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Abstract. The National Fire Danger Rating System indices deduced from a regional simulation weather model were
used to estimate probabilities and numbers of large fire events on monthly and 1-degree grid scales. The weather model
simulations and forecasts are ongoing experimental products from the Experimental Climate Prediction Center at the
Scripps Institution of Oceanography. The monthly average Fosberg Fire Weather Index, deduced from the weather sim-
ulation, along with the monthly average Keetch–Byram Drought Index and Energy Release Component, were found to
be more strongly associated with large fire events on a monthly scale than any of the other stand-alone fire weather or
danger indices. These selected indices were used in the spatially explicit probability model to estimate the number of large
fire events. Historic probabilities were also estimated using spatially smoothed historic frequencies of large fire events. It
was shown that the probability model using four fire danger indices outperformed the historic model, an indication that
these indices have some skill. Geographical maps of the estimated monthly wildland fire probabilities, developed using a
combination of four indices, were produced for each year and were found to give reasonable matches to actual fire events.
This method paves a feasible way to assess the skill of climate forecast outputs, from a dynamical meteorological model,
in forecasting the probability of wildland fire severity with known precision.

Additional keywords: FWI, model appraisal, mutual information, NFDRS, semi-parametric logistic regression, spline
functions.

Introduction

Since the US Forest Service (USFS) National Fire Danger Rat-
ing System (NFDRS) was developed (Deeming et al. 1977), the
indices of the system have been routinely evaluated, updated
and standardised at individual stations as a monitoring mea-
sure to assess current fire danger at local and national scales.
The NFDRS indices reflect average worst case fire potential
from the effects of terrain, weather and fuel conditions rep-
resented by standard fuel models. Fuel moisture models use
weather input such as cumulative precipitation, temperature and
relative humidity to determine moisture content of the fuels.
Federal, state and local wildland fire management agencies use
the NFDRS for quantification of risk, staffing levels, appropri-
ate suppression response, and strategic planning (NWCG Fire
Weather Working Team 2005).

Clearly, the reliability and the integrity of the NFDRS depend
partially on the quality and quantity of input data obtained from
weather stations. Typical difficulties with fire weather station
data include insufficient spatial coverage and inconsistent main-
tenance of weather instruments. An alternative source of fire
weather data for the NFDRS is global- or regional-scale weather
analysis in digital formats. A weather model can provide not

only dynamically consistent data with ample spatial coverage, it
can also provide weather predictions for dynamical forecasts of
NFDRS indices with lead times ranging from days to a season
or longer.

Recently, Roads et al. (2005) evaluated experimental fore-
casts of NFDRS indices at weekly to seasonal scales that used
long-range weather predictions from a meteorological model.
They showed that these indices can be well predicted at weekly
time-scales when compared with indices computed from weather
model-generated 1-day forecasts, which they called validation
data, because the 1-day forecast data are used to ‘validate’ the
weekly to seasonal forecasts. Some indices have prediction skill
even at seasonal scales, especially over summers in the western
US. Similarly, Hoadley et al. (2004, 2006) found that predicted
surface weather variables from the fifth-generation Mesoscale
Model (MM5) and the daily corresponding NFDRS indices com-
pared reasonably well with the observed weather at selected
stations and the corresponding ‘observed’ indices, calculated
from the observed weather. Even if predicted fire indices from
weather models are skilful at various time-scales, there is still a
question as to how these model-deduced indices correlate with
actual fire statistics, such as number of large fire occurrences
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and acres burned. Roads et al. (2005) found a rather weak rela-
tionship between their monthly-mean validation indices and the
observed fire counts or acres burned. Part of their problem might
have been the use of simple temporal correlation at each grid
point between the validation indices and the actual fire counts.
Correlation statistics are typically a poor measure of associ-
ation when they involve count variables that are small (most
fire counts are zero or one). Alternative statistical analyses may
better describe associations between modelled fire indices and
observed fire counts, including counts of fires of different sizes.
Moreover, strategic planning activities in a seasonal time-frame
typically involve large areas, from regional to national scales, e.g.
the US fire season severity assessment. Further analysis is there-
fore warranted that relates fire activity statistics from large areas
to candidate fire weather and index predictors. The present paper
focusses on the effectiveness of the model simulated NFDRS
indices in estimating large fire events.

Others have studied the skill of daily NFDRS indices, pro-
duced using weather station data, in estimating probabilities of
large fires. Simard et al. (1987) developed an extreme fire poten-
tial index, based on NFDRS indices, and employed a threshold
value of the index that captured a large number of extreme fire
event days with a minimum number of false alarm days.Andrews
and Bradshaw (1997) demonstrated how a logistic model may
be used to generate probability curves relating daily fire activity
in a given forest to NFDRS indices from the closest weather sta-
tion. Preisler et al. (2004) developed a spatially and temporally
explicit logistic model, on a 1-km2 daily scale, to estimate prob-
abilities of large federal fires in Oregon using NFDRS indices
also from weather stations.

In the present study, a probability model (Brillinger et al.
2003, 2006; Preisler et al. 2004; Preisler and Westerling 2007)
is used to evaluate the utility of the weather model-simulated
monthly fire danger variables, when used one at a time or in
combination, in estimating large fire events for the correspond-
ing month. The estimated probabilities are spatially explicit on
a 1-degree grid-cell level and temporally explicit at a monthly
scale. In the following sections, we will first briefly introduce the
weather model and the NFDRS indices it generates, followed by
a description of the observed gridded monthly fire occurrence
and acres burned data. The probability models and statistical
approaches will then be discussed before the result of the fire
probability is evaluated.

Methods
Modelled fire weather and danger variables

Weather model
The fire danger variables in the current study were adapted

from Roads et al. (2005), in which the meteorological forecasting
system developed at the Experimental Climate Prediction Center
(ECPC) (Roads et al. 2003) was used. Specifically, the model
system uses operational daily 00 UTC (Coordinated Universal
Time) analyses from the National Centers for Environmental
Prediction (NCEP) Global Data Assimilation (GDAS), which is
used for the global extended-range weather forecast at NCEP,
as initial condition for a regional forecast with up to 16 weeks
lead time. The original higher-resolution global analysis was

first linearly transformed to a triangular truncation of triangular
truncation of 62 waves (T62, 192 × 94 global Gaussian grid,
roughly 150-km grid space resolution at 40◦N) and 18 vertical
levels so that the subsequent seasonal-scale regional forecasts
could be done with the available computer resources.

The regional spectral model (RSM) used in the present study
was originally developed at NCEP (Juang and Kanamitsu 1994;
see also Juang et al. 1997). The RSM is a regional extension of
the global spectral model (GSM; Kalnay et al. 1996). In par-
ticular, the RSM provides an almost seamless transition from
the GSM to the higher resolution region of interest (Chen et al.
1999) and thus avoids a common regional model problem when
using incompatible physics between the driving global model
and the nested regional model (Chen 2001). Except for the
scale-dependence built into the horizontal diffusion and some
minor adjustment to other physical parameterisations, the GSM
and RSM physical parameterisations are, in principle, identi-
cal. A modelling system such as the GSM to RSM used here is
particularly helpful in isolating the regional downscaling prob-
lems caused by potential mismatched model physics between
the regional and driving global model (Chen 2001). More dis-
cussion of the updated model physics can be found in Hong
and Pan (1996). The description of the RSM and the model
setup used in the present study can be found in Roads et al.
(2003).

Modelled NFDRS indices
Global analysis from 1 January 1998 through 31 December

2003 was used to initialise the GSM. The four-times-daily out-
put of the 1-day forecasts of GSM were then used as initial
and lateral boundary conditions of the RSM for 1-day inte-
gration for each initial day. Horizontal grid spacing of 60 km
was used in the RSM. The 1-day forecasted surface weather
variables, including temperature, 2-m relative humidity (R2H),
wind speed from the model, and top 10-cm soil moisture content
(SMC1) along with observed precipitation, fuels and slope, were
the input for the NFDRS indices computation (Burgan 1988).
The major differences of our NFDRS calculation from the stan-
dard one was the use of weather model 1-day forecast output,
instead of weather station observations. However, in order to
avoid the precipitation spin-up problem caused by the imperfect
initial condition of the meteorological model for short period
integration, the 0.25 × 0.25◦ observed precipitation (Higgins
et al. 2000), instead of model precipitation output, was used
in computation. Monthly indices used in the present study were
subsequently derived from the daily indices. Interested readers
should refer to Roads et al. (2005) and Burgan (1988) for a
more detailed description of the NFDRS indices computation.
As not all standard NFDRS indices are useful to fire man-
agers, we chose to examine only spread component (SC), energy
release component (ER), burning index (BI), ignition component
(IC) and Keetch–Byram (KB) drought component. In addition,
Fosberg Fire Weather Index (FFWI, see description below),
R2H, and SMC1 from the meteorological model were also
included to contrast the skill from NFDRS indices.

FFWI (Fosberg 1978; Fujioka and Tsou 1985), an index
derived only from temperature, relative humidity and wind
speed, assumes constant grass fuel and equilibrium moisture
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Fig. 1. Map of study area (western US) showing the 1-degree grid cells and values of the Fosberg Fire
Weather Index for August 2003. Black dots indicate locations of large fire events (area burned, >400 ha,
∼1000 acres) reported on federal lands for the month of August 2003.

content as a function of the input weather variables. This index
is not part of the NFDRS and requires only instantaneous values
from a weather model. Owing to its ease of application, FFWI has
been used for seasonal fire danger forecasting to provide a first
look of global wildfire condition (Roads et al. 1995). As will be
shown, despite its use of constant fuel information, FFWI offers
a significant skill in explaining the fire occurrence at a monthly
scale.

All model-deduced indices from 1-day GSM–RSM forecasts
were called ‘validating’ indices in Roads et al. (2005). In the
present work, these monthly mean indices are used as surro-
gates for ‘observed’ values, because 1-day forecasts have been
found to be very skilful when compared with observations. Inter-
ested readers should refer to Roads et al. (2005) for detailed
descriptions.

Fire occurrence data
The present work relied on fire history datasets over the west-
ern US compiled from federal land management agency fire
reports. Westerling et al. (2003) compiled a gridded 1-degree
latitude/longitude (317 grid cells) dataset of monthly fire starts
and acres burned from∼300 000 fires reported by the USDA For-
est Service, the USDI’s Bureaus of Land Management and Indian
Affairs, and the National Park Service for 1980–2004. How-
ever, because we had meteorological model-derived fire danger
indices from January 1998 through December 2004, we only
used the fire data for the same period. A map of the monthly-
mean fire weather index (FFWI) and the locations of large fire
events (area burned, >400 ha, ∼1000 acres) for August 2003
(Fig. 1) shows the geographic region and the structure of the

spatially and temporally explicit explanatory variables used in
the current study.

Statistical methods
Probability models
The statistical approach is based on developing a semi-

parametric logistic regression model (Hastie et al. 2001; Preisler
and Westerling 2007) using historic monthly fire occurrence data
as the dependent variable and weather modelled NFDRS indices
as the independent variables.

The regression model estimates two fire danger probabilities:
probability of fire occurrence and conditional probability of a
large fire event. Probability of fire occurrence was defined as
the probability of at least one fire of any size occurring in a
given 1-degree grid cell during a given month of a year. The
probability of a large fire event was defined as the probability
of the occurrence of a burn area >400 ha (∼1000 acres) given
at least one fire occurrence in the 1-degree cell during a given
month of a year. The product of the above two probabilities was
used as a measure for fire danger. The 400-ha cutoff for large
fires, although arbitrary, aligns with size class F fires. The same
methods may be used to estimate probabilities of area burned of
any particular size.

The explanatory variables used in the regression model were
the modelled NFDRS indices described above in addition to a
purely temporal variable (month-in-year) and a geospatial vector
variable (latitude and longitude of the 1-degree grid cell). The
temporal variable (month) was included in the model as a proxy
for annual cyclical patterns of fire occurrence and large fire
events that may not have been properly captured by the indices.
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The geospatial vector (latitude, longitude) was included in the
regression as a surrogate for variables with spatial patterns (e.g.
vegetation type, elevation or human activities) that do not change
over time. Smooth non-parametric functions of the explanatory
variables were used instead of parametric functions, e.g. poly-
nomials, because it was anticipated that relationships between
the explanatory variables – in particular between latitude, lon-
gitude, month – and large fire occurrence might be complex.
Consequently, these relationships would be better characterised
by flexible non-parametric functions such as piece-wise polyno-
mials and splines. Further details of the estimation procedure,
including the estimation of the smooth functions, can be found
in Appendix A1. See also Brillinger et al. (2003), Preisler et al.
(2004), and Preisler and Westerling (2007).

Although our estimates were based on a large number of
observations (monthly values on 317 grid cells and 6 years for a
total of 22 824 voxels), these observations are likely to be corre-
lated, in particular if there is a strong yearly effect (e.g. overall dry
years). Consequently, all standard errors were calculated using
the jackknife procedure (Efron and Tibshirani 1993). Jackknife
standard errors were produced by developing six different esti-
mates of the model parameters (each time using data from all
years but one), then calculating the jackknife standard error of
the resulting estimates.

Mutual information statistics
We used the Mutual Information (MI) statistic (Brillinger

2004) to study the strength of the statistical dependencies
between explanatory variables (e.g. indices) and the probabili-
ties of fire danger. In particular, we used the MI statistic to select
the index, or combination of indices, with the most ‘information’
regarding the probability of fire danger. The MI statistic is simi-
lar to the Akaike Information Criteria (AIC), and it is equivalent
to the variance explained if both involved variables are Gaussian-
distributed. Further details regarding the MI statistic are given
in Appendix A1. The following models were compared using the
MI statistic:

Historic (climatologic) model (H) The only explanatory
variables used in this model were month-in-year and location
(latitude, longitude). With this model, each cell has a different
probability for each location and month of the year but the prob-
abilities do not change from year to year. The historic model is
a spatially and temporally smoothed version of the relative fre-
quencies of observed large fire events for each month of the year
and each pixel.

Fire danger index model (X) The explanatory variables in
this model include spatial location, month and one fire danger
index. Consequently, probabilities in each cell change with loca-
tion, month in year, and the value of the fire danger index. One
model was produced for each index and named after the index.

Multiple indices model (C) The explanatory variables in
this model were spatial location, month and a combination of
two or more fire danger indices.

The multiple indices model with the ‘best’selection of indices
was next used to estimate the probabilities of fire occurrence
and the conditional probability of a large fire event. Finally, the
unconditional probability of a large fire event, i.e. the probability
that an area of size greater than 400 ha will burn in a 1-degree

grid cell in a given month and year, was estimated by multiplying
the above two estimated probabilities.

Assessing model skill
We assessed the goodness-of-fit of the final selected model by

producing reliability diagrams (Hosmer and Lemeshow 1989;
Wilks 1995). The latter was done by grouping together all
cells with similar estimated probabilities (within 3% of each
other) and comparing the observed fraction of responses in
each group with the corresponding estimated probability of
response. A response here was defined as a voxel (1 degree ×
1 degree × month) with a large fire event. Estimated probabili-
ties for each voxel were produced using cross-validation. Specif-
ically, estimations for a given year were done by using the model
parameters from all other years except the year being evaluated.

In an alternative assessment of goodness-of-fit, we studied the
skill of the model in estimating the distribution of total number of
grid cells per month with large fire events by comparing observed
numbers of monthly totals for each year with the estimated 50th
and 95th percentiles. The estimated percentiles included both
natural variation (Poisson) and variation due to the error in the
estimated model parameters.

Fire danger maps
We produced two types of fire danger maps. The first was

based on estimated probabilities of large events using the fol-
lowing rule: let p̂ be the estimated probability of area burned
>400 ha and s.e. be an estimate of the standard error of p̂. Then
fire danger was defined as:

Low, if p̂ + 2 s.e. ≤ 10%

Moderate, if 10% < p̂ + 2 s.e. ≤ 30%

High, if 30% < p̂ + 2 s.e. ≤ 50%

Extreme, if p̂ + 2 s.e. > 50%.

The size of area burned (400 ha) and the cutoff probabilities
used above are for demonstration purposes only. Managers may
decide on other cutoff points for what may be considered a large
fire event or acceptable levels of risk. Note that, although condi-
tions are defined as extreme when the probability of a large fire
event is >50%, the frequency of times a voxel is designated as
extreme is very small. During the 6 years of our study, ‘extreme’
conditions were observed in only 120 voxels (0.5% of cases); of
those cases, 63 (52.5%) were actually large fire events.

The second set of danger maps was produced to demonstrate
departures from ‘normal’conditions, or anomalies. In this study,
the ‘norm’ was the estimated probability of a large fire event
produced by using the H model. Because our study was based
on 6 years of data (1998–2003), the ‘norm’ reflected average
conditions during these 6 years. For example, Fig. 2 shows the
July historical probabilities of large fire events. Highest historic
probabilities during the 6 years of study appear to be in the
Washington, southern Idaho and Northern Nevada regions.

Maps of estimated departure from the norm were produced
using the odds ratio statistic. Specifically, maps were produced
of the odds of a large event relative to the historic odds as esti-
mated by the given 6 years of observed fire data. The rules



Estimation of wildland fires probabilities Int. J. Wildland Fire 309

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Fig. 2. Probabilities of large fire events for the month of July estimated from historic fire occurrence
and size data for the period of 1998–2003.

used to produce the maps were as follows: define π̂C and π̂H
as the probabilities of an area greater than 400 ha burning in a
given voxel estimated using the C and the H models, respec-
tively. Let θ̂ = log(γ̂) be the logarithm of the estimated odds

ratio, γ̂ = π̂C (1−π̂C )−1

π̂H (1−π̂H )−1 , i.e. the logarithm of the odds relative to

historic values. Fire danger maps were produced using the rules:

Lower than historic, if θ̂ + σ̂ < 0

Normal, if −σ̂ ≤ θ̂ ≤ σ̂

Higher than historic, if θ̂ − σ̂ > 0 (1)

With the above rule, a voxel is designated as normal if the
log-odds of a large fire event for a given month are within one
standard deviation (σ̂) from the historic odds for that month (i.e.
odds ratio equal one, or equivalently logarithm of odds equal
zero). A voxel is designated as higher than historic if the log-
odds for a large fire event are greater than one standard deviation
from the historic odds.

Results

Plots of standardised mutual information statistics for various
models (Fig. 3) demonstrate the relative importance of each fire
danger or fire weather index on the probability of fire occur-
rence and conditional probability of a large fire event. All MI
values in the plot are relative to the H model. The standardised
MI for the H model was set to zero. The two indices FFWI and
R2H indicated the highest relative increase in strength of depen-
dence with fire occurrence (Fig. 3a) when added individually to
the H model. The linear correlation between R2H and FFWI is
high (r = −0.92). The latter is expected because R2H is one of

the input variables for computing FFWI. Indices with highest
relative increase in strength of dependence with the conditional
probability of a large fire event were KB, FFWI, IC and R2H
(Fig. 3b).

Models with multiple indices were developed by adding
indices one at a time to the historic model starting with FFWI.
Values of the MI statistic estimated for each of the models are
presented in Fig. 4. We chose to start with FFWI because it was
the index that showed dependence with both probabilities of fire
occurrence and conditional probability of large area burn. The
order in which the indices were added to the probability model
was such that those with the smallest correlation with FFWI were
added first. For example, the column labelled +KB is the stan-
dardised MI produced for a model with the combination of the
indices FFWI, ER and KB in addition to the variables, location
and month, that are in the historic model.

Standardised values of MI increased with each addition of a
new index to the H model (Fig. 4). However, increases after the
first few indices were relatively small. The final model (C) for
the probability of fire occurrence used in the rest of the paper
included the indices FFWI, ER and KB. The final model for the
conditional probability of large fire included FFWI, ER, KB and
R2H. The multiple indices model may be thought of as a proba-
bility model based on a ‘new’index that consists of a combination
of the four indices FFWI, ER, KB and R2H.

Interpreting effects of explanatory variables is not easy,
particularly when the variables are correlated. For example,
R2H is inversely proportional to FFWI (r = −0.92, Fig. 5).
However, this relationship appears to be less well defined dur-
ing dry (low R2H) and high FFWI weather. The variability
around the mean increases with increasing FFWI and decreas-
ing R2M, and the correlation decreases (when R2M < 50 and
FFWI > 10, r = −0.37). Consequently, it is not surprising that
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Fig. 3. Standardised mutual information statistic describing the dependence of (a) probability of fire occurrence and
(b) conditional probability of a large fire event on each fire danger or weather index when added to the historic model
(H). All values are relative to the H model value, which was set to zero. The height of each bar is the fraction increase
in mutual information (MI) when an index (e.g. energy release, ER) is added to the H model, i.e. (MIER − MIH)/MIH.

both R2M and FFWI contribute significant information to
the model. Wind may be playing a critical role under the
circumstances.

As the purpose of our statistical model is to estimate prob-
ability of fire danger, the ultimate test of a given model with a
selected set of indices is its skill in describing observed events.
To demonstrate the skill of estimating the occurrence of large fire
events, we plotted the observed fraction of large fire events v. the
estimated probabilities from the H and the C models (Fig. 6).The
observed fraction is the number of cases with observed large fire
events as a percentage of the number of cases at each estimated
probability level.The scatter points of observed fractions of large
fire events were mostly within the expected point-wise 95% con-
fidence bounds, which are represented by the two dashed lines,
for both models. The larger confidence bounds for larger proba-
bilities are likely due to the small number of cases at the higher
probability groupings. The overall χ2 goodness of fit statistic
improved from 36.8 (P value = 0.0008) for model H to 19.2
(P value = 0.51) for model C. Moreover, estimated probabilities
using model C spanned a wider range of values (0 to 0.72) than
those of the historic model H estimates (0 to 0.56). A model with
no skill will have the same estimate (no range in the values) for
all locations and times.

Fire danger maps, based on the final multiple indices model,
were produced for each July from 1998 through 2003 (Fig. 7),
along with the location of events that actually occurred. In these

maps, a cell was designated as low danger if the estimated prob-
ability of an event was significantly less than 10%; moderate
if the estimated probability was between 10 and 30%; high if
the estimated probability was between 30 and 50%; and extreme
if the estimated probability was significantly greater than 50%.
The skill of the model for estimating large fire events at a given
grid cell seems reasonable when observed response (presence
or absence of a large fire event) at a given grid and month was
compared with estimated fire danger. The maps presented here
(Fig. 7) and similar maps for other months (not shown) may be
used by fire managers to assess the spatial and temporal fire dan-
ger. However, with intense fire potential during every fire season
over the west, these maps do not highlight anomalies.

An alternative set of maps showing anomalies are those based
on departure from normal conditions, as given by estimated
odds ratios relative to historic estimates (see Eqn 1). Maps of
odds ratios are particularly useful when accompanied by maps
of estimated probabilities of large fire events. For example, the
estimated odds of a large fire event appeared to be higher than
the norm in the south-western states during May 2002 and in
the north-western states in August 2003 (Fig. 8, left panels).
The estimated probabilities for May 2002 in the south-west
(Fig. 8, top right panel), although higher than normal, were
nevertheless quite low (<20%). The small number of observed
events is consistent with the low probabilities. However, in
August 2003 the estimated odds for the north-western states
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Fig. 4. Standardised mutual information statistic for models with multiple indices. All values are relative to the
historic model value, which is set to zero. The models were developed by adding indices consecutively in the order seen
in the figures (left to right).
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Fig. 5. Scatter plot of Forsberg fire weather index (FFWI) values against
relative humidity (R2M). The variability around the mean level is seen to
increase under dry conditions – higher values of FFWI and lower values of
R2M.

were higher than the norm and the probabilities were also high
(mostly>50%). Many large fire events were observed during this
period.

Another useful output of the probability model is the esti-
mated total number of large fire events. Totals were obtained
by adding the estimated probabilities over all cells in a region.
For example, in Fig. 9 we show the monthly estimated, as well
as the observed, large fire events for the north-western and
south-western states separated at 40◦N latitude. The plots give
the estimated 50th and 95th percentiles (solid curves) and the
observed numbers of cells with large fire events (dots). The 50th
percentiles estimates from the historic model are also given in
grey lines. Historically, the south-west appeared to lag the north-
west by 1 month in reaching the peak of large fire occurrence
during the fire season. Over the north-western region, higher than
normal numbers of big fire events were observed, and well esti-
mated, for years 2000 and 2003. In summer 2001, the observed
number of cells with large fire events was greater than the upper
95th percentile. Using estimated 95th percentiles, one expects
observations to exceed this level ∼5% of the time. In the south-
western region, the interannual variations of fire events were
not as apparent during the 6 years of our study. However, sum-
mer of 2002 shows an observed early peak in June, compared
with the historical model. The latter was well captured in the
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estimates produced by the multiple indices model. The higher
and lower odds relative to historic estimates over the north-
western and south-western states for May 2002 and August 2003
respectively (Fig. 8) can also be found in the figures of monthly
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Fig. 6. Reliability diagrams showing the observed fraction of large events
plotted against estimated probability for (top) the historic model and (bot-
tom) multiple indices model. Dashed lines are the approximate point-wise
95% confidence bounds.
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Fig. 7. Observed cells with large fire events (dots) and maps of fire danger based on estimated probabilities of large fire
events.

totals (Fig. 9). Overall, the observed numbers were distributed
around the 50th percentile estimates, with 4.1% (6/144) of the
cases above the 95th percentile curve. In our example, we used
arbitrary north and south regions. Similar estimates may also
be produced for smaller areas such as individual Geographic
Area Coordination Centers (GACCs) for fire management use.
Even though our results were based on a large number of
observations, the time-span of the study was only 6 years. It
remains to be seen if the same selected variables will give simi-
lar skill when tested on other years with more, or less, severe fire
seasons.

Summary and discussion

A statistical method of estimating probabilities of large wildland
fire events has been applied to the monthly mean fire danger
indices produced by the numerical weather prediction products
from the ECPC. The derived indices with the most information
for estimating monthly probabilities of large fire events were
FFWI, KB, ER, and R2H. No additional information appeared
to be gained by adding further indices to those listed above.
These variables were subsequently chosen to construct a com-
bined index that was used to estimate monthly probabilities of
large fire events on a 1-degree grid cell over the western United
States. The estimated probabilities were then compared with
observed frequencies of large events in order to assess the skill
of the model.

Probability models, such as the one described here, are not
only practical for selecting variables and producing maps of fire
danger, they are also useful in assessing the skill of the fire danger
indices in estimating (and eventually forecasting) frequencies of



Estimation of wildland fires probabilities Int. J. Wildland Fire 313

May 2002

Low
Norm
High

May 2002

August 2003

Low
Norm
High

August 2003

0.8
0.7

0.5
0.6

0.4
0.3
0.2
0.1
0.0

0.8
0.7

0.5
0.6

0.4
0.3
0.2
0.1
0.0

Fig. 8. Maps of odds relative to historic (left panels) and estimated probabilities (right panels) of large fire
events for two time periods. Black dots indicate locations of observed events during that period.

wildland fire events. NFDRS was probably originally designed to
support firefighting tactics on a daily basis. Some of the indices,
such as SC, BI and IC, are sensitive to short-term variation
of weather components, especially wind speed. These indices,
therefore, might lose their high-frequency characteristics when a
long-term (e.g. monthly) average is taken, as was the case in the
current study. Thus it is not surprising to see that some of these
model-derived indices did not contribute additional information
to those slow-varying indices, such as KB and ER, in describing
observed large fire events. What is surprising is that FFWI, an
index determined by weather variables alone, appeared to have a
significant contribution to the probability of large fires. Further
analysis, possibly at the daily time-scale, is required.

It is promising that a combination of fire danger indices
appeared to have some skill in estimating the probability
of large fire events at a monthly scale. Adding a select set of
indices to the historic model appeared to improve the skill of
the model in estimating expected numbers of large events. Fur-
thermore, estimated probabilities at each cell may be developed
into monthly anomaly maps for fire danger. The probabil-
ity maps showed reasonable agreement with the observed fire
events.

Although probability maps are useful in identifying high
fire danger areas to fire managers, a more useful applica-
tion may be the ability to compare the total number of large
fire events with historic estimates over a region in a proba-
bilistic manner. Roads et al. (2005) showed that although the

meteorological model predicted fire danger indices reasonably
well even at seasonal time-scales, the associations (as mea-
sured by the correlation coefficient) between the observed acres
burned and their ‘observed’ (validating) fire danger indices
were poor. Part of the reason could be that point-to-point tem-
poral correlation is not adequate when describing non-linear
relationships between variables that are not Gaussian. Addi-
tionally, correlation studies to evaluate fire danger indices are
not suitable for estimating or forecasting frequencies of fires.
Here we have proposed an alternative procedure for evaluat-
ing the association between derived fire danger indices and
fire characteristics that may also be used to estimate, and
eventually forecast, frequencies of large fires with known pre-
cision. The results indicate that the estimated distribution of the
number of large fire events agrees reasonably well with those
observed.

Similar analyses need to be done with forecasted fire weather
and danger indices to assess the skill of the forecasted vari-
ables on predicting large fire events in order for this method
to be truly useful for fire managers. Future work will address
the skill of predicting large fires at different lead times and at
smaller temporal and spatial scales. With fire occurrence data at
the individual-fire scale and forecasted fire weather and dan-
ger indices at the daily and 1-km scale, we should be able
to develop forecasts over small regions within administrative
units so that the prediction can be used for fire management
operation.
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Appendix A1

The logistic regression lines used to estimate the probabilities of
fire occurrence and large fire events are specified in the following
equation:

logit( pv) = βo + g1(lonv, latv) + g2(monthv) +
∑

m=1

hm(Xmv)

(A1)

where the subscript v indicates the 1 × 1-degree by 1-month
voxel; p is set to either the probability of ignition or condi-
tional probability of large fire given ignition; (lon, lat) are the
longitude and latitude of the midpoint of the grid cell; Xm are
explanatory fire weather and fire danger variables. The function
h is a non-parametric smoothing function (Hastie et al. 2001);
g2 is a periodic spline function (for estimating month-in-year
effect); and g1 is a thin plate spline function (for estimating
the spatial surface as a function of lon and lat). Estimation was
done with the R statistical package (R Development Core Team
2004). The procedure within the R package consists of first run-
ning the bs (basis spline) function on each of the explanatory
variables, then using the outputs from the bs runs as the new
explanatory variables in a simple logistic regression routine. A
periodic spline function (bs.per) is used for the month variable to

allow for a smooth transition between the months of December
and January. For the two-dimensional spline function of (lon,
lat), the thin plate spline function (ts) is used to produced the
necessary variables.

The MI statistic was defined as follows: let Y indicate the
occurrence of a fire (or alternatively, a large fire event) and X
indicate the logit line (linear predictor) as described in Eqn A1;
then the MI statistic is given by

MIX ,Y = E

{
log

pX ,Y (X , Y )

pX (X )pY (Y )

}
(A2)

where pX ,Y (X , Y ), pX (X ) and pY (Y ) are the joint and marginal
distributions of X , Y respectively. For the bivariate normal case,
1 − e−2MIX ,Y is the coefficient of determination. In general,
MIX ,Y = 0 when X and Y are independent and MIX ,Y ≤ MIZ,Y
if Y is independent of X given Z (Brillinger 2004). A simi-
lar and more commonly used statistic for choosing between
models is the Akaike information criterion (AIC) given by

AICX ,Y = −2E
{

log pX ,Y (X ,Y )

pX (X )

}
.AlthoughAIC and MI often give

similar results, as was the case in the present study, AIC does
not have the same interpretation as the MI statistic as a measure
of the strength of statistical dependence.


