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Abstract 
Estimating baseline carbon stocks is a key step in designing forest carbon programs. While field 
inventories are resource-demanding, advances in predictive modeling are now providing globally 
coterminous datasets of carbon stocks at high spatial resolutions that may meet this data need. 
However, it remains unknown how well baseline carbon stock estimates derived from model data 
compare against conventional estimation approaches such as field inventories. Furthermore, it is 
unclear whether site-level management actions can be designed using predictive model data in 
place of field measurements. We examined these issues for the case of mangroves, which are among 
the most carbon dense ecosystems globally and are popular candidates for forest carbon programs. 
We compared baseline carbon stock estimates derived from predictive model outputs against 
estimates produced using the Intergovernmental Panel on Climate Change’s (IPCC) three-tier 
methodological guidelines. We found that the predictive model estimates out-performed the 
IPCC’s Tier 1 estimation approaches but were significantly different from estimates based on field 
inventories. Our findings help inform the use of predictive model data for designing mangrove 
forest policy and management actions. 

1. Introduction 

Forest carbon offset programs are controversial, 
partly due to the high levels of uncertainty associated 
with estimating carbon fluxes from land use change 
(Grassi et al 2008, Griscom et al 2009, Vanderklift 
et al 2019). The validity of these programs for mit-
igating climate change depends in part upon these 
estimates and it is therefore important for them to be 
accurate (Grassi et al 2017). One key step in accur-
ately estimating the climate benefits from these pro-
grams is the estimation of baseline carbon stocks, 
or the reference levels upon which potential project 
interventions are evaluated (Bento et al 2016, Gren 
and Zeleke 2016). Despite their importance, obtain-
ing accurate estimates of baseline carbon stocks can 
be a barrier for program design due to the costs 

of implementing statistically valid field inventories. 
There has consequently been longstanding interest in 
improving both the accuracy and precision of baseline 
carbon stock estimates at lower costs (Willcock et al 
2012, Langner et al 2014). 

The Intergovernmental Panel on Climate Change 
(IPCC) is the foremost authority on inventorying 
ecosystem carbon stocks. The IPCC provides a three-
tier system for categorizing the accuracy and uncer-
tainty of baseline carbon stock estimates (IPCC 
2003). Under the IPCC’s guidelines, the Tier 1 and 
Tier 2 approaches use global and regional default 
parameters, respectively. The Tier 3 approach uses 
‘higher-order methods,’ which may include models 
or field data from national forest inventories to meet 
country-specific conditions. Inventorying baseline 
carbon stocks under the Tier 3 approach provides 
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the highest data quality but is the most complex and 
resource-demanding (Kovacs et al 2011). 

To better understand global variation in forest 
carbon and potentially provide baseline carbon stock 
estimates under a Tier 3 approach, global maps of car-
bon stocks are increasingly being produced using pre-
dictive modeling. Modern classification techniques 
(e.g. machine learning algorithms), access to remotely 
sensed data, and larger compilations of empirical 
data have enabled these models to accurately pre-
dict trends in environmental variables from global to 
sub-regional scales (Saatchi et al 2011, Baccini et al 
2012, Ge et al 2014). The benefits of these models 
include wall-to-wall mappings of environmental vari-
ables, which can account for broad-scale variation 
in forest carbon stocks or land use change (Herold 
et al 2019). The shortcomings, on the other hand, 
include relatively coarse spatial resolutions as well 
as the risk of introducing biases when correlating 
remotely sensed metrics to field data. Despite their 
promise, it remains unclear i) whether the estimates 
are sufficiently accurate for designing forest carbon 
programs at local scales, and ii) how these global pre-
dictive models fit best within the IPCC’s three tiers 
of approaches for estimating carbon stocks (Hill et al 
2013, Langner et al 2014). 

Mangroves are one ecosystem for which accur-
ate estimates of baseline carbon stocks from pre-
dictive models would be highly valuable (Macreadie 
et al 2019). Mangroves provide many environmental 
and social benefits, including the stocking of large 
amounts of organic carbon (Gedan et al 2011, Donato 
et al 2011). As a consequence, mangrove-holding 
nations are interested in ‘blue carbon’ projects, or 
the financing of mangrove conservation and res-
toration through forest carbon programs (Ullman 
et al 2013, Macreadie et al 2017, Hamilton and Friess 
2018). However, quantifying baseline carbon stocks 
in mangroves is particularly resource demanding due 
to limited accessibility and the importance of the 
soil organic carbon pool. Numerous predictive mod-
els of mangrove carbon stocks have consequently 
emerged in recent years, and may potentially meet 
the demand for accurate estimates of baseline carbon 
stocks (Hutchison et al 2014, Jardine and Siikamäki 
2014, Sanderman et al 2018, Simard et al 2019). 
(Sanderman et al 2018, Simard et al 2019). 

Although a number of studies have compared pre-
dictive models of forest carbon stocks against empir-
ical data for pan-tropical forests, no study has done 
this for mangroves despite their explicit inclusion 
in the 2013 Supplement to the IPCC Guidelines for 
National Greenhouse Gas Inventories (IPCC 2014). 
The lack of such a study is a key gap in the literat-
ure as pan-tropical forest carbon maps are often inac-
curate for mangroves due to unique ecological condi-
tions. For example, tidal dynamics greatly influence 
remotely sensed imagery often used to produce these 
pan-tropical maps, potentially inducing high levels of 

uncertainty (Lagomasino et al 2019). Operationaliz-
ing predictive models of mangrove carbon stocks for 
forest carbon program design thus requires assessing 
the accuracy of these datasets as well as guidance on 
their use. 

The goal of this study was to (i) compare estim-
ates of baseline carbon stocks in mangroves derived 
from predictive model data against stock estimates 
derived through the IPCC’s methods, and (ii) assess 
the accuracy of the predictive model data estimates 
against statistically valid field inventories. To do so, we 
compared estimates of baseline carbon stocks built off 
predictive model data against the IPCC’s approaches 
for mangroves located along four coastlines of the 
globe. We compared the four estimates to gain insight 
into potential biases, shortcomings, and benefits of 
each of the approaches. While the results are directly 
relevant for the blue carbon community, the study 
also provides guidance on the role of predictive mod-
els in environmental decision-making. 

2. Methods 

2.1. Study sites 
We estimated ecosystem carbon stocks for mangroves 
along four coastlines of the world: (a) the northwest 
coast of the United Arab Emirates, (b) the Brazilian 
coast south of the Amazon river, and both (c) the 
western and (d) eastern coasts of peninsular Thailand 
(figure 1). The sites were selected to capture a range of 
mangrove climatic and geomorphological variation 
(table 1), including arid mangroves (UAE), sites heav-
ily influenced by fluvial transport of sediment (Brazil 
and eastern Thailand), and tidally-dominated estuar-
ies (western Thailand). Furthermore, only sites that 
used standardized methods and had field inventory 
data not included in the predictive model parameter-
ization were used. Each of the sites were sampled with 
the primary objective of estimating site-level carbon 
stocks, and each of the sampling regimes used proto-
cols that were designed specifically to meet the IPCC’s 
Tier 3 approach. Additional details of the sites and 
our selection criteria for inclusion are provided in the 
supplementary material. 

2.2. Estimation approaches 
We compared baseline carbon stock estimates at each 
site using four different approaches. It is worth not-
ing that there are errors and biases inherent to estim-
ates of baseline carbon stocks derived from both 
field inventories and predictive models, and object-
ive comparisons of the approaches are limited by the 
absence of ‘true’ values of extant carbon stocks (Hill 
et al 2019) . However, it is valid to assume that each 
of the approaches provide independent estimates of 
the ‘true’ values of site-level baseline carbon stocks, 
and thus their comparison is informative. We fol-
lowed each of the IPCC’s Tier 1, Tier 2, and Tier 
3 approaches for estimating baseline carbon stocks, 
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Figure 1. Location of the mangrove sites included in this study. The mangrove sites are located in Brazil, the United Arab 
Emirates, and Thailand. The three panels show: (A) the Brazilian plots located along the coast of Para, (B) the mangrove sites in 
the Arabian Gulf, and (C) the plots located in peninsular Thailand. 

Table 1. Key climatic and geomorphological characteristics of the sites. The mean annual total suspended matter and tidal amplitude 
values are calculated by extracting and averaging TSM and tidal amplitude data within a 50 km buffer of all plots, and averaging across 
those values. 

Annual Mean Mean Tidal 
Mangrove Precipitation Annual TSM Amplitude 

Site Latitude Longitude Type (mm) −3)(g m (cm) 

Coast of Para, Brazil −0.83 −46.56 Deltaic 2300 14.3 ± 0.4 144.6 ± 6.6 
Arabian Gulf, UAE 24.17 53.61 Lagoon <100 5.3 ± 0.2 28.0 ± 1.6 
Krabi River Estuary, Thailand 8.02 98.94 Estuarine 2040 2.4 ± 0.2 69.7 ± 1.8 
Pak Panang Mangrove, Thailand 8.44 100.18 Deltaic 2220 4.2 ± 0.3 17.8 ± 0.1 
Palian River Estuary, Thailand 7.38 99.59 Estuarine 2350 3.0 ± 0.2 83.4 ± 1.8 

which are defined in terms of increasing methodolo-
gical rigor. The Tier 1 and 2 approaches use global 
default parameters and country-level data on baseline 
carbon stocks, respectively. The Tier 3 approach uses 
empirical data that account for site-specific condi-
tions and are collected through statistically valid field 
inventories. In addition to the Tier 1, Tier 2 and Tier 
3 approaches, we also performed site-level pseudo-
inventories by extracting carbon stock data from the 
modeled datasets at each of our field plots. We then 
compared the plot-level and site-level estimates of 
baseline carbon stocks using each of the estimation 
approaches. 

2.3. Field inventories 
Field inventory data were collected using variations 
of the Kauffman and Donato protocols for sampling 
forest structure and carbon stocks in mangrove forests 
(Kauffman and Donato 2012). The protocols were 
designed to fit the IPCC’s Tier 3 approach for 
estimating baseline carbon stocks. We sampled the 

sites in Thailand and obtained plot level field invent-
ory data for the UAE and Brazilian sites from pub-
lished datasets that used the same protocols (Schile 
et al 2017, Kauffman et al 2018b). All field inventories 
were designed with the stated purpose of estimating 
site-level ecosystem carbon stocks. The boundaries of 
the sites under consideration were delineated using 
geographic information systems software. Transects 
consisting of five to six circular plots at 25 m inter-
vals were randomly located and placed perpendicular 
to the shoreline within each mangrove forest, allow-
ing for unbiased estimation of site-level ecosystem 
carbon stocks. Within each plot, all trees were iden-
tified to species and their stem diameters at breast 
height were recorded. Additionally, soil cores up to 
2 m depth were collected from the center of each plot 
with a Russian peat auger. 

Biomass carbon was estimated by converting 
diameter at breast height measurements to volume 
estimates using species-specific allometric equations 
when available. In the absence of species-specific 
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equations, a general allometric equation for man-
groves with species-specific wood densities was used 
(Komiyama et al 2008). Soil carbon was estimated 
by coring each plot, collecting 5 cm soil samples at 
five depth intervals (0–15, 15–30, 30–50, 50–100, and 
100–200 cm), and processing the samples for per-
cent organic carbon, bulk density, and soil organic 
carbon density. Minor variations in the laboratory 
analyses of soil carbon existed across the studies, 
but all methods used widely accepted techniques for 
deriving bulk density (drying until constant mass) 
and percent organic carbon (dry combustion with an 
elemental analyzer) (Robertson 1999). Soil organic 
carbon density was calculated as the product of per-
cent organic carbon and bulk density. Despite the 
coring to a maximum of 2 m depth, we only examined 
soil organic carbon stocks in the top meter of soil to 
match the predictive model data. The field inventory 
methods are described in full detail in the supple-
mentary information, as well as in the other publica-
tions associated with the published datasets (Bukoski 
et al 2017, Schile et al 2017, Kauffman et al 2018b, 
Elwin et al 2019). 

2.4. Pseudo-sampling using predictive model data 
We performed a pseudo-inventory of each site using 
the locations of the field inventory plots by substi-
tuting predictive model data for field data. We used 
two raster maps at 30 × 30 m spatial resolution 
to extract modeled estimates of aboveground bio-
mass and soil organic carbon to 1 m depth using the 
Simard et al and Sanderman et al datasets, respect-
ively (Sanderman et al 2018, Simard et al 2019). The 
Simard et al mangrove biomass data were produced 
by extracting mean canopy height from synthetic 
aperture radar data and converting the measurements 
to biomass estimates using allometric equations. The 
Sanderman et al dataset of soil organic carbon was 
produced using the random forest algorithm to pre-
dict soil organic carbon in mangroves as a function 
of globally coterminous covariates. We provide addi-
tional details of the predictive models in the supple-
mentary information. 

We used the plot-specific coordinates to extract 
the modeled estimates of aboveground biomass and 
soil organic carbon from each sampling plot. We 
excluded plots whose geographic coordinates either 
could not be confirmed or did not align with the 
extents of the modeled data. Aboveground biomass 
was converted to aboveground biomass carbon using 
the IPCC’s conversion factor of 45.1% dry-weight 
biomass to biomass carbon. Accurate estimates of 
belowground biomass are lacking due to the diffi-
culties of field sampling root biomass, and predictive 
models of belowground biomass in mangroves con-
sequently do not exist (Adame et al 2017). While we 
excluded belowground biomass from our statistical 
tests, we calculated rough estimates using a simple 
root-to-shoot factor for mangroves of 27.8% and a 

belowground dry-weight biomass to biomass carbon 
ratio of 39% for a more complete picture of ecosystem 
level carbon stocks (Donato et al 2011, Kauffman and 
Donato 2012). Others have recommended the adjust-
ment of belowground biomass based on salinity and 
stem density; however, these variables are absent for 
our plots and we did not apply this correction (Adame 
et al 2017). For those plots that were less than 1 m in 
soil depth, we adjusted the predictive model estimates 
of soil organic carbon to the actual soil depth of the 
plot given that the modeled soil organic carbon data 
are estimated at 1 m depth. 

2.5. Calculation of Tier 1 and Tier 2 estimates 
We calculated Tier 1 and Tier 2 estimates of ecosys-
tem carbon stocks using global and regional default 
factors, respectively. For the Tier 1 estimates, we used 
default parameters for mangroves specific to differ-
ent climatic zones from the IPCC Guidelines (IPCC 
2014). While the IPCC Guidelines were recently 
updated, the specific guidance for wetlands were not 
refined (Lovelock et al 2019). Losses from the soil 
organic carbon pool under shifting forest manage-
ment practices are assumed to be non-existent under 
the Tier 1 approach, and we therefore omitted the soil 
organic carbon pool from our Tier 1 estimates. The 
IPCC’s Tier 2 methods are analogous to Tier 1 meth-
ods but use country- or region-specific estimates of 
ecosystem carbon stocks to reduce uncertainty. For 
the Tier 2 estimates, we used ecosystem carbon stock 
estimates from published studies out of the same 
region. Specifically, we used a regional inventory 
from Southeast Asia, an inventory from mangroves 
in Northeastern Brazil, and two studies quantifying 
biomass and soil organic carbon stocks for mangroves 
from the Red Sea (Donato et al 2011, Abohassan et al 
2012, Almahasheer et al 2017, Kauffman et al 2018a). 
Additional details are provided in the supplementary 
information file. 

2.6. Statistical analyses 
We calculated mean baseline carbon stocks for all 
sites using each of the four approaches. For those 
approaches that allowed estimation of uncertainty, 
we also report the standard error of the mean. Nor-
mality in the field inventory and model-derived data 
were assessed using Shapiro-Wilk tests and quantile-
quantile plots. We tested for significant differences 
in baseline carbon stocks between the field invent-
ory and model-derived estimates. To account for spa-
tial autocorrelation within transects, biomass car-
bon and soil organic carbon from all plots within 
the same transect were averaged for both the field 
inventory and model-derived data prior to the stat-
istical tests. The statistical tests were performed 
with one-way analysis of variance for normally dis-
tributed data and non-parametric Kruskal-Wallis 
analysis of variance for non-normally distributed 
data. 
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Table 2. IPCC Tier 1 and Tier 2 estimates of baseline ecosystem carbon stocks for the mangroves of this study. The Tier 1 estimates use 
global default parameters provided in the Wetlands supplement to the IPCC Good Practice Guidelines for National Greenhouse Gas 
Inventories (IPCC 2014). The Tier 2 estimates use published parameters from the countries and regions of our mangrove sites. All 
carbon stock estimates are provided in mean Mg C ha−1, and standard errors of the mean are provided where available. Soil organic 
carbon is constrained to 1 m. 

IPCC Tier 1 IPCC Tier 2 

Site AGB BGB SOC AGB BGB SOC 
Coast of Para, Brazil a 86.6 42.4 — 69.7 ± 2.18 14.3 ± 0.6 133.9 ± 21.3 
Arabian Gulf, UAE b 33.8 16.6 — 6.7 26.4 42.5 ± 5.3 
Krabi River Estuary, Thailand c 86.6 42.4 — 88.5 ± 18.1 34.1 ± 6.6 382.0 ± 49.6 
Pak Panang Mangrove, Thailand c 86.6 42.4 — 88.5 ± 18.1 34.1 ± 6.6 382.0 ± 49.6 
Palian River Estuary, Thailand c 86.6 42.4 — 88.5 ± 18.1 34.1 ± 6.6 382.0 ± 49.6 
a(Kauffman et al 2018a) 
b(Abohassan et al 2012, Almahasheer et al 2017) 
c(Donato et al 2011) 

3. Results 

The estimates of baseline carbon stocks varied by both 
site and estimation approach. Figure 2 shows the eco-
system carbon stocks for the individual sites using 
each of the four estimation approaches. The Tier 1 
estimates do not incorporate soil organic carbon and 
therefore differed substantially from the other estim-
ation approaches at an ecosystem level. Given that 
the sites only fell within two of the IPCC’s climatic 
classes for mangroves, only two Tier 1 parameters 
were used (33.8 Mg C ha−1 for the UAE site, and 
86.6 Mg C ha−1 for all others). The Tier 2 estimates 
(regional defaults) both over- and under-estimated 
baseline ecosystem carbon stocks relative to the Tier 
3 field data (table 2). Visual comparison of baseline 
carbon stock estimates using the field inventory vs. 
predictive model data revealed significant biases, par-
ticularly for aboveground biomass carbon. 

Pooling the data across all sites, we did not find 
a significant difference in aboveground biomass car-
bon for the field inventory vs. predictive model data 
(Kruskal-Wallis Test, X2 = 2.19, p-value = 0.1). How-
ever, for the soil organic carbon data, we found a sig-
nificant difference between the field inventory and 
predictive model data when pooling across all sites 
(Kruskal-Wallis Test, X2 = 14.9, p-value = < 0.001). 
The results were variable for individual sites. Only 
one of the five sites showed a significant differnce in 
aboveground biomass carbon stock estimates whereas 
four of the five sites had significant differences in soil 
organic carbon estimates (table 3). 

4. Discussion 

Our results reveal substantial differences in baseline 
carbon stock estimates that arise from the estima-
tion approaches. The results suggest that estimat-
ing site-level baseline carbon stocks in mangroves 
using default factors is inaccurate and does not 
account for important regional and local variation. 
If we assume the field inventory data are the most 
accurate for estimating true carbon stocks (as is 

widely done), it is clear that the predictive model data 
better-approximate these estimates compared to the 
IPCC Tier 1 defaults and may outperform the Tier 2 
approach in certain cases. These results parallel sim-
ilar findings for predictive models of biomass in trop-
ical forests more generally and suggest that the wide-
spread availability of predictive models of biomass 
may obviate the IPCC’s default factors at global scales 
(Langner et al 2014). 

4.1. Results of the four approaches for estimating 
baseline carbon stocks in mangroves 
For the sites in which the Tier 2 estimates closely 
approximated the site geomorphology (i.e. neighbor-
ing sites rather than regional inventories; Brazil and 
the United Arab Emirates), the Tier 2 estimates based 
on field data better approximated site level values 
than estimates from predictive model data. However, 
the estimates derived from predictive model data bet-
ter approximated the field inventory estimates than 
the Tier 2 estimates for the sites in Thailand. These 
results suggest that while the predictive models are 
capable of accounting for regional scale variation in 
ecosystem carbon stocks, this ability begins to break 
down at local scales. For mangroves, these differences 
at sub-regional scales are likely a result of differing 
mangrove typologies, which may depend upon the 
particular hydrological, sedimentary, or climatic con-
ditions at a given site (Twilley et al 2018). While pre-
vious studies have provided country-level estimates 
of mangrove carbon stocks, a potentially promising 
and more ecologically-informed update would be to 
produce country-specific default mangrove carbon 
stocks by mangrove typology (e.g. lagoon vs. deltaic 
vs. estuarine sites) (Hamilton and Friess 2018, Rovai 
et al 2018). 

Despite the promise of predictive models for 
improving default estimates of carbon stocks, our 
statistical comparisons of field inventory vs predict-
ive model carbon stock estimates at the site level 
reveal significant differences. The findings emphas-
ize that even with the relatively fine spatial resolu-
tion of the predictive models (30 m), caution should 
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Figure 2. Two-panel plot summarizing the estimation of ecosystem carbon stocks for each of the five sites. Panel (a) compares the 
estimation approaches of Tier 1 (T1), Tier 2 (T2), Tier 3—model (T3 m), and Tier 4—field (T3 f) for the three key ecosystem 
carbon pools. Panel (b) shows Tier 3—model vs. Tier 3—field estimates of plot-level carbon stocks for the aboveground biomass 
and soil organic carbon pools. The SOC estimates in panel (a) are constrained to 1 m for the T2, T3 m and T3 f estimates. The 
Arabian Gulf plots are from the United Arab Emirates, the Coast of Para plots are from Brazil, and the Krabi River Estuary, Pak 
Panang Mangrove and Palian River Estuary are from Thailand. 

Table 3 | Results of statistical tests for differences in site-level carbon pool estimates using predictive model vs. field inventory data. 
The tests are performed for aboveground biomass carbon (AGC) and soil organic carbon (SOC) constrained to a maximum of 1 m 
depth. All values are in Mg C ha-1. All statistical tests are performed with the non-parametric Kruskal-Wallis analysis of variance given 
non-normality in the data. 

Field-based (Mg C ha-1) Model-based (Mg C ha-1) X2 P-value Significance 

AGC 
Arabian Gulf, UAE 7.29 ± 2.2 10.5 ± 5.2 0.16 0.7 NS 
Coast of Para, Brazil 147.4 ± 19.0 55.1 ± 11.8 6.63 0.01 ∗∗ 

Krabi River Estuary, Thailand 66.3 ± 5.3 58.3 ± 2.1 0.57 0.4 NS 
Pak Panang Mangrove, Thailand 67.9 ± 7.9 73.5 ± 2.7 1.28 0.3 NS 
Palian River Estuary, Thailand 100.5 ± 12.2 69.6 ± 3.2 1.86 0.2 NS 
SOC 
Arabian Gulf, UAE 89.0 ± 11.6 270.0 ± 28.6 8.08 0.004 ∗∗∗ 

Coast of Para, Brazil 163.8 ± 10.0 365.5 ± 29.4 9.00 0.003 ∗∗∗ 

Krabi River Estuary, Thailand 315.5 ± 27.8 268.4 ± 59.0 0.32 0.6 NS 
Pak Panang Mangrove, Thailand 113.1 ± 4.3 175.1 ± 4.4 14.29 <0.001 ∗∗∗ 

Palian River Estuary, Thailand 285.1 ± 9.1 357.7 ± 7.6 12.06 <0.001 ∗∗∗ 

Note: NS = not significant, ∗ = significant at α = 0.1, ∗∗ = significant at α = 0.05, and ∗∗∗ = significant at α = 0.01; degrees of 
freedom = 1 for all tests. 
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be taken in their use at site-level scales. These differ-
ences are particularly pronounced at the pixel level, 
confirming the warnings of model producers against 
use of products at local scales (panel b of figure 2). 
While we acknowledge that direct comparisons of 
the plot-level field inventory and predictive model 
estimates of carbon stocks are not valid due to their 
differing spatial footprints, we visualize the data to 
further emphasize this point. Visual inspection of 
plot-level carbon stock estimates against a one-to-one 
line (i.e. perfect alignment of stocks estimates from 
field inventory and predictive model data) indicates 
that the variation in field inventory aboveground bio-
mass at the plot-level was not captured by the predict-
ive models (figure 2). Estimates of aboveground bio-
mass from the predictive model data fell between < 1 
to 114.4 Mg C ha−1 across all sites whereas the estim-
ates from the field inventories varied from < 1 to 
490.3 Mg C ha−1. Although it is not possible to say 
for certain, the use of different allometric equations 
(regional-level equations based on height for the pre-
dictive model vs. species-specific based on diameter at 
breast height for the field inventories) likely contrib-
uted to the differences in plot-level estimates of bio-
mass. Other sources of uncertainty may have included 
geolocation errors, error propagation and differences 
in timing of measurements. 

4.2. Recommendations for the design of blue 
carbon projects 
In considering our results, we recommend the use 
of predictive model outputs for estimating site-level 
baseline carbon stocks over global defaults (Tier 1) 
and regional inventories (Tier 2). The predictive 
model data can provide large improvements in accur-
acy and are freely available for those with capacity 
in geographic information systems (GIS). Free and 
open source GIS software are sophisticated, well-
developed, and provide a readily accessible means to 
analyze the publicly available maps of mangrove car-
bon examined here. We further discuss the utility of 
GIS for designing blue carbon projects in the sup-
plementary information. However, our results also 
indicate that Tier 2 estimates may out-perform pre-
dictive model estimates when using field data from 
neighboring sites with similar geomorphological and 
climatic conditions (e.g. see panel (a) of figure 2 for 
the Arabian Gulf and Coast of Para). It is import-
ant for blue carbon projects to justify their use of one 
data type over the other and may be most appropri-
ate to provide both. Additionally, we advise caution 
in using predictive model data for decision-making 
at the within-site level despite their high spatial res-
olution. Methodological differences in producing the 
datasets may bias estimates of carbon stocks and may 
ultimately be ill-suited for interventions that are not 
uniform across space. 

A hybrid approach that uses the predictive model 
outputs for stratifying sampling regimes may hold 

promise in reducing uncertainty at lower costs. 
The aboveground biomass model is based on a 
remotely sensed measure of canopy height, which is 
an appropriate variable to stratify sampling regimes 
of mangrove biomass by. Should programs have 
capacity in GIS analyses on hand, significant cost 
reductions can be achieved by using predictive model 
data to inform stratified inventories (Tang et al 2018). 
Ultimately, a combination of modeled-derived data 
and field inventory data may provide the best com-
bination of cost-efficiency and accuracy in estimating 
baseline carbon stocks. 

It is important to note that the epistemic stance 
of this paper emerges primarily from the field of pre-
dictive modeling. While accurate estimates of car-
bon stocks are of clear importance for advancing 
valid forest carbon programs in mangroves, there are 
other critical barriers that emerge from disciplines 
such as the field of environmental justice (Schroeder 
and McDermott 2014). For example, equitable bene-
fit sharing, assent of local communities, and de-
/centralization of governance can be equal, if not lar-
ger, barriers to forest carbon programs (Lovell 2015, 
Friess et al 2016). Our aim here is not to argue for 
more complicated measurements of forest carbon in 
mangroves but rather situate the accuracy of pub-
licly available datasets that may meet this need. While 
we only note the importance of these additional bar-
riers to carbon forestry programs here, we provide 
additional discussion of them in the supplementary 
information. 

4.3. Considerations for future field-based vs. 
model-based approaches 
The uncertainty associated with not knowing the 
‘true’ value of ecosystem carbon stocks will per-
sist within forest carbon programs and is likely 
best addressed by a combination of field invent-
ory and model-based data. Given the absence of 
‘true’ values of mangrove carbon stocks at our sites, 
we cannot state that the predictive model data or 
field inventory data provide more accurate or more 
valuable estimates of baseline carbon stocks in man-
groves. Field inventories provide nuanced measure-
ments of environmental variables but are resource-
demanding to collect and require the extrapolation 
of measurements from plot to stand or site-level 
scales. Conversely, predictive models also provide dir-
ect estimates of forest metrics across broad regions 
but are limited in their ability to account for fine scale 
variation. While both have their strengths and limit-
ations, they are capable of providing complementary 
information. 

Numerous satellite missions with the primary 
objectives of estimating and monitoring ecosystem 
biomass will be launched from 2020–2030 (Herold 
et al 2019). These missions will be critical for meas-
uring changes in forest biomass over broad scales, 
but will also need corresponding field inventory data 
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to validate the measurements and calibrate the pre-
dictive models based upon them (Schepaschenko 
2019, Chave et al 2019). Although limited in num-
ber, networks of large permanent plots exist for 
other tropical forest types that will facilitate the use 
of space-based estimates of forest biomass. How-
ever, to the best of our knowledge, permanent 
field plots of mangrove forest structure and bio-
mass are largely absent. While the Kauffman and 
Donato protocols and the associated widespread col-
lection of mangrove forest structure data have greatly 
benefited the mangrove community, the next phase 
of mangrove forest biomass estimation and monit-
oring would be appropriate in aligning with space-
based missions capable of estimating ecosystem struc-
ture. 

5. Conclusion 

We tested the utility of predictive models to estim-
ate baseline carbon stocks in mangroves, which are 
among the most carbon dense ecosystems globally. 
Our results show that predictive models are capable of 
providing more accurate estimates of ecosystem car-
bon stocks at local levels than the IPCC’s Tier 1 default 
parameters. However, we also found that estimates 
of mangrove carbon stocks derived from predictive 
model data were significantly different from analogs 
based on comprehensive field inventories (IPCC Tier 
3 approach). We recommend the use of predictive 
models in designing national or regional forest policy 
and strategies but also recommend caution in using 
them at local scales. 
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