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ABSTRACT 

Changes to vegetation structure and composition in 

forests adapted to frequent fire have been well docu-

mented. However, little is known about changes to the 

spatial characteristics of vegetation in these forests. 

Specifically, patch sizes and detailed information link-

ing vegetation type to specific locations and growing 

conditions on the landscape are lacking. We used his-

torical and recent aerial imagery to characterize his-

torical vegetation patterns and assess contemporary 

change from those patterns. We created an orthorecti-

fied mosaic of aerial photographs from 1941 covering 

approximately 100,000 ha in the northern Sierra Ne-

vada. The historical imagery, along with contemporary 

aerial imagery from 2005, was segmented into 

homogenous vegetation patches and classified into four 

relative cover classes using random forests analysis. A 

generalized linear mixed model was used to compare 

topographic associations of dense forest cover on the 

historical and contemporary landscapes. The amount of 

dense forest cover increased from 30 to 43% from 1941 

to 2005, replacing moderate forest cover as the most 

dominant class. Concurrent with the increase in extent, 

the area-weighted mean patch size of dense forest cover 

increased tenfold, indicating greater continuity of dense 

forest cover and more homogenous vegetation patterns 

across the contemporary landscape. Historically, dense 

forest cover was rare on southwesterly aspects, but in 

the contemporary forest, it was common across a broad 

range of aspects. Despite the challenges of processing 

historical air photographs, the unique information they 

provide on landscape vegetation patterns makes them a 

valuable source of reference information for forests 

impacted by past management practices. 
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2012; Larson and others 2012; Lydersen and others 

2017). Landscape-level vegetation patterns are 

gaining increased attention due to greater under-

standing of their influence on ecosystem processes 

such as wildfire, hydrology, and wildlife diversity 

(Hessburg and others 2000; Collins and others 

2007; Boisramé and others 2016; Tingley and oth-

ers 2016). Historical forest conditions provide crit-

ical insight into understanding how intact 

disturbance regimes interacted with topographic 

and edaphic settings to shape vegetation patterns 

across landscapes. These historical conditions are 

also used to assess departure in contemporary for-

ests from the natural range of variability (Moore 

and others 1999; Churchill and others 2013; Hag-

mann and others 2013, 2014; Barth and others 

2015; Collins and others 2015; Stephens and others 

2015; Clyatt and others 2016). Data on historical 

forest conditions, in the form of both reconstruc-

tions and archived records, can provide detailed 

information for ranges of tree density, basal area, 

and species composition over large areas 

(> 10,000 ha), but they are limited in the amount 

of inference that can be made about landscape 

vegetation patterns because they lack comprehen-

sive spatial coverage. Specifically, many historical 

reconstructions are missing important landscape-

level spatial characteristics such as vegetation patch 

sizes and detailed information linking vegetation 

type to specific locations and growing conditions on 

the landscape (Dickinson 2014; Collins and others 

2015). 

Aerial photography provides an additional source 

of information on historical vegetation patterns. 

Historical aerial photographs are widely available in 

many locations, but they are underutilized due to 

constraints such as the cost and time required for 

processing (Morgan and others 2010; Morgan and 

Gergel 2013). Automated approaches to classifying 

vegetation in historical imagery are becoming more 

widely available (Eitzel and others 2016), leading 

to increased interest in using aerial photography to 

assess vegetation change and historical landscape 

patterns. Historical aerial photographs offer several 

advantages over other forms of historical or refer-

ence vegetation data. When processed into a con-

tinuous, orthorectified photograph mosaic, they 

comprehensively cover a large area and provide 

information relevant to large-scale disturbances 

such as wildfire and insect outbreaks, as well as 

habitat for wildlife species with large home ranges. 

While traditional plot-based field data are limited to 

specific locations and within-patch vegetation 

descriptions, photograph mosaics provide detailed 

information on vegetation patch sizes and extent 

(Airey Lauvaux and others 2016). Historical pho-

tograph mosaics also provide spatially explicit data 

across a range of vegetation conditions (for exam-

ple, montane chaparral, meadow), whereas many 

reconstructions tend to be focused on tree-domi-

nated portions of landscapes. Having complete 

coverage over an entire area avoids both bias in 

sampling location and the need to assume plot 

locations are representative of the nearby area. 

The extent and configuration of dense forest (for 

example, > 60% canopy cover) are of particular 

interest due to their conflicting attributes of pro-

viding habitat for wildlife species of concern while 

being prone to stand-replacing fire (Jones and 

others 2016). Historical timber survey data col-

lected over large areas suggest that forests adapted 

to frequent fire (for example, mean fire return 

interval of 11–16 years; Van de Water and Safford 

2011) were very open historically, on average (10– 

30% canopy cover) (Collins and others 2015; Ste-

phens and others 2015; Hagmann and others 

2017). This is difficult to reconcile with the con-

temporary habitat requirements of some species, 

such as moderate-to-large patches (> 100 ha) of 

dense tree canopy cover for nesting and roosting 

(Tempel and others 2015). Large patches of dense 

forests are vulnerable to stand-replacing fire, and at 

current rates of burning, their persistence into the 

future is uncertain (Stephens and others 2016). In 

addition, these patches may be more susceptible to 

drought-related tree mortality (Bradford and Bell 

2017; Young and others 2017). One explanation for 

how forests that were generally open also provided 

habitat for dense forest associates is that historical 

landscapes had much greater heterogeneity. There 

is some evidence indicating that historical forest 

landscapes included openings and areas of low ca-

nopy density interspersed with patches of denser 

tree cover (Hessburg and others 2007; Brown and 

others 2008). It has been hypothesized that this 

configuration allowed for greater overall resilience 

by limiting tree crown and patch connectivity 

across the landscape (Hessburg and others 2005; 

Kennedy and Wimberly 2009; Hessburg and others 

2015). 

It is generally accepted that historical forests had 

patchy spatial structure (Show and Kotok, 1924; 

Sánchez Meador and others 2009). However, the 

specific processes that drove this patchiness are not 

well known. Current restoration guidelines suggest 

that patches of dense forest be aligned with 

topography, with denser forest patches being re-

tained on north facing slopes and in canyon bot-

toms (North and others 2009). This advice has been 

based on contemporary reference information (for 
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example, Lydersen and North 2012) and recon-

structions of historical forest structure (Beaty and 

Taylor 2001, 2008). However, reconstructions in 

some areas suggest that under an intact disturbance 

regime variation in forest structure was not 

strongly associated with topographic or productiv-

ity gradients, but the influence of these gradients 

became more pronounced following fire exclusion 

(Abella and others 2015; Johnston and others 

2016). Clearly, more information is needed on the 

historical extent and drivers of dense forest across 

frequent-fire landscapes. 

In this study, we used historical aerial pho-

tographs across a large landscape (100,000 ha) to 

characterize historical vegetation patterns and as-

sess contemporary change from those patterns. Our 

goal was to use this spatially comprehensive 

information to fill gaps in the current knowledge 

on variability in historical versus contemporary 

landscapes. The historical photographs were taken 

in 1941. Although 1941 certainly does not capture 

an unperturbed forest condition, it does predate 

heavily mechanized fire suppression and timber 

harvesting in our study area. Our objectives were 

to (1) quantify patch size and extent of vegetation 

types, (2) determine the extent to which topo-

graphic factors are associated with the distribution 

of dense forest cover, and (3) compare the patterns 

of dense forest cover observed in 1941 to contem-

porary vegetation patterns. 

METHODS 

Study Area 

The study area is located in Plumas National Forest 

in the northern Sierra Nevada (Figure 1A). The 

area for which historical and contemporary images 

was obtained is approximately 150,000 ha in size, 

but we limited our analysis to Forest Service land, 

which totaled 100,526 ha (Figure 1B). Contempo-

rary dominant vegetation alliances within the 

analysis area include mixed conifer—Fir (30%), 

Douglas-fir—pine (19%), eastside pine (15%), 

mixed conifer—pine (12%), and Big Sagebrush 

(5%) (Forest Service Region 5 2000–2014 Existing 

Vegetation data). Forests in the area are associated 

with a historically frequent, mainly low-severity 

fire regime (Moody and others 2006). Burning was 

relatively uncommon from 1941 to 2005 with re-

corded fires affecting 12% of the total analysis area 

(The California Department of Forestry and Fire 

Protection’s Fire and Resource Assessment Pro-

gram). Fires documented prior to 1941 were more 

uncommon, affecting 6% of the total analysis area 

(Figure 1C). Archived records with the Heritage 

Resources staff indicated that widespread timber 

harvesting had not occurred in this area prior to 

1941 (pers. comm., D. Elliot, Plumas National 

Forest 2016). This is corroborated by the lack of an 

extensive road network in the 1941 aerial pho-

tographs. 

1941 Image Processing 

Black and white aerial photographs taken in 1941 

over portions of Lassen, Plumas, Shasta, and Te-

hama counties at a photoscale of 1:20,000 were 

processed and used for vegetation analysis (Fig-

ure 2). Aerial photonegatives for 238 photographs 

covering the 150,000 ha study area were digitized 

by a private contractor at a resolution of 600 dots 

per inch. Along with the photographs, we obtained 

a copy of a hand drawn map from 1941 showing 

the approximate locations of the photographs 

across Plumas National Forest. Photographs within 

our study area were collected between 30 

September and 10 November 1941. Photographs 

were collected midday, ranging from 10:55 to 

14:10, when shadowing was less apparent. 

An orthorectified photograph mosaic was gen-

erated using Historical Airphoto Processing version 

2.1 and Geomatica 2014 (PCI Geomatics 2015, 

2014). Orthorectification improves the horizontal 

accuracy of aerial imagery by adjusting for image 

perspective and terrain distortions so that each 

pixel appears as it would if collected from directly 

overhead. National Agriculture Imagery Program 

(NAIP) aerial imagery (available at: http://www. 

atlas.ca.gov/download.html#/casil/imageryBaseMa 

psLandCover/imagery/naip) collected over the 

study area in 2005 was used as a reference (already 

orthorectified) image along with a 10-m digital 

elevation model (data available from the U.S. 

Geological Survey: https://viewer.nationalmap. 

gov/basic/). To achieve a horizontal accuracy of 

less than 10 m, six iterative stages of coarse align-

ment were run, followed by three stages of fine 

alignment. These alignment runs generate and re-

fine ground control points (GCPs) and tie points 

(TPs) that link the historical imagery to the refer-

ence image and match points within overlap areas 

of adjacent photographs, respectively. In between 

runs, existing GCPs and TPs were manually 

examined for accuracy and adjusted if necessary, 

and new points were added linking clearly identi-

fiable features on the landscape such as rocky 

outcrops. The final model had 5632 GCPs with 

root-mean-square error of 7.89 m and 1887 TPs 

with a root-mean-square error of 1.5 m. Pho-

http://www.atlas.ca.gov/download.html%23/casil/imageryBaseMapsLandCover/imagery/naip
http://www.atlas.ca.gov/download.html%23/casil/imageryBaseMapsLandCover/imagery/naip
http://www.atlas.ca.gov/download.html%23/casil/imageryBaseMapsLandCover/imagery/naip
https://viewer.nationalmap.gov/basic/
https://viewer.nationalmap.gov/basic/
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Figure 1. Location of study area within California (A), US Forest Service land within the study area (B), and extent and 

location of mapped fires within the study area (C). 

tograph mosaicking was completed in OrthoEngine 

(part of the Geomatica software suite) using the 

neighborhood color balance adjustment and the 

minimum relative difference method for generat-

ing the cut-lines where adjacent photographs were 

joined. Cut-lines were further adjusted manually to 

eliminate areas where photograph edges were vis-

ible. The resulting photograph mosaic had a reso-

lution of 0.847 m. 

A radiometric correction was then applied to the 

photograph mosaic to compensate for expected 

differences in illumination due to the effect of as-

pect and slope on reflectance, using Teillet’s C 

correction (Teillet and others 1982). Although this 

method does not account for tree shadows that 

may vary with topographic conditions and canopy 

complexity (Kane and others 2008), corrections 

that account for tree shadows work best when ca-

nopy cover is greater than 50%, but have high 

rates of error for forests with lower canopy cover 

(Gu and Gillespie 1998). Visual inspection of the 

historical photograph mosaic showed substantial 

areas with little to no canopy cover and a preva-

lence of forested areas with the ground clearly 

visible between trees. We therefore deemed a cor-

rection method based on terrain reflectance, which 

accounts only for the geometry of the land relative 

to the angle of the sun, rather than canopy re-

flectance, which also accounts for variation in 

shadowing due to forest canopy complexity, to be 

more appropriate for our study area. The solar ze-

nith (angle of the sun relative to directly overhead) 

and solar azimuth (direction of sun) were calcu-

lated based on the time and date for each flight line. 

However, because a color balance adjustment was 

used during mosaicking of individual photographs, 

the average values were used across the landscape 

rather than using individual photograph values. 

Average solar zenith was 51.3 (range 44.2–64.4) 

and average solar azimuth was 190.0 (range 161.2– 

224.8). Teillet’s C correction is calculated as 

ð1Þ 

where Ln and L are the corrected and uncorrected 

illumination values, i is the incidence angle, h is the 
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Figure 2. Overview of image processing and analysis steps. NAIP is the National Agriculture Imagery Program. 

solar zenith angle, and C is a correction constant 

unique to the study area (see equations 3 and 4). 

The incidence angle is calculated as 

cos i ¼ cos h cos a þ sin h sin a cos /; ð2Þ 

where a is the terrain slope in degrees, and / is the 
terrain azimuth relative to the sun. C is calculated 

from the linear relationship derived from the inci-

dence angle, i, and the uncorrected illumination 

value, L, of pixels within the study area. 

L ¼ b0 þ b1 cos i ð3Þ 

ð4Þ 

1941 Image Segmentation and 
Classification 

After radiometric correction, the 1941 photograph 

mosaic was segmented into vegetation patches 

using the multiresolution segmentation algorithm 

in eCognition Developer version 9 (Trimble 2016). 

Multiresolution segmentation consecutively com-

bines adjacent pixels and relies on manual selection 

of three parameters that affect the size and shape of 

the resulting segments, or image objects. The scale 

parameter controls the amount of heterogeneity 

(for example, variation in pixel shade) allowed 

within segments and directly affects segment size. 

The shape parameter weights the influence of 

spectral versus shape heterogeneity on the scale 

parameter, with lower values giving greater weight 

to the spectral imagery (range 0–0.9). The com-

pactness parameter influences the smoothness of 

the resulting segments, with lower values leading 

to smoother edges. The compactness parameter 

modifies the shape parameter, and therefore has 

little effect when the shape parameter is low. For 

this study, a scale setting of 175, a shape setting of 

0.2, and compactness of 0.5 were used. 

After segmentation, the resulting polygons were 

smoothed in ArcMap, and texture and brightness 

variables were extracted in eCognition Developer 

for the vegetation segments. Variables included 

mean brightness, standard deviation, median, 25th 

and 75th percentiles, minimum, maximum and 

skewness of the segment pixels, and texture after 

Haralick variables based on all directions including 

GLCM homogeneity, contrast, dissimilarity, en-

tropy, angular second moment, mean, standard 

deviation, and correlation (Haralick and Shan-

mugam 1973). 

Vegetation classification was based on a set of 

randomly chosen, manually classified training 

segments. A training sample of 250 segments was 
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chosen from segments that fell entirely within 

Forest Service land, thereby excluding urban and 

agricultural areas on the landscape. Segments for 

the training sample were selected randomly, using 

the create random points tool in ArcMap with a 

minimum distance between points of 500 m. Seg-

ments containing these points were then examined 

visually and manually assigned into four classes of 

relative forest cover: sparse/open, low, moderate, 

or dense (Figure 3). This classification was per-

formed over a short period of time by one person to 

maximize consistency in photointerpretation. 

We chose to use four vegetation classes because 

it would not be possible to assign an accurate and 

repeatable value of canopy cover to the aerial 

images. Aerial photographs have increasing distor-

tion approaching the edge of the photograph, rel-

ative to the center, particularly with smaller focal 

lens length (wider angle) (Fensham and Fairfax 

2007). This results in trees near the edge of the 

image appearing larger due to the greater view 

from the side. As photoscale declines, there may be 

overestimation of woody cover. For example, 

Fensham and Fairfax (2007) found that tree crown 

cover predicted from photographs taken at a 

1:80,000 photoscale was 71–91% of the value 

estimated using photographs taken at a 1:25,000 

scale. In addition, in black and white photographs, 

it is very difficult to distinguish between tree 

crowns and shadows, and depending on the time of 

photoacquisition, the size of the shadow will vary 

making it difficult to compare canopy cover esti-

mates between time points or across an area with 

multiple acquisitions (Platt and Schoennagel 2009). 

Although we were unable to quantify canopy 

cover, we refer to the vegetation classes used as 

forest cover classes (for example, dense forest cov-

er). We cannot assign a value of canopy cover but 

the classes are relative to one another. We also 

were not able to distinguish between vegetation 

types with very low levels of forest cover (rocky 

areas, meadows). 

After classification of the training sample, the 

remaining segments in the analysis area were 

classified into the four forest cover classes with a 

predictive random forests analysis (RFA) model 

using brightness and texture variables, along with 

UTM coordinates of each segment centroid. Seg-

ments that fell within water bodies were excluded 

from the analysis. RFA was performed using the 

randomForest package in R version 3.03, using a 

separate model and training dataset for each time 

period. RFA involves constructing numerous indi-

vidual regression or classification trees using a 

randomly selected subset of predictor variables in 

each tree. Our analysis used 500 individual classi-

fication trees and four randomly selected variables 

per tree. Because class sizes were uneven, a ran-

dom subset of the training data was selected to 

build each classification tree, using an equal num-

ber of training samples in each class. The classifi-

cation error rate was assessed using the out of bag 

error estimates for the RFA model. We also assessed 

the classification error rate using a second, inde-

pendent set of manually classified segments 

(Table S1). 

2005 Image Segmentation and 
Classification 

The 2005 NAIP imagery that was used as the ref-

erence image during orthorectification of the 1941 

aerial photographs was also used to assess vegeta-

tion change at the study site. The 2005 NAIP 

acquisition was made on film at a photoscale of 

1:40,000 and had a resolution of 1 m. Note that the 

photoscale is slightly smaller than the that of the 

1941 aerial imagery (1:20,000), which could lead to 

slight overestimation of canopy cover in 2005 rel-

ative to 1941 (Fensham and Fairfax 2007). How-

ever, this likely had minimal impact within our 

coarse classification scheme. 

Imagery from 2005 rather than more recent 

imagery was used because we were interested in 

vegetation change prior to several large wildfires 

that occurred in the study area in 2006–2007, 

which burned 25% of the analysis area. The 2005 

image was converted from color to black and white 

by averaging the red, green, and blue color bands 

for each pixel across the study area. A radiometric 

correction similar to that used on the 1941 imagery 

was not done as the NAIP imagery receives cor-

rection prior to distribution (see metadata for de-

tails: https://gis.apfo.usda.gov/NAIPMetadata/ 

historic_naip/n_3912002_nw_10_1_20050814.txt). 

We performed a segmentation on the 2005 refer-

ence imagery analogous to that used on the 1941 

imagery, using a scale setting of 175, a shape setting 

of 0.2, and compactness of 0.5. 

A classification scheme analogous to that used 

for the 1941 photograph mosaic was also used for 

the 2005 image. A separate set of random points 

was used to select training samples in the historical 

and reference imagery. The segments in the train-

ing sample for the 2005 image were manually 

classified by the same person as the 1941 imagery 

to minimize differences in class assignment be-

tween time periods. After segments in the training 

sample were assigned among the four forest cover 

classes, the remaining vegetation segments from 

https://gis.apfo.usda.gov/NAIPMetadata/historic_naip/n_3912002_nw_10_1_20050814.txt
https://gis.apfo.usda.gov/NAIPMetadata/historic_naip/n_3912002_nw_10_1_20050814.txt
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Figure 3. Example training segments for each forest cover class in 1941 and 2005. The white lines are the segment 

perimeters. All segments are presented at the same scale shown by the scale bar in the upper right corner, and with north 

oriented up. 

the 2005 imagery were classified using the same 

RFA method as was used for the 1941 vegetation 

segments. Confidence intervals for estimates of 

proportional area in each forest cover class were 

constructed for both classified maps (1941, 2005) 

using the method described in Olofsson and others 

classes to estimate a standard error for each class 

and then a 95% confidence interval. 

Vegetation Analysis 

Final vegetation patches for the two time periods

were created by dissolving adjacent vegetation 

segments that fell into the same forest cover clas-

sification in ArcMap, and the total areal extent of 

(2014). This method uses the error matrix devel-

oped by comparing the classification from the 

training sample (250 segments) to the mapped 
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each class was calculated in both 1941 and 2005. 

An area-weighted mean (AM) of patch size was 

calculated for these final patches. The general 

equation for an area-weighted mean is 
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where xij is the value of patch j within class i for the 

variable of interest and aij is the area of patch j 

within class i. For area-weighted mean patch size 

xij = aij. An area-weighted mean gives greater 

importance to larger patches and better reflects the 

typical conditions within a given patch type, since a 

greater proportion of the area will fall within larger 

patches. 

A generalized linear mixed model was used to 

assess the influence of topographic factors and 

water balance on dense forest cover in 1941 and 

2005 using Proc Glimmix in SAS version 9.3 (Ta-

ble 1). We chose to focus on dense cover because it 

was of ecological interest and had the lowest clas-

sification error rate. Topographic variables were 

derived from a 10 m digital elevation model (data 

available from the US Geological Survey: https:// 

viewer.nationalmap.gov/basic/) in ArcMap. Topo-

graphic position index (TPI) was calculated using 

the CorridorDesigner Toolbox (Majka and others 

2007). Topographic relative moisture index was 

calculated from TPI, aspect, slope, and curvature 

(Parker 1982). Aspect was transformed using a 

cosine function, with 45� set to the maximum va-

lue of 2 (Table 1). Water balance variables included 

actual evapotranspiration (AET) and annual cli-

matic water deficit. These variables were obtained 

as 270 m raster files from the historical version of 

the California Basin Characterization Model, cal-

culated using 30-year climate normals (1981– 

2010), updated in 2014 (Flint and others 2013). 

The water balance variables were resampled from 

270 to 10 m using bilinear interpolation to match 

the scale of the other covariates. 

Topographic variables and forest cover class at 

the two time points were extracted for a 250 m grid 

of points covering the analysis area, using bilinear 

interpolation for continuous variables. This grid 

size was initially chosen to allow for several points 

within vegetation patches, but the sample size was 

prohibitively large so only every 30th point was 

included in the analysis. A spatial power covariance 

matrix was included in the model to account for 

spatial autocorrelation between points. Forest 

cover class was converted to a binary variable 

representing dense forest cover or non-dense forest 

cover, including the sparse, low, and moderate 
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forest cover classes. Covariance between variables 

was assessed using Pearson correlation coefficients, 

and all variables with |r| > 0.5 were removed prior 

to model selection. TRMI was removed because it 

was correlated with aspect (r = 0.62), and elevation 

was removed because it was correlated with AET 

(r = - 0.53). All other variables had Pearson cor-

relation coefficients with absolute values below 0.5 

and were retained. We initially included the 

remaining set of topographic variables, time period 

(1941 or 2005), and all interaction terms with time 

period. Including interaction terms with time per-

iod enabled identification of topographic variables 

that differed in their relationship with dense forest 

cover in 1941 versus 2005. A stepwise model 

selection process was used where the least signifi-

cant variable was removed in each iteration, unless 

its interaction with time period was significant, 

until the final model included only significant 

terms and lower order terms for variables that had 

significant interactions. To assess model accuracy, 

we calculated the correct classification rate from 

the predicted probabilities for the points included in 

the model selection and for a second, independent 

set of points from the same 250 m grid. 

RESULTS 

Classification of forest cover classes using the RFA 

algorithm had an overall out of bag error rate of 

31.6% for the 1941 vegetation segments, and 

35.2% for the 2005 vegetation segments. Error 

rates were similar when comparing class predic-

tions to classes assigned manually for an indepen-

dent set of vegetation segments (Tables S1 and S2). 

Misclassifications tended to occur between adjacent 

(more similar) classes (Tables 2, 3, S1, and S2). For 

example, dense forest was mainly misclassified as 

moderate, while moderate was misclassified as both 

dense and low cover forest. Dense forest had the 

lowest classification error rate (omission error) in 

both time points, whereas moderate and low had 

the highest error rates. 

In 1941, the moderate forest cover class was the 

most abundant across the study area (42%), fol-

lowed by dense cover (30%, Figure 4). The relative 

abundance of these two classes was reversed in 

2005; dense forest cover was 43% and moderate 

forest cover was 32% of the study area. There was 

no overlap between 95% confidence intervals for 

the dense forest class between time periods, but 

there was overlap for the moderate class (Figure 4). 

The proportion of the landscape in low and sparse 

forest cover showed less change over time, 

accounting for just 29% of the area in 1941 and 

25% of the area in 2005 (Figure 4). Confidence 

intervals overlapped between time periods for both 

classes. Although the overall proportions among 

forest cover classes across the entire landscape did 

not shift dramatically between 1941 and 2005, 

their location and spatial pattern changed consid-

erably (Figure 5). The connectivity of vegetation 

classes, as captured by the area-weighted mean 

patch size, increased tenfold for the dense forest 

cover class, from 460 to 4760 ha (Figure 6). Sparse 

forest cover also increased its patch size, more than 

doubling from 420 to 960 ha. In contrast, moderate 

forest became more fragmented, with weighted 

mean patch size decreasing from 1620 to 650 ha. 

Similar to the non-overlapping confidence 

intervals for the dense cover class, our mixed model 

results indicated a significant increase in dense 

forest cover from 1941 to 2005. The final model for 

predicting the location of dense forest cover on the 

landscape included slope, time period, and aspect 

(Table 4). The correct classification rate was 74.6% 

for the points used in building the model, and 

89.5% for a second set of points that were not in-

cluded in model selection. Aspect was the only 

variable that had a significant interaction with time 

Table 2. Confusion Matrix for Random Forest Classification of Vegetation Segments in 1941 into Four 
Relative Forest Cover Classes 

Sparse Low Moderate Dense Total Omission error 

Sparse 17 3 2 0 22 22.7% 

Low 4 22 6 0 32 31.3% 

Moderate 0 22 86 30 138 37.7% 

Dense 0 0 12 46 58 20.7% 

Total 21 47 106 76 250 

Commission error 19.0% 53.2% 18.9% 39.5% 31.6%; j = 0.524 

Rows show the actual (manual) classification, and columns show the predicted classification. The overall classification error rate and the kappa statistic are shown in the bottom 
right corner. 
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Table 3. Confusion Matrix for Random Forest Classification of Vegetation Segments in 2005 into Four 
Relative Forest Cover Classes 

Sparse Low Moderate Dense Total Omission error 

Sparse 20 8 1 1 30 33.3% 

Low 4 13 6 1 24 45.8% 

Moderate 1 13 51 23 88 42.0% 

Dense 1 2 27 78 108 27.8% 

Total 26 36 85 103 250 

Commission error 23.1% 63.9% 40.0% 24.3% 35.2%; j = 0.472 

Rows show the actual (manual) classification, and columns show the predicted classification. The overall classification error rate and the kappa statistic are shown in the bottom 
right corner. 

Figure 4. Proportion of Forest Service land within the 

study area in each forest cover class in 1941 and 2005. 

Error bars show the 95% confidence intervals, which 

were derived from the error matrices following the 

method described by Olofsson and others (2014). 

period, indicating a difference in pattern in 1941 

and 2005. Across both time periods, transformed 

aspect had a positive relationship with dense forest 

cover (that is, denser forest tended to occur at as-

pect values closer to 45�), but had a stronger effect 
in 1941 than in 2005 (Table 4, Figure 7). Slope also 

had a positive relationship with dense forest cover, 

but the effect was similar in both time periods. 

DISCUSSION 

The availability of spatially comprehensive aerial 

photographs, which pre-dated major vegetation 

changes brought about by timber harvesting, al-

lowed us to robustly capture spatial patterns of 

historical vegetation in the northern Sierra Nevada. 

Our analyses comparing historical to contemporary 

vegetation patterns demonstrated that the extent of 

dense forest cover increased, replacing moderate 

forest cover as the dominant class. Concurrent with 

the increase in extent, the typical patch size of 

dense forest cover increased substantially, indicat-

ing much more homogenous vegetation patterns 

across the contemporary landscape. Increased for-

est density and homogenization of vegetation 

structure at the patch (or stand) scale are com-

monly noted changes in frequent-fire forests across 

the Western U.S. (Larson and Churchill 2012; 

Lydersen and others 2013). The considerable 

change in landscape vegetation patterns that we 

demonstrated, however, is relatively novel, since 

few studies have assessed change at this scale (for 

example, Hessburg and others 2005). 

Although the proportional increase in dense 

forest cover from 1941 to 2005 was statistically 

significant, as indicated by both the non-overlap-

ping confidence intervals (Figure 4) and ‘‘time 

period’’ effect from the mixed model analysis (Ta-

ble 4), the magnitude of change was perhaps lower 

than expected (30–43%). What may be of more 

interest than proportional change between vege-

tation classes is the spatial patterns of change (Le-

vick and Rogers 2011). The tenfold increase in 

area-weighted mean patch size of the dense cover 

class (460 ha to 4760 ha, Figure 6) likely reflects a 

much greater vulnerability to crown fire and insect 

mortality (Hessburg and others 2005). It is rea-

sonable to assume these increased patch sizes, 

along with severe fire weather and increased fuel 

loads, contributed to the uncharacteristically large 

and severe fires that occurred within our study area 

after 2005 (Stephens and others 2014). These fires 

burned with an uncharacteristically large propor-

tion of high-severity fire (51% within the analysis 

area), with the majority of the high-severity fire 

occurring in areas classified as dense forest cover in 

2005 (Figure 8). Comparing contemporary forest 

conditions in eastern Washington to those observed 

in historical aerial imagery, Hessburg and others 

(2000) also found that forest spatial patterns be-

came more simplified due to an expanded amount 
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Figure 5. Map showing vegetation classification predicted by random forest analysis across the study area in 1941 and 

2005. Non FS lands and water were excluded from the classification. 
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Figure 6. Area-weighted mean patch size of each forest 

cover class in 1941 and 2005. 

and connectivity of intermediate age forest classes, 

so that dense forest patches had become more 

vulnerable to stand-replacing fire because they 

were less isolated than historically. 

In addition to altered patch sizes, the topographic 

patterns of dense forest changed. Dense forest cover 

was rare on southwesterly aspects (135�–315�) 
historically, while contemporary dense forest cover 

was common across a much broader range of as-

pects (Figure 7). The difference between time 

periods suggests that infilling of trees occurred on 

southwesterly slopes, leading to a greater extent of 

dense forest at drier topographic locations than 

occurred historically. Analysis of historical aerial 

photographs of the Colorado Front Range similarly 

found that tree cover had increased to a greater 

extent on south-facing slopes and other areas with 

low forest cover historically (Platt and Schoennagel 

2009). The observed increased tree cover on south-

facing slopes would also lead to greater fuel accu-

mulation and continuity than occurred historically, 

leading to greater fire spread potential (Stephens 

1998; Lydersen and others 2015). It should be no-

ted that tree density likely also increased on 

northeasterly slopes, as has been demonstrated 

with other analyses of forest change over time in 

relatively productive stands of the Sierra Nevada 

(for example, Levine and others 2016). A similar 

association between aspect and forest cover has 

also been found in Sierra Nevada forests under an 

active, low-severity fire regime. Lydersen and 

North (2012) found that contemporary Sierra Ne-

vada forests with a restored fire regime had greater 

stem density and basal area on northeasterly as-

pects, and Stephens and others (2015) found that 

forest classes with greater basal area tended to oc-

cur on more northerly aspects in the southern 

Sierra Nevada in 1911. 

Dense forest cover was also found to occur more 

often on steep slopes, which did not change sig-

nificantly between time periods. Steep areas may 

appear to have high density in aerial imagery be-

cause the ground distance between trees across a 

sloped surface is greater than the apparent canopy 

distance from above due to the slope. This rela-

tionship with slope could also be caused by lower-

density classes such as meadows, which were in-

cluded in the sparse/open cover class in our dataset, 

occurring more often on flatter areas. Finally, even 

though topographic correction was applied, it is 

also possible that greater shadowing occurred on 

steep slopes, leading to a higher misclassification of 

dense forest on steeper slopes in our analysis. 

Although the extent of dense forest cover in-

creased overall, it is likely that some areas de-

creased in tree cover. The extent of the sparse/open 

class showed only a marginal decrease (from 10 to 

9%), and the low cover class similarly had a very 

small decrease from 19 to 16% (Figure 4). How-

ever, there was a nearly twofold increase in area-

weighted mean patch size for the sparse/open for-

est cover class, from 420 ha to 960 ha (Figure 6). 

This change in patch size may have been caused by 

either fire or timber harvesting. Approximately 

12,000 ha, or 12% of the analysis area, burned in 

wildfires between 1941 and 2005. We lack similar 

detail on the extent and intensity of past timber 

harvesting over this area, but it is likely that most of 

the area containing mature trees experienced 

Table 4. Solutions for Fixed Effects for a Generalized Linear Mixed Model Estimating the Probability of the 
Dense Forest Cover Class Occurring Given a Suite of Topographic Variables 

Effect Time period Estimate Standard error DF t value Pr > |t| 

Intercept 

Slope 

Time period 

Time period 

Aspect 

Aspect*time period 

Aspect*time period 

1941 

2005 

1941 

2005 

- 1.3291 

0.0307 

- 1.5925 

0 

0.7099 

0.7255 

0 

0.5288 

0.0098 

0.2805 

– 

0.1423 

0.2136 

– 

531 

532 

532 

– 

532 

532 

– 

- 2.51 

3.13 

- 5.68 

– 

4.99 

3.40 

– 

0.0122 

0.0019 

< 0.0001 

– 

< 0.0001 

0.0007 

– 
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Figure 7. Box and whisker plots comparing aspect be-

tween sparse–low–moderate forest cover classes and the 

dense forest cover class in 1941 and 2005. Dense forest 

cover was associated with more northeasterly aspects in 

both time periods, and had a significantly stronger asso-

ciation in 1941 than in 2005 (see Table 4 for statistical 

analysis output). Aspect was transformed using a cosine 

function for inclusion in the generalized linear mixed 

model, with 45� set to the maximum value of 2. It was 

back-transformed for presentation in this figure. Box and 

whisker plots depict median (horizontal band), 

interquartile range (white bar), and range of data within 

1.5 interquartile range of the lower and upper quartiles 

(vertical dashed lines). 

Figure 8. Area in each forest cover class in 2005 among 

fire severity classes in the area burned by the Moonlight 

Fire (2007), Antelope Fire (2007) and Boulder Fire 

(2006) within the analysis area. Fire severity classes are 

based on the relative differenced normalized burn ratio 

(Miller and Thode 2007). 

selection timber harvests focused on large tree re-

moval (pers. comm., R. Tompkins, Plumas National 

Forest, 2016). The creation of larger patches in the 

sparse/open cover class likely compensated for 

infilling of trees into open patches in other areas 

(Skinner 1995), so that the shift in proportional 

cover in this class was minimal. A shift from many 

small canopy openings to fewer large ones can af-

fect many ecological processes, including tree 

regeneration patterns, snow pack accumulation, 

and habitat diversity (White and others 2015; Bales 

and others 2016; Welch and others 2016). 

The amount of relatively dense forest present in 

the historical landscape is somewhat greater at our 

study site than has been estimated by other historic 

datasets for the Sierra Nevada covering a large area. 

Analyses of forest data from 1911 found that forests 

with relatively high basal area covered 15% of the 

study area in the southern Sierra Nevada (Stephens 

and others 2015), and 10% of the study area in the 

central Sierra Nevada (Collins and others 2015). 

This could reflect that a substantial amount of 

forest infilling had already occurred at our study 

site by 1941. Forest reconstructions (Scholl and 

Taylor 2010; Abella and others 2015), historical 

forest inventory data (Knapp and others 2013; 

Lydersen and others 2013), and anecdotal obser-

vations (Show and Kotok 1924) all demonstrate 

rapid tree recruitment coinciding with the onset of 

fire exclusion. Therefore, several decades of tree 

growth after the onset of fire suppression practices 

at our study site could have led to greater numbers 

of small trees and a greater extent of dense cover 

than was present under an intact frequent-fire re-

gime. 

Although the importance of dense forest cover to 

wildlife in contemporary forests is well understood, 

how to optimize the spatial configuration of these 

conditions across frequent-fire landscapes to ben-

efit wildlife is not known (North 2012). It is 

important to consider the scale at which certain 

habitat features are important. For example, Cali-

fornia spotted owls may be more sensitive to veg-

etation conditions close to their nest than within 

their larger territory (Blakesley and others 2005; 

North and others 2017). However, the presence of 

any forest with less than 40% canopy cover is 

negatively correlated with owl territory occupancy 

(Tempel and others 2016), so the types of vegeta-

tion that are interspersed with dense cover may 

affect habitat value. It is not known what patch size 

of opening is small enough to avoid having a neg-

ative effect on wildlife species that prefer dense 

cover. Greater connectivity of dense forest is indi-

rectly detrimental since it increases the risk of loss 
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of habitat to wildfire, but this risk can be reduced 

by implementing a coordinated network of fuels 

reduction treatments across landscapes (Ager and 

others 2007; Chiono and others 2017). 

There are several limitations to our study that 

should be considered. One problem, shared by most 

analyses of historical photography, is a lack of field 

data to validate the vegetation classification (Eitzel 

and others 2016). We relied on the out of bag error 

rate, which uses the misclassification rate of a 

random subset of the training dataset for each 

classification tree in the RFA classification. The 

overall classification accuracies in this study 

(68.4% for the 1941 imagery and 64.8% for the 

2005 imagery) is fairly similar to other studies using 

automated methods to classify vegetation in his-

torical air photographs. For example, Morgan and 

Gergel (2013) had accuracy rates ranging from 54 

to 64%. Similarly, they also found that misclassi-

fications were more likely between adjacent classes 

for ordinal classification schemes. However, with-

out historical field data, we were unable to validate 

the accuracy of the training dataset itself. Errors in 

the reference dataset can lead to inaccurate esti-

mates of error in the final classification (Foody 

2002). Another challenge in using historical air 

photographs to classify vegetation is that the de-

rived classifications may be lacking in detail. Dif-

ferentiating between species is difficult due to both 

the limited range of values in black and white 

(panchromatic) imagery and differences in tone 

between different photographs (Morgan and Gergel 

2013; Eitzel and others 2015). Because of this, we 

restricted our classification to four coarse classes of 

relative forest cover and did not try to differentiate 

between species or seral stage. Simplifying a con-

tinuous variable such as forest cover into discrete 

categories is also somewhat problematic as it ig-

nores within-category variation (McGarigal and 

others 2009). Contemporary field data near the 

timing of the 2005 imagery is likely available in 

some form, but comparable data around the timing 

of the 1941 imagery is lacking. This precluded the 

use of common forest structure metrics such as 

basal area, stem density, and species composition, 

which also hindered our ability to relate forest 

cover classes between time periods. It is likely that 

the dense forest cover class in 1941 was not 

equivalent to that in 2005 in terms of its tree size 

class distribution, species composition, density or 

basal area, due to both fire exclusion and timber 

harvesting. This may explain why the overall pro-

portional change in this class was not as large as 

expected. 

CONCLUSION 

Despite the challenges with processing historical 

aerial photographs and the limitations in what 

types of information they can provide, the unique 

information they provide on landscape vegetation 

patterns make them a valuable source of reference 

information that can be useful to land managers, as 

well as for gaining insight into ecosystem dynamics 

in a less disturbed state. Our analysis showed that 

the connectivity and size of dense forest patches 

has increased dramatically since the early 1940s, a 

trend that likely contributed to the large extent of 

high-severity fire in the area since 2005. Our study 

suggests that decreasing the size of dense forest 

patches, particularly by reducing tree cover on 

south-facing aspects, could restore historical vege-

tation patterns and thereby improve forest resi-

lience to wildfire and insect outbreaks. 
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