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Abstract. Historical forest conditions are often used to inform contemporary management 
goals because historical forests are considered to be resilient to ecological disturbances. The 
General Land Office (GLO) surveys of the late 19th and early 20th centuries provide regionally 
quasi-contiguous data sets of historical forests across much of the Western United States. 
Multiple methods exist for estimating tree density from point-based sampling such as the GLO 
surveys, including distance-based and area-based approaches. Area-based approaches have 
been applied in California mixed-conifer forests but their estimates have not been validated. To 
assess the accuracy and precision of plotless density estimators with potential for application 
to GLO data in this region, we imposed a GLO sampling scheme on six mapped forest stands 
of known densities (159–784 trees/ha) in the Sierra Nevada in California, USA, and Baja Cali-
fornia Norte, Mexico. We compared three distance-based plotless density estimators (Cottam, 
Pollard, and Morisita) as well as two Voronoi area (VA) estimators, the Delince and mean har-
monic Voronoi density (MHVD), to the true densities. We simulated sampling schemes of 
increasing intensity to assess sampling error. The relative error (RE) of density estimates for 
the GLO sampling scheme ranged from 0.36 to 4.78. The least biased estimate of tree density 
in every stand was obtained with the Morisita estimator and the most biased was obtained with 
the MHVD estimator. The MHVD estimates of tree density were 1.2–3.8 times larger than the 
true densities and performed best in stands subject to fire exclusion for 100 yr. The Delince 
approach obtained accurate estimates of density, implying that the Voronoi approach is theo-
retically sound but that its application in the MHVD was flawed. The misapplication was 
attributed to two causes: (1) the use of a crown scaling factor that does not correct for the num-
ber of trees sampled and (2) the persistent underestimate of the true VA due to a weak relation-
ship between tree size and VA. The magnitude of differences between true densities and 
MHVD estimates suggest caution in using results based on the MHVD to inform management 
and restoration practices in the conifer forests of the American West. 
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INTRODUCTION processes (North et al. 2009, Hessburg et al. 2016, 
Stephens et al. 2016). These management goals are

Forests in the western United States are threatened by 
informed by the structure and composition of the forest 

a suite of stressors that include altered fire regimes, 
prior to European settlement (Churchill et al. 2013), a 

legacy effects from timber harvesting, a warming cli-
time when western forests are thought to have sustained 

mate, chronic air pollution, and uncharacteristically sev-
form and function despite fire, drought, and insect

ere attacks by insects and pathogens (Perry et al. 2011, 
attack (Mast et al. 1999, Stephens et al. 2015). Given 

Bytnerowicz et al. 2013, Hessburg et al. 2016). In 
the current emphasis on forest restoration and resilience 

response, management seeks to restore diverse land-
in public lands (USFS 2011, 2013) accurate characteriza-

scapes that maintain native species and characteristic 
tions of historical forests are particularly important. 
Estimates of pre-settlement forest conditions are 
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geographically extensive records (e.g., >10,000 ha; Ste-
phens et al. 2015) may not necessarily represent regional 
forest characteristics. Forest reconstructions using fire 
scars, stumps, and tree rings also provide useful refer-
ences (Taylor 2004, North et al. 2007) but physical evi-
dence of the pre-settlement forest degrades with time 
and the effort involved constrains the spatial extent of 
the reconstruction. In contrast, the public land survey 
system conducted by the General Land Office (GLO) is 
a systematic, historical sample of trees over a broad 
domain from Ohio to the West Coast of the United 
States (Schulte and Mladenoff 2001). 
The purpose of the GLO survey was to delineate 

boundaries of federal lands for sale. The survey consisted 
of 9.7 9 9.7 km (6 9 6 mile) townships containing 36 
1.6 9 1.6 km (1 9 1 mile) sections. Section corners 
marked with permanent monuments demarcated the end 
of 1.6-km section lines and quarter corners were located 
equidistant to two section corners. In order to provide ref-
erence points to the corners, nearby bearing trees (also 
called witness trees) were selected. Section corners were 
referenced with four bearing trees; quarter corners were 
referenced with two bearing trees. For each bearing tree, 
the distance and direction from the point along with spe-
cies identification and stem diameter were recorded. In 
effect, these bearing tree records represent a systematic 
sample of forest conditions (Schulte and Mladenoff 2001). 
While the GLO bearing tree data overcome the 

restricted geographic extent shared by historical invento-
ries and forest reconstructions, it is a sparse sample (i.e., 1 
point per 0.8 km) beset by questions regarding data qual-
ity and analysis (Bourdo 1956, Bouldin 2008, Hanberry 
et al. 2011, Liu et al. 2011). Cottam (1949) was one of 
the first to use the pre-settlement survey to estimate past 
forest characteristics. As he noted, the key challenge is an 
accurate estimate of tree density from the information 

contained in the bearing trees. Although surveyor bias 
and error in the selection of bearing trees are concerns 
(Bourdo 1956, Grimm 1984, Bouldin 2008, Liu et al. 
2011, Williams and Baker 2011), this paper focuses on 
the fundamental task of calculating tree density from 
distance data (e.g., Cottam and Curtis 1956, Morisita 
1957, Pollard 1971, Williams and Baker 2011). Specifi-
cally, we evaluated the performance of a new plotless 
density estimator (PDE) developed to maximize the 
utility of GLO data to reconstruct pre-settlement forests 
in the arid western US by using area-based metrics (sensu 
Williams and Baker 2011, Baker 2014) as opposed to 
traditional distance-based estimators. 

Background 

Plotless density estimators (PDEs) are a frequent 
alternative to plot-based sampling for forest inventory 
(Kronenfeld 2009). They rely on point-to-tree and/or 
tree-to-tree distances to efficiently sample heterogeneous 
landscapes. Of the many possible PDEs (e.g., Engeman 
et al. 1994), we tested the bias and precision of three 
PDEs that have been applied by previous studies to 
GLO data. These PDEs are appropriate to GLO data 
because they rely only on the distance data recorded by 
surveyors when documenting bearing trees. We refer to 
these PDEs by the name of their most often-cited 
source: Cottam, Pollard, and Morisita (Table 1). The 
equations share a similar format to estimate tree density 
from a sample of points where the distance to the nearest 
tree is measured in each sector (four 90° sectors for cor-
ner points; two 180° sectors for quarter corners). This 
common format for tree density (k) includes a unit sca-
lar (K), an expression of design parameters (Ώ), and an 
estimate of either the squared mean or the mean squared 
point-to-tree distance (ptd) 

TABLE 1. Equations used to estimate tree density (trees/ha) in this study. 

Name Equation Source 

Cottam (C) 
Pollard (P) 

kC ¼ K m 
4 

1 Pn 

j¼1 

Pm 

i¼1 

rij 

nm 

2 1 
2 

Morisita (M) 
kP ¼ K mn 1ð Þm 

p 
1 Pn 

j¼1 

Pm 

i¼1 
rij 

2 

3 

Delince (D) 
kM ¼ K 

kD ¼ K 

m 1ð Þm 
pn 

P n 

j¼1 

1 Pm 

i¼1 
rij 

2 

1 
4 

Mean Harmonic Voronoi Density (MHVD) mn= 
Pmn 

i¼1 
1 

VA treeið Þ 5 

kMHVD ¼ K 1 

mn= 
Pmn 

i¼1 
1 

MVA treeið Þ 
Notes: Term definitions are m, number of sectors; n, number of points; rij, the distance from point j to tree i; K, the scaling coeffi-

cient to return density in trees/ha; k, tree density; VA, the measured Voronoi area; MVA, the mean Voronoi area (estimated). In this 
paper, rij is measured in meters, thus K = 10,000. Also note that, in all cases, only the nearest tree in each sector is measured. Thus 
the total number of trees is m 9 n (mn). 
Sources: 1, Cottam and Curtis (1956); 2, Pollard (1971: Eq. 6); 3, Morisita (1957: Eq. 31); 4, Delince (1986: Eq. 7); 5, Williams 

and Baker (2011: Table 2). 
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1 
k / K X (1) 

ptd2 or ðptdÞ2 

Applications of the Cottam estimator to GLO survey 
data include Rhemtulla et al. (2009) and Maxwell et al. 
(2014), the Pollard-Kronenfeld and Wang (2007), the 
Morisita-Hanberry et al. (2012). 
The theoretical basis for these three PDEs rests on the 

assumption that the distribution of the point-to-tree dis-
tances indicates the average surface area occupied by the 
average tree (Cottam and Curtis 1956, Morisita 1957). 
Cottam and Curtis (1956) consider this sample space as 
the exclusive surface area occupied by the nearest trees. 
Thus the reciprocal of the average area occupied (area 
per tree) is the density (trees per area). However point-
to-tree distances are unbiased variables only when the 
spatial distribution of trees follows a random pattern 
and the density of trees remains constant (Klein and 
Vilcko 2006). The PDEs vary in their performance, but 
in general accuracy and precision decrease as the trees 
diverge from random spacing and/or tree density varies 
across the landscape (Cottam and Curtis 1956, Engeman 
et al. 1994, Kronenfeld 2009). The challenge posed by a 
non-random distribution of trees is particularly impor-
tant in dry forests of western North America, where 
clumped tree spacing is typical (Larson and Churchill 
2012). 
The new PDE recommended by Williams and Baker 

(2011) uses the predicted Voronoi area (VA) of individ-
ual trees to overcome the limitations of distance-based 
estimators. VAs are applied in a variety of disciplines to 
describe spatial positions of points on a plane (Okabe 
et al. 2000). Mark and Esler (1970) were among the first 
to suggest a design-based, point-to-tree PDE that relied 
on the exclusion zone of individual trees to avoid poten-
tial biases introduced by the point pattern of the trees. 
This zone delineates a polygon where the tree defining 
the polygon will be the closest to any sample point in the 
polygon. Delince (1986) subsequently provided the theo-
retical justification for this approach and the application 
to calculate tree density from point samples (Table 1). In 
Delince’s (1986) method, the exclusion zone is the VA 
with the vertices of the VA defined by half the distance 
to each neighboring tree. The obvious constraint with 
the Delince PDE with regard to the GLO data is that 
only the distance to the nearest tree in each sector is 
recorded at the corner points. There is no information 
on the location of the neighboring trees in GLO data. 
The innovation in Williams and Baker (2011) was the 

adaptation of Delince’s (1986) approach to the GLO data. 
Since there was no way to measure the VA of bearing trees 
in historical data sets such as the GLO data, they devel-
oped region-specific regression equations from contempo-
rary data that predict VA as a function of tree diameter 
and local tree density, which can then be applied to histor-
ical data (Table 1). The accuracy of the VA prediction is 
crucial. The expectation that tree size is a good indicator 

of VA assumes that competition is a major factor driving 
the spatial arrangement of trees. In short, bigger trees are 
expected to have larger exclusion zones. A host of dis-
tance-dependent tree competition indices incorporate tree 
size to account for this size-dependency (Biging and Dob-
bertin 1992, Aakala et al. 2013) but competition is not 
only distance-dependent (Lorimer 1983). For mixed-coni-
fer forests in the Sierra Nevada, Biging and Dobbertin 
(1995) reported that distance-independent competition 
indices performed slightly better than the best distance-
dependent measures. The assumption inherent in Williams 
and Baker’s (2011) methodology that the size of a tree is 
the most important determinant of its spatial configura-
tion relative to neighboring trees must be investigated in 
order to determine whether the density estimates derived 
from this approach are accurate. 

Research objectives 

The application of this new area-based PDE to GLO 
data from dry conifer forests across the western US has 
often produced drastically higher estimates of pre-settle-
ment tree density than expected (Baker 2012, 2014, Wil-
liams and Baker 2012). For example, in the Californian 
mixed-conifer forests on the western slopes of the Sierra 
Nevada, pre-settlement tree density estimates based on 
Baker’s (2014) analysis of GLO data exceeded estimates 
based on historic forest inventories by 200–500% (Ste-
phens et al. 2015). Hagmann et al. (2013, 2014) found 
similar discrepancies between the historical forest inven-
tories they analyzed in mixed-conifer forests of central 
and northern Oregon and density estimates for the same 
areas reported by Baker (2012) using the new area-based 
PDE. These results challenge our understanding of the 
natural dynamics of the Sierra Nevada and eastern Ore-
gon mixed-conifer forests where frequent low- and mod-
erate-severity fires were thought to maintain relatively 
open forests (Hessburg et al. 2015; Safford and Stevens 
2017). Moreover, Baker’s (2014) reconstructions raised 
important questions regarding the appropriate strategy 
to restore contemporary Sierra Nevada forests (Odion 
et al. 2014, Hanson and Odion 2016). 
This new perspective on the historical western forest 

has engendered criticism (e.g., Hagmann et al. 2013, 
Baker 2014, Fule et al. 2014, Williams and Baker 2014) 
but the performance of the novel density estimator that 
underpins these controversial findings has not been inde-
pendently tested. Therefore, we simulated a GLO sam-
pling scheme in six 4-ha mapped stands that span much 
of the latitudinal range of mixed-conifer forest in the 
California Floristic Province, some of which had experi-
enced fire exclusion whereas others had relatively intact 
fire regimes. Mapped stands, where the location of all 
trees is known, are required to verify the true VA of 
trees. We compared the accuracy of traditional PDEs to 
the method used by Baker (2014) and assessed whether 
VA regression equations are able to accurately predict 
true VA. Given the potential of the GLO bearing tree 
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data to characterize pre-settlement forest conditions of 
the United States, it is essential to review the theoretical 
basis of any new PDE and to test its application. 

METHODS 

Study sites 

We identified six old-growth mixed-conifer and pine-
dominated stands across the latitudinal gradient of the 
Sierra Nevada and Sierra de San Pedro Martir of Cali-
fornia, USA and Baja California, Mexico (Table 2). 
Sites included three stands on the western slope of the 
Sierra Nevada: one stand in the Plumas National Forest 
(PLUM), one stand in the Teakettle Experimental Forest 
(TEAK), and one stand in Yosemite National Park 
(YOSE). A fourth site (BRID) was located on the east-
ern slope of the Sierra Nevada in the Humboldt-Toiyabe 
National Forest. All of the California stands had not 
been harvested but experienced approximately 100 yr of 
fire exclusion. The remaining two stands were in the 
Sierra de San Pedro Martir National Park on the west-
ern slope of the Sierra de San Pedro Martir, where fire 
suppression did not begin until the 1970s (Stephens 
et al. 2010). The two sites in Baja differ in their underly-
ing geology, with one site on soil derived from metamor-
phic parent material (META) and the other site on soil 
derived from granitic parent material (GRAN; Stephens 
and Gill 2005, Fry et al. 2014). In addition to covering a 
latitudinal gradient of the mixed-conifer and pine for-
ests, these stands also encompass a density gradient 
ranging from 159 to 784 trees/ha (Table 2). Each stand 
included in this study was 4 ha in area and included the 
mapped locations of all stems ≥9.5 cm diameter at 
breast height (DBH; 1.37 m; Fig. 1). Five of the stands 
were 200 9 200 m in configuration and the PLUM 
stand was 100 9 400 m. To illustrate the range of 
results, we included figures from two sites: YOSE, a site 
that is representative of contemporary density in the 
Sierra Nevada (FIA 2015), and GRAN, a site that is rep-
resentative of pre-settlement density (Stephens et al. 
2015). Figures for the other four sites can be found in 
Appendix S1. 

Site-specific spatial patterns 

We applied an inhomogeneous Ripley’s L function (L) 
to determine the spatial patterning of the trees at each of 
the six stands. The inhomogeneous function avoids 
assuming a null model characterized by a homogeneous 
Poisson process, which may result in the misinterpretation 
of the point structure when point density varies within a 
mapped study area (Wiegand and Moloney 2004). We 
used a radius of 25 m at the PLUM stand (the maximum 
allowable radius due to the stand configuration) and a 
radius of 30 m at the other five stands. Thirty meters was 
chosen as the cutoff because this radius was larger than 
the maximum distance required to locate a nearest neigh-
bor to a random sampling point in the least dense stand 
(GRAN, 28 m maximum distance to nearest neighbor). 
Thus, a 30-m radius captures all potential tree-to-tree 
competitive interactions relevant to PDE calculations. 
For each stand, we simulated 1000 runs of a random dis-
tribution of trees to determine the 95% confidence inter-
val (CI). The empirical L value from the mapped trees 
was compared to the simulated 95% CI to determine at 
what scales the distribution of trees significantly differed 
from a random distribution (Cressie 2015). The criterion 
for significance was the non-overlap of observed L with 
the 95% CI of the random simulations. 

GLO density estimators 

We compared density estimates from the six mapped 
stands based on the three traditional PDEs (i.e., the Cot-
tam, Pollard, and Morisita) as well as the mean-based 
harmonic Voronoi density (MHVD, Table 1). Williams 
and Baker (2011) found the MHVD to be one of the 
most accurate Voronoi-based estimators they tested, and 
Baker (2014) applied the MHVD to sites in the Sierra 
Nevada of California. The calculation of the traditional 
PDEs relies on the information contained in the GLO 
survey, namely the number of corners (n), the number of 
sectors (m), and the point-to-tree distances (r) in each 
sector (Table 1). In contrast, the MHVD requires pre-
dicting the mean Voronoi area (MVA) via a three-step 
process: (1) predict a tree’s crown radius (CR) from the 

TABLE 2. Site description for the six stands included in this study. Density and basal area are for trees ≥9.5 cm DBH. 

Site Latitude (W) Longitude (N) Elevation (m) Density (trees/ha) Basal area (m2/ha) Fir (%) Pine (%) Source 

PLUM 121°020 39°550 1158–1219 784 87 87 3 1 
YOSE 119°490 37°460 1774–1911 562 56 79 13 2 
TEAK 119°020 36°580 1880–2485 313 56 64 27 3 
META 115°590 31°370 2400–2500 254 23 0 100 4 
BRID 119°280 38°240 2500–2600 236 36 38 50 4 
GRAN 115°590 31°370 2400–2500 159 25 13 87 4 

Notes: Sites are PLUM, Plumas National Forest; YOSE, Yosemite National Park; TEAK, Teakettle Experimental Forest; 
META, the site in the Sierra de San Pedro Martir with soil derived from metamorphic parent material; BRID, Humboldt-Toiyabe 
National Forest near Bridgeport, California, USA; GRAN, the site in the Sierra de San Pedro Martir with soil derived from granitic 
parent material. Fir and pine refer to the percentage of the number of trees in either category in each 4-ha stand. 
Sources: 1, Levine et al. (2016); 2, Lutz et al. (2012); 3, North et al. (2007); 4, Fry et al. (2014). 
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FIG. 1. An example from Yosemite National Park (YOSE) of the mapped tree plots used in the analysis. (A) The spatial distri-
bution of trees in the mapped plot, (B) section corner sampling points (blue) and neighboring trees for a six-point sampling scheme, 
(C) and true Voronoi areas. [Color figure can be viewed at wileyonlinelibrary.com] 

allometric relationship between crown size and stem 
diameter; (2) calculate the mean neighborhood density 
(MND) correction factor; and (3) estimate a tree’s MVA  
from its CR scaled by the MND (Williams and Baker 
2011). The CR for treei was predicted from the diameter 
at breast height (DBH, at a height of 1.37 m) of treei 
according to the equation 

lnðCRÞ ¼ a þ b lnðDBHÞ (2) 

where a and b are species-specific regression parameters 
for CR (Table D1 in Baker 2014). At each corner, the 
MND was calculated as 

1
MNDj ¼ (3)P 2m rij 

i¼1 m 

where r is the distance from the sampling pointj to the 
nearest neighbor treei in m sectors (Williams and Baker 
2011). The MVA of treei at sampling pointj was then 
estimated as 

ln CR tree½� ð iÞMVA treeiÞ ¼ exp (4)ð a þ b 
MNDj 

where a and b are species-specific regression parameters 
for MVA (Table D1 in Baker 2014), MNDj from Eq. 3, 

http:wileyonlinelibrary.com
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and CR(treei) from Eq. 2. Note that we used DBH to 
estimate CR in accord with the equation in Baker 
(2014). However, an unpublished erratum (W. Baker, per-
sonal communication) corrected the CR predictor to 
diameter at stump height (DSH; 0.30 m). Thus we also 
calculated MHVD with DSH. See Appendix S2 for 
details. 

Bias and precision assessment 

We applied simulations to quantify the performance 
of the PDEs. Each test included 1000 realizations of ran-
domly placed sampling corners in each of the six 
mapped stands. Sample corner intensity spanned the 
range of GLO point pools considered by Williams and 
Baker (2011)—3, 6, 9, and 21—as well as the recom-
mended minimum intensity of 50 points (Kronenfeld 
2009, Hanberry et al. 2011) and a saturation intensity of 
1000 points. To minimize edge effects, the location of the 
random points was excluded from a buffer zone along 
the stand boundaries with the buffer width ranging from 
10 to 20 m depending on tree density. Less dense stands 
required a larger buffer to ensure the presence of a bear-
ing tree in each sector for every simulated point. 
The GLO sampling regime includes section corners 

with four bearing trees (one tree in each 90° quadrant) 
and quarter corners with two bearing trees (one tree in 
each 180° semicircle). Bearing trees are referred to as 
nearest neighbors (nn) for the purposes of density calcu-
lation. When calculating the PDEs, we treated all cor-
ners as either sections corners with four bearing trees 
(4 nn) or quarter corners with two bearing trees (2 nn). 
We did not apply the correction factors developed in 
Williams and Baker (2011) to allow the mixing of results 
from section corners and quarter corners. While the cor-
rection factors increase the number of trees available 
from the GLO data because both 4 nn and 2 nn corners 
can be included, the use of the weights has to our knowl-
edge only been vetted for the Cottam (Cottam and Cur-
tis 1956). Moreover, it is clear from both theory and 
practice that the number of neighbors measured greatly 
affects the estimate (Morisita 1957, Engeman et al. 
1994, Kronenfeld 2009). For example, Kronenfeld 
(2009) demonstrated for the Pollard that the bias in the 
estimated density diminishes as nn increases, ultimately 
approaching an asymptote near the true density as nn 
approaches 50. By excluding correction factors, our 
comparisons avoided a potential confounding factor. 
Although not appropriate for GLO data because it 

requires measuring the VA, we included the Delince 
PDE in the simulation because it constitutes the theoret-
ical underpinning of the MHVD approach. Its inclusion 
can help to deduce the source of any bias observed. To 
compute the Delince (Table 1), the nearest bearing tree 
to each point (1 nn) was selected and its true VA was cal-
culated from the mapped trees. 
Results from the 1000 realizations were summarized 

by the median as the measure of central tendency and 

the 95% CI as the measure of variation. Bias was defined 
by the relative error (RE) 

ksimRE ¼ (5)
ktrue 

where ksim is the median density from the 1000 realiza-
tions and ktrue is the true density of the mapped stand. 
RE < 1 implies underestimates; RE > 1 implies overesti-
mates. Precision was defined by the relative root mean 
square error (rRMSE) 

RMSEsimrRMSE ¼ (6)
ktrue 

where RMSEsim is the root mean square error of the 
1000 realizations in each simulation and ktrue is the true 
density of the mapped stand. Larger values of rRMSE 
imply less precision. 

MHVD deconstruction 

We evaluated the three steps needed to calculate the 
MHVD. For crown radius (CR, Eq. 2), we compared the 
regression fits described in Baker (2014) to equations 
estimated from Forest Health Monitoring (FHM) data 
collected as part of the Forest Inventory and Analysis Pro-
gram. This database included measured crown radii from 
monitoring plots in the mixed-conifer forest of the Sierra 
Nevada in California (available online).10 Predictions of 
CR were fit from the FHM data for all species present in 
the six stands (10 species total; n per species ranging from 
59 to 746). 
Williams and Baker (2011) used the mean neighbor-

hood density (MND, Eq. 3) to adjust the MVA prediction 
by the local density, with the assumption that a tree of a 
given diameter will have a larger MVA in a less dense 
stand and  a smaller  MVA in a more  crowded stand. To  
isolate the effect of the MND correction, we simulated a 
six-point section corner (4 nn) and a six-point quarter 
corner (2 nn) sampling scheme in each of the six mapped 
stands and reported the median MND and 95% CI (from 
1000 realizations) for the 2-nn and 4-nn sampling schemes. 
This six-point scheme is recommended by Williams and 
Baker (2011) as being sufficient for estimating density with 
a 22% relative mean absolute error (RMSE). We used the 
1000 simulated MND values to estimate the median and 
95% CI of the MVA for a representative tree (Eq. 4). For 
each stand, the representative tree was defined by the 
dominant species and the median DBH; MVA was fit 
using the equation parameters in Baker (2014). 
We tested the strength of the relationship between 

CR/MND and true VA by least-squares regression. We 
calculated the MVA regression parameters in Eq. 4 for 
the common species (>5% dominance) in each stand and 
compared them to the species-specific fits in Baker 

10 http://www.fia.fs.fed.us/tools-data/other_data/index.php 

http://www.fia.fs.fed.us/tools-data/other_data/index.php
http:crowdedstand.To
http:online).10
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(2014). Only section corners (4 nn) were considered for 
the MND values in this analysis to avoid potential con-
founding errors from calculating MND with two or four 
bearing trees. CR was estimated using parameters 
derived from the FHM data set (as above); MND was 
calculated for 21 regularly spaced section corners (4 nn). 
True VAs were calculated from mapped tree locations. 
Thus in this analysis we had large, well-distributed sam-
ples for both the CR and MVA regressions. 
We assessed the accuracy of the MVA regression equa-

tion by comparing the predicted VA of individual trees 
to the true VA. We used the tree maps to calculate the 
true VA of each tree. For each stand, a buffer ranging 
from 5 to 18 m from the stand boundaries was applied 
with the width set to ensure that trees included in the 
analysis had a neighbor on all sides. MND was derived 
from 21 regularly spaced section corners (4 nn, as 
above). Only section corners were considered in this 
analysis to avoid potential confounding errors from cal-
culating MND with two or four bearing trees. The MVA 
for trees was computed using the CR and MVA coeffi-
cients in Baker (2014); the recorded tree species and 
DBH; and the MND for the point nearest to each tree 
(Eq. 4). We also estimated the mean difference 
(VAdifference) between MVA and true VA, calculated as 

n X MVAi VAtrueiVAdifference ¼ (7)
n

i¼1 

where i refers to the individual tree and n is the total 
number of trees. We calculated the comparison for each 
stand with three different size classes of trees: trees 
≥9.5 cm DBH, trees >20 cm DBH, and trees >60 cm 
DBH. All data processing and analyses were conducted 
in R version 3.2.4 (R Development Core Team 2014); 
spatial metrics relied on functions in the spatstat pack-
age (Baddeley et al. 2015). 

RESULTS 

Tree spatial distribution in each stand 

Despite differences in geography, density, and compo-
sition, the overall spatial pattern was consistent among 
all six stands. Trees were significantly clumped at spatial 
scales relevant to the PDE calculation and showed inhi-
bition at larger scales due to the presence of gaps 
throughout the stand (Appendix S1: Fig. S1). The inho-
mogeneous Ripley’s L values exceeded the 95% CI for 
randomly spaced trees from 0 to 1 m at the minimum 
and 13–29 m at the maximum: an indication of an 
aggregated distribution (Appendix S1: Fig. S1). 

Bias and precision assessment 

Considering only the GLO-appropriate PDEs for a 
50-point sampling intensity, the least biased estimate of 

tree density in every stand was obtained with the Mori-
sita and the most biased was obtained with the MHVD 
(Table 3). The direction of the bias in the Morisita var-
ied with some underestimates and some overestimates. 
In contrast, the Cottam and Pollard consistently under-
estimated true density and the MHVD always overesti-
mated true density. In general, the 4 nn sampling had 
less bias than the 2-nn sampling. This difference was 
particularly pronounced in the MHVD. For the 2-nn 
MHVD, the median REs ranged from 2.04 to 3.58 
whereas, for the 4 nn MHVD, it ranged from 1.16 to 
1.59 (Table 3). The performance of the Delince PDE 
was exceptional (Table 3). The biases were small and 
non-directional with median REs ranging from 0.92 to 
1.14. The performance in regard to the bias of individual 
estimators documented for the 50-point sampling inten-
sity was consistent at other sampling intensities 
(Appendix S1: Tables S1–S9). 
The precision of the tree density estimates systemati-

cally increased with sampling intensity for all PDEs. Not 
only did the width of confidence interval shrink with 
increasing point density (Fig. 2; Appendix S1: Fig. S2 
for the Delince) but the rRMSE also declined systemati-
cally with increasing point density in every case 
(Appendix S1: Tables S1–S9). Moreover, the 4-nn sam-
pling scheme consistently produced more precise esti-
mates (i.e., lower rRMSE) than the 2 nn. 
Among the PDEs, the MHVD was the least precise 

for a given sampling scheme and intensity (Fig. 2, 
Table 3). The Morisita tended to produce less precise 
density estimates at sample intensities <50. The improve-
ment in precision with increasing sample intensity was 
steepest for the MHVD and Delince. For both PDEs, 
the rRMSE was an order of magnitude lower for the 
1000-point sample compared to the three-point sample 
(Appendix S1: Tables S1–S9). In the 50-point sampling 
simulations, the Delince obtained not only the least 
biased estimates of density but also the most precise 
(Table 3). The Morisita 4-nn estimator was the next best 
in terms of minimizing bias and maximizing precision. 

MHVD deconstruction 

Tree diameter proved to be a robust predictor of 
crown radius. Based on the coefficient of determination 
(r2), the fits of ln(CR) to ln(DBH) for conifer trees in the 
FHM data ranged from 0.43 for Pseudotsuga menziesii 
(PSME, n = 196) to 0.83 for Pinus monticola (PIMO, 
n = 59). The r2 values for the hardwoods were lower, 
ranging from 0.22 for Populus tremuloides (POTR, 
n = 65) to 0.44 for Quercus kelloggii (QUKE, n = 254). 
All fits showed a significantly increasing relationship of 
ln(CR) to ln(DBH) (P < 0.05; Appendix S1: Fig. S3). 
The slope and intercepts of the relationship of ln(CR) to 
ln(DBH) were generally similar to those listed in Baker 
(2014) for the same species. 
The 4 nn sampling scheme resulted in a significantly 

higher mean distance to nearest trees compared to the 
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TABLE 3. Relative performance of the density estimates for the 50-point simulations. 

Site PLUM YOSE TEAK META BRID GRAN 

True density (trees/ha) 784 562 313 254 236 159 
Cottam (four trees) 
2.5% CI 0.79 0.66 0.49 0.52 0.63 0.68 
Median 0.93 0.79 0.62 0.66 0.75 0.80 
97.5% CI 1.09 0.96 0.82 0.85 0.91 0.97 
rRMSE 0.10 0.22 0.38 0.36 0.26 0.22 

Cottam (two trees) 
2.5% CI 0.74 0.62 0.47 0.49 0.57 0.66 
Median 0.92 0.80 0.63 0.66 0.73 0.83 
97.5% CI 1.16 1.05 0.87 0.89 0.94 1.08 
rRMSE 0.13 0.22 0.37 0.36 0.29 0.20 

Pollard (four trees) 
2.5% CI 0.79 0.64 0.43 0.46 0.62 0.66 
Median 0.92 0.75 0.54 0.58 0.73 0.77 
97.5% CI 1.07 0.90 0.69 0.74 0.87 0.92 
rRMSE 0.11 0.26 0.46 0.43 0.29 0.25 

Pollard (two trees) 
2.5% CI 0.72 0.59 0.41 0.43 0.55 0.64 
Median 0.90 0.76 0.54 0.58 0.68 0.80 
97.5% CI 1.11 0.98 0.73 0.79 0.88 1.04 
rRMSE 0.15 0.25 0.46 0.44 0.33 0.22 

Morisita (four trees) 
2.5% CI 0.80 0.72 0.71 0.67 0.69 0.69 
Median 0.96 0.94 1.15 1.06 0.89 0.87 
97.5% CI 1.21 1.24 2.08 1.76 1.23 1.29 
rRMSE 0.11 0.14 0.40 0.30 0.17 0.20 

Morisita (two trees) 
2.5% CI 0.66 0.61 0.65 0.67 0.57 0.62 
Median 0.92 0.90 1.24 1.19 0.85 0.94 
97.5% CI 1.57 1.62 2.85 2.78 1.70 1.98 
rRMSE 0.25 0.31 0.78 0.67 0.38 0.37 

MHVD (four trees) 
2.5% CI 1.02 1.16 1.15 0.94 1.09 0.99 
Median 1.16 1.40 1.59 1.30 1.34 1.21 
97.5% CI 1.32 1.72 2.31 1.80 1.69 1.50 
rRMSE 0.18 0.16 0.14 0.38 0.37 0.25 

MHVD (two trees) 
2.5% CI 1.72 2.17 2.30 2.08 2.13 2.03 
Median 2.04 2.89 3.58 3.09 2.83 2.68 
97.5% CI 2.47 4.17 6.13 4.70 3.84 3.72 
rRMSE 1.06 1.07 1.02 2.25 1.89 1.75 

Delince (one tree) 
2.5% CI 0.83 0.79 0.77 0.72 0.71 0.73 
Median 0.99 0.99 1.14 1.02 0.92 0.96 
97.5% CI 1.21 1.27 1.85 1.59 1.21 1.41 
rRMSE 0.10 0.12 0.34 0.24 0.14 0.18 

Notes: Results are reported as relative values with the results from the 1000 realizations divided by the true density. rRMSE refers 
to the relative root mean square error. Boldface text indicates site estimates where the 95% CI of the simulation overlaps the true 
density. 

2 nn sampling (Fig. 3A, C). This difference translated site—the 2 nn sampling resulted in a higher MVA esti-
into a lower MND. When we applied the MND to the mate (Appendix S1: Fig. S4). 
estimation of the MVA of a representative tree, the 4 nn For the mapped trees in the six stands we tested, CR 
MND correction resulted in significantly higher estima- was a very weak predictor of VA (Fig. 4). Although the 
tions of MVA for the same tree relative to the 2 nn slope of the regression line was positive and often signifi-
MND (Fig. 3B, D). The results were replicated at every cant (i.e., P < 0.05), the fits were very poor. The 
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FIG. 2. Results of simulations testing the effect of sampling intensity (number of sampled points) on the Cottam, Pollard, Mori-
sita, and MHVD estimators at the YOSE and GRAN (developed from granitic material) sites. Bars show the median value of 1000 
realizations and error bars show the 95% confidence intervals. Simulation summaries can be found in Appendix S1: Tables S1–S9. 
[Color figure can be viewed at wileyonlinelibrary.com] 

coefficient of determination (r2) ranged from a minimum 
of 0.003 for Abies concolor (ABCO) at the GRAN site 
(n = 73) to a maximum 0.29 for Pinus jeffreyi (PIJE) at 
the META site (n = 773; Appendix S1: Table S10). 
The MVA calculated with the parameters provided in 

Baker (2014) consistently underestimated the true VA 
of the trees at all sites (Fig. 5; Appendix S1: Fig. S5). 
The difference increased with increasing tree size 
(Table 4). For example, the median VAdifference for all 
mapped trees (DBH ≥ 9.5 cm) in the six stands was 
21.2 m2; for large trees (DBH > 60 cm) the median 

difference was 36.7 m2. The underestimate of MVA 
relative to the true VA increased as tree density 
decreased (Table 4). 
Calculating MVA using DSH as opposed to DBH 

reduced the bias of the MHVD 4 nn estimator. How-
ever, both the MHVD 2 nn and 4 nn estimators overes-
timated stand density in all cases. Additionally, MVA 
consistently underestimated true VA, regardless of 
whether MVA was calculated with DSH or DBH. 
Results for relevant analyses using DSH in place of 
DBH are presented in Appendix S2. 

http:wileyonlinelibrary.com
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FIG. 3. Simulation results (1000 runs) of the mean neighborhood distance (A, C) when two witness trees or four witness trees are 
used for a six-point sampling scheme for the YOSE and GRAN sites, respectively. The discrepancy in mean neighborhood distance is 
reflected in the estimate of the Voronoi area of a single tree of the dominant species (B, D) of the median DBH in that plot using the 
method and equation parameters in Baker (2014). Results for other sites are shown in Appendix S1: Fig. S4. ABCO refers to Abies 
concolor (white fir); PIJE refers to Pinus jeffreyi (Jeffrey pine). The midline of the boxplot represents the median of the data, the upper 
and lower limits of the box represent the third and first quartile of the data, and the whiskers represent 1.59 the interquartile range 
from the third and first quartile. The points represent data outside 1.59 the interquartile range from the third and first quantile. 

DISCUSSION 

The mean harmonic Voronoi area (MHVD) as speci-
fied in Baker (2014) consistently provided the least accu-
rate estimate of tree density among the plotless density 
estimators (PDE) tested. In every scenario, the MHVD 
was biased toward overestimating tree density with 
lower precision than alternative metrics. Two factors 
contributed to this bias: (1) the difference in mean neigh-
borhood distance (MND) between 2 nn and 4 nn sam-
pling and (2) the persistent underestimate of the true 
Voronoi area (VA). 
Williams and Baker (2011) recognized that local tree 

density influences the allometric relationship between 
tree diameter and crown radius, specifically that for a 

given species and DBH, the crown width decreases with 
increasing tree density (Bragg 2001). They evaluated 
three different crown scaling factors and found that the 
MND was ultimately the best. Baker (2014) subse-
quently applied this MND to scale CR in the Sierra 
Nevada based on the recommendation of Williams and 
Baker (2011) and supported by local validation 
(Appendix D in Baker 2014). The well-known influence 
of the number of sectors in the CR scaling factor (e.g., 
Cottam and Curtis 1956) was clearly a concern; one of 
the alternative neighborhood density equations Williams 
and Baker (2011) tested explicitly included a correction 
for mean distances obtained with 2-nn vs. 4-nn sampling 
(the correction factor neighborhood density, CFND, 
Table 2 in Williams and Baker 2011). However, the PDE 
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FIG. 4. The relationship of true Voronoi area (VA) to crown radius (CR) for the dominant tree species at each of the six study 
sites. The crown radius was estimated using parameters for species-specific fits derived from Forest Health Monitoring measure-
ments in Sierra Nevada mixed-conifer plots (PIJE, n = 164; ABCO, n = 746). MND is the mean neighborhood distance (see 
Eq. 3). ABCO refers to Abies concolor (white fir); PIJE refers to Pinus jeffreyi (Jeffrey pine). 

that included the CFND (the correction factor geometric 
Voronoi estimator, CFGVD) was generally not as accu-
rate as the MHVD in their evaluation (Table 3 in Wil-
liams and Baker 2011). In contrast, in our simulations 
the lack of a correction factor for the number of bearing 
trees included in the calculation of MHVD almost dou-
bled (1.859), on average, the estimate of tree density in 
the 2 nn sampling compared to the 4 nn (Appendix S1: 
Tables S7 and S8). Why this flaw was not noted earlier 
may be due to two facts. Baker (2014) developed local 
MVA regressions as functions of CR and MND (Baker 
2014, Appendix D) but only used points with four bear-
ing trees. In addition, the performance of the MHVD in 
the Sierra Nevada was not compared to plot estimates of 
tree density as done in previous applications (e.g., Baker 
2012, Williams and Baker 2012). 

Independent of the MND, the MVA equations in 
Baker (2014) systematically underestimated true VA 
(Fig. 5, Table 4). In particular, the MVA (calculated 
using a MND based on 4 nn) reached a maximum area 
much lower than the true VA. For example, at YOSE, the 
median true VA was 18 m2 while the median MVA was 
only 8 m2, and 18% of the mapped trees had a true VA 
that exceeded the maximum MVA (Fig. 4). Similar results 
were obtained at the five other stands and the effect 
appeared to increase as density decreased (Appendix S1: 
Fig. S5). One explanation for the mismatch could be that 
samples included in Baker’s (2014) MVA regressions did 
not capture the full range of variation. 
We found a weak predictive ability of CR in our 

stands, with the r2 of true ln(VA)~ln(CR/MND) for con-
ifers ranging from 0.003 to 0.29 (Appendix S1: 
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FIG. 5. The relationship between the true VA and the estimated VA (i.e., MVA) in the YOSE and GRAN sites. Estimated VA 
was calculated using the species-specific equation parameters provided in Baker (2014) and a MND estimated from a grid of 21 
sampling points with four bearing trees at each point. Results for the other stands are shown in Appendix S1: Fig. S5. 

Table S10). In contrast, Baker (2014) found strong rela-
tionships between MVA and CR with r2 values ranging 
from 0.52 to 0.95 for these same conifer species. The 
weak predictive ability of CR in these mixed-conifer for-
ests may be due to the fact that tree spacing can some-
times be more dependent on edaphic factors (Meyer 
et al. 2007) or disturbance legacies than on competitive 
interactions. On drier microsites or nutrient-poor soils 
or in old canopy gaps, some trees grow in relative isola-
tion due to factors unrelated to competition or tree size. 
These circumstances occur across the semiarid Western 
U.S. forests in general (Larson and Churchill 2012) and 
specifically in the stands included in our analysis (e.g., 
Fig. 1; North et al. 2002, Fry et al. 2014). Only at our 
most dense site (PLUM, Table 2) where canopy 
approaches closure (canopy cover = 90%, Kayler et al. 
2005) from the effects of 100 yr of fire suppression might 
spacing be influenced by crown area. Interestingly the 

TABLE 4. The mean difference between the true VA and MVA 
(Eq. 7) for all trees ≥9.5 cm DBH, trees >20 cm DBH, and 
trees >60 cm DBH at each site. 

True VA MVA (m2) 

Site 
Trees ≥9.5 cm 

DBH 
Trees >20 cm 

DBH 
Trees >60 cm 

DBH 

PLUM 
YOSE 
TEAK 
META 
BRID 
GRAN 

6.82 
10.1 
15.6 
26.7 
33.8 
43.6 

6.02 
9.61 
16.4 
39.2 
33.7 
45.7 

6.87 
14.4 
28.3 
83.7 
45.1 
71.2 

Notes: Negative values indicate the extent to which the MVA 
underestimated the true VA. Sites are listed in order of decreas-
ing stand density with PLUM being the most dense and GRAN 
the least dense. 

least bias in the MHVD density estimate was observed 
at PLUM (RE = 1.16 for MHVD, 4 nn, 50 points, 
Table 3). Thus, it seems likely that the MHVD approach 
will overestimate tree density in the Sierra Nevada and 
in other forests of the arid Western United States with 
similar stand structure. 
Our critique of the MHVD does not extend to its 

underlying theory. Using the Voronoi area to measure 
the inclusion probability of the nearest tree in a PDE 
(Delince 1986) proved to be the best predictor of tree 
density in all simulations (Table 3; Appendix S1: 
Table S9). However, at the lower sampling intensities 
(i.e., <50 sampling points), the precision of the Delince 
PDE was low, resulting in large confidence intervals. 
This imprecision is not surprising given that the Delince 
PDE only considers the nearest tree to each point (1 nn) 
in its calculation (Table 1). The Delince PDE also had a 
tendency to underestimate the true tree density at the 
lower sampling intervals (Appendix S1: Fig. S2). Klein 
and Vilcko (2006) extend the VA-based PDE to include 
more than the nearest tree to each point in an effort to 
improve precision. Advances in tree mapping technology 
(e.g., laser hypsometers) make measuring the VA of trees 
in the field more efficient. Thus the VA-based PDEs are 
viable plotless methods for forest inventory. However, 
for GLO applications, the challenge of predicting VA 
with the available data severely limits its utility. 
Our assessment of the MHVD as a theoretically sound 

but technically flawed means to reconstruct historical 
forest density from GLO data was constrained by the 
availability of data and the specificity of our question. 
The spatial scale of our analysis was on the order of 
hectares whereas the GLO data span square kilometers. 
As often noted (e.g., Engeman et al. 1994, Kronenfeld 
and Wang 2007, Bouldin 2008, Hanberry et al. 2011), 
the non-random dispersion of trees at the local level and 
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differences in tree density at the regional level affects 
PDE performance. Thus the stand-level tests presented 
here probably do not capture the full range of variation 
in forest structure present in the landscape sampled by 
GLO survey points, although we attempted to account 
for this by testing six stands of widely varying densities 
across >8° of latitude. We also restricted our focus to 
PDE performance under ideal conditions without 
complications from sampling inconsistencies or surveyor 
biases (sensu Bourdo 1956). Ongoing research in 
the Sierra Nevada and Sierra de San Pedro Martir 
(C. Restaino and H. Safford, unpublished data) seeks to 
address these constraints by testing PDEs at the land-
scape scale while also quantifying the influence of survey 
data quality. 
The Morisita was consistently the least biased estima-

tor of tree density from GLO data across a gradient of 
forest conditions (Appendix S1: Tables S1–S8). This 
result supports previous research that found the Mori-
sita to be the best choice when bearing trees have an 
aggregated distribution. The Cottam (Bouldin 2008) and 
Pollard (Hanberry et al. 2011) tended to underestimate 
true density in these situations while the Morisita pro-
vided more accurate estimates. Note that we relied on 
the median as the measure of central tendency instead of 
the more commonly reported mean (e.g., Engeman et al. 
1994, Hanberry et al. 2011). Given the right skew in the 
distribution of the simulations due to the fact that the 
minimum density was constrained at 0 while the maxi-
mum was unconstrained (i.e., zero-truncation), the med-
ian was less than or equal to the mean. Thus our 
conclusions regarding overestimates are based on a more 
conservative measure of central tendency. However, we 
also report the mean density from the simulations to 
allow comparison with previous efforts (Appendix S1: 
Tables S1–S9). 
In our simulations, both the Morisita 4 nn and Mori-

sita 2 nn predictors were unbiased in estimating density 
at a range of sampling intensities. Although the Morisita 
4 nn was less biased and more precise than the 2 nn 
(e.g., Table 3), the Morisita 2 nn has the advantage of a 
larger potential sample intensity because both section 
and quarter corners can be included in the density esti-
mate. Moreover, the Morisita 4 nn appears to be sensi-
tive to local non-random dispersion (C. Cogbill, 
personal observation). The well-vetted performance of 
the Morisita 2 nn suggests it should be considered the 
current standard for GLO applications. 
Pre-settlement forest conditions derived from the 

GLO records for the Sierra Nevada (Baker 2014) differ 
substantially from results based on inventories con-
ducted before EuroAmerican influence and on recon-
structions from live and dead plant material (Taylor 
2004, North et al. 2007, Scholl and Taylor 2010, Col-
lins et al. 2011, 2015, Barth et al. 2015, Stephens et al. 
2015; Safford and Stevens 2017). Specifically, Baker 
(2014) rejected the prevailing hypothesis that the pre-
settlement Sierra Nevada mixed-conifer forests were 

mostly open, park-like landscapes with low tree densi-
ties maintained by low to moderate severity fires. For 
example, in the vicinity of Yosemite National Park in 
the central Sierra Nevada, Collins et al. (2011) reported 
an average tree density of 52 trees/ha for trees ≥15.2 cm 
DBH in a 1911 timber inventory. Working in the same 
area, Scholl and Taylor’s (2010) reconstruction of the 
1899 forest put tree density at 86 trees/ha for trees 
≥10 cm DBH. In the Yosemite Forest Dynamics Plot, a 
more mesic forest than Scholl and Taylor (2010), Barth 
et al. (2015) reconstructed forest density in 1900 to be 
between 62 and 122 trees/ha for trees ≥10 cm DBH. In 
contrast, the GLO estimate for the area including all of 
these direct density estimates (Table G1 in Baker 2014) 
was 212 trees/ha. The much greater tree densities 
obtained from the MHVD analysis of GLO data (Baker 
2012, 2014) have been noted for forests in Oregon (Hag-
mann et al. 2013, 2014) and California (Collins et al. 
2015, Stephens et al. 2015). Notably the magnitude of 
the differences, namely GLO densities two to five times 
larger than ones based on inventories or reconstruc-
tions, match the methodological bias detected in our 
analysis. 
The management implications of these contrasting 

perspectives of the pre-settlement forest are significant. 
Baker (2014) used GLO-derived tree densities to infer 
that extensive stand-replacing fire was a major compo-
nent in the natural disturbance regime of the Sierra 
Nevada mixed-conifer forests. This conclusion implies 
that ongoing efforts by forest managers to mitigate wild-
fire behavior (e.g., North et al. 2009, USFS 2011, 2013) 
are misguided. Subsequent papers have attempted to 
add support for this alternate interpretation about his-
torical forest and fire interactions (Odion et al. 2014, 
Baker 2015), which collectively promote management 
practices that foster denser forests susceptible to high-
severity fire. Although these authors posit other lines of 
evidence supporting this alternative perspective, the 
much higher estimates of tree density are the quantita-
tive linchpin of the thesis (Baker 2014). The propensity 
of the MHVD to significantly overestimate tree density 
challenges the validity of the argument. 
In this era of global change, historical conditions play 

an increasingly important role as we seek to inform the 
future by understanding the past (Safford et al. 2012). 
As forest conditions and disturbance impacts deviate 
from the range of natural variation (Safford and Stevens 
2017), effective intervention depends on our knowledge 
of forest dynamics and our ability to explain the pro-
cesses involved (Stephens et al. 2010). The GLO survey 
represents a spatially extensive window into the pre-set-
tlement forest of the American West that complements 
the detailed site-specific information obtained from his-
torical inventories and forest reconstructions. Given the 
paucity of data, there is a premium on methods that 
extract as much insight as possible. Innovation must be 
encouraged. At the same time, new methods must be 
independently validated, especially when they directly 
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impact management and policy. It is in this spirit of 
sound scientific practice that we present our findings. 
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