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Abstract. Historical forest conditions are often used to inform contemporary management
goals because historical forests are considered to be resilient to ecological disturbances. The
General Land Office (GLO) surveys of the late 19th and early 20th centuries provide regionally
quasi-contiguous data sets of historical forests across much of the Western United States.
Multiple methods exist for estimating tree density from point-based sampling such as the GLO
surveys, including distance-based and area-based approaches. Area-based approaches have
been applied in California mixed-conifer forests but their estimates have not been validated. To
assess the accuracy and precision of plotless density estimators with potential for application
to GLO data in this region, we imposed a GLO sampling scheme on six mapped forest stands
of known densities (159-784 trees/ha) in the Sierra Nevada in California, USA, and Baja Cali-
fornia Norte, Mexico. We compared three distance-based plotless density estimators (Cottam,
Pollard, and Morisita) as well as two Voronoi area (VA) estimators, the Delince and mean har-
monic Voronoi density (MHVD), to the true densities. We simulated sampling schemes of
increasing intensity to assess sampling error. The relative error (RE) of density estimates for
the GLO sampling scheme ranged from 0.36 to 4.78. The least biased estimate of tree density
in every stand was obtained with the Morisita estimator and the most biased was obtained with
the MHVD estimator. The MHVD estimates of tree density were 1.2-3.8 times larger than the
true densities and performed best in stands subject to fire exclusion for 100 yr. The Delince
approach obtained accurate estimates of density, implying that the Voronoi approach is theo-
retically sound but that its application in the MHVD was flawed. The misapplication was
attributed to two causes: (1) the use of a crown scaling factor that does not correct for the num-
ber of trees sampled and (2) the persistent underestimate of the true VA due to a weak relation-
ship between tree size and VA. The magnitude of differences between true densities and
MHYVD estimates suggest caution in using results based on the MHVD to inform management
and restoration practices in the conifer forests of the American West.
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INTRODUCTION

Forests in the western United States are threatened by
a suite of stressors that include altered fire regimes,
legacy effects from timber harvesting, a warming cli-
mate, chronic air pollution, and uncharacteristically sev-
ere attacks by insects and pathogens (Perry et al. 2011,
Bytnerowicz et al. 2013, Hessburg et al. 2016). In
response, management seeks to restore diverse land-
scapes that maintain native species and characteristic
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processes (North et al. 2009, Hessburg et al. 2016,
Stephens et al. 2016). These management goals are
informed by the structure and composition of the forest
prior to European settlement (Churchill et al. 2013), a
time when western forests are thought to have sustained
form and function despite fire, drought, and insect
attack (Mast et al. 1999, Stephens et al. 2015). Given
the current emphasis on forest restoration and resilience
in public lands (USFS 2011, 2013) accurate characteriza-
tions of historical forests are particularly important.
Estimates of pre-settlement forest conditions are
derived from data with inherent limitations. Historical
inventories are a primary source of information
(Stephens 2000, Hagmann et al. 2013) but even the most
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geographically extensive records (e.g., >10,000 ha; Ste-
phens et al. 2015) may not necessarily represent regional
forest characteristics. Forest reconstructions using fire
scars, stumps, and tree rings also provide useful refer-
ences (Taylor 2004, North et al. 2007) but physical evi-
dence of the pre-settlement forest degrades with time
and the effort involved constrains the spatial extent of
the reconstruction. In contrast, the public land survey
system conducted by the General Land Office (GLO) is
a systematic, historical sample of trees over a broad
domain from Ohio to the West Coast of the United
States (Schulte and Mladenoff 2001).

The purpose of the GLO survey was to delineate
boundaries of federal lands for sale. The survey consisted
of 9.7 x 9.7 km (6 x 6 mile) townships containing 36
1.6 x 1.6 km (1 x 1 mile) sections. Section corners
marked with permanent monuments demarcated the end
of 1.6-km section lines and quarter corners were located
equidistant to two section corners. In order to provide ref-
erence points to the corners, nearby bearing trees (also
called witness trees) were selected. Section corners were
referenced with four bearing trees; quarter corners were
referenced with two bearing trees. For each bearing tree,
the distance and direction from the point along with spe-
cies identification and stem diameter were recorded. In
effect, these bearing tree records represent a systematic
sample of forest conditions (Schulte and Mladenoft 2001).

While the GLO bearing tree data overcome the
restricted geographic extent shared by historical invento-
ries and forest reconstructions, it is a sparse sample (i.e., 1
point per 0.8 km) beset by questions regarding data qual-
ity and analysis (Bourdo 1956, Bouldin 2008, Hanberry
et al. 2011, Liu et al. 2011). Cottam (1949) was one of
the first to use the pre-settlement survey to estimate past
forest characteristics. As he noted, the key challenge is an
accurate estimate of tree density from the information
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contained in the bearing trees. Although surveyor bias
and error in the selection of bearing trees are concerns
(Bourdo 1956, Grimm 1984, Bouldin 2008, Liu et al.
2011, Williams and Baker 2011), this paper focuses on
the fundamental task of calculating tree density from
distance data (e.g., Cottam and Curtis 1956, Morisita
1957, Pollard 1971, Williams and Baker 2011). Specifi-
cally, we evaluated the performance of a new plotless
density estimator (PDE) developed to maximize the
utility of GLO data to reconstruct pre-settlement forests
in the arid western US by using area-based metrics (sensu
Williams and Baker 2011, Baker 2014) as opposed to
traditional distance-based estimators.

Background

Plotless density estimators (PDEs) are a frequent
alternative to plot-based sampling for forest inventory
(Kronenfeld 2009). They rely on point-to-tree and/or
tree-to-tree distances to efficiently sample heterogeneous
landscapes. Of the many possible PDEs (e.g., Engeman
et al. 1994), we tested the bias and precision of three
PDEs that have been applied by previous studies to
GLO data. These PDEs are appropriate to GLO data
because they rely only on the distance data recorded by
surveyors when documenting bearing trees. We refer to
these PDEs by the name of their most often-cited
source: Cottam, Pollard, and Morisita (Table 1). The
equations share a similar format to estimate tree density
from a sample of points where the distance to the nearest
tree is measured in each sector (four 90° sectors for cor-
ner points; two 180° sectors for quarter corners). This
common format for tree density (A) includes a unit sca-
lar (K), an expression of design parameters (Q2), and an
estimate of either the squared mean or the mean squared
point-to-tree distance (ptd)

TasLE 1. Equations used to estimate tree density (trees/ha) in this study.
Name Equation Source
Cottam (C) =K 2 ———1L 1
Pollard (P) PO 2
XP - K (mn_1)m 1
U n m 2
Morisita (M) D 2 3
7\4M - K (m_ 1)m i 1
m : "2
Delince (D) = 4
Ap =K !
Mean Harmonic Voronoi Density (MHVD) mn, 5" W 5
Amnvp = K !

mn/3 MVAl(tree,)

Notes: Term definitions are m, number of sectors; 7, number of points; r;, the distance from point j to tree i; K, the scaling coeffi-
cient to return density in trees/ha; A, tree density; VA, the measured Voronoi area; MVA, the mean Voronoi area (estimated). In this
paper, r; is measured in meters, thus K = 10,000. Also note that, in all cases, only the nearest tree in each sector is measured. Thus

the total number of trees is m x n (mn).

Sources: 1, Cottam and Curtis (1956); 2, Pollard (1971: Eq. 6); 3, Morisita (1957: Eq. 31); 4, Delince (1986: Eq. 7); 5, Williams

and Baker (2011: Table 2).



1500

1
ptd” or (ptd)

ArxK Q

Applications of the Cottam estimator to GLO survey
data include Rhemtulla et al. (2009) and Maxwell et al.
(2014), the Pollard-Kronenfeld and Wang (2007), the
Morisita-Hanberry et al. (2012).

The theoretical basis for these three PDEs rests on the
assumption that the distribution of the point-to-tree dis-
tances indicates the average surface area occupied by the
average tree (Cottam and Curtis 1956, Morisita 1957).
Cottam and Curtis (1956) consider this sample space as
the exclusive surface area occupied by the nearest trees.
Thus the reciprocal of the average area occupied (area
per tree) is the density (trees per area). However point-
to-tree distances are unbiased variables only when the
spatial distribution of trees follows a random pattern
and the density of trees remains constant (Klein and
Vilcko 2006). The PDEs vary in their performance, but
in general accuracy and precision decrease as the trees
diverge from random spacing and/or tree density varies
across the landscape (Cottam and Curtis 1956, Engeman
et al. 1994, Kronenfeld 2009). The challenge posed by a
non-random distribution of trees is particularly impor-
tant in dry forests of western North America, where
clumped tree spacing is typical (Larson and Churchill
2012).

The new PDE recommended by Williams and Baker
(2011) uses the predicted Voronoi area (VA) of individ-
ual trees to overcome the limitations of distance-based
estimators. VAs are applied in a variety of disciplines to
describe spatial positions of points on a plane (Okabe
et al. 2000). Mark and Esler (1970) were among the first
to suggest a design-based, point-to-tree PDE that relied
on the exclusion zone of individual trees to avoid poten-
tial biases introduced by the point pattern of the trees.
This zone delineates a polygon where the tree defining
the polygon will be the closest to any sample point in the
polygon. Delince (1986) subsequently provided the theo-
retical justification for this approach and the application
to calculate tree density from point samples (Table 1). In
Delince’s (1986) method, the exclusion zone is the VA
with the vertices of the VA defined by half the distance
to each neighboring tree. The obvious constraint with
the Delince PDE with regard to the GLO data is that
only the distance to the nearest tree in each sector is
recorded at the corner points. There is no information
on the location of the neighboring trees in GLO data.

The innovation in Williams and Baker (2011) was the
adaptation of Delince’s (1986) approach to the GLO data.
Since there was no way to measure the VA of bearing trees
in historical data sets such as the GLO data, they devel-
oped region-specific regression equations from contempo-
rary data that predict VA as a function of tree diameter
and local tree density, which can then be applied to histor-
ical data (Table 1). The accuracy of the VA prediction is
crucial. The expectation that tree size is a good indicator
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of VA assumes that competition is a major factor driving
the spatial arrangement of trees. In short, bigger trees are
expected to have larger exclusion zones. A host of dis-
tance-dependent tree competition indices incorporate tree
size to account for this size-dependency (Biging and Dob-
bertin 1992, Aakala et al. 2013) but competition is not
only distance-dependent (Lorimer 1983). For mixed-coni-
fer forests in the Sierra Nevada, Biging and Dobbertin
(1995) reported that distance-independent competition
indices performed slightly better than the best distance-
dependent measures. The assumption inherent in Williams
and Baker’s (2011) methodology that the size of a tree is
the most important determinant of its spatial configura-
tion relative to neighboring trees must be investigated in
order to determine whether the density estimates derived
from this approach are accurate.

Research objectives

The application of this new area-based PDE to GLO
data from dry conifer forests across the western US has
often produced drastically higher estimates of pre-settle-
ment tree density than expected (Baker 2012, 2014, Wil-
liams and Baker 2012). For example, in the Californian
mixed-conifer forests on the western slopes of the Sierra
Nevada, pre-settlement tree density estimates based on
Baker’s (2014) analysis of GLO data exceeded estimates
based on historic forest inventories by 200-500% (Ste-
phens et al. 2015). Hagmann et al. (2013, 2014) found
similar discrepancies between the historical forest inven-
tories they analyzed in mixed-conifer forests of central
and northern Oregon and density estimates for the same
areas reported by Baker (2012) using the new area-based
PDE. These results challenge our understanding of the
natural dynamics of the Sierra Nevada and eastern Ore-
gon mixed-conifer forests where frequent low- and mod-
erate-severity fires were thought to maintain relatively
open forests (Hessburg et al. 2015; Safford and Stevens
2017). Moreover, Baker’s (2014) reconstructions raised
important questions regarding the appropriate strategy
to restore contemporary Sierra Nevada forests (Odion
et al. 2014, Hanson and Odion 2016).

This new perspective on the historical western forest
has engendered criticism (e.g., Hagmann et al. 2013,
Baker 2014, Fule et al. 2014, Williams and Baker 2014)
but the performance of the novel density estimator that
underpins these controversial findings has not been inde-
pendently tested. Therefore, we simulated a GLO sam-
pling scheme in six 4-ha mapped stands that span much
of the latitudinal range of mixed-conifer forest in the
California Floristic Province, some of which had experi-
enced fire exclusion whereas others had relatively intact
fire regimes. Mapped stands, where the location of all
trees is known, are required to verify the true VA of
trees. We compared the accuracy of traditional PDEs to
the method used by Baker (2014) and assessed whether
VA regression equations are able to accurately predict
true VA. Given the potential of the GLO bearing tree



July 2017

data to characterize pre-settlement forest conditions of
the United States, it is essential to review the theoretical
basis of any new PDE and to test its application.

METHODS

Study sites

We identified six old-growth mixed-conifer and pine-
dominated stands across the latitudinal gradient of the
Sierra Nevada and Sierra de San Pedro Martir of Cali-
fornia, USA and Baja California, Mexico (Table 2).
Sites included three stands on the western slope of the
Sierra Nevada: one stand in the Plumas National Forest
(PLUM), one stand in the Teakettle Experimental Forest
(TEAK), and one stand in Yosemite National Park
(YOSE). A fourth site (BRID) was located on the east-
ern slope of the Sierra Nevada in the Humboldt-Toiyabe
National Forest. All of the California stands had not
been harvested but experienced approximately 100 yr of
fire exclusion. The remaining two stands were in the
Sierra de San Pedro Martir National Park on the west-
ern slope of the Sierra de San Pedro Martir, where fire
suppression did not begin until the 1970s (Stephens
et al. 2010). The two sites in Baja differ in their underly-
ing geology, with one site on soil derived from metamor-
phic parent material (META) and the other site on soil
derived from granitic parent material (GRAN; Stephens
and Gill 2005, Fry et al. 2014). In addition to covering a
latitudinal gradient of the mixed-conifer and pine for-
ests, these stands also encompass a density gradient
ranging from 159 to 784 trees/ha (Table 2). Each stand
included in this study was 4 ha in area and included the
mapped locations of all stems >9.5 cm diameter at
breast height (DBH; 1.37 m; Fig. 1). Five of the stands
were 200 x 200 m in configuration and the PLUM
stand was 100 x 400 m. To illustrate the range of
results, we included figures from two sites: YOSE, a site
that is representative of contemporary density in the
Sierra Nevada (FIA 2015), and GRAN, a site that is rep-
resentative of pre-settlement density (Stephens et al.
2015). Figures for the other four sites can be found in
Appendix S1.
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Site-specific spatial patterns

We applied an inhomogeneous Ripley’s L function (L)
to determine the spatial patterning of the trees at each of
the six stands. The inhomogeneous function avoids
assuming a null model characterized by a homogeneous
Poisson process, which may result in the misinterpretation
of the point structure when point density varies within a
mapped study area (Wiegand and Moloney 2004). We
used a radius of 25 m at the PLUM stand (the maximum
allowable radius due to the stand configuration) and a
radius of 30 m at the other five stands. Thirty meters was
chosen as the cutoff because this radius was larger than
the maximum distance required to locate a nearest neigh-
bor to a random sampling point in the least dense stand
(GRAN, 28 m maximum distance to nearest neighbor).
Thus, a 30-m radius captures all potential tree-to-tree
competitive interactions relevant to PDE calculations.
For each stand, we simulated 1000 runs of a random dis-
tribution of trees to determine the 95% confidence inter-
val (CI). The empirical L value from the mapped trees
was compared to the simulated 95% CI to determine at
what scales the distribution of trees significantly differed
from a random distribution (Cressie 2015). The criterion
for significance was the non-overlap of observed L with
the 95% CI of the random simulations.

GLO density estimators

We compared density estimates from the six mapped
stands based on the three traditional PDEs (i.e., the Cot-
tam, Pollard, and Morisita) as well as the mean-based
harmonic Voronoi density (MHVD, Table 1). Williams
and Baker (2011) found the MHVD to be one of the
most accurate Voronoi-based estimators they tested, and
Baker (2014) applied the MHVD to sites in the Sierra
Nevada of California. The calculation of the traditional
PDE:s relies on the information contained in the GLO
survey, namely the number of corners (), the number of
sectors (m), and the point-to-tree distances (r) in each
sector (Table 1). In contrast, the MHVD requires pre-
dicting the mean Voronoi area (MVA) via a three-step
process: (1) predict a tree’s crown radius (CR) from the

TaBLE 2. Site description for the six stands included in this study. Density and basal area are for trees >9.5 cm DBH.

Site Latitude (W) Longitude (N) Elevation (m) Density (trees/ha) Basal area (m*ha) Fir (%) Pine (%) Source
PLUM 121°02' 39°55 1158-1219 784 87 87 3 1
YOSE 119°49’ 37°46 1774-1911 562 56 79 13 2
TEAK 119°02/ 36°58' 1880-2485 313 56 64 27 3
META 115°59 31°37 2400-2500 254 23 0 100 4
BRID 119°28’ 38°24/ 2500-2600 236 36 38 50 4
GRAN 115°59 31°37 2400-2500 159 25 13 87 4

Notes: Sites are PLUM, Plumas National Forest; YOSE, Yosemite National Park; TEAK, Teakettle Experimental Forest;
META, the site in the Sierra de San Pedro Martir with soil derived from metamorphic parent material; BRID, Humboldt-Toiyabe
National Forest near Bridgeport, California, USA; GRAN, the site in the Sierra de San Pedro Martir with soil derived from granitic
parent material. Fir and pine refer to the percentage of the number of trees in either category in each 4-ha stand.

Sources: 1, Levine et al. (2016); 2, Lutz et al. (2012); 3, North et al. (2007); 4, Fry et al. (2014).
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allometric relationship between crown size and stem
diameter; (2) calculate the mean neighborhood density
(MND) correction factor; and (3) estimate a tree’s MVA
from its CR scaled by the MND (Williams and Baker
2011). The CR for tree; was predicted from the diameter
at breast height (DBH, at a height of 1.37 m) of tree;
according to the equation

In(CR) =a+b In(DBH) 2
where a and b are species-specific regression parameters
for CR (Table D1 in Baker 2014). At each corner, the
MND was calculated as

1

MND; =~
Zi:l m

3)

where r is the distance from the sampling point; to the
nearest neighbor tree; in m sectors (Williams and Baker
2011). The MVA of tree; at sampling point; was then
estimated as

In[CR (tree;)

MVA(tree;) = b
(tree;) = exp a-+ MND,

“)

where a and b are species-specific regression parameters
for MVA (Table D1 in Baker 2014), MND; from Eq. 3,
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and CR(tree;) from Eq. 2. Note that we used DBH to
estimate CR in accord with the equation in Baker
(2014). However, an unpublished erratum (W. Baker, per-
sonal communication) corrected the CR predictor to
diameter at stump height (DSH; 0.30 m). Thus we also
calculated MHVD with DSH. See Appendix S2 for
details.

Bias and precision assessment

We applied simulations to quantify the performance
of the PDEs. Each test included 1000 realizations of ran-
domly placed sampling corners in each of the six
mapped stands. Sample corner intensity spanned the
range of GLO point pools considered by Williams and
Baker (2011)—3, 6, 9, and 21—as well as the recom-
mended minimum intensity of 50 points (Kronenfeld
2009, Hanberry et al. 2011) and a saturation intensity of
1000 points. To minimize edge effects, the location of the
random points was excluded from a buffer zone along
the stand boundaries with the buffer width ranging from
10 to 20 m depending on tree density. Less dense stands
required a larger buffer to ensure the presence of a bear-
ing tree in each sector for every simulated point.

The GLO sampling regime includes section corners
with four bearing trees (one tree in each 90° quadrant)
and quarter corners with two bearing trees (one tree in
each 180° semicircle). Bearing trees are referred to as
nearest neighbors (nn) for the purposes of density calcu-
lation. When calculating the PDEs, we treated all cor-
ners as either sections corners with four bearing trees
(4 nn) or quarter corners with two bearing trees (2 nn).
We did not apply the correction factors developed in
Williams and Baker (2011) to allow the mixing of results
from section corners and quarter corners. While the cor-
rection factors increase the number of trees available
from the GLO data because both 4 nn and 2 nn corners
can be included, the use of the weights has to our knowl-
edge only been vetted for the Cottam (Cottam and Cur-
tis 1956). Moreover, it is clear from both theory and
practice that the number of neighbors measured greatly
affects the estimate (Morisita 1957, Engeman et al.
1994, Kronenfeld 2009). For example, Kronenfeld
(2009) demonstrated for the Pollard that the bias in the
estimated density diminishes as nn increases, ultimately
approaching an asymptote near the true density as nn
approaches 50. By excluding correction factors, our
comparisons avoided a potential confounding factor.

Although not appropriate for GLO data because it
requires measuring the VA, we included the Delince
PDE in the simulation because it constitutes the theoret-
ical underpinning of the MHVD approach. Its inclusion
can help to deduce the source of any bias observed. To
compute the Delince (Table 1), the nearest bearing tree
to each point (I nn) was selected and its true VA was cal-
culated from the mapped trees.

Results from the 1000 realizations were summarized
by the median as the measure of central tendency and
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the 95% CI as the measure of variation. Bias was defined
by the relative error (RE)

RE — 7"sim

7"true

)

where Ay, is the median density from the 1000 realiza-
tions and A 1s the true density of the mapped stand.
RE < 1 implies underestimates; RE > 1 implies overesti-
mates. Precision was defined by the relative root mean
square error (rRMSE)

RMSEim

}‘true

rRMSE = (6)

where RMSEg;,, is the root mean square error of the
1000 realizations in each simulation and A, is the true
density of the mapped stand. Larger values of rRMSE
imply less precision.

MHYVD deconstruction

We evaluated the three steps needed to calculate the
MHYVD. For crown radius (CR, Eq. 2), we compared the
regression fits described in Baker (2014) to equations
estimated from Forest Health Monitoring (FHM) data
collected as part of the Forest Inventory and Analysis Pro-
gram. This database included measured crown radii from
monitoring plots in the mixed-conifer forest of the Sierra
Nevada in California (available online).'® Predictions of
CR were fit from the FHM data for all species present in
the six stands (10 species total; n per species ranging from
59 to 746).

Williams and Baker (2011) used the mean neighbor-
hood density (MND, Eq. 3) to adjust the MVA prediction
by the local density, with the assumption that a tree of a
given diameter will have a larger MVA in a less dense
stand and a smaller MVA in a more crowded stand. To
isolate the effect of the MND correction, we simulated a
six-point section corner (4 nn) and a six-point quarter
corner (2 nn) sampling scheme in each of the six mapped
stands and reported the median MND and 95% CI (from
1000 realizations) for the 2-nn and 4-nn sampling schemes.
This six-point scheme is recommended by Williams and
Baker (2011) as being sufficient for estimating density with
a 22% relative mean absolute error (RMSE). We used the
1000 simulated MND values to estimate the median and
95% CI of the MVA for a representative tree (Eq. 4). For
each stand, the representative tree was defined by the
dominant species and the median DBH; MVA was fit
using the equation parameters in Baker (2014).

We tested the strength of the relationship between
CR/MND and true VA by least-squares regression. We
calculated the MVA regression parameters in Eq. 4 for
the common species (>5% dominance) in each stand and
compared them to the species-specific fits in Baker

O http:/fwww.fia.fs.fed.us/tools-data/other_data/index.php
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(2014). Only section corners (4 nn) were considered for
the MND values in this analysis to avoid potential con-
founding errors from calculating MND with two or four
bearing trees. CR was estimated using parameters
derived from the FHM data set (as above); MND was
calculated for 21 regularly spaced section corners (4 nn).
True VAs were calculated from mapped tree locations.
Thus in this analysis we had large, well-distributed sam-
ples for both the CR and M VA regressions.

We assessed the accuracy of the MVA regression equa-
tion by comparing the predicted VA of individual trees
to the true VA. We used the tree maps to calculate the
true VA of each tree. For each stand, a buffer ranging
from 5 to 18 m from the stand boundaries was applied
with the width set to ensure that trees included in the
analysis had a neighbor on all sides. MND was derived
from 21 regularly spaced section corners (4 nn, as
above). Only section corners were considered in this
analysis to avoid potential confounding errors from cal-
culating MND with two or four bearing trees. The MVA
for trees was computed using the CR and MVA coeffi-
cients in Baker (2014); the recorded tree species and
DBH; and the MND for the point nearest to each tree
(Eq. 4. We also estimated the mean difference
(VAdifierence) between MVA and true VA, calculated as

z”: MVA,; VA,
n

(7

VAdifference =
i=1

where i refers to the individual tree and » is the total
number of trees. We calculated the comparison for each
stand with three different size classes of trees: trees
>9.5 cm DBH, trees >20 cm DBH, and trees >60 cm
DBH. All data processing and analyses were conducted
in R version 3.2.4 (R Development Core Team 2014);
spatial metrics relied on functions in the spatstat pack-
age (Baddeley et al. 2015).

REsULTS

Tree spatial distribution in each stand

Despite differences in geography, density, and compo-
sition, the overall spatial pattern was consistent among
all six stands. Trees were significantly clumped at spatial
scales relevant to the PDE calculation and showed inhi-
bition at larger scales due to the presence of gaps
throughout the stand (Appendix S1: Fig. S1). The inho-
mogeneous Ripley’s L values exceeded the 95% CI for
randomly spaced trees from 0 to 1 m at the minimum
and 13-29 m at the maximum: an indication of an
aggregated distribution (Appendix S1: Fig. S1).

Bias and precision assessment

Considering only the GLO-appropriate PDEs for a
50-point sampling intensity, the least biased estimate of
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tree density in every stand was obtained with the Mori-
sita and the most biased was obtained with the MHVD
(Table 3). The direction of the bias in the Morisita var-
ied with some underestimates and some overestimates.
In contrast, the Cottam and Pollard consistently under-
estimated true density and the MHVD always overesti-
mated true density. In general, the 4 nn sampling had
less bias than the 2-nn sampling. This difference was
particularly pronounced in the MHVD. For the 2-nn
MHVD, the median REs ranged from 2.04 to 3.58
whereas, for the 4 nn MHVD, it ranged from 1.16 to
1.59 (Table 3). The performance of the Delince PDE
was exceptional (Table 3). The biases were small and
non-directional with median REs ranging from 0.92 to
1.14. The performance in regard to the bias of individual
estimators documented for the 50-point sampling inten-
sity was consistent at other sampling intensities
(Appendix S1: Tables S1-S9).

The precision of the tree density estimates systemati-
cally increased with sampling intensity for all PDEs. Not
only did the width of confidence interval shrink with
increasing point density (Fig. 2; Appendix S1: Fig. S2
for the Delince) but the rRMSE also declined systemati-
cally with increasing point density in every case
(Appendix S1: Tables S1-S9). Moreover, the 4-nn sam-
pling scheme consistently produced more precise esti-
mates (i.e., lower rRMSE) than the 2 nn.

Among the PDEs, the MHVD was the least precise
for a given sampling scheme and intensity (Fig. 2,
Table 3). The Morisita tended to produce less precise
density estimates at sample intensities <50. The improve-
ment in precision with increasing sample intensity was
steepest for the MHVD and Delince. For both PDEs,
the rRMSE was an order of magnitude lower for the
1000-point sample compared to the three-point sample
(Appendix S1: Tables S1-S9). In the 50-point sampling
simulations, the Delince obtained not only the least
biased estimates of density but also the most precise
(Table 3). The Morisita 4-nn estimator was the next best
in terms of minimizing bias and maximizing precision.

MHYVD deconstruction

Tree diameter proved to be a robust predictor of
crown radius. Based on the coefficient of determination
(), the fits of In(CR) to In(DBH) for conifer trees in the
FHM data ranged from 0.43 for Pseudotsuga menziesii
(PSME, n = 196) to 0.83 for Pinus monticola (PIMO,
n=159). The +* values for the hardwoods were lower,
ranging from 0.22 for Populus tremuloides (POTR,
n = 65) to 0.44 for Quercus kelloggii (QUKE, n = 254).
All fits showed a significantly increasing relationship of
In(CR) to In(DBH) (P < 0.05; Appendix S1: Fig. S3).
The slope and intercepts of the relationship of In(CR) to
In(DBH) were generally similar to those listed in Baker
(2014) for the same species.

The 4 nn sampling scheme resulted in a significantly
higher mean distance to nearest trees compared to the
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TaBLE 3. Relative performance of the density estimates for the 50-point simulations.
Site PLUM YOSE TEAK META BRID GRAN
True density (trees/ha) 784 562 313 254 236 159
Cottam (four trees)
2.5% CI 0.79 0.66 0.49 0.52 0.63 0.68
Median 0.93 0.79 0.62 0.66 0.75 0.80
97.5% CI 1.09 0.96 0.82 0.85 0.91 0.97
rRMSE 0.10 0.22 0.38 0.36 0.26 0.22
Cottam (two trees)
2.5% CI 0.74 0.62 0.47 0.49 0.57 0.66
Median 0.92 0.80 0.63 0.66 0.73 0.83
97.5% CI 1.16 1.05 0.87 0.89 0.94 1.08
rRMSE 0.13 0.22 0.37 0.36 0.29 0.20
Pollard (four trees)
2.5% CI 0.79 0.64 0.43 0.46 0.62 0.66
Median 0.92 0.75 0.54 0.58 0.73 0.77
97.5% CI 1.07 0.90 0.69 0.74 0.87 0.92
rRMSE 0.11 0.26 0.46 0.43 0.29 0.25
Pollard (two trees)
2.5% CI 0.72 0.59 0.41 0.43 0.55 0.64
Median 0.90 0.76 0.54 0.58 0.68 0.80
97.5% CI 1.11 0.98 0.73 0.79 0.88 1.04
rRMSE 0.15 0.25 0.46 0.44 0.33 0.22
Morisita (four trees)
2.5% CI 0.80 0.72 0.71 0.67 0.69 0.69
Median 0.96 0.94 1.15 1.06 0.89 0.87
97.5% CI 1.21 1.24 2.08 1.76 1.23 1.29
rRMSE 0.11 0.14 0.40 0.30 0.17 0.20
Morisita (two trees)
2.5% CI 0.66 0.61 0.65 0.67 0.57 0.62
Median 0.92 0.90 1.24 1.19 0.85 0.94
97.5% CI 1.57 1.62 2.85 2.78 1.70 1.98
rRMSE 0.25 0.31 0.78 0.67 0.38 0.37
MHVD (four trees)
2.5% CI 1.02 1.16 1.15 0.94 1.09 0.99
Median 1.16 1.40 1.59 1.30 1.34 1.21
97.5% CI 1.32 1.72 2.31 1.80 1.69 1.50
rRMSE 0.18 0.16 0.14 0.38 0.37 0.25
MHVD (two trees)
2.5% CI 1.72 2.17 2.30 2.08 2.13 2.03
Median 2.04 2.89 3.58 3.09 2.83 2.68
97.5% CI 247 4.17 6.13 4.70 3.84 3.72
rRMSE 1.06 1.07 1.02 2.25 1.89 1.75
Delince (one tree)
2.5% CI 0.83 0.79 0.77 0.72 0.71 0.73
Median 0.99 0.99 1.14 1.02 0.92 0.96
97.5% CI 1.21 1.27 1.85 1.59 1.21 1.41
rRMSE 0.10 0.12 0.34 0.24 0.14 0.18

Notes: Results are reported as relative values with the results from the 1000 realizations divided by the true density. rRMSE refers
to the relative root mean square error. Boldface text indicates site estimates where the 95% CI of the simulation overlaps the true

density.

2 nn sampling (Fig. 3A, C). This difference translated
into a lower MND. When we applied the MND to the
estimation of the MVA of a representative tree, the 4 nn
MND correction resulted in significantly higher estima-
tions of MVA for the same tree relative to the 2 nn
MND (Fig. 3B, D). The results were replicated at every

site—the 2 nn sampling resulted in a higher MVA esti-
mate (Appendix S1: Fig. S4).

For the mapped trees in the six stands we tested, CR
was a very weak predictor of VA (Fig. 4). Although the
slope of the regression line was positive and often signifi-
cant (i.e., P <0.05), the fits were very poor. The
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