustness to varying forest structure
and canopy densities.

2.5.1. Model specification

Weighted least squares regression can be used when the unequal
error variance assumption of the linear regression model is violated.
The theory behind this method is based on the assumption that the
weights are known exactly (Kmenta, 1986). This is rarely the case,
so estimated weights must be used instead. For this study, the equally
sized group iterative procedure described in Kmenta (1986) to stabi-
lize and determine final model parameter estimates was followed (5
iterations). Five groups of sizes approximately 31 were used in the
procedure. Fitting this model is equivalent to minimizing:

Q=Y o [y (x:B)]" @
i=1

where ; are weights=1/var(g;)? for (i=1,..., 154) from the 5
weighted groups, y; is a vector of dependent variables, and f (x,— : [5)
is from the OLS linear model: Y=XB+¢.

Using a parameterization of the beta distribution, Ferrari and
Cribari-Neto (2004) introduced a beta regression model similar
to the approach for generalized linear models (McCullagh &
Nelder, 1989), except that the distribution of the response is not
a member of the exponential family. In the extended generalized
linear model approach, yy,..., y, are independent random vari-
ables with each y; is a parameterization of the beta probability
density function with mean p; and variance ¢. The beta regression
model is specified:

g =xip=mn (3)

where x; is a vector of explanatory variables, 3 is a vector of un-
known regression parameters, 7); is a linear predictor, g(-) is a
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strictly increasing and twice differentiable link function that maps
(0, 1) into the real line, and Tindicates the transpose of the vector.
A variety of link functions g(-) are available, but the logit link
g(u) =log(n/(1—pu)) is particularly useful, because y; is obtainable
in closed form (Espinheira et al., 2008).

2.5.2. Model selection

Weighted and beta multiple regression models were fit for estima-
tion and prediction of understory vegetation cover. The models were
fit to all strata grouped together into one dataset to test the robust-
ness of the models to varying forest structures and canopy densities.
Traditional logarithmic transformations were applied to independent
overstory lidar metrics which have been shown to be useful in previ-
ous studies (Nasset, 2002).

Selection of significant independent variables was completed via a
two-stage procedure. First, a forward and backward stepwise model
selection procedure was performed using OLS linear regression to re-
duce the field of explanatory variables to twenty based on the Bayesian
information criterion (BIC) model performance. Twenty was used as
the cut-off level to help ensure significant variables (P<0.05) would
not be eliminated in this step. In the second step, BR models were fit
using different sets and combinations of the twenty explanatory var-
iables to identify the most significant variables based on BIC model
performance. Because understory shrub cover data included zero
values, the following commonly used transformation was applied
to the understory vegetation cover dependent variable (Smithson &
Verkuilen, 2006):

Yi = ¥i(n—1)+0.5)/n 4)

where y; is field-measured estimate of understory vegetation
cover and n is the number of sample plots (n=154). Independent
predictor variables with associated P-values greater than 0.05
were removed after this step. The final models were selected
based on the lowest BIC value while also taking variable interac-
tions into account. Variable interactions were assessed using a
standard principal component analysis procedure (Weisberg,
1985). Two models were selected for further analysis with both
WR and BR; one containing only the most significant variable
based on the lowest partial F-statistic value and one containing
all significant variables.

Both models were fit using the R project (v. 2.14.0) using the ‘stats’
package (v. 2.13.2) for weighted regression (R Development Core
Team, 2009), and the ‘betareg’ package (v. 2.4.0) for beta regression
(Cribari-Neto & Zeileis, 2010). Model comparisons were also con-
ducted using R.

2.5.3. Model comparison

No independent data were available to assess the accuracy of the
regression equations used for prediction. Therefore, leave-one-out
cross-validation was used to assess the prediction accuracy of the
models. For each step in the validation procedure, one sample plot
was removed from the dataset at a time and the selected models
were fitted to the remaining plots (n—1). Understory vegetation
cover was then predicted for the removed plot. This procedure was
repeated until predicted values were obtained for all plots. Two reli-
ability figures were used to determine the accuracy of predictions.
The absolute bias (AB), and root mean squared prediction error
(RMSPE) were reported:

n

AB — Z (predlcted;observed)

i=1

n . _ 5
RMSPE = J 3 (predicted nobserved) .
=1

3. Results

The final selected model contained three variables: 1) ULCD 2)
the standard deviation of overstory lidar first return point heights
(OHsqf); and 3) the density of overstory lidar first return points in
the predetermined fifth height strata (ODssf) (Table 1). The signs
of the coefficients correspond to the responses between understo-
ry vegetation cover and the independent variables. The regression
parameters 3 have different interpretations in the BR model com-
pared to the WR model, while model predictions have identical
interpretation.

ULCD explained the greatest amount of variability for under-
story vegetation cover followed by the standard deviation of over-
story first return point heights (OHs4s) and then the density of
overstory first return points in the predetermined fifth height
strata (ODsss). The WR model containing only ULCD had a BIC
value of (—466.2), while inclusion of the two significant overstory
estimators decreased the value to (—488.6). For the BR model the
BIC value went from (—530.0) to (—543.3) with the inclusion of
the two overstory estimator variables. BIC values for the two model
families (WR and BR) can only be used to compare within model perfor-
mance. According to Raferty (1995) and Kass and Raferty (1995), a dif-
ference in BIC values (ABIC) of <2 between models is “not worth more
than a bare mention” and a ABIC> 10 implies very strong evidence that
the models are different.

Prediction accuracy was very similar for both the WR and the
BR models. Overall, RMSPE was 0.003 larger for BR2 compared
to WR2, which equates to an average understory vegetation
cover prediction difference of approximately 0.3% (Table 2). Abso-
lute bias was virtually zero for both models with the BR models
displaying a slightly lower AB (BR2 —0.0001 vs. WR2 0.0005).
RMSPE increased slightly for the models containing only the
ULCD variable. Both models performed well in the prediction of un-
derstory vegetation cover with root mean square prediction errors
ranging from 0.0640 to 0.0735, which translates to average understory
vegetation cover prediction errors of approximately + 7%. The overall
accuracy for prediction of understory vegetation cover was 4 22% for
all model forms. AB was not significantly different from zero for any of
the model forms. No trends were found between understory vegetation
cover prediction errors and canopy cover for any of the models (Fig. 9).
A small trend, which should be viewed with caution, was found be-
tween understory vegetation cover prediction errors and understory
point densities. The errors seemed to decrease with increasing under-
story point densities, although as point densities increased the sample
size diminished (Fig. 10).

Residuals for WR models were normally distributed and cen-
tered on zero with no obvious dependencies or patterns that
might reveal improper model specification besides the unequal
error variance issue in the linear model, which was dealt with
by using the WR procedure. BR residuals displayed similar traits,
except the residual errors displayed equal variance across all
values. The BR residual distribution also displayed a slightly
more pronounced negative tail. Larger residual errors from both
the WR and BR models were most often associated with plots
that contained CWD.

4. Discussion and conclusions
Understory vegetation cover has been difficult to estimate and pre-

dict, especially over large spatial extents. The method presented in
this paper greatly increases the ability to estimate and predict
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Table 1

Final statistical model summaries.
Model Dependent variable Intercept Independent variables BIC

ULCD OHgys ODgsy

WR1 Understory vegetation cover 0.0048 (0.004) 1.0537 (0.066) —466
WR2 Understory vegetation cover 0.0251 (0.006) 1.0260 (0.063) —0.0064 (0.001) 0.1559 (0.031) 488
BR1 Understory vegetation cover —3.0847 (0.109) 7.2843 (0.562) —530
BR2 Understory vegetation cover —2.5740 (0.141) 6.4823 (0.537) —0.1719 (0.033) 2.6719 (0.868) —543

*Independent variable standard errors are given in parenthesis. WR =Weighted Regression; BR = beta regression; BIC = Bayesian information criterion. Regression parameters and

BIC values have different interpretations for BR and WR.

understory vegetation cover in interior ponderosa pine forests. Both the
WR and BR models produced satisfactory errors for the prediction of un-
derstory vegetation cover. Only a simple independent variable transfor-
mation was necessary for the beta regression modeling framework,
which should not result in any prediction bias. Theoretically the BR
model seems to be the most appropriate choice; however the WR
model performed equally well. This is most likely due to the most signif-
icant variable (ULCD) being a proportion bounded between 0 and 1,
which essentially measures the same metric (e.g. the proportion of an
area covered by shrub crowns). In theory, there should be a
one-to-one type of relationship between these two variables. To dem-
onstrate this point a simple linear regression model is presented in
Fig. 11 between ULCD and field-measured understory vegetation cover.

The method was robust in terms of applicability to different forest
structures in this forest type based on the model performance com-
bining all three BMEF treatment strata (LoD, HiD, RNA). Understory
vegetation cover prediction errors did not show any obvious relation-
ships with canopy cover in this forest type (Fig. 9). This fact seems
somewhat counterintuitive, since areas with higher overstory canopy
densities typically occlude laser pulses from reaching the understory.
Previous airborne lidar studies have identified this occlusion problem
as a significant limiting factor in characterizing understory compo-
nents (Hill & Broughton, 2009; Morsdorf et al., 2010). The problem
was less evident in this forest type and likely resulted from a combi-
nation of unique characteristics associated with this study. First, the
most significant variable, ULCD, is relative to the number of points
that reach the understory. A proportion bounded by 0 and 1 itself,
the ratio between the number of understory cover points to the
total number of points below the understory maximum height
threshold remains relatively stable under different overstory condi-
tions. Even though laser pulses are less likely to intersect understory
vegetation in denser canopy conditions, they are also less likely to
reach the ground. Overstory cover ranged from O to 90% with a
mean of 32% (standard deviation: 24%), based on the plot-level lidar
data. The second key characteristic is that the likelihood of encounter-
ing understory vegetation decreases with increasing overstory cover
for this forest type. Therefore, it is less important that a lower number
of laser pulses are reaching the understory in these situations, because
there is less probability of the area containing understory vegetation.
The third key characteristic is associated with the relationship between
the overstory and understory layers in this forest type. There tends to be

Table 2
Leave-one-out cross-validation results for the prediction of understory vegetation
cover using individual models.

Model RMSPE AB

WR1 0.0678 0.0004 (P=0.957)
WR2 0.0640 0.0005 (P=10.946)
BR1 0.0735 0.0000 (P=10.997)
BR2 0.0671 —0.0001 (P=0.988)

*P-value for ¢ test; testing whether the bias is significantly different from 0. RMSPE =
root mean square prediction error; AB=absolute bias.

a distinct height difference between overstory and understory layers in
this forest type, which makes it easier to identify and analyze the under-
story vegetation cover layer separately.

Although it is yet untested, we hypothesize that this method will not
perform as well in forest types that contain an abundance of understory
vegetation under dense overstory cover conditions, or where the
understory and overstory layers intermix. Obtaining higher understory
point densities would help to alleviate these problems, but this is diffi-
cult in areas with dense overstory conditions and would also increase
acquisition costs. The use of small-footprint full-waveform airborne
lidar (SFFW) might also provide more explanatory value in identifying
and ultimately predicting understory characteristics, such as cover.
SFFW provides more than just coordinate and intensity information, it
also provides echo width information. Echo width information has
proven to be useful for classifying ground and vegetation returns and
warrants investigation (Ducic et al., 2006; Wagner et al.,, 2008). Costs
associated with SFFW acquisition are relatively high, making its use
prohibitive for most broad-scale forest inventory applications. These
costs will likely decrease over the next decade. In forests with signifi-
cant proportions of deciduous trees, lidar acquisition completed during
overstory leaf-off conditions and understory leaf-on conditions, if and
when available, should increase understory lidar point densities and
provide better results. In areas with taller herbaceous vegetation, acqui-
sition should be completed while the herbaceous cover has yet to reach
the minimum height requirement for the understory layer.

While both models performed well, additional modeling strategies
should be investigated for this type of data to help determine the best
approach. Two potential models not investigated in this study are the
zero-inflated beta regression model (Ospina & Ferrari, 2012), and the
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Copula model (Nelsen, 2006). The zero-inflated beta regression model
is an extension of BR that incorporates the probability of observing a
zero value in the model. Copulas are multivariate distribution functions
whose one-dimensional margins are uniform on the interval (0, 1)
(Nelsen, 2006). Eskelson et al. (2011) had promising results applying
a multivariate Gaussian copula model to understory vegetation cover
data which also accounted for spatial dependence. Both these models
seem well suited for understory vegetation cover data since zero values
are likely, but we leave this for future work.

The two overstory explanatory variables selected in the final
model (OH,q;, ODssp) indicate that there are significant interactions
between overstory and understory vegetation. This trend coincides
with previous understory vegetation studies (Eskelson et al., 2011;
Martinuzzi et al., 2009). It is also interesting to note that Hopkinson
et al. (2006) found the standard deviation of the vertical point struc-
ture to be the most powerful predictor of canopy height for various
forest structures, and concluded that it should be used as a universal
lidar canopy height metric. This study found the same metric (OH,qy) to
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Fig. 11. Field-measured understory vegetation cover versus understory lidar cover den-
sity and the reference one to one ratio line.

be the most significant overstory estimator variable, thus supporting
their hypothesis. The metric seemed to replace a combination of canopy
height distribution quantile metrics. When the metric was removed
from the model and the model was refit with the remaining estimator
variables, two canopy height distribution quantile metrics took its
place (one representing the lower portion and one representing the
higher portion of the crown profile). This demonstrates the usefulness
of OH,qf in areas containing variable forest structure and its ability to
replace multiple lidar derived height metrics.

Plots containing CWD produced the largest residual errors. To
demonstrate the importance of CWD, plot-level CWD cover was
added to the plot-level understory vegetation cover dependent variable
and the simple linear model (Fig. 11) was refit (Fig. 12). The explanato-
ry power (R?) increased from 0.74 to 0.81. This suggests that the filter-
ing method was not successful in filtering out all points associated with
CWD. To further solidify this point, the residual errors from the under-
story vegetation cover models were found to be the most significant
estimators in a CWD presence and absence logistic regression estima-
tion model (40.5 m? plot-level CWD volume > 1.5 m?). Theoretically,
the understory vegetation cover model residual errors should predom-
inately be associated with the CWD lidar points, since other understory
component points were successfully filtered based on visual inspection
of the point cloud data. Residual errors coupled with two other signifi-
cant independent variables, slope - sin(aspect) and the proportion of
discarded intensity filtered points, produced presence accuracies of
approximately 70% for estimating cumulative CWD volumes greater
than 1.5 m> on the 40.5 m? circular plots. While the intensity filter
successfully removed a portion of the CWD points from the ULCD
variable, the understory vegetation cover model residual errors dis-
played more explanatory power than the proportion of discarded inten-
sity filtered points in the CWD model. This suggests that there was a
higher proportion of unfiltered CWD points using the filtering method
in this study. If improved lidar point filtering techniques can be created,
it might become possible to predict CWD in addition to understory
vegetation cover using a similar method to the one outlined in this
paper. A linear object recognition filter (Vosselman et al., 2004) coupled
with intensity filtering might be successfully utilized.

Even though the intensity filtering method used in the study did
not successfully remove all non-vegetation understory component
points, it was successful at removing a large portion of them. The filter
still might be improved in a number of ways. The first resides in the
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fact that the filtering method used all lidar points associated with
each plot's understory and relative ground layers (points<1.5 m
height). The filter might perform better if only understory vegetation
layer points are used. This would require a larger plot size or higher
understory point densities to ensure enough understory component
points are available for the creation of the plot-level intensity filtering
statistics (e.g. mean and standard deviation). The use of only first and
single understory returns could also provide a way of improving the
filtering method, since intensity information associated with these
returns has been shown to be of better quality, especially when no
post-acquisition radiometric calibration is applied. This theory was test-
ed using the data from this study and the results were neither improved
nor diminished, which was likely due to the high percentage of first and
single understory returns (90.1%). It was also found that the understory
layer intensity data displayed both bi-modal and uni-modal distribu-
tions before filtering. A filtering method that treated them separately
might provide another way of improving the intensity filter. It is also
important to note that the lidar data in this study was acquired during
understory leaf-on conditions, which likely made differentiating inten-
sity values associated with understory vegetation and other understory
components easier.

The use of intensity information to characterize forest attributes is
dependent upon the quality of the intensity information. The intensity
data in this study were acquired while using the variable gain setting
and were not calibrated post-acquisition, if they had been, filtration
results would likely improve. Even without calibration, intensity dis-
played great potential in distinguishing lidar points associated with
the various understory components. Currently, airborne lidar vendors
are just beginning to develop and apply post-acquisition intensity cali-
bration techniques. As vendors continue to develop acquisition and
calibration techniques and provide end users with the necessary
information to calibrate the data, intensity values will likely become a
much more valuable feature of airborne lidar data.

The field sampling design and data analysis steps used to obtain
field-measured understory vegetation cover are simple to implement,
provide accurate estimates, and fit well into most traditional forest
inventory sampling designs. The shrub stem map and crown dimen-
sional measurements provided a good method to estimate shrub
cover accurately by accounting for overlapping crowns and incorporat-
ed well with the traditional airborne lidar plot-based standing tree
inventory sampling design. The method can be improved in the future
by stem mapping and dimensionally measuring seedlings and saplings.
Then seedlings and saplings can be incorporated into the field based
spatial understory shrub cover layer for more accurate field estimation
of understory vegetation cover. Matching the actual shrub, seedling,
and sapling crown shapes could also provide more accurate estimations.
Although a circle seems like an appropriate assumption for shrub, seed-
ling, and sapling cover shapes, the two perpendicular crown width mea-
surements could be used to better match the actual crown shape of
individual shrubs spatially. This might result in more accurate understo-
ry vegetation cover estimates. Plot size, sampling efficiency and costs
associated with this sampling design should also be examined in further
detail. Understanding the effects of increasing plot size on model
variability would help to determine the most efficient sampling design.

Application of the prediction model to entire forested stands can be
completed following the traditional airborne lidar two-stage plot-based
gridding procedure outlined in Naesset (2002). In this procedure, stands
of interest are first divided into grid cells that match the prediction
model's plot size. Then significant independent variable values are
obtained for each grid cell and the prediction model is applied using
weights for each grid cell to minimize edge bias associated with the
smaller boundary-edge grid cells. The end result can be used to; 1) iden-
tify areas that meet understory vegetation cover habitat criteria and
create habitat maps over entire forest stands, 2) determine understory
fuel loadings over entire stands, which can then be used to refine fire
behavior models, 3) accurately estimate and predict understory

vegetation biomass and carbon stocks, 4) help assess forest health and
biodiversity, and 5) assess competition dynamics between understory
vegetation and standing trees.

The characteristics of this study's sampling design, airborne lidar
acquisition and intensity value calibration provided a unique opportu-
nity to examine the capability of airborne lidar to predict understory
vegetation cover. The method presented in this paper was practical
and efficient, and showed promise for predicting understory vegetation
cover at fine spatial resolutions over large spatial extents in the interior
ponderosa pine forest type. Incorporating airborne lidar with other
remote sensing techniques such as aerial photography, or utilizing
small-footprint full-waveform airborne lidar could also enhance the
ability to characterize and predict understory components such as
vegetation cover. The new ULCD metric displayed a strong relationship
with understory vegetation cover and was robust to various forest
structures and densities in this forest type. The filtering of lidar points
using intensity information helped to remove a portion of understory
component points not associated with understory vegetation cover
(e.g. CWD, stumps, live tree boles). The extension of the method to
additional forest types warrants further investigation.
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